1
|
Monet MC, Quan N. Complex Neuroimmune Involvement in Neurodevelopment: A Mini-Review. J Inflamm Res 2023; 16:2979-2991. [PMID: 37489149 PMCID: PMC10363380 DOI: 10.2147/jir.s410562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
It is increasingly evident that cells and molecules of the immune system play significant roles in neurodevelopment. As perinatal infection is associated with the development of neurodevelopmental disorders, previous research has focused on demonstrating that the induction of neuroinflammation in the developing brain is capable of causing neuropathology and behavioral changes. Recent studies, however, have revealed that immune cells and molecules in the brain can influence neurodevelopment without the induction of overt inflammation, identifying neuroimmune activities as integral parts of normal neurodevelopment. This mini-review describes the shift in literature that has moved from emphasizing the intrusion of inflammatory events as a main culprit of neurodevelopmental disorders to evaluating the deviation of the normal neuroimmune activities in neurodevelopment as a potential pathogenic mechanism.
Collapse
Affiliation(s)
- Marianne C Monet
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Ning Quan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Jupiter, FL, USA
| |
Collapse
|
2
|
Rauf A, Badoni H, Abu-Izneid T, Olatunde A, Rahman MM, Painuli S, Semwal P, Wilairatana P, Mubarak MS. Neuroinflammatory Markers: Key Indicators in the Pathology of Neurodegenerative Diseases. Molecules 2022; 27:molecules27103194. [PMID: 35630670 PMCID: PMC9146652 DOI: 10.3390/molecules27103194] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation, a protective response of the central nervous system (CNS), is associated with the pathogenesis of neurodegenerative diseases. The CNS is composed of neurons and glial cells consisting of microglia, oligodendrocytes, and astrocytes. Entry of any foreign pathogen activates the glial cells (astrocytes and microglia) and overactivation of these cells triggers the release of various neuroinflammatory markers (NMs), such as the tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-1β (IL-10), nitric oxide (NO), and cyclooxygenase-2 (COX-2), among others. Various studies have shown the role of neuroinflammatory markers in the occurrence, diagnosis, and treatment of neurodegenerative diseases. These markers also trigger the formation of various other factors responsible for causing several neuronal diseases including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), multiple sclerosis (MS), ischemia, and several others. This comprehensive review aims to reveal the mechanism of neuroinflammatory markers (NMs), which could cause different neurodegenerative disorders. Important NMs may represent pathophysiologic processes leading to the generation of neurodegenerative diseases. In addition, various molecular alterations related to neurodegenerative diseases are discussed. Identifying these NMs may assist in the early diagnosis and detection of therapeutic targets for treating various neurodegenerative diseases.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan
- Correspondence: (A.R.); (P.W.); (M.S.M.)
| | - Himani Badoni
- Department of Biotechnology, School of Applied and Life Sciences, Uttaranchal University, Premnagar, Dehradun 248006, India;
| | - Tareq Abu-Izneid
- Pharmaceutical Sciences Department, College of Pharmacy, Al Ain University for Science and Technology, Al Ain 64141, United Arab Emirates;
| | - Ahmed Olatunde
- Department of Medical Biochemistry, Abubakar Tafawa Balewa University, Bauchi 740272, Nigeria;
| | - Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh;
| | - Sakshi Painuli
- Uttarakhand Council for Biotechnology (UCB), Premnagar, Dehradun 248007, India;
| | - Prabhakar Semwal
- Department of Life Sciences, Graphic Era (Deemed To Be University), Dehradun 248002, India;
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Correspondence: (A.R.); (P.W.); (M.S.M.)
| | - Mohammad S. Mubarak
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan
- Correspondence: (A.R.); (P.W.); (M.S.M.)
| |
Collapse
|
3
|
Ye X, Song G, Huang S, Liang Q, Fang Y, Lian L, Zhu S. Caspase-1: A Promising Target for Preserving Blood–Brain Barrier Integrity in Acute Stroke. Front Mol Neurosci 2022; 15:856372. [PMID: 35370546 PMCID: PMC8971909 DOI: 10.3389/fnmol.2022.856372] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/18/2022] [Indexed: 12/24/2022] Open
Abstract
The blood–brain barrier (BBB) acts as a physical and biochemical barrier that plays a fundamental role in regulating the blood-to-brain influx of endogenous and exogenous components and maintaining the homeostatic microenvironment of the central nervous system (CNS). Acute stroke leads to BBB disruption, blood substances extravasation into the brain parenchyma, and the consequence of brain edema formation with neurological impairment afterward. Caspase-1, one of the evolutionary conserved families of cysteine proteases, which is upregulated in acute stroke, mainly mediates pyroptosis and compromises BBB integrity via lytic cellular death and inflammatory cytokines release. Nowadays, targeting caspase-1 has been proven to be effective in decreasing the occurrence of hemorrhagic transformation (HT) and in attenuating brain edema and secondary damages during acute stroke. However, the underlying interactions among caspase-1, BBB, and stroke still remain ill-defined. Hence, in this review, we are concerned about the roles of caspase-1 activation and its associated mechanisms in stroke-induced BBB damage, aiming at providing insights into the significance of caspase-1 inhibition on stroke treatment in the near future.
Collapse
|
4
|
del Zoppo GJ, Moskowitz MA, Nedergaard M. The Neurovascular Unit and Responses to Ischemia. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Rodríguez AM, Rodríguez J, Giambartolomei GH. Microglia at the Crossroads of Pathogen-Induced Neuroinflammation. ASN Neuro 2022; 14:17590914221104566. [PMID: 35635133 PMCID: PMC9158411 DOI: 10.1177/17590914221104566] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Microglia are the resident tissue macrophages of the central nervous system (CNS). Recent findings point out that in the steady state the major role of microglia, is to instruct and regulate the correct function of the neuronal networks and different components of the neurovascular unit in the adult CNS, while providing immune surveillance. Paradoxically, during CNS infection immune activation of microglia generates an inflammatory milieu that contributes to the clearance of the pathogen but can, in the process, harm nearby cells of CNS. Most of the knowledge about the harmful effects of activated microglia on CNS has arisen from studies on neurodegenerative diseases. In this review we will focus on the beneficial role and detrimental functions of microglial cells on the neighboring cells of the CNS upon infection.
Collapse
Affiliation(s)
- Ana María Rodríguez
- Instituto de Inmunología, Genética y Metabolismo (INIGEM). CONICET. Facultad de Farmacia y Bioquímica, 28196Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julia Rodríguez
- Instituto de Inmunología, Genética y Metabolismo (INIGEM). CONICET. Facultad de Farmacia y Bioquímica, 28196Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guillermo Hernán Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM). CONICET. Facultad de Farmacia y Bioquímica, 28196Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
6
|
Ryan F, Khoshnam SE, Khodagholi F, Ashabi G, Ahmadiani A. How cytosolic compartments play safeguard functions against neuroinflammation and cell death in cerebral ischemia. Metab Brain Dis 2021; 36:1445-1467. [PMID: 34173922 DOI: 10.1007/s11011-021-00770-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 06/06/2021] [Indexed: 11/26/2022]
Abstract
Ischemic stroke is the second leading cause of mortality and disability globally. Neuronal damage following ischemic stroke is rapid and irreversible, and eventually results in neuronal death. In addition to activation of cell death signaling, neuroinflammation is also considered as another pathogenesis that can occur within hours after cerebral ischemia. Under physiological conditions, subcellular organelles play a substantial role in neuronal functionality and viability. However, their functions can be remarkably perturbed under neurological disorders, particularly cerebral ischemia. Therefore, their biochemical and structural response has a determining role in the sequel of neuronal cells and the progression of disease. However, their effects on cell death and neuroinflammation, as major underlying mechanisms of ischemic stroke, are still not understood. This review aims to provide a comprehensive overview of the contribution of each organelle on these pathological processes after ischemic stroke.
Collapse
Affiliation(s)
- Fari Ryan
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Centre, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghorbangol Ashabi
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, PO Box: 1417613151, Tehran, Iran.
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Venugopal J, Wang J, Mawri J, Guo C, Eitzman D. Interleukin-1 receptor inhibition reduces stroke size in a murine model of sickle cell disease. Haematologica 2021; 106:2469-2477. [PMID: 32817286 PMCID: PMC8409048 DOI: 10.3324/haematol.2020.252395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Indexed: 12/22/2022] Open
Abstract
Sickle cell disease (SCD) is associated with chronic hemolytic anemia and a heightened inflammatory state. The causal role of inflammatory pathways in stroke associated with SCD is unclear. Therefore, the hypothesis that deletion of the non-hematopoietic interleukin-1 receptor (IL-1R) pool may be beneficial in SCD was pursued. Since potential deleterious effects of IL-1R signaling in SCD could be mediated via downstream production of interleukin-6 (IL-6), the role of the nonhematopoietic IL-6 pool was also addressed. Bone marrow transplantation (BMT) from SCD to wild-type (WT) recipient mice was used to generate SCD mice (Wt,SCDbmt). In order to generate mice with nonhematopoietic deficiency of IL-1R or IL-6, SCD marrow was transplanted into IL-1R deficient (IL1R-/-,SCDbmt) or IL-6 deficient recipients (IL6-/-, SCDbmt). Blood counts, reticulocytes, soluble E-selectin (sEsel), and IL-6 levels were analyzed 14-15 weeks post-BMT. Ischemic stroke was induced by middle cerebral artery (MCA) photothrombosis at 16 weeks post-BMT. A separate group of Wt,SCDbmt mice was given the IL-1R inhibitor, anakinra, following stroke induction. Seventy-two hours after MCA occlusion, stroke volume was assessed by staining brain sections with 2,3,5-triphenyltetrazolium chloride. Formalin-fixed brain sections were also stained for macrophages with MAC3, for endothelial activation with ICAM-1, and for loss of blood brain barrier integrity with fibrin (ogen) staining. All SCD mice generated by BMT were anemic and the severity of anemia was not different between Wt,SCDbmt, IL1R-/-,SCDbmt, and IL-6-/-,SCDbmt mice. Three days following MCA occlusion, stroke volume was significantly reduced in IL1R-/-,SCDbmt mice compared to Wt,SCDbmt mice and IL6-/-,SCDbmt mice. Plasma levels of sEsel were lower in IL1R-/-,SCDbmt compared to Wt,SCDbmt and IL-6-/-,SCDbmt mice. Post-stroke treatment of Wt,SCDbmt mice with anakinra decreased stroke size, leukocyte infiltration, ICAM-1 expression, and fibrin(ogen) accumulation compared to vehicle-treated mice. Deficiency of non-hematopoietic IL-1R or treatment with an IL-1R antagonist is sufficient to confer protection against the increased stroke size associated with SCD. These effects of IL1R deficiency are associated with reduced endothelial activation, leukocyte infiltration, and blood brain barrier disruption, and are independent of non-hematopoietic IL-6 signaling.
Collapse
Affiliation(s)
- Jessica Venugopal
- University of Michigan Internal Medicine - Cardiology division, Ann Arbor, MI, USA
| | - Jintao Wang
- University of Michigan Internal Medicine - Cardiology division, Ann Arbor, MI, USA
| | | | - Chiao Guo
- University of Michigan Internal Medicine - Cardiology division, Ann Arbor, MI, USA
| | - Daniel Eitzman
- University of Michigan Internal Medicine - Cardiology division, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Hauptmann J, Johann L, Marini F, Kitic M, Colombo E, Mufazalov IA, Krueger M, Karram K, Moos S, Wanke F, Kurschus FC, Klein M, Cardoso S, Strauß J, Bolisetty S, Lühder F, Schwaninger M, Binder H, Bechman I, Bopp T, Agarwal A, Soares MP, Regen T, Waisman A. Interleukin-1 promotes autoimmune neuroinflammation by suppressing endothelial heme oxygenase-1 at the blood-brain barrier. Acta Neuropathol 2020; 140:549-567. [PMID: 32651669 PMCID: PMC7498485 DOI: 10.1007/s00401-020-02187-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/05/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022]
Abstract
The proinflammatory cytokine interleukin 1 (IL-1) is crucially involved in the pathogenesis of multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Herein, we studied the role of IL-1 signaling in blood-brain barrier (BBB) endothelial cells (ECs), astrocytes and microglia for EAE development, using mice with the conditional deletion of its signaling receptor IL-1R1. We found that IL-1 signaling in microglia and astrocytes is redundant for the development of EAE, whereas the IL-1R1 deletion in BBB-ECs markedly ameliorated disease severity. IL-1 signaling in BBB-ECs upregulated the expression of the adhesion molecules Vcam-1, Icam-1 and the chemokine receptor Darc, all of which have been previously shown to promote CNS-specific inflammation. In contrast, IL-1R1 signaling suppressed the expression of the stress-responsive heme catabolizing enzyme heme oxygenase-1 (HO-1) in BBB-ECs, promoting disease progression via a mechanism associated with deregulated expression of the IL-1-responsive genes Vcam1, Icam1 and Ackr1 (Darc). Mechanistically, our data emphasize a functional crosstalk of BBB-EC IL-1 signaling and HO-1, controlling the transcription of downstream proinflammatory genes promoting the pathogenesis of autoimmune neuroinflammation.
Collapse
Affiliation(s)
- Judith Hauptmann
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Lisa Johann
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Federico Marini
- Center of Thrombosis and Hemostasis Mainz (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute for Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Maja Kitic
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Elisa Colombo
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ilgiz A Mufazalov
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Martin Krueger
- Anatomical Institute, University of Leipzig, Leipzig, Germany
| | - Khalad Karram
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sonja Moos
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Department of Dermatology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Florian Wanke
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Immunology, Infectious Diseases and Ophthalmology (I2O) Discovery and Translational Area Roche Innovation Center, Basel, Switzerland
| | - Florian C Kurschus
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Department of Dermatology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Matthias Klein
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Judith Strauß
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Subhashini Bolisetty
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Fred Lühder
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Harald Binder
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Ingo Bechman
- Anatomical Institute, University of Leipzig, Leipzig, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Anupam Agarwal
- Nephrology Research and Training Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Tommy Regen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
9
|
Peng T, Jiang Y, Farhan M, Lazarovici P, Chen L, Zheng W. Anti-inflammatory Effects of Traditional Chinese Medicines on Preclinical in vivo Models of Brain Ischemia-Reperfusion-Injury: Prospects for Neuroprotective Drug Discovery and Therapy. Front Pharmacol 2019; 10:204. [PMID: 30930774 PMCID: PMC6423897 DOI: 10.3389/fphar.2019.00204] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/18/2019] [Indexed: 12/28/2022] Open
Abstract
Acquired brain ischemia-and reperfusion-injury (IRI), including both Ischemic stroke (IS) and Traumatic Brain injury (TBI), is one of the most common causes of disability and death in adults and represents a major burden in both western and developing countries worldwide. China’s clinical neurological therapeutic experience in the use of traditional Chinese medicines (TCMs), including TCM-derived active compounds, Chinese herbs, TCM formulations and decoction, in brain IRI diseases indicated a trend of significant improvement in patients’ neurological deficits, calling for blind, placebo-controlled and randomized clinical trials with careful meta-analysis evaluation. There are many TCMs in use for brain IRI therapy in China with significant therapeutic effects in preclinical studies using different brain IRI-animal. The basic hypothesis in this field claims that in order to avoid the toxicity and side effects of the complex TCM formulas, individual isolated and identified compounds that exhibited neuroprotective properties could be used as lead compounds for the development of novel drugs. China’s efforts in promoting TCMs have contributed to an explosive growth of the preclinical research dedicated to the isolation and identification of TCM-derived neuroprotective lead compounds. Tanshinone, is a typical example of TCM-derived lead compounds conferring neuroprotection toward IRI in animals with brain middle cerebral artery occlusion (MCAO) or TBI models. Recent reports show the significance of the inflammatory response accompanying brain IRI. This response appears to contribute to both primary and secondary ischemic pathology, and therefore anti-inflammatory strategies have become popular by targeting pro-inflammatory and anti-inflammatory cytokines, other inflammatory mediators, reactive oxygen species, nitric oxide, and several transcriptional factors. Here, we review recent selected studies and discuss further considerations for critical reevaluation of the neuroprotection hypothesis of TCMs in IRI therapy. Moreover, we will emphasize several TCM’s mechanisms of action and attempt to address the most promising compounds and the obstacles to be overcome before they will enter the clinic for IRI therapy. We hope that this review will further help in investigations of neuroprotective effects of novel molecular entities isolated from Chinese herbal medicines and will stimulate performance of clinical trials of Chinese herbal medicine-derived drugs in IRI patients.
Collapse
Affiliation(s)
- Tangming Peng
- Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China.,Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China.,Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, China
| | - Yizhou Jiang
- Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Mohd Farhan
- Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Philip Lazarovici
- Faculty of Medicine, School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ligang Chen
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China.,Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, China
| | - Wenhua Zheng
- Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
10
|
Korotkov A, Broekaart DWM, van Scheppingen J, Anink JJ, Baayen JC, Idema S, Gorter JA, Aronica E, van Vliet EA. Increased expression of matrix metalloproteinase 3 can be attenuated by inhibition of microRNA-155 in cultured human astrocytes. J Neuroinflammation 2018; 15:211. [PMID: 30031401 PMCID: PMC6054845 DOI: 10.1186/s12974-018-1245-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 07/02/2018] [Indexed: 12/21/2022] Open
Abstract
Background Temporal lobe epilepsy (TLE) is a chronic neurological disease, in which about 30% of patients cannot be treated adequately with anti-epileptic drugs. Brain inflammation and remodeling of the extracellular matrix (ECM) seem to play a major role in TLE. Matrix metalloproteinases (MMPs) are proteolytic enzymes largely responsible for the remodeling of the ECM. The inhibition of MMPs has been suggested as a novel therapy for epilepsy; however, available MMP inhibitors lack specificity and cause serious side effects. We studied whether MMPs could be modulated via microRNAs (miRNAs). Several miRNAs mediate inflammatory responses in the brain, which are known to control MMP expression. The aim of this study was to investigate whether an increased expression of MMPs after interleukin-1β (IL-1β) stimulation can be attenuated by inhibition of the inflammation-associated miR-155. Methods We investigated the expression of MMP2, MMP3, MMP9, and MMP14 in cultured human fetal astrocytes after stimulation with the pro-inflammatory cytokine IL-1β. The cells were transfected with miR-155 antagomiR, and the effect on MMP3 expression was investigated using real-time quantitative PCR and Western blotting. Furthermore, we characterized MMP3 and miR-155 expression in brain tissue of TLE patients with hippocampal sclerosis (TLE-HS) and during epileptogenesis in a rat TLE model. Results Inhibition of miR-155 by the antagomiR attenuated MMP3 overexpression after IL-1β stimulation in astrocytes. Increased expression of MMP3 and miR-155 was also evident in the hippocampus of TLE-HS patients and throughout epileptogenesis in the rat TLE model. Conclusions Our experiments showed that MMP3 is dynamically regulated by seizures as shown by increased expression in TLE tissue and during different phases of epileptogenesis in the rat TLE model. MMP3 can be induced by the pro-inflammatory cytokine IL-1β and is regulated by miR-155, suggesting a possible strategy to prevent epilepsy via reduction of inflammation. Electronic supplementary material The online version of this article (10.1186/s12974-018-1245-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anatoly Korotkov
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Diede W M Broekaart
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jackelien van Scheppingen
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jasper J Anink
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Johannes C Baayen
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Sander Idema
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Jan A Gorter
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - Erwin A van Vliet
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands. .,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Li P, Jiang H, Wu H, Wu D, Li H, Yu J, Lai J. AH6809 decreases production of inflammatory mediators by PGE 2 - EP2 - cAMP signaling pathway in an experimentally induced pure cerebral concussion in rats. Brain Res 2018; 1698:11-28. [PMID: 29792868 DOI: 10.1016/j.brainres.2018.05.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/19/2018] [Accepted: 05/20/2018] [Indexed: 12/31/2022]
Abstract
Increasing evidence suggests that PGE2 metabolic pathway is involved in pathological changes of the secondary brain injury after traumatic brain injury. However, the underlying mechanisms, in particular, the correlation between various key enzymes and the brain injury, has remained to be fully explored. More specifically, it remains to be ascertained whether AH6809 (an EP2 receptor antagonist) would interfere with the downstream of the PGE2, regulate the inflammatory mediators and improve neuronal damage in the hippocampus by PGE2 - EP2 - cAMP signaling pathway. The expression and pathological changes of cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), microsomal prostaglandin-E synthase-1 (mPGES-1), E-prostanoid receptor 2 (EP2), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and inducible nitricoxide synthase (iNOS) in the CA1 area of hippocampus were evaluated by immunohistochemistry, Western blot and RT-PCR after pure cerebral concussion (PCC) induced by a metal pendulum closed brain injury in rats followed by AH6809 treatment. The morphology and number of neurons in CA1 region were analyzed by cresyl violet staining. The concentration of prostaglandin E2 (PGE2) and cyclic adenosine monophosphate (cAMP) was assayed by ELISA. Many neurons in hippocampal CA1 area appeared to undergo necrosis and the number of neurons was concomitantly reduced after PCC injury. With the passage of time, the protein and mRNA expression of various key enzymes including COX-1, COX-2 and mPGES-1, EP2 receptor, and inflammatory mediators including TNF-α, IL-1β and iNOS was increased; meanwhile, the concentration of PGE2 and cAMP was enhanced. After PCC injury given AH6809 intervention, injury of neurons in hippocampal CA1 area was attenuated. The protein and mRNA expression of COX-1, COX-2, mPGES-1, EP2, TNF-α, IL-1β and iNOS was decreased, this was coupled with reduction of PGE2 and cAMP. The results suggest that PGE2 metabolic pathway is involved in secondary pathological changes of PCC. AH6809 improves the recovery of injured neurons in the hippocampal CA1 area and downregulates the inflammatory mediators by PGE2 - EP2 - cAMP signaling pathway.
Collapse
Affiliation(s)
- Ping Li
- College of Forensic Science, Xi'an Jiaotong University, Key Laboratory of Ministry of Public Health for Forensic Science, Xi'an 710061, Shaanxi, PR China; Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming 650500, Yunnan, PR China
| | - Hongyan Jiang
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming 650500, Yunnan, PR China
| | - Haiying Wu
- Department of Emergency and Intensive Care Unit, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, Yunnan, PR China
| | - Deye Wu
- Department of Human Anatomy and Histology/Embryology, Qilu Medical University, 246 West Outer Ring Road, Boshan Economic and Technological Development Zone, Zibo 255213, Shandong, PR China
| | - Hengxi Li
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming 650500, Yunnan, PR China
| | - Jianyun Yu
- College of Forensic Science and Key Laboratory of Brain Injury, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming 650500, Yunnan, PR China
| | - Jianghua Lai
- College of Forensic Science, Xi'an Jiaotong University, Key Laboratory of Ministry of Public Health for Forensic Science, Xi'an 710061, Shaanxi, PR China.
| |
Collapse
|
12
|
Involvement of the Urokinase Receptor and Its Endogenous Ligands in the Development of the Brain and the Formation of Cognitive Functions. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s11055-017-0525-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Mizuma A, Yenari MA. Anti-Inflammatory Targets for the Treatment of Reperfusion Injury in Stroke. Front Neurol 2017; 8:467. [PMID: 28936196 PMCID: PMC5594066 DOI: 10.3389/fneur.2017.00467] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/23/2017] [Indexed: 12/20/2022] Open
Abstract
While the mainstay of acute stroke treatment includes revascularization via recombinant tissue plasminogen activator or mechanical thrombectomy, only a minority of stroke patients are eligible for treatment, as delayed treatment can lead to worsened outcome. This worsened outcome at the experimental level has been attributed to an entity known as reperfusion injury (R/I). R/I is occurred when revascularization is delayed after critical brain and vascular injury has occurred, so that when oxygenated blood is restored, ischemic damage is increased, rather than decreased. R/I can increase lesion size and also worsen blood barrier breakdown and lead to brain edema and hemorrhage. A major mechanism underlying R/I is that of poststroke inflammation. The poststroke immune response consists of the aberrant activation of glial cell, infiltration of peripheral leukocytes, and the release of damage-associated molecular pattern (DAMP) molecules elaborated by ischemic cells of the brain. Inflammatory mediators involved in this response include cytokines, chemokines, adhesion molecules, and several immune molecule effectors such as matrix metalloproteinases-9, inducible nitric oxide synthase, nitric oxide, and reactive oxygen species. Several experimental studies over the years have characterized these molecules and have shown that their inhibition improves neurological outcome. Yet, numerous clinical studies failed to demonstrate any positive outcomes in stroke patients. However, many of these clinical trials were carried out before the routine use of revascularization therapies. In this review, we cover mechanisms of inflammation involved in R/I, therapeutic targets, and relevant experimental and clinical studies, which might stimulate renewed interest in designing clinical trials to specifically target R/I. We propose that by targeting anti-inflammatory targets in R/I as a combined therapy, it may be possible to further improve outcomes from pharmacological thrombolysis or mechanical thrombectomy.
Collapse
Affiliation(s)
- Atsushi Mizuma
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, CA, United States
| | - Midori A Yenari
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, CA, United States
| |
Collapse
|
14
|
Boiko EV, Mal'tsev DS, Polyakova VO. [Effects of urokinase plasminogen activator on cultured human retinal epithelial cells]. Vestn Oftalmol 2017; 133:42-48. [PMID: 28291199 DOI: 10.17116/oftalma2017133142-48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM to study the effects of urokinase plasminogen activator (UPA) on the human retinal pigment epithelium (hRPE) cell culture. MATERIAL AND METHODS The toxicity of 50 U/ml UPA was studied with the trypan blue exclusion test. Cell migration was assessed by the wound healing and modified Boyden chamber assays. Additionally, cell morphology, trypsin resistance, and Ki67 expression were investigated. RESULTS Trypan exclusion test did not reveal any cytotoxicity of 50 U/ml UPA against hRPE cells. The agent appeared able to induce cellular cluster formation and increase the number of spindle-shaped cells (6.4±2.4 cells/field and 67.3±3.2 cells/field in the controls and in the presence of 50 U/ml UPA, respectively, p<0.001). Cell migration in the Boyden chamber also showed a statistically significant increase (1.75-fold, p=0.012). Monolayer wounds were found to heal at an accelerated rate (p<0.05). This effect was dose-dependent, just like the increase in Ki67-positive cells (from 2.5 to 50 U/ml). Moreover, there was a reduction in trypsin resistance of the hRPE cells (the number of resistant cells in the control and 50 U/ml UPA cultures was 5.2±1.7 cells/field and 0.46±0.32 cells/field, respectively, p<0.001). CONCLUSION UPA, at concentrations of 50 U/ml or less, demonstrates no cytotoxicity against the hRPE cells. The effects of UPA on hRPE include stimulation of epithelial-mesenchymal transition, migration, proliferation, and intercellular interaction. At that, changes in migratory and proliferative activity are dose-dependent.
Collapse
Affiliation(s)
- E V Boiko
- Military Medical Academy named after S.M. Kirov, Ministry of Defense of the Russian Federation, 5 Klinicheskaya St., Saint-Petersburg, Russian Federation, 194044; Saint-Petersburg branch of the Academician S.N. Fyodorov IRTC 'Eye Microsurgery', 21 Yaroslava Gasheka St., Saint-Petersburg, Russian Federation, 192283
| | - D S Mal'tsev
- Military Medical Academy named after S.M. Kirov, Ministry of Defense of the Russian Federation, 5 Klinicheskaya St., Saint-Petersburg, Russian Federation, 194044
| | - V O Polyakova
- D.O. Ott Research Institute of Obstetrics and Gynaecology, 3 Mendeleevskaya liniya, Saint-Petersburg, Russian Federation 199034
| |
Collapse
|
15
|
Bonaventura A, Liberale L, Vecchié A, Casula M, Carbone F, Dallegri F, Montecucco F. Update on Inflammatory Biomarkers and Treatments in Ischemic Stroke. Int J Mol Sci 2016; 17:1967. [PMID: 27898011 PMCID: PMC5187767 DOI: 10.3390/ijms17121967] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/08/2016] [Accepted: 11/17/2016] [Indexed: 12/26/2022] Open
Abstract
After an acute ischemic stroke (AIS), inflammatory processes are able to concomitantly induce both beneficial and detrimental effects. In this narrative review, we updated evidence on the inflammatory pathways and mediators that are investigated as promising therapeutic targets. We searched for papers on PubMed and MEDLINE up to August 2016. The terms searched alone or in combination were: ischemic stroke, inflammation, oxidative stress, ischemia reperfusion, innate immunity, adaptive immunity, autoimmunity. Inflammation in AIS is characterized by a storm of cytokines, chemokines, and Damage-Associated Molecular Patterns (DAMPs) released by several cells contributing to exacerbate the tissue injury both in the acute and reparative phases. Interestingly, many biomarkers have been studied, but none of these reflected the complexity of systemic immune response. Reperfusion therapies showed a good efficacy in the recovery after an AIS. New therapies appear promising both in pre-clinical and clinical studies, but still need more detailed studies to be translated in the ordinary clinical practice. In spite of clinical progresses, no beneficial long-term interventions targeting inflammation are currently available. Our knowledge about cells, biomarkers, and inflammatory markers is growing and is hoped to better evaluate the impact of new treatments, such as monoclonal antibodies and cell-based therapies.
Collapse
Affiliation(s)
- Aldo Bonaventura
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.
| | - Alessandra Vecchié
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.
| | - Matteo Casula
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.
| | - Franco Dallegri
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.
- IRCCS Azienda Ospedaliera Universitaria San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genova, 10 Largo Benzi, 16132 Genoa, Italy.
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.
- IRCCS Azienda Ospedaliera Universitaria San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genova, 10 Largo Benzi, 16132 Genoa, Italy.
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 9 viale Benedetto XV, 16132 Genoa, Italy.
| |
Collapse
|
16
|
Kangwantas K, Pinteaux E, Penny J. The extracellular matrix protein laminin-10 promotes blood-brain barrier repair after hypoxia and inflammation in vitro. J Neuroinflammation 2016; 13:25. [PMID: 26832174 PMCID: PMC4736307 DOI: 10.1186/s12974-016-0495-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 01/25/2016] [Indexed: 11/18/2022] Open
Abstract
Background The blood–brain barrier (BBB) of the central nervous system (CNS) is essential for normal brain function. However, the loss of BBB integrity that occurs after ischaemic injury is associated with extracellular matrix (ECM) remodelling and inflammation, and contributes to poor outcome. ECM remodelling also contributes to BBB repair after injury, but the precise mechanisms and contribution of specific ECM molecules involved are unknown. Here, we investigated the mechanisms by which hypoxia and inflammation trigger loss of BBB integrity and tested the hypothesis ECM changes could contribute to BBB repair in vitro. Methods We used an in vitro model of the BBB, composed of primary rat brain endothelial cells grown on collagen (Col) I-, Col IV-, fibronectin (FN)-, laminin (LM) 8-, or LM10-coated tissue culture plates, either as a single monolayer culture or on Transwell® inserts above mixed glial cell cultures. Cultures were exposed to oxygen-glucose deprivation (OGD) and/or reoxygenation, in the absence or the presence of recombinant interleukin-1β (IL-1β). Cell adhesion to ECM molecules was assessed by cell attachment and cell spreading assays. BBB dysfunction was assessed by immunocytochemistry for tight junction proteins occludin and zona occludens-1 (ZO-1) and measurement of trans-endothelial electrical resistance (TEER). Change in endothelial expression of ECM molecules was assessed by semi-quantitative RT-PCR. Results OGD and/or IL-1 induce dramatic changes associated with loss of BBB integrity, including cytoplasmic relocalisation of membrane-associated tight junction proteins occludin and ZO-1, cell swelling, and decreased TEER. OGD and IL-1 also induced gene expression of key ECM molecules associated with the BBB, including FN, Col IV, LM 8, and LM10. Importantly, we found that LM10, but not FN, Col IV, nor LM8, plays a key role in maintenance of BBB integrity and reversed most of the key hallmarks of BBB dysfunction induced by IL-1. Conclusions Our data unravel new mechanisms of BBB dysfunction induced by hypoxia and inflammation and identify LM10 as a key ECM molecule involved in BBB repair after hypoxic injury and inflammation.
Collapse
Affiliation(s)
- Korakoch Kangwantas
- Manchester Pharmacy School, University of Manchester, Manchester, M13 9PT, UK.
| | - Emmanuel Pinteaux
- Faculty of Life Sciences, University of Manchester, A.V. Hill Building, Oxford Road, Manchester, M13 9PT, UK.
| | - Jeffrey Penny
- Manchester Pharmacy School, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
17
|
del Zoppo GJ, Moskowitz M, Nedergaard M. The Neurovascular Unit and Responses to Ischemia. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Amantea D, Micieli G, Tassorelli C, Cuartero MI, Ballesteros I, Certo M, Moro MA, Lizasoain I, Bagetta G. Rational modulation of the innate immune system for neuroprotection in ischemic stroke. Front Neurosci 2015; 9:147. [PMID: 25972779 PMCID: PMC4413676 DOI: 10.3389/fnins.2015.00147] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/09/2015] [Indexed: 01/08/2023] Open
Abstract
The innate immune system plays a dualistic role in the evolution of ischemic brain damage and has also been implicated in ischemic tolerance produced by different conditioning stimuli. Early after ischemia, perivascular astrocytes release cytokines and activate metalloproteases (MMPs) that contribute to blood–brain barrier (BBB) disruption and vasogenic oedema; whereas at later stages, they provide extracellular glutamate uptake, BBB regeneration and neurotrophic factors release. Similarly, early activation of microglia contributes to ischemic brain injury via the production of inflammatory cytokines, including tumor necrosis factor (TNF) and interleukin (IL)-1, reactive oxygen and nitrogen species and proteases. Nevertheless, microglia also contributes to the resolution of inflammation, by releasing IL-10 and tumor growth factor (TGF)-β, and to the late reparative processes by phagocytic activity and growth factors production. Indeed, after ischemia, microglia/macrophages differentiate toward several phenotypes: the M1 pro-inflammatory phenotype is classically activated via toll-like receptors or interferon-γ, whereas M2 phenotypes are alternatively activated by regulatory mediators, such as ILs 4, 10, 13, or TGF-β. Thus, immune cells exert a dualistic role on the evolution of ischemic brain damage, since the classic phenotypes promote injury, whereas alternatively activated M2 macrophages or N2 neutrophils prompt tissue remodeling and repair. Moreover, a subdued activation of the immune system has been involved in ischemic tolerance, since different preconditioning stimuli act via modulation of inflammatory mediators, including toll-like receptors and cytokine signaling pathways. This further underscores that the immuno-modulatory approach for the treatment of ischemic stroke should be aimed at blocking the detrimental effects, while promoting the beneficial responses of the immune reaction.
Collapse
Affiliation(s)
- Diana Amantea
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria Rende, Italy
| | | | - Cristina Tassorelli
- C. Mondino National Neurological Institute Pavia, Italy ; Department of Brain and Behavioral Sciences, University of Pavia Pavia, Italy
| | - María I Cuartero
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid and Instituto de Investigación Hospital 12 de Octubre Madrid, Spain
| | - Iván Ballesteros
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid and Instituto de Investigación Hospital 12 de Octubre Madrid, Spain
| | - Michelangelo Certo
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria Rende, Italy
| | - María A Moro
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid and Instituto de Investigación Hospital 12 de Octubre Madrid, Spain
| | - Ignacio Lizasoain
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid and Instituto de Investigación Hospital 12 de Octubre Madrid, Spain
| | - Giacinto Bagetta
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria Rende, Italy ; Section of Neuropharmacology of Normal and Pathological Neuronal Plasticity, University Consortium for Adaptive Disorders and Head Pain, University of Calabria Rende, Italy
| |
Collapse
|
19
|
Rodriguez-Grande B, Varghese L, Molina-Holgado F, Rajkovic O, Garlanda C, Denes A, Pinteaux E. Pentraxin 3 mediates neurogenesis and angiogenesis after cerebral ischaemia. J Neuroinflammation 2015; 12:15. [PMID: 25616391 PMCID: PMC4308938 DOI: 10.1186/s12974-014-0227-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/20/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The acute phase protein pentraxin 3 (PTX3) is a new biomarker of stroke severity and is a key regulator of oedema resolution and glial responses after cerebral ischaemia, emerging as a possible target for brain repair after stroke. Neurogenesis and angiogenesis are essential events in post-stroke recovery. Here, we investigated for the first time the role of PTX3 in neurogenesis and angiogenesis after stroke. METHODS PTX3 knockout (KO) or wild-type (WT) mice were subjected to experimental cerebral ischaemia (induced by middle cerebral artery occlusion (MCAo)). Poststroke neurogenesis was assessed by nestin, doublecortin (DCX) and bromodeoxyuridine (BrdU) immunostaining, whereas angiogenesis was assessed by BrdU, vascular endothelial growth factor receptor 2 (VEGFR2) and PECAM-1 immunostaining. In vitro neurogenesis and angiogenesis assays were carried out on neurospheres derived from WT or interleukin-1β (IL-1β) KO mice, and mouse endothelial cell line bEnd.5 respectively. Behavioural function was assessed in WT and PTX3 KO mice using open-field, motor and Y-maze tests. RESULTS Neurogenesis was significantly reduced in the dentate gyrus (DG) of the hippocampus of PTX3 KO mice, compared to WT mice, 6 days after MCAo. In addition, recombinant PTX3 was neurogenic in vitro when added to neurospheres, which was mediated by IL-1β. In vivo poststroke angiogenesis was significantly reduced in PTX3 KO mice compared to WT mice 14 days after MCAo, as revealed by reduced vascular density, less newly formed blood vessels and decreased expression of VEGFR2. In vitro, recombinant PTX3 induced marked endothelial cellular proliferation and promoted formation of tube-like structures of endothelial cell line bEnd.5. Finally, a lack of PTX3 potentiated motor deficits 14 days after MCAo. CONCLUSIONS These results indicate that PTX3 mediates neurogenesis and angiogenesis and contributes to functional recovery after stroke, highlighting a key role of PTX3 as a mediator of brain repair and suggesting that PTX3 could be used as a new target for stroke therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Emmanuel Pinteaux
- Faculty of Life Sciences, A,V, Hill Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
20
|
Urokinase-type plasminogen activator promotes dendritic spine recovery and improves neurological outcome following ischemic stroke. J Neurosci 2015; 34:14219-32. [PMID: 25339736 DOI: 10.1523/jneurosci.5309-13.2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Spines are dendritic protrusions that receive most of the excitatory input in the brain. Early after the onset of cerebral ischemia dendritic spines in the peri-infarct cortex are replaced by areas of focal swelling, and their re-emergence from these varicosities is associated with neurological recovery after acute ischemic stroke (AIS). Urokinase-type plasminogen activator (uPA) is a serine proteinase that plays a central role in tissue remodeling via binding to the urokinase plasminogen activator receptor (uPAR). We report that cerebral cortical neurons release uPA during the recovery phase from ischemic stroke in vivo or hypoxia in vitro. Although uPA does not have an effect on ischemia- or hypoxia-induced neuronal death, genetic deficiency of uPA (uPA(-/-)) or uPAR (uPAR(-/-)) abrogates functional recovery after AIS. Treatment with recombinant uPA after ischemic stroke induces neurological recovery in wild-type and uPA(-/-) but not in uPAR(-/-) mice. Diffusion tensor imaging studies indicate that uPA(-/-) mice have increased water diffusivity and decreased anisotropy associated with impaired dendritic spine recovery and decreased length of distal neurites in the peri-infarct cortex. We found that the excitotoxic injury induces the clustering of uPAR in dendritic varicosities, and that the binding of uPA to uPAR promotes the reorganization of the actin cytoskeleton and re-emergence of dendritic filopodia from uPAR-enriched varicosities. This effect is independent of uPA's proteolytic properties and instead is mediated by Rac-regulated profilin expression and cofilin phosphorylation. Our data indicate that binding of uPA to uPAR promotes dendritic spine recovery and improves functional outcome following AIS.
Collapse
|
21
|
Rakkar K, Srivastava K, Bayraktutan U. Attenuation of urokinase activity during experimental ischaemia protects the cerebral barrier from damage through regulation of matrix metalloproteinase-2 and NAD(P)H oxidase. Eur J Neurosci 2014; 39:2119-28. [PMID: 24649947 DOI: 10.1111/ejn.12552] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/06/2014] [Accepted: 02/08/2014] [Indexed: 01/22/2023]
Abstract
Ischaemic injury impairs the integrity of the blood-brain barrier (BBB). In this study, we investigated the molecular causes of this defect with regard to the putative correlations among NAD(P)H oxidase, plasminogen-plasmin system components, and matrix metalloproteinases. Hence, the activities of NAD(P)H oxidase, matrix metalloproteinase-2, urokinase-type plasminogen activator (uPA), and tissue-type plasminogen activator (tPA), and superoxide anion levels, were assessed in human brain microvascular endothelial cells (HBMECs) exposed to oxygen-glucose deprivation (OGD) alone or OGD followed by reperfusion (OGD + R). The integrity of an in vitro model of BBB comprising HBMECs and astrocytes was studied by measuring transendothelial electrical resistance and the paracellular flux of albumin. OGD with or without reperfusion (OGD ± R) radically perturbed barrier function while concurrently enhancing uPA, tPA and NAD(P)H oxidase activities and superoxide anion release in HBMECs. Pharmacological inactivation of NAD(P)H oxidase attenuated OGD ± R-mediated BBB damage through modulation of matrix metalloproteinase-2 and tPA, but not uPA activity. Overactivation of NAD(P)H oxidase in HBMECs via cDNA electroporation of its p22-phox subunit confirmed the involvement of tPA in oxidase-mediated BBB disruption. Interestingly, blockade of uPA or uPA receptor preserved normal BBB function by neutralizing both NAD(P)H oxidase and matrix metalloproteinase-2 activities. Hence, selective targeting of uPA after ischaemic strokes may protect cerebral barrier integrity and function by concomitantly attenuating basement membrane degradation and oxidative stress.
Collapse
Affiliation(s)
- Kamini Rakkar
- Stroke, Division of Clinical Neuroscience, University of Nottingham, Clinical Sciences Building, Hucknall Road, Nottingham, NG5 1PB, UK
| | | | | |
Collapse
|
22
|
Roberts DJ, Jenne CN, Léger C, Kramer AH, Gallagher CN, Todd S, Parney IF, Doig CJ, Yong VW, Kubes P, Zygun DA. Association between the Cerebral Inflammatory and Matrix Metalloproteinase Responses after Severe Traumatic Brain Injury in Humans. J Neurotrauma 2013; 30:1727-36. [DOI: 10.1089/neu.2012.2842] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Derek J. Roberts
- Department of Surgery, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Community Health Sciences, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Critical Care Medicine, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
| | - Craig N. Jenne
- Department of Critical Care Medicine, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
| | - Caroline Léger
- Department of Critical Care Medicine, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
| | - Andreas H. Kramer
- Department of Critical Care Medicine, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Hotchkiss Brain Institute, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
| | - Clare N. Gallagher
- Department of Clinical Neurosciences, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Hotchkiss Brain Institute, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
| | - Stephanie Todd
- Department of Critical Care Medicine, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
| | - Ian F. Parney
- Department of Neurological Surgery, Mayo Clinic College of Medicine, Rochester, Minnesota, University of Alberta, Edmonton, Alberta, Canada
| | - Christopher J. Doig
- Department of Community Health Sciences, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Critical Care Medicine, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
| | - V. Wee Yong
- Department of Clinical Neurosciences, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Oncology, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Hotchkiss Brain Institute, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
| | - Paul Kubes
- Department of Critical Care Medicine, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Hotchkiss Brain Institute, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
| | - David A. Zygun
- Department of Community Health Sciences, University of Calgary and the Foothills Medical Centre, Calgary, Alberta, Canada
- Division of Critical Care Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
23
|
Abstract
Acute cerebrovascular disease can affect people at all stages of life, from neonates to the elderly, with devastating consequences. It is responsible for up to 10% of deaths worldwide, is a major cause of disability, and represents an area of real unmet clinical need. Acute cerebrovascular disease is multifactorial with many mechanisms contributing to a complex pathophysiology. One of the major processes worsening disease severity and outcome is inflammation. Pro-inflammatory cytokines of the interleukin (IL)-1 family are now known to drive damaging inflammatory processes in the brain. The aim of this review is to discuss the recent literature describing the role of IL-1 in acute cerebrovascular disease and to provide an update on our current understanding of the mechanisms of IL-1 production. We also discuss the recent literature where the effects of IL-1 have been targeted in animal models, thus reviewing potential future strategies that may limit the devastating effects of acute cerebrovascular disease.
Collapse
Affiliation(s)
- James Galea
- Manchester Academic Health Sciences Center, Brain Injury Research Group, Clinical Sciences Building, Salford Royal Foundation Trust, Salford, UK
| | | |
Collapse
|
24
|
Moylan S, Maes M, Wray NR, Berk M. The neuroprogressive nature of major depressive disorder: pathways to disease evolution and resistance, and therapeutic implications. Mol Psychiatry 2013; 18:595-606. [PMID: 22525486 DOI: 10.1038/mp.2012.33] [Citation(s) in RCA: 353] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In some patients with major depressive disorder (MDD), individual illness characteristics appear consistent with those of a neuroprogressive illness. Features of neuroprogression include poorer symptomatic, treatment and functional outcomes in patients with earlier disease onset and increased number and length of depressive episodes. In such patients, longer and more frequent depressive episodes appear to increase vulnerability for further episodes, precipitating an accelerating and progressive illness course leading to functional decline. Evidence from clinical, biochemical and neuroimaging studies appear to support this model and are informing novel therapeutic approaches. This paper reviews current knowledge of the neuroprogressive processes that may occur in MDD, including structural brain consequences and potential molecular mechanisms including the role of neurotransmitter systems, inflammatory, oxidative and nitrosative stress pathways, neurotrophins and regulation of neurogenesis, cortisol and the hypothalamic-pituitary-adrenal axis modulation, mitochondrial dysfunction and epigenetic and dietary influences. Evidence-based novel treatments informed by this knowledge are discussed.
Collapse
Affiliation(s)
- S Moylan
- School of Medicine, Deakin University, Geelong, VIC, Australia.
| | | | | | | |
Collapse
|
25
|
Miraglia MC, Scian R, Samartino CG, Barrionuevo P, Rodriguez AM, Ibañez AE, Coria LM, Velásquez LN, Baldi PC, Cassataro J, Delpino MV, Giambartolomei GH. Brucella abortus induces TNF-α-dependent astroglial MMP-9 secretion through mitogen-activated protein kinases. J Neuroinflammation 2013; 10:47. [PMID: 23587438 PMCID: PMC3637408 DOI: 10.1186/1742-2094-10-47] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 03/21/2013] [Indexed: 01/18/2023] Open
Abstract
Background Central nervous system (CNS) invasion by bacteria of the genus Brucella results in an inflammatory disorder called neurobrucellosis. We have recently demonstrated that B. abortus infects microglia and astrocytes, eliciting the production of a variety of pro-inflammatory cytokines which contribute to CNS damage. Matrix metalloproteinases (MMP) have been implicated in inflammatory tissue destruction in a range of pathological situations in the CNS. Increased MMP secretion is induced by pro-inflammatory cytokines in a variety of CNS diseases characterized by tissue-destructive pathology. Methods In this study, the molecular mechanisms that regulate MMP secretion from Brucella-infected astrocytes in vitro were investigated. MMP-9 was evaluated in culture supernatants by ELISA, zymography and gelatinolytic activity. Involvement of mitogen-activated protein kinases (MAPK) signaling pathways was evaluated by Western blot and using specific inhibitors. The role of TNF-α was evaluated by ELISA and by assays with neutralizing antibodies. Results B. abortus infection induced the secretion of MMP-9 from murine astrocytes in a dose-dependent fashion. The phenomenon was independent of bacterial viability and was recapitulated by L-Omp19, a B. abortus lipoprotein model, but not its LPS. B. abortus and L-Omp19 readily activated p38 and Erk1/2 MAPK, thus enlisting these pathways among the kinase pathways that the bacteria may address as they invade astrocytes. Inhibition of p38 or Erk1/2 significantly diminished MMP-9 secretion, and totally abrogated production of this MMP when both MAPK pathways were inhibited simultaneously. A concomitant abrogation of B. abortus- and L-Omp19-induced TNF-α production was observed when p38 and Erk1/2 pathways were inhibited, indicating that TNF-α could be implicated in MMP-9 secretion. MMP-9 secretion induced by B. abortus or L-Omp19 was completely abrogated when experiments were conducted in the presence of a TNF-α neutralizing antibody. MMP-9 activity was detected in cerebrospinal fluid (CSF) samples from patients suffering from neurobrucellosis. Conclusions Our results indicate that the inflammatory response elicited by B. abortus in astrocytes would lead to the production of MMP-9 and that MAPK may play a role in this phenomenon. MAPK inhibition may thus be considered as a strategy to control inflammation and CNS damage in neurobrucellosis.
Collapse
Affiliation(s)
- M Cruz Miraglia
- Laboratorio de Inmunogenética, Instituto de Inmunología, Genética y Metabolismo, Hospital de Clínicas "José de San Martín"-CONICET/UBA, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Inhibition of the prostaglandin receptor EP2 following status epilepticus reduces delayed mortality and brain inflammation. Proc Natl Acad Sci U S A 2013; 110:3591-6. [PMID: 23401547 DOI: 10.1073/pnas.1218498110] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Prostaglandin E2 is now widely recognized to play critical roles in brain inflammation and injury, although the responsible prostaglandin receptors have not been fully identified. We developed a potent and selective antagonist for the prostaglandin E2 receptor subtype EP2, TG6-10-1, with a sufficient pharmacokinetic profile to be used in vivo. We found that in the mouse pilocarpine model of status epilepticus (SE), systemic administration of TG6-10-1 completely recapitulates the effects of conditional ablation of cyclooxygenase-2 from principal forebrain neurons, namely reduced delayed mortality, accelerated recovery from weight loss, reduced brain inflammation, prevention of blood-brain barrier opening, and neuroprotection in the hippocampus, without modifying seizures acutely. Prolonged SE in humans causes high mortality and morbidity that are associated with brain inflammation and injury, but currently the only effective treatment is to stop the seizures quickly enough with anticonvulsants to prevent brain damage. Our results suggest that the prostaglandin receptor EP2 is critically involved in neuroinflammation and neurodegeneration, and point to EP2 receptor antagonism as an adjunctive therapeutic strategy to treat SE.
Collapse
|
27
|
Savage CD, Lopez-Castejon G, Denes A, Brough D. NLRP3-Inflammasome Activating DAMPs Stimulate an Inflammatory Response in Glia in the Absence of Priming Which Contributes to Brain Inflammation after Injury. Front Immunol 2012; 3:288. [PMID: 23024646 PMCID: PMC3444764 DOI: 10.3389/fimmu.2012.00288] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 08/28/2012] [Indexed: 01/13/2023] Open
Abstract
Inflammation in the absence of infection (sterile inflammation) contributes to acute injury and chronic disease. Cerebral ischemia is a devastating condition in which the primary injury is caused by reduced blood supply and is therefore sterile. The cytokine interleukin-1β (IL-1β) is a key contributor to ischemic brain injury and central inflammatory responses. The release of IL-1β is regulated by the protease caspase-1, and its activating complex, the inflammasome. Of the known inflammasomes the best characterized, and one that is perceived to sense sterile injury is formed by a pattern recognition receptor called NOD-like receptor pyrin domain containing three (NLRP3). A key feature of NLRP3-inflammasome dependent responses in vitro in macrophages is the requirement of an initial priming stimulus by a pathogen (PAMP), or damage associated molecular pattern (DAMP) respectively. We sought to determine the inflammatory responses of NLRP3-activating DAMPs on brain derived mixed glial cells in the absence of an initial priming stimulus in vitro. In cultured mouse mixed glia the DAMPs ATP, monosodium urate, and calcium pyrophosphate dehydrate crystals had no effect on the expression of IL-1α or IL-1β and induced release only when the cells were primed with a PAMP. In the absence of priming, these DAMPs did however induce inflammation via the production of IL-6 and CXCL1, and the release of the lysosomal protease cathepsin B. Furthermore, the acute phase protein serum amyloid A (SAA) acted as a priming stimulus on glial cells resulting in levels of IL-1 expression comparable to those induced by the PAMP lipopolysaccharide. In vivo, after cerebral ischemia, IL-1 production contributed to increased IL-6 and CXCL1 since these cytokines were profoundly reduced in the ischemic hemispheres from IL-1α/β double KO mice, although injury-induced cytokine responses were not abolished. Thus, DAMPs augment brain inflammation by directly stimulating production of glial derived inflammatory mediators. This is markedly enhanced by DAMP-induced IL-1-release-dependent responses that require a sterile endogenous priming stimulus such as SAA.
Collapse
|
28
|
Leonard B, Maes M. Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci Biobehav Rev 2011; 36:764-85. [PMID: 22197082 DOI: 10.1016/j.neubiorev.2011.12.005] [Citation(s) in RCA: 597] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 11/24/2011] [Accepted: 12/10/2011] [Indexed: 12/17/2022]
Abstract
This paper reviews that cell-mediated-immune (CMI) activation and inflammation contribute to depressive symptoms, including anhedonia; anxiety-like behaviors; fatigue and somatic symptoms, e.g. illness behavior or malaise; and mild cognitive impairment (MCI). These effects are in part mediated by increased levels of pro-inflammatory cytokines (PICs), e.g. interleukin-1 (IL-1), IL-6 and tumor necrosis factor (TNF)α, and Th-1-derived cytokines, such as IL-2 and interferon (IFN)γ. Moreover, new pathways, i.e. concomitants and sequels of CMI activation and inflammation, were detected in depression: (1) Induction of indoleamine 2,3-dioxygenase (IDO) by IFNγ and some PICs is associated with depleted plasma tryptophan, which may interfere with brain 5-HT synthesis, and increased production of anxiogenic and depressogenic tryptophan catabolites. (2) Increased bacterial translocation may cause depression-like behaviors by activating the cytokine network, oxidative and nitrosative stress (O&NS) pathways and IDO. (3) Induction of O&NS causes damage to membrane ω3 PUFAs, functional proteins, DNA and mitochondria, and autoimmune responses directed against intracellular molecules that may cause dysfunctions in intracellular signaling. (4) Decreased levels of ω3 PUFAs and antioxidants, such as coenzyme Q10, glutathione peroxidase or zinc, are associated with an increased inflammatory potential; more oxidative damage; the onset of specific symptoms; and changes in the expression or functions of brain 5-HT and N-methyl-d-aspartate receptors. (5) All abovementioned factors cause neuroprogression, that is a combination of neurodegeneration, neuronal apoptosis, and lowered neurogenesis and neuroplasticity. It is concluded that depression may be the consequence of a complex interplay between CMI activation and inflammation and their sequels/concomitants which all together cause neuroprogression that further shapes the depression phenotype. Future research should employ high throughput technologies to collect genetic and gene expression and protein data from patients with depression and analyze these data by means of systems biology methods to define the dynamic interactions between the different cell signaling networks and O&NS pathways that cause depression.
Collapse
Affiliation(s)
- Brian Leonard
- Pharmacology Department, National University of Ireland, Galway, Ireland
| | | |
Collapse
|
29
|
Denes A, Pinteaux E, Rothwell NJ, Allan SM. Interleukin-1 and stroke: biomarker, harbinger of damage, and therapeutic target. Cerebrovasc Dis 2011; 32:517-27. [PMID: 22104408 DOI: 10.1159/000332205] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 08/26/2011] [Indexed: 12/15/2022] Open
Abstract
Inflammation is established as a contributor to cerebrovascular disease. Risk factors for stroke include many conditions associated with chronic or acute inflammation, and inflammatory changes in the brain after cerebrovascular events contribute to outcome in experimental studies, with growing evidence from clinical research. The brain is extremely susceptible to inflammatory challenge, but resident glia, endothelial cells and neurones can all mount a pronounced inflammatory response to infection or injury. Recent discoveries highlight the importance of peripherally-derived immune cells and inflammatory molecules in various central nervous system disorders, including stroke. The inflammatory cytokine, interleukin-1 (IL-1), plays a pivotal role in both local and systemic inflammation, and is a key driver of peripheral and central immune responses to infection or injury. Inhibition of IL-1 has beneficial effects in a variety of experimental paradigms of acute brain injury and is a promising clinical target in stroke. We propose that blockade of IL-1 could be therapeutically useful in several diseases which are risk factors for stroke, and there is already considerable pre-clinical and clinical evidence that inhibition of IL-1 by IL-1 receptor antagonist may be valuable in the management of acute stroke.
Collapse
Affiliation(s)
- Adam Denes
- Faculty of Life Sciences, University of Manchester, Manchester, UK.
| | | | | | | |
Collapse
|
30
|
Murphy N, Cowley TR, Richardson JC, Virley D, Upton N, Walter D, Lynch MA. The Neuroprotective Effect of a Specific P2X7 Receptor Antagonist Derives from its Ability to Inhibit Assembly of the NLRP3 Inflammasome in Glial Cells. Brain Pathol 2011; 22:295-306. [DOI: 10.1111/j.1750-3639.2011.00531.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
31
|
Saini MG, Pinteaux E, Lee B, Bix GJ. Oxygen-glucose deprivation and interleukin-1α trigger the release of perlecan LG3 by cells of neurovascular unit. J Neurochem 2011; 119:760-71. [PMID: 21919908 DOI: 10.1111/j.1471-4159.2011.07484.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two of the main stresses faced by cells at the neurovascular unit (NVU) as an immediate result of cerebral ischemia are oxygen-glucose deprivation (OGD)/reperfusion and inflammatory stress caused by up regulation of IL-1. As a result of these stresses, perlecan, an important component of the NVU extracellular matrix, is highly proteolyzed. In this study, we describe that focal cerebral ischemia in rats results in increased generation of laminin globular domain 3 (LG3), the c-terminal bioactive fragment of perlecan. Further, in vitro study of the cells of the NVU was performed to locate the source of this increased perlecan-LG3. Neurons, astrocytes, brain endothelial cells and pericytes were exposed to OGD/reperfusion and IL-1α/β. It was observed that neurons and pericytes showed increased levels of LG3 during OGD in their culture media. During in vitro reperfusion, neurons, astrocytes and pericytes showed elevated levels of LG3, but only after exposure to brief durations of OGD. IL-1α and IL-1β treatment tended to have opposite effects on NVU cells. While IL-1α increased or had minimal to no effect on LG3 generation, high concentrations of IL-1β decreased it in most cells studied. Finally, LG3 was determined to be neuroprotective and anti-proliferative in brain endothelial cells, suggesting a possible role for the generation of LG3 in the ischemic brain.
Collapse
Affiliation(s)
- Maxim G Saini
- Department of Molecular and Cellular Medicine, Texas A&M College of Medicine, College Station, Texas 77843, USA
| | | | | | | |
Collapse
|
32
|
Clausen F, Hånell A, Israelsson C, Hedin J, Ebendal T, Mir AK, Gram H, Marklund N. Neutralization of interleukin-1β reduces cerebral edema and tissue loss and improves late cognitive outcome following traumatic brain injury in mice. Eur J Neurosci 2011; 34:110-23. [PMID: 21623956 DOI: 10.1111/j.1460-9568.2011.07723.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Increasing evidence suggests that interleukin-1β (IL-1β) is a key mediator of the inflammatory response following traumatic brain injury (TBI). Recently, we showed that intracerebroventricular administration of an IL-1β-neutralizing antibody was neuroprotective following TBI in mice. In the present study, an anti-IL-1β antibody or control antibody was administered intraperitoneally following controlled cortical injury (CCI) TBI or sham injury in 105 mice and we extended our histological, immunological and behavioral analysis. First, we demonstrated that the treatment antibody reached target brain regions of brain-injured animals in high concentrations (> 11 nm) remaining up to 8 days post-TBI. At 48 h post-injury, the anti-IL-1β treatment attenuated the TBI-induced hemispheric edema (P < 0.05) but not the memory deficits evaluated using the Morris water maze (MWM). Neutralization of IL-1β did not influence the TBI-induced increases (P < 0.05) in the gene expression of the Ccl3 and Ccr2 chemokines, IL-6 or Gfap. Up to 20 days post-injury, neutralization of IL-1β was associated with improved visuospatial learning in the MWM, reduced loss of hemispheric tissue and attenuation of the microglial activation caused by TBI (P < 0.05). Motor function using the rotarod and cylinder tests was not affected by the anti-IL-1β treatment. Our results suggest an important negative role for IL-1β in TBI. The improved histological and behavioral outcome following anti-IL-1β treatment also implies that further exploration of IL-1β-neutralizing compounds as a treatment option for TBI patients is warranted.
Collapse
Affiliation(s)
- Fredrik Clausen
- Department of Neuroscience, Section for Neurosurgery, Uppsala University, Entrance 85, 2nd floor, Uppsala University Hospital, S-75185 Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Park CH, Shin TK, Lee HY, Kim SJ, Lee WS. Matrix metalloproteinase inhibitors attenuate neuroinflammation following focal cerebral ischemia in mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2011; 15:115-22. [PMID: 21660152 DOI: 10.4196/kjpp.2011.15.2.115] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 04/19/2011] [Accepted: 04/20/2011] [Indexed: 12/16/2022]
Abstract
The aim of this study was to investigate whether matrix metalloproteinase (MMP) inhibitors attenuate neuroinflammation in an ischemic brain following photothrombotic cortical ischemia in mice. Male C57BL/6 mice were anesthetized, and Rose Bengal was systemically administered. Permanent focal ischemia was induced in the medial frontal and somatosensory cortices by irradiating the skull with cold white light. MMP inhibitors, such as doxycycline, minocycline, and batimastat, significantly reduced the cerebral infarct size, and the expressions of monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor-α (TNF-α), and indoleamine 2,3-dioxygenase (IDO). However, they had no effect on the expressions of heme oxygenase-1 and neuroglobin in the ischemic cortex. These results suggest that MMP inhibitors attenuate ischemic brain injury by decreasing the expression levels of MCP-1, TNF-α, and IDO, thereby providing a therapeutic benefit against cerebral ischemia.
Collapse
Affiliation(s)
- Cheol Hong Park
- Department of Pharmacology, and Medical Research Center for Ischemic Tissue Regeneration, Pusan National University School of Medicine, Yangsan 626-870, Korea
| | | | | | | | | |
Collapse
|
34
|
Kubera M, Obuchowicz E, Goehler L, Brzeszcz J, Maes M. In animal models, psychosocial stress-induced (neuro)inflammation, apoptosis and reduced neurogenesis are associated to the onset of depression. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:744-59. [PMID: 20828592 DOI: 10.1016/j.pnpbp.2010.08.026] [Citation(s) in RCA: 328] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 08/28/2010] [Accepted: 08/29/2010] [Indexed: 12/13/2022]
Abstract
Recently, the inflammatory and neurodegenerative (I&ND) hypothesis of depression was formulated (Maes et al., 2009), i.e. the neurodegeneration and reduced neurogenesis that characterize depression are caused by inflammation, cell-mediated immune activation and their long-term sequels. The aim of this paper is to review the body of evidence that external stressors may induce (neuro)inflammation, neurodegeneration and reduced neurogenesis; and that antidepressive treatments may impact on these pathways. The chronic mild stress (CMS) and learned helplessness (LH) models show that depression-like behaviors are accompanied by peripheral and central inflammation, neuronal cell damage, decreased neurogenesis and apoptosis in the hippocampus. External stress-induced depression-like behaviors are associated with a) increased interleukin-(IL)1β, tumor necrosis factor-α, IL-6, nuclear factor κB, cyclooxygenase-2, expression of Toll-like receptors and lipid peroxidation; b) antineurogenic effects and reduced brain-derived neurotrophic factor (BDNF) levels; and c) apoptosis with reduced levels of Bcl-2 and BAG1 (Bcl-2 associated athanogene 1), and increased levels of caspase-3. Stress-induced inflammation, e.g. increased IL-1β, but not reduced neurogenesis, is sufficient to cause depression. Antidepressants a) reduce peripheral and central inflammatory pathways by decreasing IL-1β, TNFα and IL-6 levels; b) stimulate neuronal differentiation, synaptic plasticity, axonal growth and regeneration through stimulatory effects on the expression of different neurotrophic factors, e.g. trkB, the receptor for brain-derived neurotrophic factor; and c) attenuate apoptotic pathways by activating Bcl-2 and Bcl-xl proteins, and suppressing caspase-3. It is concluded that external stressors may provoke depression-like behaviors through activation of inflammatory, oxidative, apoptotic and antineurogenic mechanisms. The clinical efficacity of antidepressants may be ascribed to their ability to reverse these different pathways.
Collapse
Affiliation(s)
- Marta Kubera
- Department of Experimental Endocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, PL 31-343 Kraków, Poland.
| | | | | | | | | |
Collapse
|
35
|
Ranaivo HR, Patel F, Wainwright MS. Albumin activates the canonical TGF receptor–smad signaling pathway but this is not required for activation of astrocytes. Exp Neurol 2010; 226:310-9. [DOI: 10.1016/j.expneurol.2010.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 09/01/2010] [Accepted: 09/04/2010] [Indexed: 01/09/2023]
|
36
|
Proinflammatory orientation of the interleukin 1 system and downstream induction of matrix metalloproteinase 9 in the pathophysiology of human perinatal white matter damage. J Neuropathol Exp Neurol 2010; 69:1116-29. [PMID: 20940629 DOI: 10.1097/nen.0b013e3181f971e4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A preclinical model showed a direct role of the interleukin 1 (IL-1) system in the pathogenesis of perinatal brain damage, but evidence linking these findings to human white matter damage (WMD) requires confirmation in human cases. We analyzed the IL-1β system using immunohistochemistry to characterize the expression of IL-1 receptors (IL-1R1 and IL-1R2), IL-1R antagonist (IL-1Ra), and induction of downstream effectors in 9 human brains with WMD. Interleukin 1β overexpression was associated with IL-1R1 and IL-1R2 immunoreactivity in areas with WMD; immunolabeling for both was detected on astrocytes and microglia/macrophages. There was no immunoreactivity for these receptors in nondamaged white matter in the same brains. Interleukin-1Ra expression was significantly less upregulated than that of IL-1β. This IL-1β/IL-1Ra imbalance was particularly pronounced in the brains of very preterm versus near-term infants. We additionally found overexpression of matrix metalloproteinase 9 (MMP-9) in WMD areas. The MMP-9 colocalized with IL-1β in microglia/macrophages in affected cerebral areas. These data indicate that there is activation and proinflammatory orientation of the IL-1 system with downstream induction of MMP-9 in perinatal WMD. Because both of these mediators are known to be involved in neural cell injury, we infer that IL-1 pathway activation has a deleterious role in the pathophysiology of WMD in human neonates.
Collapse
|
37
|
Tripathy D, Yin X, Sanchez A, Luo J, Martinez J, Grammas P. Cerebrovascular expression of proteins related to inflammation, oxidative stress and neurotoxicity is altered with aging. J Neuroinflammation 2010; 7:63. [PMID: 20937133 PMCID: PMC2965134 DOI: 10.1186/1742-2094-7-63] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 10/11/2010] [Indexed: 12/17/2022] Open
Abstract
Background Most neurodegenerative diseases are age-related disorders; however, how aging predisposes the brain to disease has not been adequately addressed. The objective of this study is to determine whether expression of proteins in the cerebromicrovasculature related to inflammation, oxidative stress and neurotoxicity is altered with aging. Methods Brain microvessels are isolated from Fischer 344 rats at 6, 12, 18 and 24 months of age. Levels of interleukin (IL)-1β and IL-6 RNA are determined by RT-PCR and release of cytokines into the media by ELISA. Vessel conditioned media are also screened by ELISA for IL-1α, monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-α, (TNFα), and interferon γ (IFNγ). Immunofluorescent analysis of brain sections for IL-1β and IL-6 is performed. Results Expression of IL-1β and IL-6, both at RNA and protein levels, significantly (p < 0.01) decreases with age. Levels of MCP-1, TNFα, IL-1α, and IFNγ are significantly (p < 0.05-0.01) lower in 24 month old rats compared to 6 month old animals. Immunofluorescent analysis of brain vessels also shows a decline in IL-1β and IL-6 in aged rats. An increase in oxidative stress, assessed by increased carbonyl formation, as well as a decrease in the antioxidant protein manganese superoxide dismutase (MnSOD) is evident in vessels of aged animals. Finally, addition of microvessel conditioned media from aged rats to neuronal cultures evokes significant (p < 0.001) neurotoxicity. Conclusions These data demonstrate that cerebrovascular expression of proteins related to inflammation, oxidative stress and neurotoxicity is altered with aging and suggest that the microvasculature may contribute to functional changes in the aging brain.
Collapse
Affiliation(s)
- Debjani Tripathy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | | | | | | | | | | |
Collapse
|
38
|
Liang XH, Zhao ZA, Deng WB, Tian Z, Lei W, Xu X, Zhang XH, Su RW, Yang ZM. Estrogen regulates amiloride-binding protein 1 through CCAAT/enhancer-binding protein-beta in mouse uterus during embryo implantation and decidualization. Endocrinology 2010; 151:5007-16. [PMID: 20668027 DOI: 10.1210/en.2010-0170] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Embryo implantation is an intricate interaction between receptive uterus and active blastocyst. The mechanism underlying embryo implantation is still unknown. Although histamine and putrescine are important for embryo implantation and decidualization, excess amount of histamine and putrescine is harmful. Amiloride binding protein 1 (Abp1) is a membrane-associated amine oxidase and mainly metabolizes histamine and putrescine. In this study, we first showed that Abp1 is strongly expressed in the decidua on d 5-8 of pregnancy. Abp1 expression is not detected during pseudopregnancy and under delayed implantation but is detected after estrogen activation. Because Abp1 is mainly localized in the decidua and also strongly expressed during in vitro decidualization, Abp1 might play a role during mouse decidualization. The regulation of estrogen on Abp1 is mediated by transcription factor CCAAT/enhancer-binding protein-β. Abp1 expression is also regulated by cAMP, bone morphogenetic protein 2, and ERK1/2. Abp1 may be essential for mouse embryo implantation and decidualization.
Collapse
Affiliation(s)
- Xiao-Huan Liang
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Science, Xiamen University, Xiamen 361005, China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Denes A, Thornton P, Rothwell NJ, Allan SM. Inflammation and brain injury: acute cerebral ischaemia, peripheral and central inflammation. Brain Behav Immun 2010; 24:708-23. [PMID: 19770034 DOI: 10.1016/j.bbi.2009.09.010] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 09/15/2009] [Accepted: 09/15/2009] [Indexed: 12/18/2022] Open
Abstract
Inflammation is a classical host defence response to infection and injury that has many beneficial effects. However, inappropriate (in time, place and magnitude) inflammation is increasingly implicated in diverse disease states, now including cancer, diabetes, obesity, atherosclerosis, heart disease and, most relevant here, CNS disease. A growing literature shows strong correlations between inflammatory status and the risk of cerebral ischaemia (CI, most commonly stroke), as well as with outcome from an ischaemic event. Intervention studies to demonstrate a causal link between inflammation and CI (or its consequences) are limited but are beginning to emerge, while experimental studies of CI have provided direct evidence that key inflammatory mediators (cytokines, chemokines and inflammatory cells) contribute directly to ischaemic brain injury. However, it remains to be determined what the relative importance of systemic (largely peripheral) versus CNS inflammation is in CI. Animal models in which CI is driven by a CNS intervention may not accurately reflect the clinical condition; stroke being typically induced by atherosclerosis or cardiac dysfunction, and hence current experimental paradigms may underestimate the contribution of peripheral inflammation. Experimental studies have already identified a number of potential anti-inflammatory therapeutic interventions that may limit ischaemic brain damage, some of which have been tested in early clinical trials with potentially promising results. However, a greater understanding of the contribution of inflammation to CI is still required, and this review highlights some of the key mechanism that may offer future therapeutic targets.
Collapse
Affiliation(s)
- A Denes
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | | | | | | |
Collapse
|
40
|
Zhou Y, Lu ZN, Guo YJ, Mei YW. Favorable effects of MMP-9 knockdown in murine herpes simplex encephalitis using small interfering RNA. Neurol Res 2010; 32:801-9. [PMID: 20483026 DOI: 10.1179/016164110x12644252260556] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
BACKGROUND AND PURPOSE The prognosis of herpes simplex encephalitis (HSE) remains poor despite available antiviral treatment. Matrix metalloproteinase-9 (MMP-9) is currently considered to play a major role in promoting cerebrovascular complications which contribute to the high mortality and morbidity of HSE. We hypothesize that temporally knockdown MMP-9 expression in early phase of HSE might be an effective treatment strategy. METHODS The animal models of herpes simplex encephalitis were established by intracerebrally inoculated herpes simplex virus type 1 (HSV-1) in mice. Mice were inoculated intracerebrally with MMP-9 targeting siRNA (MMP-9 siRNA). MMP-9 expression was assessed by RT-PCR and western blot analysis at 3 and 7 days after HSV-1 infected. The blood-brain barrier (BBB) permeability was quantitated by Evans blue dye extravasations and brain water content. Immunohistochemistry method was adopted to analyse the expression of AQP4 protein. Quantitative real-time PCR analysis was used to detect cytokines expression. Neurological score was quantified using an established neurological scale at 7 days after HSE. RESULTS Using synthetic small interfering RNA, we found a single intracerebral injection of siRNA targeting murine MMP-9 mRNA (MMP-9 siRNA) silenced MMP-9 expression and reduced it to normal level at day 7 post-infection. The improvement in neurological function and increased cumulative survival reflected the functional consequence of this therapy. MMP-9 knockdown mice also displayed less uptake of Evans blue and reduced brain water content compared with control siRNA-treated group. Also the HSV-1-induced upregulation of proinflammatory cytokines was significantly diminished in MMP-9 siRNA-treated mice. In addition, aquaporin-4 expression in perivascular decreased in MMP-9 siRNA-treated mice and might contribute to the protection of blood-brain barrier. DISCUSSION This compelling evidence suggests that MMP-9 is a key pathogenic factor within HSE, and local injection of synthetic siRNA in the brain could knock down MMP-9 expression in acute phase of HSE, reduce brain edema and improves mice neurological function and increase cumulative survival.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Neurology, Renmin Hospital of Wuhan University, China.
| | | | | | | |
Collapse
|
41
|
Greenhalgh AD, Galea J, Dénes A, Tyrrell PJ, Rothwell NJ. Rapid brain penetration of interleukin-1 receptor antagonist in rat cerebral ischaemia: pharmacokinetics, distribution, protection. Br J Pharmacol 2010; 160:153-9. [PMID: 20412072 PMCID: PMC2860215 DOI: 10.1111/j.1476-5381.2010.00684.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 12/23/2009] [Accepted: 01/13/2010] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Limited data on the brain penetration of potential stroke treatments have been cited as a major weakness contributing to numerous failed clinical trials. Thus, we tested whether interleukin-1 receptor antagonist (IL-1RA), established as a potent inhibitor of brain injury in animals and currently in clinical development, reaches the brain via a clinically relevant administration route, in experimental stroke. EXPERIMENTAL APPROACH Male, Sprague-Dawley rats [either naïve or exposed to middle cerebral artery occlusion (MCAo)] were given a single s.c. dose of IL-1RA (100 mg*kg(-1)). The pharmacokinetic profile of IL-1RA was assessed in plasma and CSF up to 24 h post-administration. Brain tissue distribution of administered IL-1RA was assessed using immunohistochemistry. In a separate experiment, the neuroprotective effect of the single s.c. dose of IL-1RA in MCAo was assessed versus a placebo control group. KEY RESULTS A single s.c. dose of IL-1RA reduced damage caused by MCAo by 33%. This dose resulted in sustained, high concentrations in plasma and CSF, penetrated brain tissue exclusively in areas of blood-brain barrier breakdown and co-localized with morphologically viable neurones. CSF concentrations did not reflect massive parenchymal infiltration of IL-1RA in MCAo animals compared to naïve. CONCLUSIONS AND IMPLICATIONS These data are the first to show that a potential treatment for stroke, IL-1RA, rapidly reaches salvageable brain tissue via an administration route that is clinically relevant. This allows confidence that IL-1RA, as a candidate for further clinical development, is able to confer its protective actions both peripherally and centrally.
Collapse
Affiliation(s)
- A D Greenhalgh
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | | | | | | |
Collapse
|
42
|
Cunningham O, Campion S, Perry VH, Murray C, Sidenius N, Docagne F, Cunningham C. Microglia and the urokinase plasminogen activator receptor/uPA system in innate brain inflammation. Glia 2010; 57:1802-14. [PMID: 19459212 PMCID: PMC2816357 DOI: 10.1002/glia.20892] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The urokinase plasminogen activator (uPA) receptor (uPAR) is a GPI-linked cell surface protein that facilitates focused plasmin proteolytic activity at the cell surface. uPAR has been detected in macrophages infiltrating the central nervous system (CNS) and soluble uPAR has been detected in the cerebrospinal fluid during a number of CNS pathologies. However, its expression by resident microglial cells in vivo remains uncertain. In this work, we aimed to elucidate the murine CNS expression of uPAR and uPA as well as that of tissue plasminogen activator and plasminogen activator inhibitor 1 (PAI-1) during insults generating distinct and well-characterized inflammatory responses; acute intracerebral lipopolysaccharide (LPS), acute kainate-induced neurodegeneration, and chronic neurodegeneration induced by prion disease inoculation. All three insults induced marked expression of uPAR at both mRNA and protein level compared to controls (naïve, saline, or control inoculum-injected). uPAR expression was microglial in all cases. Conversely, uPA transcription and activity was only markedly increased during chronic neurodegeneration. Dissociation of uPA and uPAR levels in acute challenges is suggestive of additional proteolysis-independent roles for uPAR. PAI-1 was most highly expressed upon LPS challenge, whereas tissue plasminogen activator mRNA was constitutively present and less responsive to all insults studied. These data are novel and suggest much wider involvement of the uPAR/uPA system in CNS function and pathology than previously supposed.
Collapse
|
43
|
Szklarczyk A, Conant K. Matrix metalloproteinases, synaptic injury, and multiple sclerosis. Front Psychiatry 2010; 1:130. [PMID: 21423441 PMCID: PMC3059646 DOI: 10.3389/fpsyt.2010.00130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 08/13/2010] [Indexed: 11/22/2022] Open
Abstract
Multiple sclerosis (MS) is a disease of the central nervous system in which immune mediated damage to myelin is characteristic. For an overview of this condition and its pathophysiology, please refer to one of many excellent published reviews (Sorensen and Ransohoff, 1998; Weiner, 2009). To follow, is a discussion focused on the possibility that synaptic injury occurs in at least a subset of patients, and that matrix metalloproteinases (MMPs) play a role in such.
Collapse
|
44
|
Esen N, Wagoner G, Philips N. Evaluation of capsular and acapsular strains of S. aureus in an experimental brain abscess model. J Neuroimmunol 2009; 218:83-93. [PMID: 19906446 DOI: 10.1016/j.jneuroim.2009.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 10/08/2009] [Accepted: 10/09/2009] [Indexed: 02/06/2023]
Abstract
Brain abscesses are mainly caused by either direct or indirect inoculation of gram positive bacteria including Stapylococcus aureus (S. aureus) or Streptococcus species into the central nervous system. In the present study, we aimed to compare potential changes in brain abscess pathogenesis induced by two different strains of S. aureus, namely the laboratory strain RN6390 and the clinical isolate Reynolds. Although the Reynolds strain was expected to be more resistant to eradication by the host, due to the existence of a polysaccharide capsule, and subsequently to be more virulent, instead we found parenchymal damage and mortality rates to be more prominent following RN6390 infection. In contrast, the Reynolds strain proliferated faster and induced early expression of the chemokine CXCL2, matrix metalloproteinase-9 (MMP-9), and complement 3a and C5. Furthermore, there were early and more abundant infiltration of PMNs, T cells and erythrocyte extravasation in brain abscesses induced by the Reynolds strain. However, several immune parameters were not different between the two strains during the later stages of the disease. These results suggest that capsular S. aureus can modulate innate immunity and complement system activation differently than the acapsular strain RN6390, and the early changes induced by Reynolds strain may have an important impact on survival.
Collapse
Affiliation(s)
- Nilufer Esen
- Department of Neurology, Holtom-Garrett Program in Neuroimmunology, University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| | | | | |
Collapse
|
45
|
Pinteaux E, Trotter P, Simi A. Cell-specific and concentration-dependent actions of interleukin-1 in acute brain inflammation. Cytokine 2008; 45:1-7. [PMID: 19026559 DOI: 10.1016/j.cyto.2008.10.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 09/15/2008] [Accepted: 10/10/2008] [Indexed: 01/03/2023]
Abstract
Interleukin (IL)-1 is a pivotal pro-inflammatory cytokine and an important mediator of both acute and chronic central nervous system (CNS) injuries. Despite intense research in CNS IL-1 biology over the past two decades, its precise mechanism of action in inflammatory responses to acute brain disorders remains largely unknown. In particular, much effort has been focussed on using in vitro approaches to better understand the cellular and signalling mechanisms of actions of IL-1, yet some discrepancies in the literature regarding the effects produced by IL-1beta in in vitro paradigms of injury still exist, particularly as to whether IL-1 exerts neurotoxic or neuroprotective effects. Here we aim to review the cell-specific and concentration-dependent actions of IL-1 in brain cells, to depict the mechanism by which this cytokine induces neurotoxicity or neuroprotection in acute brain injury.
Collapse
Affiliation(s)
- Emmanuel Pinteaux
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.
| | | | | |
Collapse
|
46
|
del Zoppo GJ. Inflammation and the neurovascular unit in the setting of focal cerebral ischemia. Neuroscience 2008; 158:972-82. [PMID: 18824084 DOI: 10.1016/j.neuroscience.2008.08.028] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 08/15/2008] [Indexed: 11/30/2022]
Abstract
Responses to focal cerebral ischemia by neurons and adjacent microvessels are rapid, simultaneous, and topographically related. Recent observations indicate the simultaneous appearance of proteases by components of nearby microvessels that are also expressed by neurons in the ischemic territory, implying that the events could be coordinated. The structural relationship of neurons to their microvascular supply, the direct functional participation of glial cells, and the observation of a highly ordered microvessel-neuron response to ischemia suggest that these elements are arranged in and behave in a unitary fashion, the neurovascular unit. Their roles as a unit in the stimulation of cellular inflammation and the generation of inflammatory mediators during focal cerebral ischemia have not been explored yet. However, components of the neurovascular unit both generate and respond to these influences under the conditions of ischemia. Here we briefly explore the potential inter-relationships of the components of the neurovascular unit with respect to their potential roles in ischemia-induced inflammatory responses.
Collapse
Affiliation(s)
- G J del Zoppo
- Department of Medicine, University of Washington, Box 359756, Harborview Medical Center, 325 Ninth Avenue, Seattle, WA 98104, USA.
| |
Collapse
|