1
|
Aubert M, Haick AK, Strongin DE, Klouser LM, Loprieno MA, Stensland L, Santo TK, Huang ML, Hyrien O, Stone D, Jerome KR. Gene editing for latent herpes simplex virus infection reduces viral load and shedding in vivo. Nat Commun 2024; 15:4018. [PMID: 38740820 DOI: 10.1038/s41467-024-47940-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Anti-HSV therapies are only suppressive because they do not eliminate latent HSV present in ganglionic neurons, the source of recurrent disease. We have developed a potentially curative approach against HSV infection, based on gene editing using HSV-specific meganucleases delivered by adeno-associated virus (AAV) vectors. Gene editing performed with two anti-HSV-1 meganucleases delivered by a combination of AAV9, AAV-Dj/8, and AAV-Rh10 can eliminate 90% or more of latent HSV DNA in mouse models of orofacial infection, and up to 97% of latent HSV DNA in mouse models of genital infection. Using a pharmacological approach to reactivate latent HSV-1, we demonstrate that ganglionic viral load reduction leads to a significant decrease of viral shedding in treated female mice. While therapy is well tolerated, in some instances, we observe hepatotoxicity at high doses and subtle histological evidence of neuronal injury without observable neurological signs or deficits. Simplification of the regimen through use of a single serotype (AAV9) delivering single meganuclease targeting a duplicated region of the HSV genome, dose reduction, and use of a neuron-specific promoter each results in improved tolerability while retaining efficacy. These results reinforce the curative potential of gene editing for HSV disease.
Collapse
Affiliation(s)
- Martine Aubert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Anoria K Haick
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Daniel E Strongin
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98133, USA
| | - Lindsay M Klouser
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98133, USA
| | - Michelle A Loprieno
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Laurence Stensland
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98133, USA
| | - Tracy K Santo
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98133, USA
| | - Meei-Li Huang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98133, USA
| | - Ollivier Hyrien
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Daniel Stone
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Keith R Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98133, USA.
| |
Collapse
|
2
|
AYDIN MŞ, YİĞİT EN. Comparison of the efficiencies of intrathecal and intraganglionic injections in mouse dorsal root ganglion. Turk J Med Sci 2023; 53:1358-1366. [PMID: 38813001 PMCID: PMC10763772 DOI: 10.55730/1300-0144.5702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/26/2023] [Accepted: 08/11/2023] [Indexed: 05/31/2024] Open
Abstract
Background/aim Dorsal root ganglia (DRG) are structures containing primary sensory neurons. Intraganglionic (IG) and intrathecal (IT) applications are the most common methods used for viral vector transfer to DRG. We aim to compare the efficiencies and pathological effects of IT and IG viral vector delivery methods to DRG, through in vivo imaging. Materials and methods Mice were divided into four groups of six each: IT, IG, IT-vehicle, and IG-vehicle. Adeno-associated virus (AAV) injection was performed for EGFP expression in IT/IG groups. DRGs were made visible through vertebral window surgery and visualized with multiphoton microscopy. After imaging, spinal cords and DRGs were removed and cleared, then imaged with light sheet microscopy. Results No neuronal death was observed after IT injection, while the death rate was 17% 24 h after IG injection. EGFP expression efficiencies were 90%-95% of neurons in both groups. EGFP expression was only observed in targeted L2 DRG after IG injection, while it was observed in DRGs located between L1-L5 levels after IT injection. Conclusion IT injection is a more suitable method for labeling DRG neurons in neurodegenerative injury models. However, when the innervation of DRG needs to be specifically studied, IT injection reduces this specificity due to its spread. In these studies, IG injection is the most suitable method for labeling single DRG neurons.
Collapse
Affiliation(s)
- Mehmet Şerif AYDIN
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, İstanbul,
Turkiye
| | - Esra Nur YİĞİT
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, İstanbul,
Turkiye
| |
Collapse
|
3
|
Berta T, Strong JA, Zhang JM, Ji RR. Targeting dorsal root ganglia and primary sensory neurons for the treatment of chronic pain: an update. Expert Opin Ther Targets 2023; 27:665-678. [PMID: 37574713 PMCID: PMC10530032 DOI: 10.1080/14728222.2023.2247563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/30/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
INTRODUCTION Current treatments for chronic pain are inadequate. Here, we provide an update on the new therapeutic strategies that target dorsal root ganglia (DRGs) in the peripheral nervous system for a better and safer treatment of chronic pain. AREAS COVERED Despite the complex nature of chronic pain and its underlying mechanisms, we do know that changes in the plasticity and modality of neurons in DRGs play a pivotal role. DRG neurons are heterogenous and offer potential pain targets for different therapeutic interventions. We discuss the last advancements of these interventions, which include the use of systemic and local administrations, selective nerve drug delivery, and gene therapy. In particular, we provide updates and further details on the molecular characterization of primary sensory neurons, new analgesics entering the market, and future gene therapy approaches. EXPERT OPINION DRGs and primary sensory neurons are promising targets for chronic pain treatment due to their key role in pain signaling, unique anatomical location, and the potential for different targeted therapeutic interventions.
Collapse
Affiliation(s)
- Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Judith A. Strong
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Jun-Ming Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
- Departments of Cell Biology and Neurobiology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
4
|
Jiang C, Lu Y, Zhu R, Zong Y, Huang Y, Wang D, Da Z, Yu B, Shen L, Cao Q. Pyruvate dehydrogenase beta subunit (Pdhb) promotes peripheral axon regeneration by regulating energy supply and gene expression. Exp Neurol 2023; 363:114368. [PMID: 36863478 DOI: 10.1016/j.expneurol.2023.114368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023]
Abstract
Key metabolic enzymes not only regulate Glucose, lipid, amino acid metabolism to serve the cellular energy needs, but also modulate noncanonical or nonmetabolic signaling pathway such as gene expression, cell-cycle progression, DNA repair, apoptosis and cell proliferation in regulating the pathologic progression of disease. However, the role of glycometabolism in peripheral nerve axon regeneration is little known. In this study, we investigated the expression of Pyruvate dehydrogenase E1(PDH), a key enzyme linking glycolysis and the tricarboxylic acid (TCA) cycle, with qRT-PCR and found that pyruvate dehydrogenase beta subunit (Pdhb) is up-regulated at the early stage during peripheral nerve injury. The knockdown of Pdhb inhibits neurite outgrowth of primary DRG neurons in vitro and restrains axon regeneration of sciatic nerve after crush injury. Pdhb overexpression promoting axonal regeneration is reversed by knockdown of Monocarboxylate transporter 2(Mct2), a transporter involved in the transport and metabolism of lactate, indicating Pdhb promoting axon regeneration depends on lactate for energy supply. Given the nucleus-localization of Pdhb, further analysis revealed that Pdhb enhances the acetylation of H3K9 and affecting the expression of genes involved in arachidonic acid metabolism and Ras signaling pathway, such as Rsa-14-44 and Pla2g4a, thereby promoting axon regeneration. Collectively, our data indicates that Pdhb is a positive dual modulator of energy generation and gene expression in regulating peripheral axon regeneration.
Collapse
Affiliation(s)
- Chunyi Jiang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated hospital and Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yan Lu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated hospital and Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; Clinical Laboratory, Nantong Third Hospital Affiliated to Nantong University, Nantong 226001, China
| | - Ran Zhu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated hospital and Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Ying Zong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated hospital and Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yuchen Huang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated hospital and Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Dong Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated hospital and Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Zhanyun Da
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated hospital and Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated hospital and Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Longxiang Shen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Qianqian Cao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated hospital and Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.
| |
Collapse
|
5
|
Eisdorfer JT, Sobotka-Briner H, Schramfield S, Moukarzel G, Chen J, Campion TJ, Smit R, Rauscher BC, Lemay MA, Smith GM, Spence AJ. Chemogenetic modulation of sensory afferents induces locomotor changes and plasticity after spinal cord injury. Front Mol Neurosci 2022; 15:872634. [PMID: 36090254 PMCID: PMC9461563 DOI: 10.3389/fnmol.2022.872634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/26/2022] [Indexed: 12/12/2022] Open
Abstract
Neuromodulatory therapies for spinal cord injury (SCI) such as electrical epidural stimulation (EES) are increasingly effective at improving patient outcomes. These improvements are thought to be due, at least in part, to plasticity in neuronal circuits. Precisely which circuits are influenced and which afferent classes are most effective in stimulating change remain important open questions. Genetic tools, such as Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), support targeted and reversible neuromodulation as well as histological characterization of manipulated neurons. We therefore transduced and activated lumbar large diameter peripheral afferents with excitatory (hM3Dq) DREADDs, in a manner analogous to EES, in a rat hemisection model, to begin to trace plasticity and observe concomitant locomotor changes. Chronic DREADDs activation, coupled with thrice weekly treadmill training, was observed to increase afferent fluorescent labeling within motor pools and Clarke's column when compared to control animals. This plasticity may underlie kinematic differences that we observed across stages of recovery, including an increased and less variable hindquarters height in DREADDs animals, shorter step durations, a more flexed ankle joint early in recovery, a less variable ankle joint angle in swing phase, but a more variable hip joint angle. Withdrawal of DREADDs agonist, clozapine-N-oxide (CNO) left these kinematic differences largely unaffected; suggesting that DREADDs activation is not necessary for them later in recovery. However, we observed an intermittent “buckling” phenomenon in DREADDs animals without CNO activation, that did not occur with CNO re-administration. Future studies could use more refined genetic targeted of specific afferent classes, and utilize muscle recordings to find where afferent modulation is most influential in altering motor output.
Collapse
Affiliation(s)
- Jaclyn T. Eisdorfer
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, United States
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Hannah Sobotka-Briner
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, United States
| | - Susan Schramfield
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, United States
| | - George Moukarzel
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, United States
| | - Jie Chen
- Department of Neuroscience, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Thomas J. Campion
- Department of Neuroscience, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Rupert Smit
- Department of Neuroscience, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Bradley C. Rauscher
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, United States
| | - Michel A. Lemay
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, United States
| | - George M. Smith
- Department of Neuroscience, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Andrew J. Spence
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, United States
- *Correspondence: Andrew J. Spence
| |
Collapse
|
6
|
Kim SH, Patil MJ, Hadley SH, Bahia PK, Butler SG, Madaram M, Taylor-Clark TE. Mapping of the Sensory Innervation of the Mouse Lung by Specific Vagal and Dorsal Root Ganglion Neuronal Subsets. eNeuro 2022; 9:ENEURO.0026-22.2022. [PMID: 35365503 PMCID: PMC9015009 DOI: 10.1523/eneuro.0026-22.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/10/2022] [Accepted: 03/26/2022] [Indexed: 11/21/2022] Open
Abstract
The airways are densely innervated by sensory afferent nerves, whose activation regulates respiration and triggers defensive reflexes (e.g., cough, bronchospasm). Airway innervation is heterogeneous, and distinct afferent subsets have distinct functional responses. However, little is known of the innervation patterns of subsets within the lung. A neuroanatomical map is critical for understanding afferent activation under physiological and pathophysiological conditions. Here, we quantified the innervation of the mouse lung by vagal and dorsal root ganglion (DRG) sensory subsets defined by the expression of Pirt (all afferents), 5HT3 (vagal nodose afferents), Tac1 (tachykinergic afferents), and transient receptor potential vanilloid 1 channel (TRPV1; defensive/nociceptive afferents) using Cre-mediated reporter expression. We found that vagal afferents innervate almost all conducting airways and project into the alveolar region, whereas DRG afferents only innervate large airways. Of the two vagal ganglia, only nodose afferents project into the alveolar region, but both nodose and jugular afferents innervate conducting airways throughout the lung. Many afferents that project into the alveolar region express TRPV1. Few DRG afferents expressed TRPV1. Approximately 25% of blood vessels were innervated by vagal afferents (many were Tac1+). Approximately 10% of blood vessels had DRG afferents (some were Tac1+), but this was restricted to large vessels. Lastly, innervation of neuroepithelial bodies (NEBs) correlated with the cell number within the bodies. In conclusion, functionally distinct sensory subsets have distinct innervation patterns within the conducting airways, alveoli and blood vessels. Physiologic (e.g., stretch) and pathophysiological (e.g., inflammation, edema) stimuli likely vary throughout these regions. Our data provide a neuroanatomical basis for understanding afferent responses in vivo.
Collapse
Affiliation(s)
- Seol-Hee Kim
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Mayur J Patil
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Stephen H Hadley
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Parmvir K Bahia
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Shane G Butler
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Meghana Madaram
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Thomas E Taylor-Clark
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| |
Collapse
|
7
|
Iseppon F, Linley JE, Wood JN. Calcium imaging for analgesic drug discovery. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 11:100083. [PMID: 35079661 PMCID: PMC8777277 DOI: 10.1016/j.ynpai.2021.100083] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 11/24/2022]
Abstract
Somatosensation and pain are complex phenomena involving a rangeofspecialised cell types forming different circuits within the peripheral and central nervous systems. In recent decades, advances in the investigation of these networks, as well as their function in sensation, resulted from the constant evolution of electrophysiology and imaging techniques to allow the observation of cellular activity at the population level both in vitro and in vivo. Genetically encoded indicators of neuronal activity, combined with recent advances in DNA engineering and modern microscopy, offer powerful tools to dissect and visualise the activity of specific neuronal subpopulations with high spatial and temporal resolution. In recent years various groups developed in vivo imaging techniques to image calcium transients in the dorsal root ganglia, the spinal cord and the brain of anesthetised and awake, behaving animals to address fundamental questions in both the physiology and pathophysiology of somatosensation and pain. This approach, besides giving unprecedented details on the circuitry of innocuous and painful sensation, can be a very powerful tool for pharmacological research, from the characterisation of new potential drugs to the discovery of new, druggable targets within specific neuronal subpopulations. Here we summarise recent developments in calcium imaging for pain research, discuss technical challenges and advances, and examine the potential positive impact of this technique in early preclinical phases of the analgesic drug discovery process.
Collapse
Affiliation(s)
- Federico Iseppon
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, WC1E 6BT London, UK
- Discovery UK, Neuroscience, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - John E. Linley
- Discovery UK, Neuroscience, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - John N. Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, WC1E 6BT London, UK
| |
Collapse
|
8
|
Kudo M, Wupuer S, Fujiwara M, Saito Y, Kubota S, Inoue KI, Takada M, Seki K. Specific gene expression in unmyelinated dorsal root ganglion neurons in nonhuman primates by intra-nerve injection of AAV 6 vector. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 23:11-22. [PMID: 34552999 PMCID: PMC8426475 DOI: 10.1016/j.omtm.2021.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 07/27/2021] [Indexed: 01/14/2023]
Abstract
Adeno-associated virus 6 (AAV6) has been proposed as a potential vector candidate for specific gene expression in pain-related dorsal root ganglion (DRG) neurons, but this has not been confirmed in nonhuman primates. The aim of our study was to analyze the transduction efficiency and target specificity of this viral vector in the common marmoset by comparing it with those in the rat. When green fluorescent protein-expressing serotype-6 vector was injected into the sciatic nerve, the efficiency of gene expression in DRG neurons was comparable in both species. We found that the serotype-6 vector was largely specific to the pain-related ganglion neurons in the marmoset, as well as in the rat, whereas the serotype-9 vector resulted in contrasting effects in the two species. Neither AAV6 nor AAV9 resulted in DRG toxicity when administered via the sciatic nerve, suggesting this as a safer route of sensory nerve transduction than the currently used intrathecal or intravenous administrative routes. Furthermore, the AAV6 vector could be an optimal serotype for gene therapy for human chronic pain that has a minimal effect on other somatosensory functions of DRG neurons.
Collapse
Affiliation(s)
- Moeko Kudo
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Sidikejiang Wupuer
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Maki Fujiwara
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Yuko Saito
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo, Japan
| | - Shinji Kubota
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Ken-Ichi Inoue
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Masahiko Takada
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Kazuhiko Seki
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| |
Collapse
|
9
|
Alhajlah S, Thompson AM, Ahmed Z. Overexpression of Reticulon 3 Enhances CNS Axon Regeneration and Functional Recovery after Traumatic Injury. Cells 2021; 10:2015. [PMID: 34440784 PMCID: PMC8395006 DOI: 10.3390/cells10082015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 11/29/2022] Open
Abstract
CNS neurons are generally incapable of regenerating their axons after injury due to several intrinsic and extrinsic factors, including the presence of axon growth inhibitory molecules. One such potent inhibitor of CNS axon regeneration is Reticulon (RTN) 4 or Nogo-A. Here, we focused on RTN3 as its contribution to CNS axon regeneration is currently unknown. We found that RTN3 expression correlated with an axon regenerative phenotype in dorsal root ganglion neurons (DRGN) after injury to the dorsal columns, a well-characterised model of spinal cord injury. Overexpression of RTN3 promoted disinhibited DRGN neurite outgrowth in vitro and dorsal column axon regeneration/sprouting and electrophysiological, sensory and locomotor functional recovery after injury in vivo. Knockdown of protrudin, however, ablated RTN3-enhanced neurite outgrowth/axon regeneration in vitro and in vivo. Moreover, overexpression of RTN3 in a second model of CNS injury, the optic nerve crush injury model, enhanced retinal ganglion cell (RGC) survival, disinhibited neurite outgrowth in vitro and survival and axon regeneration in vivo, an effect that was also dependent on protrudin. These results demonstrate that RTN3 enhances neurite outgrowth/axon regeneration in a protrudin-dependent manner after both spinal cord and optic nerve injury.
Collapse
Affiliation(s)
- Sharif Alhajlah
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; (S.A.); (A.M.T.)
- Applied Medical Science College, Shaqra University, P.O. Box 1678, Ad-Dawadmi 11911, Saudi Arabia
| | - Adam M Thompson
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; (S.A.); (A.M.T.)
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; (S.A.); (A.M.T.)
- Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
10
|
von Jonquieres G, Rae CD, Housley GD. Emerging Concepts in Vector Development for Glial Gene Therapy: Implications for Leukodystrophies. Front Cell Neurosci 2021; 15:661857. [PMID: 34239416 PMCID: PMC8258421 DOI: 10.3389/fncel.2021.661857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Central Nervous System (CNS) homeostasis and function rely on intercellular synchronization of metabolic pathways. Developmental and neurochemical imbalances arising from mutations are frequently associated with devastating and often intractable neurological dysfunction. In the absence of pharmacological treatment options, but with knowledge of the genetic cause underlying the pathophysiology, gene therapy holds promise for disease control. Consideration of leukodystrophies provide a case in point; we review cell type – specific expression pattern of the disease – causing genes and reflect on genetic and cellular treatment approaches including ex vivo hematopoietic stem cell gene therapies and in vivo approaches using adeno-associated virus (AAV) vectors. We link recent advances in vectorology to glial targeting directed towards gene therapies for specific leukodystrophies and related developmental or neurometabolic disorders affecting the CNS white matter and frame strategies for therapy development in future.
Collapse
Affiliation(s)
- Georg von Jonquieres
- Translational Neuroscience Facility, Department of Physiology, School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Caroline D Rae
- Neuroscience Research Australia, Randwick, NSW, Australia
| | - Gary D Housley
- Translational Neuroscience Facility, Department of Physiology, School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
11
|
Zhai J, Kim H, Han SB, Manire M, Yoo R, Pang S, Smith GM, Son YJ. Co-targeting myelin inhibitors and CSPGs markedly enhances regeneration of GDNF-stimulated, but not conditioning-lesioned, sensory axons into the spinal cord. eLife 2021; 10:63050. [PMID: 33942723 PMCID: PMC8139830 DOI: 10.7554/elife.63050] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 05/03/2021] [Indexed: 12/20/2022] Open
Abstract
A major barrier to intraspinal regeneration after dorsal root (DR) injury is the DR entry zone (DREZ), the CNS/PNS interface. DR axons stop regenerating at the DREZ, even if regenerative capacity is increased by a nerve conditioning lesion. This potent blockade has long been attributed to myelin-associated inhibitors and (CSPGs), but incomplete lesions and conflicting reports have prevented conclusive agreement. Here, we evaluated DR regeneration in mice using novel strategies to facilitate complete lesions and analyses, selective tracing of proprioceptive and mechanoreceptive axons, and the first simultaneous targeting of Nogo/Reticulon-4, MAG, OMgp, CSPGs, and GDNF. Co-eliminating myelin inhibitors and CSPGs elicited regeneration of only a few conditioning-lesioned DR axons across the DREZ. Their absence, however, markedly and synergistically enhanced regeneration of GDNF-stimulated axons, highlighting the importance of sufficiently elevating intrinsic growth capacity. We also conclude that myelin inhibitors and CSPGs are not the primary mechanism stopping axons at the DREZ.
Collapse
Affiliation(s)
- Jinbin Zhai
- Shriners Hospitals Pediatric Research Center and Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, Philadelphia, United States.,Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Hyukmin Kim
- Shriners Hospitals Pediatric Research Center and Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, Philadelphia, United States.,Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Seung Baek Han
- Shriners Hospitals Pediatric Research Center and Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, Philadelphia, United States.,Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Meredith Manire
- Shriners Hospitals Pediatric Research Center and Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, Philadelphia, United States.,Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Rachel Yoo
- Shriners Hospitals Pediatric Research Center and Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, Philadelphia, United States.,Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Shuhuan Pang
- Shriners Hospitals Pediatric Research Center and Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, Philadelphia, United States.,Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - George M Smith
- Shriners Hospitals Pediatric Research Center and Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, Philadelphia, United States.,Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Young-Jin Son
- Shriners Hospitals Pediatric Research Center and Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, Philadelphia, United States.,Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| |
Collapse
|
12
|
Poth KM, Texakalidis P, Boulis NM. Chemogenetics: Beyond Lesions and Electrodes. Neurosurgery 2021; 89:185-195. [PMID: 33913505 PMCID: PMC8279839 DOI: 10.1093/neuros/nyab147] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/26/2021] [Indexed: 01/14/2023] Open
Abstract
The field of chemogenetics has rapidly expanded over the last decade, and engineered receptors are currently utilized in the lab to better understand molecular interactions in the nervous system. We propose that chemogenetic receptors can be used for far more than investigational purposes. The potential benefit of adding chemogenetic neuromodulation to the current neurosurgical toolkit is substantial. There are several conditions currently treated surgically, electrically, and pharmacologically in clinic, and this review highlights how chemogenetic neuromodulation could improve patient outcomes over current neurosurgical techniques. We aim to emphasize the need to take these techniques from bench to bedside.
Collapse
Affiliation(s)
- Kelly M Poth
- Department of Neurosurgery, Emory University, Atlanta, Georgia, USA
| | | | | |
Collapse
|
13
|
Colón-Thillet R, Jerome KR, Stone D. Optimization of AAV vectors to target persistent viral reservoirs. Virol J 2021; 18:85. [PMID: 33892762 PMCID: PMC8067653 DOI: 10.1186/s12985-021-01555-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/14/2021] [Indexed: 12/18/2022] Open
Abstract
Gene delivery of antiviral therapeutics to anatomical sites where viruses accumulate and persist is a promising approach for the next generation of antiviral therapies. Recombinant adeno-associated viruses (AAV) are one of the leading vectors for gene therapy applications that deliver gene-editing enzymes, antibodies, and RNA interference molecules to eliminate viral reservoirs that fuel persistent infections. As long-lived viral DNA within specific cellular reservoirs is responsible for persistent hepatitis B virus, Herpes simplex virus, and human immunodeficiency virus infections, the discovery of AAV vectors with strong tropism for hepatocytes, sensory neurons and T cells, respectively, is of particular interest. Identification of natural isolates from various tissues in humans and non-human primates has generated an extensive catalog of AAV vectors with diverse tropisms and transduction efficiencies, which has been further expanded through molecular genetic approaches. The AAV capsid protein, which forms the virions' outer shell, is the primary determinant of tissue tropism, transduction efficiency, and immunogenicity. Thus, over the past few decades, extensive efforts to optimize AAV vectors for gene therapy applications have focused on capsid engineering with approaches such as directed evolution and rational design. These approaches are being used to identify variants with improved transduction efficiencies, alternate tropisms, reduced sequestration in non-target organs, and reduced immunogenicity, and have produced AAV capsids that are currently under evaluation in pre-clinical and clinical trials. This review will summarize the most recent strategies to identify AAV vectors with enhanced tropism and transduction in cell types that harbor viral reservoirs.
Collapse
Affiliation(s)
- Rossana Colón-Thillet
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA
| | - Keith R Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Daniel Stone
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA.
| |
Collapse
|
14
|
Development of Genome Editing Approaches against Herpes Simplex Virus Infections. Viruses 2021; 13:v13020338. [PMID: 33671590 PMCID: PMC7926879 DOI: 10.3390/v13020338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) is a herpesvirus that may cause cold sores or keratitis in healthy or immunocompetent individuals, but can lead to severe and potentially life-threatening complications in immune-immature individuals, such as neonates or immune-compromised patients. Like all other herpesviruses, HSV-1 can engage in lytic infection as well as establish latent infection. Current anti-HSV-1 therapies effectively block viral replication and infection. However, they have little effect on viral latency and cannot completely eliminate viral infection. These issues, along with the emergence of drug-resistant viral strains, pose a need to develop new compounds and novel strategies for the treatment of HSV-1 infection. Genome editing methods represent a promising approach against viral infection by modifying or destroying the genetic material of human viruses. These editing methods include homing endonucleases (HE) and the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR associated protein (Cas) RNA-guided nuclease system. Recent studies have showed that both HE and CRISPR/Cas systems are effective in inhibiting HSV-1 infection in cultured cells in vitro and in mice in vivo. This review, which focuses on recently published progress, suggests that genome editing approaches could be used for eliminating HSV-1 latent and lytic infection and for treating HSV-1 associated diseases.
Collapse
|
15
|
Eisdorfer JT, Phelan MA, Keefe KM, Rollins MM, Campion TJ, Rauscher KM, Sobotka-Briner H, Senior M, Gordon G, Smith GM, Spence AJ. Addition of angled rungs to the horizontal ladder walking task for more sensitive probing of sensorimotor changes. PLoS One 2021; 16:e0246298. [PMID: 33544764 PMCID: PMC7864417 DOI: 10.1371/journal.pone.0246298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
One method for the evaluation of sensorimotor therapeutic interventions, the horizontal ladder walking task, analyzes locomotor changes that may occur after disease, injury, or by external manipulation. Although this task is well suited for detection of large effects, it may overlook smaller changes. The inability to detect small effect sizes may be due to a neural compensatory mechanism known as "cross limb transfer", or the contribution of the contralateral limb to estimate an injured or perturbed limb's position. The robust transfer of compensation from the contralateral limb may obscure subtle locomotor outcomes that are evoked by clinically relevant therapies, in the early onset of disease, or between higher levels of recovery. Here, we propose angled rungs as a novel modification to the horizontal ladder walking task. Easily-adjustable angled rungs force rats to locomote across a different locomotion path for each hindlimb and may therefore make information from the contralateral limb less useful. Using hM3Dq (excitatory) Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) expressed in large diameter peripheral afferents of the hindlimb in the intact animal, we characterized the sensitivity of our design to detect stepping differences by comparing locomotor changes observed on angled rungs to those observed on a standard horizontal ladder. On our novel asymmetrical ladder, activation of DREADDs resulted in significant differences in rung misses (p = 0.000011) and weight-supporting events (p = 0.049). By comparison, on a standard ladder, we did not observe differences in these parameters (p = 0.86 and p = 0.98, respectively). Additionally, no locomotor differences were detected in baseline and inactivated DREADDs trials when we compared ladder types, suggesting that the angled rungs do not change animal gait behavior unless intervention or injury is introduced. Significant changes observed with angled rungs may demonstrate more sensitive probing of locomotor changes due to the decoupling of cross limb transfer.
Collapse
Affiliation(s)
- Jaclyn T. Eisdorfer
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Michael A. Phelan
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, United States of America
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kathleen M. Keefe
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Morgan M. Rollins
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Thomas J. Campion
- Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Kaitlyn M. Rauscher
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Hannah Sobotka-Briner
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Mollie Senior
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Gabrielle Gordon
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, United States of America
| | - George M. Smith
- Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
- Shriners Hospitals Pediatric Research Center, Philadelphia, Pennsylvania, United States of America
| | - Andrew J. Spence
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
16
|
Luchicchi A, Pattij T, Viaña JNM, de Kloet S, Marchant N. Tracing goes viral: Viruses that introduce expression of fluorescent proteins in chemically-specific neurons. J Neurosci Methods 2020; 348:109004. [PMID: 33242528 DOI: 10.1016/j.jneumeth.2020.109004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/26/2022]
Abstract
Over the last century, there has been great progress in understanding how the brain works. In particular, the last two decades have been crucial in gaining more awareness over the complex functioning of neurotransmitter systems. The use of viral vectors in neuroscience has been pivotal for such development. Exploiting the properties of viral particles, modifying them according to the research needs, and making them target chemically-specific neurons, techniques such as optogenetics and chemogenetics have been developed, which could lead to a giant step toward gene therapy for brain disorders. In this review, we aim to provide an overview of some of the most widely used viral techniques in neuroscience. We will discuss advantages and disadvantages of these methods. In particular, attention is dedicated to the pivotal role played by the introduction of adeno-associated virus and the retrograde tracer canine-associated-2 Cre virus in order to achieve optimal visualization, and interrogation, of chemically-specific neuronal populations and their projections.
Collapse
Affiliation(s)
- Antonio Luchicchi
- Department of Anatomy and Neurosciences, Amsterdam UMC, VU University Medical Center, de Boelelaan 1108, 1081HZ, Amsterdam, the Netherlands.
| | - Tommy Pattij
- Department of Anatomy and Neurosciences, Amsterdam UMC, VU University Medical Center, de Boelelaan 1108, 1081HZ, Amsterdam, the Netherlands
| | - John Noel M Viaña
- Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, de Boelelaan 1085, 1081HZ, Amsterdam, the Netherlands; Australian National Centre for the Public Awareness of Science, ANU College of Science, The Australian National University, Linnaeus Way, Acton, ACT 2601, Australia
| | - Sybren de Kloet
- Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, de Boelelaan 1085, 1081HZ, Amsterdam, the Netherlands
| | - Nathan Marchant
- Department of Anatomy and Neurosciences, Amsterdam UMC, VU University Medical Center, de Boelelaan 1108, 1081HZ, Amsterdam, the Netherlands
| |
Collapse
|
17
|
Valdor M, Wagner A, Fischer H, Röhrs V, Schröder W, Bahrenberg G, Welbers A, Fechner H, Kurreck J, Tzschentke TM, Christoph T. RNA interference-mediated silencing of Kv7.2 in rat dorsal root ganglion neurons abolishes the anti-nociceptive effect of a selective channel opener. J Pharmacol Toxicol Methods 2020; 103:106693. [DOI: 10.1016/j.vascn.2020.106693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/25/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023]
|
18
|
Wu G, Jiang Q, Cui T, Liu X, Gong D, Yin Y, Wang C, Wang T, Lu Y, Zhu D, Han F. The glymphatic system delivery enhances the transduction efficiency of AAV1 to brain endothelial cells in adult mice. J Neurosci Methods 2019; 328:108441. [PMID: 31574288 DOI: 10.1016/j.jneumeth.2019.108441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/23/2019] [Accepted: 09/23/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Recombinant adeno-associated virus (rAAV) is increasingly applied in neuroscience research or gene therapy. However, there is no simple and efficient tool for specific transfection of rAAV into cerebrovascular tissues. It has been reported that fluorescent tracers or beta-amyloid protein can enter the brain through perivascular spaces, named as "glymphatic system". The purpose of this study was to explore whether rAAV could transduce the cerebral vasculature through the glymphatic pathway. NEW METHOD An AAV1-GFP vector suspension (15 μL) was injected into the intracisternal space of anesthetized mice (n = 2) and 5 μl was injected into the bulbus medullae (n = 2). As controls, 15 μl of artificial cerebrospinal fluid (aCSF) was injected into the cisterna magna. The endothelial specific transduction was verified by Glut1 or PDGFRβ immunofluorescent staining. Immunofluorescence images for all groups were captured with a laser microscope. RESULTS It was observed that infection with rAAV1 vectors encoding green fluorescence protein resulted in a successful cerebrovascular transduction when injected into cisterna magna, compared to aCSF or intra-parenchymal injection at 30 days post-transduction in adult mice. In addition, GFP was co-localized with Glut1 based on immuno-fluorescence. These results indicate that glymphatic system delivery enhances the transduction efficiency of AAV1 to brain endothelial cells. COMPARISON WITH EXISTING METHODS The AAV1 vector can simply and efficiently transduce the cerebral endothelial cells through the glymphatic pathway. CONCLUSION The findings of this study reveal that rAAV1-based vectors have high application potential for endothelial-targeted neurologic disease research or gene-based therapies.
Collapse
Affiliation(s)
- Gang Wu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Department of Pharmacy, Taizhou Hospital of Zhejiang Province, Linhai, Zhejiang, China
| | - Quan Jiang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tiantian Cui
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiuxiu Liu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dongmei Gong
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China; School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Yixuan Yin
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China; School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Chengkun Wang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tiantian Wang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Department of Pharmacy, Run Run Shaw Hospital affiliated to School of Medicine of Zhejiang University, Hangzhou, Zhejiang, China
| | - YingMei Lu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China; School of Pharmacy, Nanjing Medical University, Nanjing, Jiang Su, China; School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Danyan Zhu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Feng Han
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China; School of Pharmacy, Nanjing Medical University, Nanjing, Jiang Su, China.
| |
Collapse
|
19
|
Stevens AR, Ahmed U, Vigneswara V, Ahmed Z. Pigment Epithelium-Derived Factor Promotes Axon Regeneration and Functional Recovery After Spinal Cord Injury. Mol Neurobiol 2019; 56:7490-7507. [PMID: 31049830 PMCID: PMC6815285 DOI: 10.1007/s12035-019-1614-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/15/2019] [Indexed: 12/14/2022]
Abstract
Although neurons in the adult mammalian CNS are inherently incapable of regeneration after injury, we previously showed that exogenous delivery of pigment epithelium-derived factor (PEDF), a 50-kDa neurotrophic factor (NTF), promoted adult retinal ganglion cell neuroprotection and axon regeneration. Here, we show that PEDF and other elements of the PEDF pathway are highly upregulated in dorsal root ganglion neurons (DRGN) from regenerating dorsal column (DC) injury paradigms when compared with non-regenerating DC injury models. Exogenous PEDF was neuroprotective to adult DRGN and disinhibited neurite outgrowth, whilst overexpression of PEDF after DC injury in vivo promoted significant DC axon regeneration with enhanced electrophysiological, sensory, and locomotor function. Our findings reveal that PEDF is a novel NTF for adult DRGN and may represent a therapeutically useful factor to promote functional recovery after spinal cord injury.
Collapse
Affiliation(s)
- Andrew R Stevens
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, Robert Aitken Institute of Clinical Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Umar Ahmed
- King Edward VI Camp Hill School for Boys, Vicarage Road, Kings Heath, Birmingham, B14 7QJ, UK
| | - Vasanthy Vigneswara
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, Robert Aitken Institute of Clinical Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, Robert Aitken Institute of Clinical Research, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
20
|
Kubota S, Sidikejiang W, Kudo M, Inoue KI, Umeda T, Takada M, Seki K. Optogenetic recruitment of spinal reflex pathways from large-diameter primary afferents in non-transgenic rats transduced with AAV9/Channelrhodopsin 2. J Physiol 2019; 597:5025-5040. [PMID: 31397900 PMCID: PMC6851594 DOI: 10.1113/jp278292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/07/2019] [Indexed: 01/02/2023] Open
Abstract
Key points We demonstrated optical activation of primary somatosensory afferents with high selectivity to fast‐conducting fibres by means of adeno‐associated virus 9 (AAV9)‐mediated gene transduction in dorsal root ganglion (DRG) neurons. AVV9 expressing green fluorescent protein showed high selectivity and transduction efficiency for fast‐conducting, large‐sized DRG neurons. Compared with conventional electrical stimulation, optically elicited volleys in primary afferents had higher sensitivity with stimulus amplitude, but lower sensitivity with stimulus frequency. Optically elicited dorsal root volleys activated postsynaptic neurons in the segmental spinal pathway. This proposed technique will help establish the causal relationships between somatosensory afferent inputs and neural responses in the CNS as well as behavioural outcomes in higher mammals where transgenic animals are not available.
Abstract Previously, fundamental structures and their mode of action in the spinal reflex circuit were determined by confirming their input–output relationship using electrophysiological techniques. In those experiments, the electrical stimulation of afferent fibres was used as a core element to identify different types of reflex pathways; however, a major disadvantage of this technique is its non‐selectivity. In this study, we investigated the selective activation of large‐diameter afferents by optogenetics combined with a virus vector transduction technique (injection via the sciatic nerve) in non‐transgenic male Jcl:Wistar rats. We found that green fluorescent protein gene transduction of rat dorsal root ganglion (DRG) neurons with a preference for medium‐to‐large‐sized cells was achieved using the adeno‐associated virus 9 (AAV9) vector compared with the AAV6 vector (P = 0.021). Furthermore, the optical stimulation of Channelrhodopsin 2 (ChR2)‐expressing DRG neurons (transduced by AAV9) produced compound action potentials in afferent nerves originating from fast‐conducting nerve fibres. We also confirmed that physiological responses to different stimulus amplitudes were comparable between optogenetic and electrophysiological activation. However, compared with electrically elicited responses, the optically elicited responses had lower sensitivity with stimulus frequency. Finally, we showed that afferent volleys evoked by optical stimulation were sufficient to activate postsynaptic neurons in the spinal reflex arc. These results provide new ways for understanding the role of sensory afferent input to the central nervous system regarding behavioural control, especially when genetically manipulated animals are not available, such as higher mammals including non‐human primates. We demonstrated optical activation of primary somatosensory afferents with high selectivity to fast‐conducting fibres by means of adeno‐associated virus 9 (AAV9)‐mediated gene transduction in dorsal root ganglion (DRG) neurons. AVV9 expressing green fluorescent protein showed high selectivity and transduction efficiency for fast‐conducting, large‐sized DRG neurons. Compared with conventional electrical stimulation, optically elicited volleys in primary afferents had higher sensitivity with stimulus amplitude, but lower sensitivity with stimulus frequency. Optically elicited dorsal root volleys activated postsynaptic neurons in the segmental spinal pathway. This proposed technique will help establish the causal relationships between somatosensory afferent inputs and neural responses in the CNS as well as behavioural outcomes in higher mammals where transgenic animals are not available.
Collapse
Affiliation(s)
- Shinji Kubota
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.,Research Fellow of the Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Wupuer Sidikejiang
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Moeko Kudo
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Ken-Ichi Inoue
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Tatsuya Umeda
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Masahiko Takada
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Kazuhiko Seki
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| |
Collapse
|
21
|
Tuxworth RI, Taylor MJ, Martin Anduaga A, Hussien-Ali A, Chatzimatthaiou S, Longland J, Thompson AM, Almutiri S, Alifragis P, Kyriacou CP, Kysela B, Ahmed Z. Attenuating the DNA damage response to double-strand breaks restores function in models of CNS neurodegeneration. Brain Commun 2019; 1:fcz005. [PMID: 32954257 PMCID: PMC7425387 DOI: 10.1093/braincomms/fcz005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 12/12/2022] Open
Abstract
DNA double-strand breaks are a feature of many acute and long-term neurological disorders, including neurodegeneration, following neurotrauma and after stroke. Persistent activation of the DNA damage response in response to double-strand breaks contributes to neural dysfunction and pathology as it can force post-mitotic neurons to re-enter the cell cycle leading to senescence or apoptosis. Mature, non-dividing neurons may tolerate low levels of DNA damage, in which case muting the DNA damage response might be neuroprotective. Here, we show that attenuating the DNA damage response by targeting the meiotic recombination 11, Rad50, Nijmegen breakage syndrome 1 complex, which is involved in double-strand break recognition, is neuroprotective in three neurodegeneration models in Drosophila and prevents Aβ1-42-induced loss of synapses in embryonic hippocampal neurons. Attenuating the DNA damage response after optic nerve injury is also neuroprotective to retinal ganglion cells and promotes dramatic regeneration of their neurites both in vitro and in vivo. Dorsal root ganglion neurons similarly regenerate when the DNA damage response is targeted in vitro and in vivo and this strategy also induces significant restoration of lost function after spinal cord injury. We conclude that muting the DNA damage response in the nervous system is neuroprotective in multiple neurological disorders. Our results point to new therapies to maintain or repair the nervous system.
Collapse
Affiliation(s)
- Richard I Tuxworth
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Matthew J Taylor
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ane Martin Anduaga
- Department of Genetics & Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Alaa Hussien-Ali
- Centre for Biomedical Science, Centre of Gene and Cell Therapy, School of Biological Sciences, Royal Holloway University of London, Surrey TW20 0EX, UK
| | | | - Joanne Longland
- Neuroscience and Ophthalmology, College of Medical and Dental Sciences, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Adam M Thompson
- Neuroscience and Ophthalmology, College of Medical and Dental Sciences, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Sharif Almutiri
- Neuroscience and Ophthalmology, College of Medical and Dental Sciences, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK.,Applied Medical Science College, Shaqra University, Addawadmi, Riyadh, Saudi Arabia
| | - Pavlos Alifragis
- Centre for Biomedical Science, Centre of Gene and Cell Therapy, School of Biological Sciences, Royal Holloway University of London, Surrey TW20 0EX, UK
| | | | - Boris Kysela
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK.,Aston Medical School, Aston Medical Research Institute, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, College of Medical and Dental Sciences, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
22
|
|
23
|
Farrukh F, Davies E, Berry M, Logan A, Ahmed Z. BMP4/Smad1 Signalling Promotes Spinal Dorsal Column Axon Regeneration and Functional Recovery After Injury. Mol Neurobiol 2019; 56:6807-6819. [PMID: 30924076 PMCID: PMC6728286 DOI: 10.1007/s12035-019-1555-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/13/2019] [Indexed: 01/08/2023]
Abstract
Signalling through the BMP4/Smad1 pathway promotes corticospinal tract axon regeneration and functional recovery in mice. However, unlike humans and rats, mice do not cavitate. Here, we investigated if activation of the BMP4/Smad1 pathway promotes axon regeneration and functional recovery in a rat model that cavitates. We show that dorsal root ganglion neurons (DRGN) in injury models, including the non-regenerating dorsal column (DC) and the regenerating sciatic nerve (SN) crush and preconditioning (p) SN + DC (pSN + DC) paradigms, regulate the BMP4/Smad1 signalling pathway. For example, mRNA expression of positive regulators of the BMP4/Smad1 pathway was highly up-regulated whilst negative regulators were significantly down-regulated in DRGN in the regenerating SN and pSN + DC models compared to non-regenerating DC models, matched by concomitant changes in protein expression detected in DRGN by immunohistochemistry. BMP4 peptide promoted significant DRGN survival and disinhibited neurite outgrowth in vitro, whilst AAV-BMP4 delivery in vivo stimulated DC axon regeneration and functional recovery in a model that cavitates. Our results show that activation of the BMP4/Smad1 pathway is a potential therapeutic target in the search for axon regenerative signalling pathways in the CNS.
Collapse
Affiliation(s)
- Fatima Farrukh
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Elise Davies
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Martin Berry
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ann Logan
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
24
|
Almutiri S, Berry M, Logan A, Ahmed Z. Non-viral-mediated suppression of AMIGO3 promotes disinhibited NT3-mediated regeneration of spinal cord dorsal column axons. Sci Rep 2018; 8:10707. [PMID: 30013050 PMCID: PMC6048058 DOI: 10.1038/s41598-018-29124-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 07/05/2018] [Indexed: 01/13/2023] Open
Abstract
After injury to the mature central nervous system (CNS), myelin-derived inhibitory ligands bind to the Nogo-66 tripartite receptor complex expressed on axonal growth cones, comprised of LINGO-1 and p75NTR/TROY and induce growth cone collapse through the RhoA pathway. We have also shown that amphoterin-induced gene and open reading frame-3 (AMIGO3) substitutes for LINGO-1 and can signal axon growth cone collapse. Here, we investigated the regeneration of dorsal root ganglion neuron (DRGN) axons/neurites after treatment with a short hairpin RNA (sh) AMIGO3 plasmid delivered with a non-viral in vivo-jetPEI vector, and the pro-survival/axogenic neurotrophin (NT) 3 in vitro and in vivo. A bicistronic plasmid, containing both shAMIGO3 and NT3 knocked down >75% of AMIGO3 mRNA in cultured DRGN and significantly overexpressed NT3 production. In vivo, intra-DRG injection of in vivo-jetPEI plasmids containing shAMIGO3/gfp and shAMIGO3/nt3 both knocked down AMIGO3 expression in DRGN and, in combination with NT3 overexpression, promoted DC axon regeneration, recovery of conduction of compound action potentials across the lesion site and improvements in sensory and locomotor function. These findings demonstrate that in vivo-jetPEI is a potential non-viral, translatable DRGN delivery vehicle in vivo and that suppression of AMIGO3 disinhibits the growth of axotomised DRGN enabling NT3 to stimulate the regeneration of their DC axons and enhances functional recovery.
Collapse
Affiliation(s)
- Sharif Almutiri
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Martin Berry
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ann Logan
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
25
|
Hordeaux J, Hinderer C, Goode T, Katz N, Buza EL, Bell P, Calcedo R, Richman LK, Wilson JM. Toxicology Study of Intra-Cisterna Magna Adeno-Associated Virus 9 Expressing Human Alpha-L-Iduronidase in Rhesus Macaques. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 10:79-88. [PMID: 30073179 PMCID: PMC6070681 DOI: 10.1016/j.omtm.2018.06.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/07/2018] [Indexed: 01/01/2023]
Abstract
Mucopolysaccharidosis type I is a recessive genetic disease caused by deficiency of the lysosomal enzyme α-L-iduronidase, which leads to a neurodegenerative and systemic disease called Hurler syndrome in its most severe form. Several clinical trials are evaluating adeno-associated virus serotype 9 (AAV9) for the treatment of neurodegenerative diseases. Although these trials focus on systemic or lumbar administration, intrathecal administration via suboccipital puncture into the cisterna magna has demonstrated remarkable efficacy in large animals. We, therefore, conducted a good laboratory practice-compliant non-clinical study to investigate the safety of suboccipital AAV9 gene transfer of human α-L-iduronidase into nonhuman primates. We dosed 22 rhesus macaques, including three immunosuppressed animals, with vehicle or one of two doses of vector. We assessed in-life safety and immune responses. Animals were euthanized 14, 90, or 180 days post-vector administration and evaluated for histopathology and biodistribution. No procedure-related lesions or adverse events occurred. All vector-treated animals showed a dose-dependent mononuclear pleocytosis in the cerebrospinal fluid and minimal to moderate asymptomatic degeneration of dorsal root ganglia neurons and associated axons. These studies support the clinical development of suboccipital AAV delivery for Hurler syndrome and highlight a potential sensory neuron toxicity that warrants careful monitoring in first-in-human studies.
Collapse
Affiliation(s)
- Juliette Hordeaux
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Christian Hinderer
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Tamara Goode
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nathan Katz
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Elizabeth L Buza
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Peter Bell
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Roberto Calcedo
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Laura K Richman
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - James M Wilson
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
26
|
Hardcastle N, Boulis NM, Federici T. AAV gene delivery to the spinal cord: serotypes, methods, candidate diseases, and clinical trials. Expert Opin Biol Ther 2017; 18:293-307. [PMID: 29249183 DOI: 10.1080/14712598.2018.1416089] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Adeno-associated viral (AAV) vector-mediated gene delivery to the spinal cord has finally entered the pathway towards regulatory approval. Phase 1 clinical trials using AAV gene therapy for pediatric disorders - spinal muscular atrophy (SMA) and giant axonal neuropathy (GAN) - are now underway. AREAS COVERED This review addresses the latest progress in the field of AAV gene delivery to the spinal cord, particularly focusing on the most prominent AAV serotypes and delivery methodologies to the spinal cord. Candidate diseases and scaling up experiments in large animals are also discussed. EXPERT OPINION Intravenous (IV) and intrathecal (IT) deliveries seem to undoubtedly be the preferred routes of administration for diffuse spinal cord delivery of therapeutic AAV vectors that can cross the blood-brain barrier (BBB) and correct inherited genetic disorders. Conversely, intraparenchymal delivery is still an undervalued but very viable approach for segmental therapy in afflictions such as ALS or Pompe Disease as a means to prevent respiratory dysfunction.
Collapse
Affiliation(s)
- Nathan Hardcastle
- a Department of Neurosurgery , Emory University , Atlanta , GA , USA
| | - Nicholas M Boulis
- a Department of Neurosurgery , Emory University , Atlanta , GA , USA
| | - Thais Federici
- a Department of Neurosurgery , Emory University , Atlanta , GA , USA
| |
Collapse
|
27
|
Valdor M, Wagner A, Röhrs V, Berg J, Fechner H, Schröder W, Tzschentke TM, Bahrenberg G, Christoph T, Kurreck J. RNA interference-based functional knockdown of the voltage-gated potassium channel Kv7.2 in dorsal root ganglion neurons after in vitro and in vivo gene transfer by adeno-associated virus vectors. Mol Pain 2017; 14:1744806917749669. [PMID: 29212407 PMCID: PMC5805000 DOI: 10.1177/1744806917749669] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Activation of the neuronal potassium channel Kv7.2 encoded by the KCNQ2 gene has recently been shown to be an attractive mechanism to inhibit nociceptive transmission. However, potent, selective, and clinically proven activators of Kv7.2/Kv7.3 currents with analgesic properties are still lacking. An important prerequisite for the development of new drugs is a model to test the selectivity of novel agonists by abrogating Kv7.2/Kv7.3 function. Since constitutive knockout mice are not viable, we developed a model based on RNA interference-mediated silencing of KCNQ2. By delivery of a KCNQ2-specific short hairpin RNA with adeno-associated virus vectors, we completely abolished the activity of the specific Kv7.2/Kv7.3-opener ICA-27243 in rat sensory neurons. Results obtained in the silencing experiments were consistent between freshly prepared and cryopreserved dorsal root ganglion neurons, as well as in dorsal root ganglion neurons dissociated and cultured after in vivo administration of the silencing vector by intrathecal injections into rats. Interestingly, the tested associated virus serotypes substantially differed with respect to their transduction capability in cultured neuronal cell lines and primary dorsal root ganglion neurons and the in vivo transfer of transgenes by intrathecal injection of associated virus vectors. However, our study provides the proof-of-concept that RNA interference-mediated silencing of KCNQ2 is a suitable approach to create an ex vivo model for testing the specificity of novel Kv7.2/Kv7.3 agonists.
Collapse
Affiliation(s)
- Markus Valdor
- 1 14938 Grünenthal GmbH , Pharmacology and Biomarker Development, Aachen, Germany
| | - Anke Wagner
- 2 Department of Applied Biochemistry, Institute of Biotechnology, Berlin University of Technology, Berlin, Germany
| | - Viola Röhrs
- 2 Department of Applied Biochemistry, Institute of Biotechnology, Berlin University of Technology, Berlin, Germany
| | - Johanna Berg
- 2 Department of Applied Biochemistry, Institute of Biotechnology, Berlin University of Technology, Berlin, Germany
| | - Henry Fechner
- 2 Department of Applied Biochemistry, Institute of Biotechnology, Berlin University of Technology, Berlin, Germany
| | - Wolfgang Schröder
- 1 14938 Grünenthal GmbH , Pharmacology and Biomarker Development, Aachen, Germany
| | - Thomas M Tzschentke
- 1 14938 Grünenthal GmbH , Pharmacology and Biomarker Development, Aachen, Germany
| | | | - Thomas Christoph
- 1 14938 Grünenthal GmbH , Pharmacology and Biomarker Development, Aachen, Germany
| | - Jens Kurreck
- 2 Department of Applied Biochemistry, Institute of Biotechnology, Berlin University of Technology, Berlin, Germany
| |
Collapse
|
28
|
Weir GA, Middleton SJ, Clark AJ, Daniel T, Khovanov N, McMahon SB, Bennett DL. Using an engineered glutamate-gated chloride channel to silence sensory neurons and treat neuropathic pain at the source. Brain 2017; 140:2570-2585. [PMID: 28969375 PMCID: PMC5841150 DOI: 10.1093/brain/awx201] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/12/2017] [Accepted: 07/03/2017] [Indexed: 12/14/2022] Open
Abstract
See Basbaum (doi:10.1093/brain/awx227) for a scientific commentary on this article. Peripheral neuropathic pain arises as a consequence of injury to sensory neurons; the development of ectopic activity in these neurons is thought to be critical for the induction and maintenance of such pain. Local anaesthetics and anti-epileptic drugs can suppress hyperexcitability; however, these drugs are complicated by unwanted effects on motor, central nervous system and cardiac function, and alternative more selective treatments to suppress hyperexcitability are therefore required. Here we show that a glutamate-gated chloride channel modified to be activated by low doses of ivermectin (but not glutamate) is highly effective in silencing sensory neurons and reversing neuropathic pain-related hypersensitivity. Activation of the glutamate-gated chloride channel expressed in either rodent or human induced pluripotent stem cell-derived sensory neurons in vitro potently inhibited their response to both electrical and algogenic stimuli. We have shown that silencing is achieved both at nerve terminals and the soma and is independent of membrane hyperpolarization and instead likely mediated by lowering of the membrane resistance. Using intrathecal adeno-associated virus serotype 9-based delivery, the glutamate-gated chloride channel was successfully targeted to mouse sensory neurons in vivo, resulting in high level and long-lasting expression of the channel selectively in sensory neurons. This enabled reproducible and reversible modulation of thermal and mechanical pain thresholds in vivo; analgesia was observed for 3 days after a single systemic dose of ivermectin. We did not observe any motor or proprioceptive deficits and noted no reduction in cutaneous afferent innervation or upregulation of the injury marker ATF3 following prolonged glutamate-gated chloride channel expression. Established mechanical and cold pain-related hypersensitivity generated by the spared nerve injury model of neuropathic pain was reversed by ivermectin treatment. The efficacy of ivermectin in ameliorating behavioural hypersensitivity was mirrored at the cellular level by a cessation of ectopic activity in sensory neurons. These findings demonstrate the importance of aberrant afferent input in the maintenance of neuropathic pain and the potential for targeted chemogenetic silencing as a new treatment modality in neuropathic pain.
Collapse
Affiliation(s)
- Greg A Weir
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Steven J Middleton
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Alex J Clark
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Tarun Daniel
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | | | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
29
|
CD8+ T Cells and Endogenous IL-10 Are Required for Resolution of Chemotherapy-Induced Neuropathic Pain. J Neurosci 2017; 36:11074-11083. [PMID: 27798187 DOI: 10.1523/jneurosci.3708-15.2016] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 09/07/2016] [Indexed: 12/22/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN), characterized by pain and numbness in hands and feet, is a common side effect of cancer treatment. In most patients, symptoms of CIPN subside after treatment completion. However, in a substantial subgroup, CIPN persists long into survivorship. Impairment in pain resolution pathways may explain persistent CIPN. We investigated the contribution of T cells and endogenous interleukin (IL)-10 to resolution of CIPN. Paclitaxel-induced mechanical allodynia was prolonged in T-cell-deficient (Rag1-/-) mice compared with wild-type (WT) mice. There were no differences between WT and Rag1-/- mice in severity of paclitaxel-induced mechanical allodynia. Adoptive transfer of either CD3+ or CD8+, but not CD4+, T cells to Rag1-/- mice normalized resolution of CIPN. Paclitaxel treatment increased the number of T cells in lumbar dorsal root ganglia (DRG), where CD8+ T cells were the major subset. Inhibition of endogenous IL-10 signaling by intrathecal injection of anti-IL-10 to WT mice or Rag1-/- mice reconstituted with CD8+ T cells delayed recovery from paclitaxel-induced mechanical allodynia. Recovery was also delayed in IL-10 knock-out mice. Conversely, administration of exogenous IL-10 attenuated paclitaxel-induced allodynia. In vitro, IL-10 suppressed abnormal paclitaxel-induced spontaneous discharges in DRG neurons. Paclitaxel increased DRG IL-10 receptor expression and this effect requires CD8+ T cells. In conclusion, we identified a novel mechanism for resolution of CIPN that requires CD8+ T cells and endogenous IL-10. We propose that CD8+ T cells increase DRG IL-10 receptor expression and that IL-10 suppresses the abnormal paclitaxel-induced spontaneous discharges by DRG neurons to promote recovery from CIPN. SIGNIFICANCE STATEMENT Chemotherapy-induced peripheral neuropathy persists after completion of cancer treatment in a significant subset of patients, whereas others recover. Persistent neuropathy after completion of cancer treatment severely affects quality of life. We propose that understanding how neuropathy resolves will identify novel avenues for treatment. We identified a novel and critical role for CD8+ T cells and for endogenous IL-10 in recovery from paclitaxel-induced neuropathy in mice. Enhancing the capacity of CD8+ T cells to promote resolution or increasing IL-10 signaling are promising targets for novel interventions. Clinically, peripheral blood CD8+ T-cell function and/or the capacity of individuals to produce IL-10 may represent biomarkers of risk for developing persistent peripheral neuropathy after completion of cancer treatment.
Collapse
|
30
|
Berta T, Qadri Y, Tan PH, Ji RR. Targeting dorsal root ganglia and primary sensory neurons for the treatment of chronic pain. Expert Opin Ther Targets 2017; 21:695-703. [PMID: 28480765 DOI: 10.1080/14728222.2017.1328057] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Currently the treatment of chronic pain is inadequate and compromised by debilitating central nervous system side effects. Here we discuss new therapeutic strategies that target dorsal root ganglia (DRGs) in the peripheral nervous system for a better and safer treatment of chronic pain. Areas covered: The DRGs contain the cell bodies of primary sensory neurons including nociceptive neurons. After painful injuries, primary sensory neurons demonstrate maladaptive molecular changes in DRG cell bodies and in their axons. These changes result in hypersensitivity and hyperexcitability of sensory neurons (peripheral sensitization) and are crucial for the onset and maintenance of chronic pain. We discuss the following new strategies to target DRGs and primary sensory neurons as a means of alleviating chronic pain and minimizing side effects: inhibition of sensory neuron-expressing ion channels such as TRPA1, TRPV1, and Nav1.7, selective blockade of C- and Aβ-afferent fibers, gene therapy, and implantation of bone marrow stem cells. Expert opinion: These peripheral pharmacological treatments, as well as gene and cell therapies, aimed at DRG tissues and primary sensory neurons can offer better and safer treatments for inflammatory, neuropathic, cancer, and other chronic pain states.
Collapse
Affiliation(s)
- Temugin Berta
- a Pain Research Center, Department of Anesthesiology , University of Cincinnati Medical Center , Cincinnati , OH , USA
| | - Yawar Qadri
- b Department of Anesthesiology , Duke University Medical Center , Durham , NC , USA
| | - Ping-Heng Tan
- c Department of Anesthesiology, E-Da Hospital, School of Medicine , I-Shou University , Kaohsiung , Taiwan
| | - Ru-Rong Ji
- b Department of Anesthesiology , Duke University Medical Center , Durham , NC , USA.,d Department of Neurobiology , Duke University Medical Center , Durham , NC , USA
| |
Collapse
|
31
|
In vivo dynamics of AAV-mediated gene delivery to sensory neurons of the trigeminal ganglia. Sci Rep 2017; 7:927. [PMID: 28424485 PMCID: PMC5430444 DOI: 10.1038/s41598-017-01004-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 03/24/2017] [Indexed: 01/22/2023] Open
Abstract
The ability to genetically manipulate trigeminal ganglion (TG) neurons would be useful in the study of the craniofacial nervous system and latent alphaherpesvirus infections. We investigated adeno-associated virus (AAV) vectors for gene delivery to the TG after intradermal whiskerpad delivery in mice. We demonstrated that AAV vectors of serotypes 1, 7, 8, and 9 trafficked from the whiskerpad into TG neurons and expressed transgenes within cell bodies and axons of sensory neurons in all three branches of the TG. Gene expression was highest with AAV1, and steadily increased over time up to day 28. Both constitutive and neuronal-specific promoters were able to drive transgene expression in TG neurons. Levels of vector genomes in the TG increased with input dose, and multiple transgenes could be co-delivered to TG neurons by separate AAV vectors. In conclusion, AAV1 vectors are suitable for gene delivery to TG sensory neurons following intradermal whiskerpad injection.
Collapse
|
32
|
Chang MF, Hsieh JH, Chiang H, Kan HW, Huang CM, Chellis L, Lin BS, Miaw SC, Pan CL, Chao CC, Hsieh ST. Effective gene expression in the rat dorsal root ganglia with a non-viral vector delivered via spinal nerve injection. Sci Rep 2016; 6:35612. [PMID: 27748450 PMCID: PMC5066268 DOI: 10.1038/srep35612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/04/2016] [Indexed: 12/13/2022] Open
Abstract
Delivering gene constructs into the dorsal root ganglia (DRG) is a powerful but challenging therapeutic strategy for sensory disorders affecting the DRG and their peripheral processes. The current delivery methods of direct intra-DRG injection and intrathecal injection have several disadvantages, including potential injury to DRG neurons and low transfection efficiency, respectively. This study aimed to develop a spinal nerve injection strategy to deliver polyethylenimine mixed with plasmid (PEI/DNA polyplexes) containing green fluorescent protein (GFP). Using this spinal nerve injection approach, PEI/DNA polyplexes were delivered to DRG neurons without nerve injury. Within one week of the delivery, GFP expression was detected in 82.8% ± 1.70% of DRG neurons, comparable to the levels obtained by intra-DRG injection (81.3% ± 5.1%, p = 0.82) but much higher than those obtained by intrathecal injection. The degree of GFP expression by neurofilament(+) and peripherin(+) DRG neurons was similar. The safety of this approach was documented by the absence of injury marker expression, including activation transcription factor 3 and ionized calcium binding adaptor molecule 1 for neurons and glia, respectively, as well as the absence of behavioral changes. These results demonstrated the efficacy and safety of delivering PEI/DNA polyplexes to DRG neurons via spinal nerve injection.
Collapse
Affiliation(s)
- Ming-Fong Chang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Jung-Hsien Hsieh
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Departments of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Hao Chiang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Hung-Wei Kan
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Cho-Min Huang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Luke Chellis
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, USA
| | - Bo-Shiou Lin
- Department of Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Shi-Chuen Miaw
- Department of Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Chun-Liang Pan
- Department of Graduate Institute of Molecular Medicine, College of Medicine, National Taiwan University, No. 7 Chung-Shan South Road, Taipei, 10002, Taiwan
| | - Chi-Chao Chao
- Departments of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Sung-Tsang Hsieh
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Department of Graduate Institute of Brain and Mind Science, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Departments of Clinical Center for Neuroscience and Behavior, National Taiwan University Hospital, Taipei, Taiwan
- Department of Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| |
Collapse
|
33
|
Aubert M, Madden EA, Loprieno M, DeSilva Feelixge HS, Stensland L, Huang ML, Greninger AL, Roychoudhury P, Niyonzima N, Nguyen T, Magaret A, Galleto R, Stone D, Jerome KR. In vivo disruption of latent HSV by designer endonuclease therapy. JCI Insight 2016; 1. [PMID: 27642635 DOI: 10.1172/jci.insight.88468] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A large portion of the global population carries latent herpes simplex virus (HSV), which can periodically reactivate, resulting in asymptomatic shedding or formation of ulcerative lesions. Current anti-HSV drugs do not eliminate latent virus from sensory neurons where HSV resides, and therefore do not eliminate the risk of transmission or recurrent disease. Here, we report the ability of HSV-specific endonucleases to induce mutations of essential HSV genes both in cultured neurons and in latently infected mice. In neurons, viral genomes are susceptible to endonuclease-mediated mutagenesis, regardless of the time of treatment after HSV infection, suggesting that both HSV lytic and latent forms can be targeted. Mutagenesis frequency after endonuclease exposure can be increased nearly 2-fold by treatment with a histone deacetylase (HDAC) inhibitor. Using a mouse model of latent HSV infection, we demonstrate that a targeted endonuclease can be delivered to viral latency sites via an adeno-associated virus (AAV) vector, where it is able to induce mutation of latent HSV genomes. These data provide the first proof-of-principle to our knowledge for the use of a targeted endonuclease as an antiviral agent to treat an established latent viral infection in vivo.
Collapse
Affiliation(s)
- Martine Aubert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Emily A Madden
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Michelle Loprieno
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Laurence Stensland
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Meei-Li Huang
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Alexander L Greninger
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Pavitra Roychoudhury
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Nixon Niyonzima
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Thuy Nguyen
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Amalia Magaret
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | | | - Daniel Stone
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Keith R Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
34
|
Pleticha J, Maus TP, Beutler AS. Future Directions in Pain Management: Integrating Anatomically Selective Delivery Techniques With Novel Molecularly Selective Agents. Mayo Clin Proc 2016; 91:522-33. [PMID: 27046525 DOI: 10.1016/j.mayocp.2016.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 01/12/2023]
Abstract
Treatment for chronic, locoregional pain ranks among the most prevalent unmet medical needs. The failure of systemic analgesic drugs, such as opioids, is often due to their off-target toxicity, development of tolerance, and abuse potential. Interventional pain procedures provide target specificity but lack pharmacologically selective agents with long-term efficacy. Gene therapy vectors are a new tool for the development of molecularly selective pain therapies, which have already been proved to provide durable analgesia in preclinical models. Taken together, advances in image-guided delivery and gene therapy may lead to a new class of dual selective analgesic treatments integrating the molecular selectivity of analgesic genes with the anatomic selectivity of interventional delivery techniques.
Collapse
Affiliation(s)
- Josef Pleticha
- Department of Anesthesiology and Oncology, Mayo Clinic, Rochester, MN
| | | | - Andreas S Beutler
- Department of Anesthesiology and Oncology, Mayo Clinic, Rochester, MN
| |
Collapse
|
35
|
Intrathecal gene therapy rescues a model of demyelinating peripheral neuropathy. Proc Natl Acad Sci U S A 2016; 113:E2421-9. [PMID: 27035961 DOI: 10.1073/pnas.1522202113] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Inherited demyelinating peripheral neuropathies are progressive incurable diseases without effective treatment. To develop a gene therapy approach targeting myelinating Schwann cells that can be translatable, we delivered a lentiviral vector using a single lumbar intrathecal injection and a myelin-specific promoter. The human gene of interest, GJB1, which is mutated in X-linked Charcot-Marie-Tooth Disease (CMT1X), was delivered intrathecally into adult Gjb1-null mice, a genetically authentic model of CMT1X that develops a demyelinating peripheral neuropathy. We obtained widespread, stable, and cell-specific expression of connexin32 in up to 50% of Schwann cells in multiple lumbar spinal roots and peripheral nerves. Behavioral and electrophysiological analysis revealed significantly improved motor performance, quadriceps muscle contractility, and sciatic nerve conduction velocities. Furthermore, treated mice exhibited reduced numbers of demyelinated and remyelinated fibers and fewer inflammatory cells in lumbar motor roots, as well as in the femoral motor and sciatic nerves. This study demonstrates that a single intrathecal lentiviral gene delivery can lead to Schwann cell-specific expression in spinal roots extending to multiple peripheral nerves. This clinically relevant approach improves the phenotype of an inherited neuropathy mouse model and provides proof of principle for treating inherited demyelinating neuropathies.
Collapse
|
36
|
Abstract
UNLABELLED The sensation of touch is initiated when fast conducting low-threshold mechanoreceptors (Aβ-LTMRs) generate impulses at their terminals in the skin. Plasticity in this system is evident in the process of adaption, in which a period of diminished sensitivity follows prior stimulation. CaMKII is an ideal candidate for mediating activity-dependent plasticity in touch because it shifts into an enhanced activation state after neuronal depolarizations and can thereby reflect past firing history. Here we show that sensory neuron CaMKII autophosphorylation encodes the level of Aβ-LTMR activity in rat models of sensory deprivation (whisker clipping, tail suspension, casting). Blockade of CaMKII signaling limits normal adaptation of action potential generation in Aβ-LTMRs in excised skin. CaMKII activity is also required for natural filtering of impulse trains as they travel through the sensory neuron T-junction in the DRG. Blockade of CaMKII selectively in presynaptic Aβ-LTMRs removes dorsal horn inhibition that otherwise prevents Aβ-LTMR input from activating nociceptive lamina I neurons. Together, these consequences of reduced CaMKII function in Aβ-LTMRs cause low-intensity mechanical stimulation to produce pain behavior. We conclude that, without normal sensory activity to maintain adequate levels of CaMKII function, the touch pathway shifts into a pain system. In the clinical setting, sensory disuse may be a critical factor that enhances and prolongs chronic pain initiated by other conditions. SIGNIFICANCE STATEMENT The sensation of touch is served by specialized sensory neurons termed low-threshold mechanoreceptors (LTMRs). We examined the role of CaMKII in regulating the function of these neurons. Loss of CaMKII function, such as occurred in rats during sensory deprivation, elevated the generation and propagation of impulses by LTMRs, and altered the spinal cord circuitry in such a way that low-threshold mechanical stimuli produced pain behavior. Because limbs are protected from use during a painful condition, this sensitization of LTMRs may perpetuate pain and prevent functional rehabilitation.
Collapse
|
37
|
Wolfe D, Krisky D, Goss J, Wechuck J, Mata M, Fink DJ. Translating Gene Therapy for Pain from Animal Studies to the Clinic. Transl Neurosci 2016. [DOI: 10.1007/978-1-4899-7654-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
38
|
Castle MJ, Turunen HT, Vandenberghe LH, Wolfe JH. Controlling AAV Tropism in the Nervous System with Natural and Engineered Capsids. Methods Mol Biol 2016; 1382:133-49. [PMID: 26611584 PMCID: PMC4993104 DOI: 10.1007/978-1-4939-3271-9_10] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
More than one hundred naturally occurring variants of adeno-associated virus (AAV) have been identified, and this library has been further expanded by an array of techniques for modification of the viral capsid. AAV capsid variants possess unique antigenic profiles and demonstrate distinct cellular tropisms driven by differences in receptor binding. AAV capsids can be chemically modified to alter tropism, can be produced as hybrid vectors that combine the properties of multiple serotypes, and can carry peptide insertions that introduce novel receptor-binding activity. Furthermore, directed evolution of shuffled genome libraries can identify engineered variants with unique properties, and rational modification of the viral capsid can alter tropism, reduce blockage by neutralizing antibodies, or enhance transduction efficiency. This large number of AAV variants and engineered capsids provides a varied toolkit for gene delivery to the CNS and retina, with specialized vectors available for many applications, but selecting a capsid variant from the array of available vectors can be difficult. This chapter describes the unique properties of a range of AAV variants and engineered capsids, and provides a guide for selecting the appropriate vector for specific applications in the CNS and retina.
Collapse
Affiliation(s)
- Michael J Castle
- Research Institute of the Children's Hospital of Philadelphia, 502-G Abramson Pediatric Research Building, 3615 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Neurosciences, University of California-San Diego, La Jolla, CA, 92093, USA
| | - Heikki T Turunen
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Luk H Vandenberghe
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - John H Wolfe
- Research Institute of the Children's Hospital of Philadelphia, 502-G Abramson Pediatric Research Building, 3615 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
39
|
High cerebrospinal fluid levels of interleukin-10 attained by AAV in dogs. Gene Ther 2014; 22:202-8. [PMID: 25354684 DOI: 10.1038/gt.2014.96] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 07/23/2014] [Accepted: 08/22/2014] [Indexed: 12/15/2022]
Abstract
Intrathecal (IT) gene transfer using adeno-associated virus (AAV) may be clinically promising as a treatment for chronic pain if it can produce sufficiently high levels of a transgene product in the cerebrospinal fluid (CSF). Although this strategy was developed in rodents, no studies investigating CSF levels of an analgesic or antiallodynic protein delivered by IT AAV have been performed in large animals. Interleukin-10 (IL-10) is an antiallodynic cytokine for which target therapeutic levels have been established in rats. The present study tested IT AAV8 encoding either human IL-10 (hIL-10) or enhanced green fluorescent protein (EGFP) in a dog model of IT drug delivery. AAV8/hIL-10 at a dose of 3.5 × 10(12) genome copies induced high hIL-10 levels in the CSF, exceeding the target concentration previously found to be antiallodynic in rodents by >1000-fold. AAV8/EGFP targeted the primary sensory and motor neurons and the meninges. hIL-10, a xenogeneic protein in dogs, induced anti-hIL-10 antibodies detectable in the CSF and serum of dogs. The high hIL-10 levels demonstrate the efficacy of AAV for delivery of secreted transgenes into the IT space of large animals, suggesting a strong case for further development toward clinical testing.
Collapse
|
40
|
Murlidharan G, Samulski RJ, Asokan A. Biology of adeno-associated viral vectors in the central nervous system. Front Mol Neurosci 2014; 7:76. [PMID: 25285067 PMCID: PMC4168676 DOI: 10.3389/fnmol.2014.00076] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/04/2014] [Indexed: 01/11/2023] Open
Abstract
Gene therapy is a promising approach for treating a spectrum of neurological and neurodegenerative disorders by delivering corrective genes to the central nervous system (CNS). In particular, adeno-associated viruses (AAVs) have emerged as promising tools for clinical gene transfer in a broad range of genetic disorders with neurological manifestations. In the current review, we have attempted to bridge our understanding of the biology of different AAV strains with their transduction profiles, cellular tropisms, and transport mechanisms within the CNS. Continued efforts to dissect AAV-host interactions within the brain are likely to aid in the development of improved vectors for CNS-directed gene transfer applications in the clinic.
Collapse
Affiliation(s)
- Giridhar Murlidharan
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina at Chapel Hill Chapel Hill, NC, USA ; Gene Therapy Center, School of Medicine, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Richard J Samulski
- Gene Therapy Center, School of Medicine, University of North Carolina at Chapel Hill Chapel Hill, NC, USA ; Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill NC, USA
| | - Aravind Asokan
- Gene Therapy Center, School of Medicine, University of North Carolina at Chapel Hill Chapel Hill, NC, USA ; Department of Genetics and Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| |
Collapse
|
41
|
Pleticha J, Heilmann LF, Evans CH, Asokan A, Samulski RJ, Beutler AS. Preclinical toxicity evaluation of AAV for pain: evidence from human AAV studies and from the pharmacology of analgesic drugs. Mol Pain 2014; 10:54. [PMID: 25183392 PMCID: PMC4237902 DOI: 10.1186/1744-8069-10-54] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 08/14/2014] [Indexed: 12/18/2022] Open
Abstract
Gene therapy with adeno-associated virus (AAV) has advanced in the last few years from promising results in animal models to >100 clinical trials (reported or under way). While vector availability was a substantial hurdle a decade ago, innovative new production methods now routinely match the scale of AAV doses required for clinical testing. These advances may become relevant to translational research in the chronic pain field. AAV for pain targeting the peripheral nervous system was proven to be efficacious in rodent models several years ago, but has not yet been tested in humans. The present review addresses the steps needed for translation of AAV for pain from the bench to the bedside focusing on pre-clinical toxicology. We break the potential toxicities into three conceptual categories of risk: First, risks related to the delivery procedure used to administer the vector. Second, risks related to AAV biology, i.e., effects of the vector itself that may occur independently of the transgene. Third, risks related to the effects of the therapeutic transgene. To identify potential toxicities, we consulted the existing evidence from AAV gene therapy for other nervous system disorders (animal toxicology and human studies) and from the clinical pharmacology of conventional analgesic drugs. Thereby, we identified required preclinical studies and charted a hypothetical path towards a future phase I/II clinical trial in the oncology-palliative care setting.
Collapse
Affiliation(s)
| | | | | | | | | | - Andreas S Beutler
- Departments of Anesthesiology, Oncology, and the Cancer Center, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
42
|
Pleticha J, Maus TP, Christner JA, Marsh MP, Lee KH, Hooten WM, Beutler AS. Minimally invasive convection-enhanced delivery of biologics into dorsal root ganglia: validation in the pig model and prospective modeling in humans. Technical note. J Neurosurg 2014; 121:851-8. [PMID: 24995785 DOI: 10.3171/2014.6.jns132364] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Dorsal root ganglia (DRG) are critical anatomical structures involved in nociception. Intraganglionic (IG) drug delivery is therefore an important route of administration for novel analgesic therapies. Although IG injection in large animal models is highly desirable for preclinical biodistribution and toxicology studies of new drugs, no method to deliver pharmaceutical agents into the DRG has been reported in any large species. The present study describes a minimally invasive technique of IG agent delivery in domestic swine, one of the most common large animal models. The technique utilizes CT guidance for DRG targeting and a custom-made injection assembly for convection enhanced delivery (CED) of therapeutic agents directly into DRG parenchyma. The DRG were initially visualized by CT myelography to determine the optimal access route to the DRG. The subsequent IG injection consisted of 3 steps. First, a commercially available guide needle was advanced to a position dorsolateral to the DRG, and the dural root sleeve was punctured, leaving the guide needle contiguous with, but not penetrating, the DRG. Second, the custom-made stepped stylet was inserted through the guide needle into the DRG parenchyma. Third, the stepped stylet was replaced by the custom-made stepped needle, which was used for the IG CED. Initial dye injections performed in pig cadavers confirmed the accuracy of DRG targeting under CT guidance. Intraganglionic administration of adeno-associated virus in vivo resulted in a unilateral transduction of the injected DRG, with 33.5% DRG neurons transduced. Transgene expression was also found in the dorsal root entry zones at the corresponding spinal levels. The results thereby confirm the efficacy of CED by the stepped needle and a selectivity of DRG targeting. Imaging-based modeling of the procedure in humans suggests that IG CED may be translatable to the clinical setting.
Collapse
|
43
|
Schuster DJ, Dykstra JA, Riedl MS, Kitto KF, Belur LR, McIvor RS, Elde RP, Fairbanks CA, Vulchanova L. Biodistribution of adeno-associated virus serotype 9 (AAV9) vector after intrathecal and intravenous delivery in mouse. Front Neuroanat 2014; 8:42. [PMID: 24959122 PMCID: PMC4051274 DOI: 10.3389/fnana.2014.00042] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/16/2014] [Indexed: 01/06/2023] Open
Abstract
Adeno-associated virus serotype 9 (AAV9)-mediated gene transfer has been reported in central nervous system (CNS) and peripheral tissues. The current study compared the pattern of expression of Green Fluorescent Protein (GFP) across the mouse CNS and selected peripheral tissues after intrathecal (i.t.) or intravenous (i.v.) delivery of equivalent doses of single-stranded AAV9 vector. After i.t. delivery, GFP immunoreactivity (-ir) was observed in spinal neurons, primary afferent fibers and corresponding primary sensory neurons at all spinal levels. Robust transduction was seen in small and large dorsal root ganglion (DRG) neurons as well as trigeminal and vagal primary afferent neurons. Transduction efficiency in sensory ganglia was substantially lower in i.v. treated mice. In brain, i.v. delivery yielded GFP-immunoreactivity (-ir) primarily in spinal trigeminal tract, pituitary, and scattered isolated neurons and astrocytes. In contrast, after i.t. delivery, GFP-ir was widespread throughout CNS, with greater intensity and more abundant neuropil-like staining at 6 weeks compared to 3 weeks. Brain regions with prominent GFP-ir included cranial nerve nuclei, ventral pons, cerebellar cortex, hippocampus, pituitary, choroid plexus, and selected nuclei of midbrain, thalamus and hypothalamus. In cortex, GFP-ir was associated with blood vessels, and was seen in both neurons and astrocytes. In the periphery, GFP-ir in colon and ileum was present in the enteric nervous system in both i.v. and i.t. treated mice. Liver and adrenal cortex, but not adrenal medulla, also showed abundant GFP-ir after both routes of delivery. In summary, i.t. delivery yielded higher transduction efficiency in sensory neurons and the CNS. The observation of comparable gene transfer to peripheral tissues using the two routes indicates that a component of i.t. delivered vector is redistributed from the subarachnoid space to the systemic circulation.
Collapse
Affiliation(s)
- Daniel J Schuster
- Departments of Neuroscience, University of Minnesota Minneapolis, MN, USA
| | - Jaclyn A Dykstra
- Department of Veterinary and Biomedical Sciences, University of Minnesota Saint Paul, MN, USA
| | - Maureen S Riedl
- Departments of Neuroscience, University of Minnesota Minneapolis, MN, USA
| | - Kelley F Kitto
- Departments of Neuroscience, University of Minnesota Minneapolis, MN, USA
| | - Lalitha R Belur
- Departments of Genetics Cell Biology and Development, University of Minnesota Minneapolis, MN, USA
| | - R Scott McIvor
- Departments of Genetics Cell Biology and Development, University of Minnesota Minneapolis, MN, USA
| | - Robert P Elde
- Departments of Neuroscience, University of Minnesota Minneapolis, MN, USA
| | - Carolyn A Fairbanks
- Departments of Neuroscience, University of Minnesota Minneapolis, MN, USA ; Departments of Pharmaceutics, University of Minnesota Minneapolis, MN, USA
| | - Lucy Vulchanova
- Departments of Neuroscience, University of Minnesota Minneapolis, MN, USA
| |
Collapse
|
44
|
Chen B, Zhao L, Li X, Ji YS, Li N, Xu XF, Chen ZY. Syntaxin 8 modulates the post-synthetic trafficking of the TrkA receptor and inflammatory pain transmission. J Biol Chem 2014; 289:19556-69. [PMID: 24872407 DOI: 10.1074/jbc.m114.567925] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Nerve growth factor (NGF) promotes the survival, maintenance, and neurite outgrowth of sensory and sympathetic neurons, and the effects are mediated by TrkA receptor signaling. Thus, the cell surface location of the TrkA receptor is crucial for NGF-mediated functions. However, the regulatory mechanism underlying TrkA cell surface levels remains incompletely understood. In this study, we identified syntaxin 8 (STX8), a Q-SNARE protein, as a novel TrkA-binding protein. Overexpression and knockdown studies showed that STX8 facilitates TrkA transport from the Golgi to the plasma membrane and regulates the surface levels of TrkA but not TrkB receptors. Furthermore, STX8 modulates downstream NGF-induced TrkA signaling and, consequently, the survival of NGF-dependent dorsal root ganglia neurons. Finally, knockdown of STX8 in rat dorsal root ganglia by recombinant adeno-associated virus serotype 6-mediated RNA interference led to analgesic effects on formalin-induced inflammatory pain. These findings demonstrate that STX8 is a modulator of TrkA cell surface levels and biological functions.
Collapse
Affiliation(s)
- Bing Chen
- From the Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Number 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Ling Zhao
- From the Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Number 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Xian Li
- From the Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Number 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Yun-Song Ji
- From the Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Number 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Na Li
- From the Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Number 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Xu-Feng Xu
- From the Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Number 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Zhe-Yu Chen
- From the Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Number 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| |
Collapse
|
45
|
Pleticha J, Jeng-Singh C, Rezek R, Zaibak M, Beutler AS. Intraneural convection enhanced delivery of AAVrh20 for targeting primary sensory neurons. Mol Cell Neurosci 2014; 60:72-80. [PMID: 24769104 DOI: 10.1016/j.mcn.2014.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 02/23/2014] [Accepted: 04/14/2014] [Indexed: 11/19/2022] Open
Abstract
Gene therapy using adeno-associated virus (AAV) is an attractive strategy to treat disorders of the peripheral nervous system (PNS), such as chronic pain or peripheral neuropathies. Although intrathecal (IT) administration of AAV has been the standard in the field for targeting the PNS, it lacks anatomical specificity and results in wide rostro-caudal distribution of the vector. An alternative approach is to deliver AAV directly to the peripheral nerve axon. The present study employed convection-enhanced delivery (CED) of a novel AAV serotype, AAVrh20, expressing enhanced green fluorescent protein (EGFP) into rat sciatic nerve investigating its efficacy, anatomical selectivity, and safety, compared to the IT route. Intraneural CED resulted in transduction confined to the ipsilateral L4 and L5 DRG while IT administration led to promiscuous DRG transduction encompassing the entire lumbar region bilaterally. The transduction rate for intraneural AAV administration was similar to IT delivery (24% for L4 and 31.5% for L5 DRG versus 50% for L4 and 19.5% for L5 DRG). The use of hyperosmotic diluent did not further improve the transduction efficiency. AAVrh20 was superior to reference serotypes previously described to be most active for each route. Intraneural CED of AAV was associated with transient allodynia that resolved spontaneously. These findings establish intraneural CED as an alternative to IT administration for AAV mediated gene transfer to the PNS and, based on a reference rodent model, suggest AAVrh20 as a superior serotype for targeting the PNS.
Collapse
Affiliation(s)
- Josef Pleticha
- Departments of Anesthesiology and Oncology, Mayo Clinic, Rochester, MN, USA
| | | | - Rahaf Rezek
- Departments of Anesthesiology and Oncology, Mayo Clinic, Rochester, MN, USA
| | - Manal Zaibak
- Departments of Anesthesiology and Oncology, Mayo Clinic, Rochester, MN, USA
| | - Andreas S Beutler
- Departments of Anesthesiology and Oncology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
46
|
San Sebastian W, Samaranch L, Kells AP, Forsayeth J, Bankiewicz KS. Gene therapy for misfolding protein diseases of the central nervous system. Neurotherapeutics 2013; 10:498-510. [PMID: 23700209 PMCID: PMC3701766 DOI: 10.1007/s13311-013-0191-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Protein aggregation as a result of misfolding is a common theme underlying neurodegenerative diseases. Accordingly, most recent studies aim to prevent protein misfolding and/or aggregation as a strategy to treat these pathologies. For instance, state-of-the-art approaches, such as silencing protein overexpression by means of RNA interference, are being tested with positive outcomes in preclinical models of animals overexpressing the corresponding protein. Therapies designed to treat central nervous system diseases should provide accurate delivery of the therapeutic agent and long-term or chronic expression by means of a nontoxic delivery vehicle. After several years of technical advances and optimization, gene therapy emerges as a promising approach able to fulfill those requirements. In this review we will summarize the latest improvements achieved in gene therapy for central nervous system diseases associated with protein misfolding (e.g., amyotrophic lateral sclerosis, Alzheimer's, Parkinson's, Huntington's, and prion diseases), as well as the most recent approaches in this field to treat these pathologies.
Collapse
Affiliation(s)
- Waldy San Sebastian
- Department of Neurological Surgery, University of California San Francisco, 1855 Folsom Street, San Francisco, CA USA
| | - Lluis Samaranch
- Department of Neurological Surgery, University of California San Francisco, 1855 Folsom Street, San Francisco, CA USA
| | - Adrian P. Kells
- Department of Neurological Surgery, University of California San Francisco, 1855 Folsom Street, San Francisco, CA USA
| | - John Forsayeth
- Department of Neurological Surgery, University of California San Francisco, 1855 Folsom Street, San Francisco, CA USA
| | - Krystof S. Bankiewicz
- Department of Neurological Surgery, University of California San Francisco, 1855 Folsom Street, San Francisco, CA USA
| |
Collapse
|
47
|
Samaranch L, Salegio EA, San Sebastian W, Kells AP, Bringas JR, Forsayeth J, Bankiewicz KS. Strong cortical and spinal cord transduction after AAV7 and AAV9 delivery into the cerebrospinal fluid of nonhuman primates. Hum Gene Ther 2013; 24:526-32. [PMID: 23517473 DOI: 10.1089/hum.2013.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The present study builds on previous work showing that infusion of adeno-associated virus type 9 (AAV9) into the cisterna magna (CM) of nonhuman primates resulted in widespread transduction throughout cortex and spinal cord. Transduction efficiency was severely limited, however, by the presence of circulating anti-AAV antibodies. Accordingly, we compared AAV9 to a related serotype, AAV7, which has a high capsid homology. CM infusion of either AAV7 or AAV9 directed high level of cell transduction with similar patterns of distribution throughout brain cortex and along the spinal cord. Dorsal root ganglia and corticospinal tracts were also transduced. Both astrocytes and neurons were transduced. Interestingly, little transduction was observed in peripheral organs. Our results indicate that intrathecal delivery of either AAV7 or AAV9 directs a robust and widespread cellular transduction in the central nervous system and other peripheral neural structures.
Collapse
Affiliation(s)
- Lluis Samaranch
- Department of Neurological Surgery, University of California San Francisco, CA 94103, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Intraganglionic AAV6 results in efficient and long-term gene transfer to peripheral sensory nervous system in adult rats. PLoS One 2013; 8:e61266. [PMID: 23613824 PMCID: PMC3628918 DOI: 10.1371/journal.pone.0061266] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 03/07/2013] [Indexed: 12/18/2022] Open
Abstract
We previously demonstrated safe and reliable gene transfer to the dorsal root ganglion (DRG) using a direct microinjection procedure to deliver recombinant adeno-associated virus (AAV) vector. In this study, we proceed to compare the in vivo transduction patterns of self-complementary (sc) AAV6 and AAV8 in the peripheral sensory pathway. A single, direct microinjection of either AAV6 or AAV8 expressing EGFP, at the adjusted titer of 2×109 viral particle per DRG, into the lumbar (L) 4 and L5 DRGs of adult rats resulted in efficient EGFP expression (48±20% for AAV6 and 25±4% for AAV8, mean ± SD) selectively in sensory neurons and their axonal projections 3 weeks after injection, which remained stable for up to 3 months. AAV6 efficiently transfers EGFP to all neuronal size groups without differential neurotropism, while AAV8 predominantly targets large-sized neurons. Neurons transduced with AAV6 penetrate into the spinal dorsal horn (DH) and terminate predominantly in superficial DH laminae, as well as in the dorsal columns and deeper laminae III-V. Only few AAV8-transduced afferents were evident in the superficial laminae, and spinal EGFP was mostly present in the deeper dorsal horn (lamina III-V) and dorsal columns, with substantial projections to the ventral horn. AAV6-mediated EGFP-positive nerve fibers were widely observed in the medial plantar skin of ipsilateral hindpaws. No apparent inflammation, tissue damage, or major pain behaviors were observed for either AAV serotype. Taken together, both AAV6 and AAV8 are efficient and safe vectors for transgene delivery to primary sensory neurons, but they exhibit distinct functional features. Intraganglionic delivery of AAV6 is more uniform and efficient compared to AAV8 in gene transfer to peripheral sensory neurons and their axonal processes.
Collapse
|
49
|
Molet J, Pohl M. Gene-based approaches in pain research and exploration of new therapeutic targets and strategies. Eur J Pharmacol 2013; 716:129-41. [PMID: 23500201 DOI: 10.1016/j.ejphar.2013.01.073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 01/17/2013] [Accepted: 01/29/2013] [Indexed: 12/18/2022]
Abstract
Large panel of gene-based techniques is used for many years specifically in the pain research field. From the first identification (cloning) of some "mythic" genes, such as those encoding opioid or capsaicin receptors allowing then the creation of first-generation knockout mice, to the today conditional (time, tissue, cell-type and even pathology-dependent) and regulatable modulation of a gene function, these approaches largely contributed to fundamental leaps forward in our understanding of the function of some proteins and of their interest as possible druggable targets. Perhaps one of the most remarkable evolution in the last years is the passage of these approaches from the bench to the patient; whether it concerns the identification of genes involved in inherited pain insensibility/susceptibility, the search for genetic markers of pain types, the individual pharmacogenomics or even the first gene therapy trials. From many possible variants of gene-grounded techniques used in pain research we focus here on gene knockouts and some recent developments, on viral vectors-based gene transfer and on transgenic models for the tracing of pain pathways. Through these selected examples we attempted to emphasize the immense potential of these approaches and their already well-recognized contribution in both the basic and clinical pain research.
Collapse
Affiliation(s)
- Jenny Molet
- INSERM UMRS 975, CNRS UMR 7225, UPMC, Equipe Douleurs , Faculté de Médecine Pitié-Salpêtrière, 91 Bd de l'Hôpital, 75013 Paris, France.
| | | |
Collapse
|
50
|
Samad OA, Tan AM, Cheng X, Foster E, Dib-Hajj SD, Waxman SG. Virus-mediated shRNA knockdown of Na(v)1.3 in rat dorsal root ganglion attenuates nerve injury-induced neuropathic pain. Mol Ther 2012; 21:49-56. [PMID: 22910296 DOI: 10.1038/mt.2012.169] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Neuropathic pain is a chronic condition that is often refractory to treatment with available therapies and thus an unmet medical need. We have previously shown that the voltage-gated sodium channel Na(v)1.3 is upregulated in peripheral and central nervous system (CNS) of rats following nerve injury, and that it contributes to nociceptive neuron hyperexcitability in neuropathic conditions. To evaluate the therapeutic potential of peripheral Na(v)1.3 knockdown at a specific segmental level, we constructed adeno-associated viral (AAV) vector expressing small hairpin RNA against rat Na(v)1.3 and injected it into lumbar dorsal root ganglion (DRG) of rats with spared nerve injury (SNI). Our data show that direct DRG injection provides a model that can be used for proof-of-principle studies in chronic pain with respect to peripheral delivery route of gene transfer constructs, high transduction efficiency, flexibility in terms of segmental localization, and limited behavioral effects of the surgical procedure. We show that knockdown of Na(v)1.3 in lumbar 4 (L4) DRG results in an attenuation of nerve injury-induced mechanical allodynia in the SNI model. Taken together, our studies support the contribution of peripheral Na(v)1.3 to pain in adult rats with neuropathic pain, validate Na(v)1.3 as a target, and provide validation for this approach of AAV-mediated peripheral gene therapy.
Collapse
Affiliation(s)
- Omar A Samad
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | |
Collapse
|