1
|
Zha J, Chen Y, Cao F, Xu Y, Yang Z, Wen S, Liang M, Wu H, Zhong J. Homozygous variant of MLC1 results in megalencephalic leukoencephalopathy with subcortical cysts. Mol Genet Genomic Med 2024; 12:e2394. [PMID: 38337154 PMCID: PMC10858299 DOI: 10.1002/mgg3.2394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare, inherited disorder that causes epilepsy, intellectual disorders, and early onset macrocephaly. MLC1 has been identified as a main pathogenic gene. METHODS Clinical data such as magnetic resonance imaging (MRI), routine blood tests, and physical examinations were collected from proband. Trio whole-exome sequencing (WES) of the family was performed, and all variants with a minor allele frequency (<0.01) in the exon and canonical splicing sites were selected for further pathogenic evaluation. Candidate variants were validated using Sanger sequencing. RESULTS Here, we report a new homozygous variant identified in two children from the same family in the MLC1 gene [NM_015166.4: c.838_843delinsATTTTA, (p.Ser280_Phe281delinsIleLeu)]. This variant is classified as variant of uncertain significance (VUS) according to the ACMG guidelines. Further experiments demonstrate that the newly identified variant causes a decrease of MLC1 protein levels when expressed in a heterologous expression system. CONCLUSION Our case expands on this genetic variation and provides new evidence for the clinical diagnosis of MLC1-related MLC.
Collapse
Affiliation(s)
- Jian Zha
- Department of NeurologyJiangxi Provincial Children's HospitalNanchangJiangxiChina
| | - Yong Chen
- Department of NeurologyJiangxi Provincial Children's HospitalNanchangJiangxiChina
| | - Fangfang Cao
- Department of NeurologyJiangxi Provincial Children's HospitalNanchangJiangxiChina
| | - Yuxin Xu
- Department of NeurologyJiangxi Provincial Children's HospitalNanchangJiangxiChina
| | | | | | | | - Huaping Wu
- Department of NeurologyJiangxi Provincial Children's HospitalNanchangJiangxiChina
| | - Jianmin Zhong
- Department of NeurologyJiangxi Provincial Children's HospitalNanchangJiangxiChina
| |
Collapse
|
2
|
Brignone MS, Lanciotti A, Molinari P, Mallozzi C, De Nuccio C, Caprini ES, Petrucci TC, Visentin S, Ambrosini E. Megalencephalic leukoencephalopathy with subcortical cysts protein-1: A new calcium-sensitive protein functionally activated by endoplasmic reticulum calcium release and calmodulin binding in astrocytes. Neurobiol Dis 2024; 190:106388. [PMID: 38141856 DOI: 10.1016/j.nbd.2023.106388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/04/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND MLC1 is a membrane protein highly expressed in brain perivascular astrocytes and whose mutations account for the rare leukodystrophy (LD) megalencephalic leukoencephalopathy with subcortical cysts disease (MLC). MLC is characterized by macrocephaly, brain edema and cysts, myelin vacuolation and astrocyte swelling which cause cognitive and motor dysfunctions and epilepsy. In cultured astrocytes, lack of functional MLC1 disturbs cell volume regulation by affecting anion channel (VRAC) currents and the consequent regulatory volume decrease (RVD) occurring in response to osmotic changes. Moreover, MLC1 represses intracellular signaling molecules (EGFR, ERK1/2, NF-kB) inducing astrocyte activation and swelling following brain insults. Nevertheless, to date, MLC1 proper function and MLC molecular pathogenesis are still elusive. We recently reported that in astrocytes MLC1 phosphorylation by the Ca2+/Calmodulin-dependent kinase II (CaMKII) in response to intracellular Ca2+ release potentiates MLC1 activation of VRAC. These results highlighted the importance of Ca2+ signaling in the regulation of MLC1 functions, prompting us to further investigate the relationships between intracellular Ca2+ and MLC1 properties. METHODS We used U251 astrocytoma cells stably expressing wild-type (WT) or mutated MLC1, primary mouse astrocytes and mouse brain tissue, and applied biochemistry, molecular biology, video imaging and electrophysiology techniques. RESULTS We revealed that WT but not mutant MLC1 oligomerization and trafficking to the astrocyte plasma membrane is favored by Ca2+ release from endoplasmic reticulum (ER) but not by capacitive Ca2+ entry in response to ER depletion. We also clarified the molecular events underlining MLC1 response to cytoplasmic Ca2+ increase, demonstrating that, following Ca2+ release, MLC1 binds the Ca2+ effector protein calmodulin (CaM) at the carboxyl terminal where a CaM binding sequence was identified. Using a CaM inhibitor and generating U251 cells expressing MLC1 with CaM binding site mutations, we found that CaM regulates MLC1 assembly, trafficking and function, being RVD and MLC-linked signaling molecules abnormally regulated in these latter cells. CONCLUSION Overall, we qualified MLC1 as a Ca2+ sensitive protein involved in the control of volume changes in response to ER Ca2+ release and astrocyte activation. These findings provide new insights for the comprehension of the molecular mechanisms responsible for the myelin degeneration occurring in MLC and other LD where astrocytes have a primary role in the pathological process.
Collapse
Affiliation(s)
- M S Brignone
- Istituto Superiore di Sanità, Department of Neuroscience, Viale Regina Elena 299, 00161 Rome, Italy
| | - A Lanciotti
- Istituto Superiore di Sanità, Department of Neuroscience, Viale Regina Elena 299, 00161 Rome, Italy
| | - P Molinari
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, Viale Regina Elena 299, 00161 Rome, Italy
| | - C Mallozzi
- Istituto Superiore di Sanità, Department of Neuroscience, Viale Regina Elena 299, 00161 Rome, Italy
| | - C De Nuccio
- Istituto Superiore di Sanità, Research Coordination and Support Service, Viale Regina Elena 299, 00161 Rome, Italy
| | - E S Caprini
- Istituto Superiore di Sanità, Department of Neuroscience, Viale Regina Elena 299, 00161 Rome, Italy
| | - T C Petrucci
- Istituto Superiore di Sanità, Department of Neuroscience, Viale Regina Elena 299, 00161 Rome, Italy
| | - S Visentin
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, Viale Regina Elena 299, 00161 Rome, Italy
| | - E Ambrosini
- Istituto Superiore di Sanità, Department of Neuroscience, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
3
|
Brignone MS, Lanciotti A, Michelucci A, Mallozzi C, Camerini S, Catacuzzeno L, Sforna L, Caramia M, D’Adamo MC, Ceccarini M, Molinari P, Macioce P, Macchia G, Petrucci TC, Pessia M, Visentin S, Ambrosini E. The CaMKII/MLC1 Axis Confers Ca2+-Dependence to Volume-Regulated Anion Channels (VRAC) in Astrocytes. Cells 2022; 11:cells11172656. [PMID: 36078064 PMCID: PMC9454758 DOI: 10.3390/cells11172656] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
Astrocytes, the main glial cells of the central nervous system, play a key role in brain volume control due to their intimate contacts with cerebral blood vessels and the expression of a distinctive equipment of proteins involved in solute/water transport. Among these is MLC1, a protein highly expressed in perivascular astrocytes and whose mutations cause megalencephalic leukoencephalopathy with subcortical cysts (MLC), an incurable leukodystrophy characterized by macrocephaly, chronic brain edema, cysts, myelin vacuolation, and astrocyte swelling. Although, in astrocytes, MLC1 mutations are known to affect the swelling-activated chloride currents (ICl,swell) mediated by the volume-regulated anion channel (VRAC), and the regulatory volume decrease, MLC1′s proper function is still unknown. By combining molecular, biochemical, proteomic, electrophysiological, and imaging techniques, we here show that MLC1 is a Ca2+/Calmodulin-dependent protein kinase II (CaMKII) target protein, whose phosphorylation, occurring in response to intracellular Ca2+ release, potentiates VRAC-mediated ICl,swell. Overall, these findings reveal that MLC1 is a Ca2+-regulated protein, linking volume regulation to Ca2+ signaling in astrocytes. This knowledge provides new insight into the MLC1 protein function and into the mechanisms controlling ion/water exchanges in the brain, which may help identify possible molecular targets for the treatment of MLC and other pathological conditions caused by astrocyte swelling and brain edema.
Collapse
Affiliation(s)
| | - Angela Lanciotti
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy
| | - Antonio Michelucci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Cinzia Mallozzi
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy
| | - Serena Camerini
- Core Facilities (FAST), Istituto Superiore di Sanità, 00169 Rome, Italy
| | - Luigi Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Luigi Sforna
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Martino Caramia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Maria Cristina D’Adamo
- Department of Medicine and Surgery, LUM Giuseppe Degennaro University, 70010 Bari, Italy
| | - Marina Ceccarini
- National Centre for Rare Diseases, Istituto Superiore di Sanità, 00169 Rome, Italy
| | - Paola Molinari
- National Centre for Drug Research and Evaluation (FARVA), Istituto Superiore di Sanità, 00169 Rome, Italy
| | - Pompeo Macioce
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy
| | | | | | - Mauro Pessia
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD2080 Msida, Malta
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Sergio Visentin
- National Centre for Drug Research and Evaluation (FARVA), Istituto Superiore di Sanità, 00169 Rome, Italy
| | - Elena Ambrosini
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy
- Correspondence: ; Tel.: +39-06-4990-2037
| |
Collapse
|
4
|
GPR37 Receptors and Megalencephalic Leukoencephalopathy with Subcortical Cysts. Int J Mol Sci 2022; 23:ijms23105528. [PMID: 35628339 PMCID: PMC9144339 DOI: 10.3390/ijms23105528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/30/2022] Open
Abstract
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare type of vacuolating leukodystrophy (white matter disorder), which is mainly caused by defects in MLC1 or glial cell adhesion molecule (GlialCAM) proteins. In addition, autoantibodies to GlialCAM are involved in the pathology of multiple sclerosis. MLC1 and GLIALCAM genes encode for membrane proteins of unknown function, which has been linked to the regulation of different ion channels and transporters, such as the chloride channel VRAC (volume regulated anion channel), ClC-2 (chloride channel 2), and connexin 43 or the Na+/K+-ATPase pump. However, the mechanisms by which MLC proteins regulate these ion channels and transporters, as well as the exact function of MLC proteins remain obscure. It has been suggested that MLC proteins might regulate signalling pathways, but the mechanisms involved are, at present, unknown. With the aim of answering these questions, we have recently described the brain GlialCAM interactome. Within the identified proteins, we could validate the interaction with several G protein-coupled receptors (GPCRs), including the orphan GPRC5B and the proposed prosaposin receptors GPR37L1 and GPR37. In this review, we summarize new aspects of the pathophysiology of MLC disease and key aspects of the interaction between GPR37 receptors and MLC proteins.
Collapse
|
5
|
Ritter M, Bresgen N, Kerschbaum HH. From Pinocytosis to Methuosis-Fluid Consumption as a Risk Factor for Cell Death. Front Cell Dev Biol 2021; 9:651982. [PMID: 34249909 PMCID: PMC8261248 DOI: 10.3389/fcell.2021.651982] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
The volumes of a cell [cell volume (CV)] and its organelles are adjusted by osmoregulatory processes. During pinocytosis, extracellular fluid volume equivalent to its CV is incorporated within an hour and membrane area equivalent to the cell's surface within 30 min. Since neither fluid uptake nor membrane consumption leads to swelling or shrinkage, cells must be equipped with potent volume regulatory mechanisms. Normally, cells respond to outwardly or inwardly directed osmotic gradients by a volume decrease and increase, respectively, i.e., they shrink or swell but then try to recover their CV. However, when a cell death (CD) pathway is triggered, CV persistently decreases in isotonic conditions in apoptosis and it increases in necrosis. One type of CD associated with cell swelling is due to a dysfunctional pinocytosis. Methuosis, a non-apoptotic CD phenotype, occurs when cells accumulate too much fluid by macropinocytosis. In contrast to functional pinocytosis, in methuosis, macropinosomes neither recycle nor fuse with lysosomes but with each other to form giant vacuoles, which finally cause rupture of the plasma membrane (PM). Understanding methuosis longs for the understanding of the ionic mechanisms of cell volume regulation (CVR) and vesicular volume regulation (VVR). In nascent macropinosomes, ion channels and transporters are derived from the PM. Along trafficking from the PM to the perinuclear area, the equipment of channels and transporters of the vesicle membrane changes by retrieval, addition, and recycling from and back to the PM, causing profound changes in vesicular ion concentrations, acidification, and-most importantly-shrinkage of the macropinosome, which is indispensable for its proper targeting and cargo processing. In this review, we discuss ion and water transport mechanisms with respect to CVR and VVR and with special emphasis on pinocytosis and methuosis. We describe various aspects of the complex mutual interplay between extracellular and intracellular ions and ion gradients, the PM and vesicular membrane, phosphoinositides, monomeric G proteins and their targets, as well as the submembranous cytoskeleton. Our aim is to highlight important cellular mechanisms, components, and processes that may lead to methuotic CD upon their derangement.
Collapse
Affiliation(s)
- Markus Ritter
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
- Institute for Physiology and Pathophysiology, Paracelsus Medical University, Nuremberg, Germany
- Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis und Rehabilitation, Salzburg, Austria
- Kathmandu University School of Medical Sciences, Dhulikhel, Nepal
| | - Nikolaus Bresgen
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | | |
Collapse
|
6
|
Bosch A, Estévez R. Megalencephalic Leukoencephalopathy: Insights Into Pathophysiology and Perspectives for Therapy. Front Cell Neurosci 2021; 14:627887. [PMID: 33551753 PMCID: PMC7862579 DOI: 10.3389/fncel.2020.627887] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/30/2020] [Indexed: 01/13/2023] Open
Abstract
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare genetic disorder belonging to the group of vacuolating leukodystrophies. It is characterized by megalencephaly, loss of motor functions, epilepsy, and mild mental decline. In brain biopsies of MLC patients, vacuoles were observed in myelin and in astrocytes surrounding blood vessels. It is mainly caused by recessive mutations in MLC1 and HEPACAM (also called GLIALCAM) genes. These disease variants are called MLC1 and MLC2A with both types of patients sharing the same clinical phenotype. Besides, dominant mutations in HEPACAM were also identified in a subtype of MLC patients (MLC2B) with a remitting phenotype. MLC1 and GlialCAM proteins form a complex mainly expressed in brain astrocytes at the gliovascular interface and in Bergmann glia at the cerebellum. Both proteins regulate several ion channels and transporters involved in the control of ion and water fluxes in glial cells, either directly influencing their location and function, or indirectly regulating associated signal transduction pathways. However, the MLC1/GLIALCAM complex function and the related pathological mechanisms leading to MLC are still unknown. It has been hypothesized that, in MLC, the role of glial cells in brain ion homeostasis is altered in both physiological and inflammatory conditions. There is no therapy for MLC patients, only supportive treatment. As MLC2B patients show an MLC reversible phenotype, we speculated that the phenotype of MLC1 and MLC2A patients could also be mitigated by the re-introduction of the correct gene even at later stages. To prove this hypothesis, we injected in the cerebellar subarachnoid space of Mlc1 knockout mice an adeno-associated virus (AAV) coding for human MLC1 under the control of the glial-fibrillary acidic protein promoter. MLC1 expression in the cerebellum extremely reduced myelin vacuolation at all ages in a dose-dependent manner. This study could be considered as the first preclinical approach for MLC. We also suggest other potential therapeutic strategies in this review.
Collapse
Affiliation(s)
- Assumpció Bosch
- Department of Biochemistry and Molecular Biology, Institute of Neurosciences, Univ. Autònoma de Barcelona, Barcelona, Spain.,Unitat Mixta UAB-VHIR, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Raúl Estévez
- Departament de Ciències Fisiològiques, IDIBELL-Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
7
|
Megalencephalic Leukoencephalopathy with Subcortical Cysts Disease-Linked MLC1 Protein Favors Gap-Junction Intercellular Communication by Regulating Connexin 43 Trafficking in Astrocytes. Cells 2020; 9:cells9061425. [PMID: 32521795 PMCID: PMC7348769 DOI: 10.3390/cells9061425] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 01/06/2023] Open
Abstract
Astrocytes, the most numerous cells of the central nervous system, exert critical functions for brain homeostasis. To this purpose, astrocytes generate a highly interconnected intercellular network allowing rapid exchange of ions and metabolites through gap junctions, adjoined channels composed of hexamers of connexin (Cx) proteins, mainly Cx43. Functional alterations of Cxs and gap junctions have been observed in several neuroinflammatory/neurodegenerative diseases. In the rare leukodystrophy megalencephalic leukoencephalopathy with subcortical cysts (MLC), astrocytes show defective control of ion/fluid exchanges causing brain edema, fluid cysts, and astrocyte/myelin vacuolation. MLC is caused by mutations in MLC1, an astrocyte-specific protein of elusive function, and in GlialCAM, a MLC1 chaperon. Both proteins are highly expressed at perivascular astrocyte end-feet and astrocyte-astrocyte contacts where they interact with zonula occludens-1 (ZO-1) and Cx43 junctional proteins. To investigate the possible role of Cx43 in MLC pathogenesis, we studied Cx43 properties in astrocytoma cells overexpressing wild type (WT) MLC1 or MLC1 carrying pathological mutations. Using biochemical and electrophysiological techniques, we found that WT, but not mutated, MLC1 expression favors intercellular communication by inhibiting extracellular-signal-regulated kinase 1/2 (ERK1/2)-mediated Cx43 phosphorylation and increasing Cx43 gap-junction stability. These data indicate MLC1 regulation of Cx43 in astrocytes and Cx43 involvement in MLC pathogenesis, suggesting potential target pathways for therapeutic interventions.
Collapse
|
8
|
Hwang J, Vu HM, Kim MS, Lim HH. Plasma membrane localization of MLC1 regulates cellular morphology and motility. Mol Brain 2019; 12:116. [PMID: 31888684 PMCID: PMC6938022 DOI: 10.1186/s13041-019-0540-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/18/2019] [Indexed: 01/01/2023] Open
Abstract
Background Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare form of infantile-onset leukodystrophy. The disorder is caused primarily by mutations of MLC1 that leads to a series of phenotypic outcomes including vacuolation of myelin and astrocytes, subcortical cysts, brain edema, and macrocephaly. Recent studies have indicated that functional interactions among MLC1, GlialCAM, and ClC-2 channels play key roles in the regulation of neuronal, glial and vascular homeostasis. However, the physiological role of MLC1 in cellular homeostatic communication remains poorly understood. In the present study, we investigated the cellular function of MLC1 and its effects on cell–cell interactions. Methods MLC1-dependent cellular morphology and motility were analyzed by using confocal and live cell imaging technique. Biochemical approaches such as immunoblotting, co-immunoprecipitation, and surface biotinylation were conducted to support data. Results We found that the altered MLC1 expression and localization led to a great alteration in cellular morphology and motility through actin remodeling. MLC1 overexpression induced filopodia formation and suppressed motility. And, MLC1 proteins expressed in patient-derived MLC1 mutants resulted in trapping in the ER although no changes in morphology or motility were observed. Interestingly knockdown of Mlc1 induced Arp3-Cortactin interaction, lamellipodia formation, and increased the membrane ruffling of the astrocytes. These data indicate that subcellular localization of expressed MLC1 at the plasma membrane is critical for changes in actin dynamics through ARP2/3 complex. Thus, our results suggest that misallocation of pathogenic mutant MLC1 may disturbs the stable cell-cell communication and the homeostatic regulation of astrocytes in patients with MLC.
Collapse
Affiliation(s)
- Junmo Hwang
- Molecular Physiology and Biophysics Laboratory, Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), 41062, Daegu, Republic of Korea
| | - Hung M Vu
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 42988, Daegu, Republic of Korea
| | - Min-Sik Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 42988, Daegu, Republic of Korea
| | - Hyun-Ho Lim
- Molecular Physiology and Biophysics Laboratory, Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), 41062, Daegu, Republic of Korea. .,Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 42988, Daegu, Republic of Korea.
| |
Collapse
|
9
|
Megalencephalic Leukoencephalopathy with Subcortical Cysts Protein-1 (MLC1) Counteracts Astrocyte Activation in Response to Inflammatory Signals. Mol Neurobiol 2019; 56:8237-8254. [DOI: 10.1007/s12035-019-01657-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/20/2019] [Indexed: 01/08/2023]
|
10
|
Estévez R, Elorza-Vidal X, Gaitán-Peñas H, Pérez-Rius C, Armand-Ugón M, Alonso-Gardón M, Xicoy-Espaulella E, Sirisi S, Arnedo T, Capdevila-Nortes X, López-Hernández T, Montolio M, Duarri A, Teijido O, Barrallo-Gimeno A, Palacín M, Nunes V. Megalencephalic leukoencephalopathy with subcortical cysts: A personal biochemical retrospective. Eur J Med Genet 2018; 61:50-60. [DOI: 10.1016/j.ejmg.2017.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/14/2017] [Accepted: 10/22/2017] [Indexed: 12/22/2022]
|
11
|
Bugiani M, Dubey M, Breur M, Postma NL, Dekker MP, Ter Braak T, Boschert U, Abbink TEM, Mansvelder HD, Min R, van Weering JRT, van der Knaap MS. Megalencephalic leukoencephalopathy with cysts: the Glialcam-null mouse model. Ann Clin Transl Neurol 2017; 4:450-465. [PMID: 28695146 PMCID: PMC5497535 DOI: 10.1002/acn3.405] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 12/23/2022] Open
Abstract
Objective Megalencephalic leukoencephalopathy with cysts (MLC) is a genetic infantile‐onset disease characterized by macrocephaly and white matter edema due to loss of MLC1 function. Recessive mutations in either MLC1 or GLIALCAM cause the disease. MLC1 is involved in astrocytic volume regulation; GlialCAM ensures the correct membrane localization of MLC1. Their exact role in brain ion‐water homeostasis is only partly defined. We characterized Glialcam‐null mice for further studies. Methods We investigated the consequences of loss of GlialCAM in Glialcam‐null mice and compared GlialCAM developmental expression in mice and men. Results Glialcam‐null mice had early‐onset megalencephaly and increased brain water content. From 3 weeks, astrocytes were abnormal with swollen processes abutting blood vessels. Concomitantly, progressive white matter vacuolization developed due to intramyelinic edema. Glialcam‐null astrocytes showed abolished expression of MLC1, reduced expression of the chloride channel ClC‐2 and increased expression and redistribution of the water channel aquaporin4. Expression of other MLC1‐interacting proteins and the volume regulated anion channel LRRC8A was unchanged. In mice, GlialCAM expression increased until 3 weeks and then stabilized. In humans, GlialCAM expression was highest in the first 3 years to then decrease and stabilize from approximately 5 years. Interpretation Glialcam‐null mice replicate the early stages of the human disease with early‐onset intramyelinic edema. The earliest change is astrocytic swelling, further substantiating that a defect in astrocytic volume regulation is the primary cellular defect in MLC. GlialCAM expression affects expression of MLC1, ClC‐2 and aquaporin4, indicating that abnormal interplay between these proteins is a disease mechanism in megalencephalic leukoencephalopathy with cysts.
Collapse
Affiliation(s)
- Marianna Bugiani
- Department of Pediatrics/Child Neurology Amsterdam Neuroscience VU University Medical Center Amsterdam The Netherlands.,Department of Pathology Amsterdam Neuroscience VU University Medical Center Amsterdam The Netherlands
| | - Mohit Dubey
- Department of Pediatrics/Child Neurology Amsterdam Neuroscience VU University Medical Center Amsterdam The Netherlands.,Department of Integrative Neurophysiology Center for Neurogenomics and Cognitive Research Amsterdam Neuroscience VU University Amsterdam The Netherlands
| | - Marjolein Breur
- Department of Pediatrics/Child Neurology Amsterdam Neuroscience VU University Medical Center Amsterdam The Netherlands
| | - Nienke L Postma
- Department of Pediatrics/Child Neurology Amsterdam Neuroscience VU University Medical Center Amsterdam The Netherlands
| | - Marien P Dekker
- Department of Functional Genomics Center for Neurogenomics and Cognitive Research Amsterdam Neuroscience VU University Amsterdam The Netherlands
| | - Timo Ter Braak
- Department of Pediatrics/Child Neurology Amsterdam Neuroscience VU University Medical Center Amsterdam The Netherlands
| | - Ursula Boschert
- Translational Innovation Platform Immunology/Neurology EMD Serono Research & Development Institute Billerica 01821 Massachusetts
| | - Truus E M Abbink
- Department of Pediatrics/Child Neurology Amsterdam Neuroscience VU University Medical Center Amsterdam The Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology Center for Neurogenomics and Cognitive Research Amsterdam Neuroscience VU University Amsterdam The Netherlands
| | - Rogier Min
- Department of Pediatrics/Child Neurology Amsterdam Neuroscience VU University Medical Center Amsterdam The Netherlands.,Department of Integrative Neurophysiology Center for Neurogenomics and Cognitive Research Amsterdam Neuroscience VU University Amsterdam The Netherlands
| | - Jan R T van Weering
- Department of Functional Genomics Center for Neurogenomics and Cognitive Research Amsterdam Neuroscience VU University Amsterdam The Netherlands
| | - Marjo S van der Knaap
- Department of Pediatrics/Child Neurology Amsterdam Neuroscience VU University Medical Center Amsterdam The Netherlands.,Department of Functional Genomics Center for Neurogenomics and Cognitive Research Amsterdam Neuroscience VU University Amsterdam The Netherlands
| |
Collapse
|
12
|
Ashrafi MR, Tavasoli AR. Childhood leukodystrophies: A literature review of updates on new definitions, classification, diagnostic approach and management. Brain Dev 2017; 39:369-385. [PMID: 28117190 DOI: 10.1016/j.braindev.2017.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/29/2016] [Accepted: 01/04/2017] [Indexed: 12/29/2022]
Abstract
Childhood leukodystrophies are a growing category of neurological disorders in pediatric neurology practice. With the help of new advanced genetic studies such as whole exome sequencing (WES) and whole genome sequencing (WGS), the list of childhood heritable white matter disorders has been increased to more than one hundred disorders. During the last three decades, the basic concepts and definitions, classification, diagnostic approach and medical management of these disorders much have changed. Pattern recognition based on brain magnetic resonance imaging (MRI), has played an important role in this process. We reviewed the last Global Leukodystrophy Initiative (GLIA) expert opinions in definition, new classification, diagnostic approach and medical management including emerging treatments for pediatric leukodystrophies.
Collapse
Affiliation(s)
- Mahmoud Reza Ashrafi
- Department of Child Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ali Reza Tavasoli
- Department of Child Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Lanciotti A, Brignone MS, Visentin S, De Nuccio C, Catacuzzeno L, Mallozzi C, Petrini S, Caramia M, Veroni C, Minnone G, Bernardo A, Franciolini F, Pessia M, Bertini E, Petrucci TC, Ambrosini E. Megalencephalic leukoencephalopathy with subcortical cysts protein-1 regulates epidermal growth factor receptor signaling in astrocytes. Hum Mol Genet 2016; 25:1543-58. [DOI: 10.1093/hmg/ddw032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/03/2016] [Indexed: 01/13/2023] Open
|
14
|
Cerecedo Zapata CM, Villafuerte De la Cruz RA, Cortes Rubio AM, Kramis Hollands M, Flores Estrada IN, Luz Arenas Sordo M. Global Developmental Delay in a Mexican Patient With Megalencephalic Leukoencephalopathy With Subcortical Cysts. JOURNAL OF PEDIATRICS REVIEW 2015. [DOI: 10.17795/jpr-2808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
15
|
Brignone MS, Lanciotti A, Camerini S, De Nuccio C, Petrucci TC, Visentin S, Ambrosini E. MLC1 protein: a likely link between leukodystrophies and brain channelopathies. Front Cell Neurosci 2015; 9:66. [PMID: 25883547 PMCID: PMC4381631 DOI: 10.3389/fncel.2015.00106] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/09/2015] [Indexed: 01/12/2023] Open
Abstract
Megalencephalic leukoencephalopathy with subcortical cysts (MLCs) disease is a rare inherited, autosomal recessive form of childhood-onset spongiform leukodystrophy characterized by macrocephaly, deterioration of motor functions, epileptic seizures and mental decline. Brain edema, subcortical fluid cysts, myelin and astrocyte vacuolation are the histopathological hallmarks of MLC. Mutations in either the MLC1 gene (>75% of patients) or the GlialCAM gene (<20% of patients) are responsible for the disease. Recently, the GlialCAM adhesion protein was found essential for the membrane expression and function of the chloride channel ClC-2 indicating MLC disease caused by mutation in GlialCAM as the first channelopathy among leukodystrophies. On the contrary, the function of MLC1 protein, which binds GlialCAM, its functional relationship with ClC-2 and the molecular mechanisms underlying MLC1 mutation-induced functional defects are not fully understood yet. The human MLC1 gene encodes a 377-amino acid membrane protein with eight predicted transmembrane domains which shows very low homology with voltage-dependent potassium (K+) channel subunits. The high expression of MLC1 in brain astrocytes contacting blood vessels and meninges and brain alterations observed in MLC patients have led to hypothesize a role for MLC1 in the regulation of ion and water homeostasis. Recent studies have shown that MLC1 establishes structural and/or functional interactions with several ion/water channels and transporters and ion channel accessory proteins, and that these interactions are affected by MLC1 mutations causing MLC. Here, we review data on MLC1 functional properties obtained in in vitro and in vivo models and discuss evidence linking the effects of MLC1 mutations to brain channelopathies.
Collapse
Affiliation(s)
- Maria S Brignone
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità Rome, Italy
| | - Angela Lanciotti
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità Rome, Italy
| | - Serena Camerini
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità Rome, Italy
| | - Chiara De Nuccio
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità Rome, Italy
| | - Tamara C Petrucci
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità Rome, Italy
| | - Sergio Visentin
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità Rome, Italy
| | - Elena Ambrosini
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità Rome, Italy
| |
Collapse
|
16
|
Dubey M, Bugiani M, Ridder MC, Postma NL, Brouwers E, Polder E, Jacobs JG, Baayen JC, Klooster J, Kamermans M, Aardse R, de Kock CPJ, Dekker MP, van Weering JRT, Heine VM, Abbink TEM, Scheper GC, Boor I, Lodder JC, Mansvelder HD, van der Knaap MS. Mice with megalencephalic leukoencephalopathy with cysts: A developmental angle. Ann Neurol 2014; 77:114-31. [DOI: 10.1002/ana.24307] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 10/27/2014] [Accepted: 11/02/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Mohit Dubey
- Department of Pediatrics/Child Neurology; Neuroscience Campus Amsterdam, VU University Medical Center
- Department of Integrative Neurophysiology; Center for Neurogenomics and Cognitive Research, VU University
| | - Marianna Bugiani
- Department of Pediatrics/Child Neurology; Neuroscience Campus Amsterdam, VU University Medical Center
- Department of Pathology; VU University Medical Center
| | - Margreet C. Ridder
- Department of Pediatrics/Child Neurology; Neuroscience Campus Amsterdam, VU University Medical Center
| | - Nienke L. Postma
- Department of Pediatrics/Child Neurology; Neuroscience Campus Amsterdam, VU University Medical Center
| | - Eelke Brouwers
- Department of Pediatrics/Child Neurology; Neuroscience Campus Amsterdam, VU University Medical Center
- Department of Integrative Neurophysiology; Center for Neurogenomics and Cognitive Research, VU University
| | - Emiel Polder
- Department of Pediatrics/Child Neurology; Neuroscience Campus Amsterdam, VU University Medical Center
| | - J. Gerbren Jacobs
- Department of Pediatrics/Child Neurology; Neuroscience Campus Amsterdam, VU University Medical Center
- Department of Functional Genomics; Center for Neurogenomics and Cognitive Research, VU University
| | | | - Jan Klooster
- Department of Retinal Signal Processing; Netherlands Institute for Neuroscience-KNAW; Amsterdam Netherlands
| | - Maarten Kamermans
- Department of Retinal Signal Processing; Netherlands Institute for Neuroscience-KNAW; Amsterdam Netherlands
| | - Romy Aardse
- Department of Integrative Neurophysiology; Center for Neurogenomics and Cognitive Research, VU University
| | - Christiaan P. J. de Kock
- Department of Integrative Neurophysiology; Center for Neurogenomics and Cognitive Research, VU University
| | - Marien P. Dekker
- Department of Functional Genomics; Center for Neurogenomics and Cognitive Research, VU University
| | - Jan R. T. van Weering
- Department of Functional Genomics; Center for Neurogenomics and Cognitive Research, VU University
| | - Vivi M. Heine
- Department of Pediatrics/Child Neurology; Neuroscience Campus Amsterdam, VU University Medical Center
- Department of Functional Genomics; Center for Neurogenomics and Cognitive Research, VU University
| | - Truus E. M. Abbink
- Department of Pediatrics/Child Neurology; Neuroscience Campus Amsterdam, VU University Medical Center
| | - Gert C. Scheper
- Department of Pediatrics/Child Neurology; Neuroscience Campus Amsterdam, VU University Medical Center
| | - Ilja Boor
- Department of Pediatrics/Child Neurology; Neuroscience Campus Amsterdam, VU University Medical Center
| | - Johannes C. Lodder
- Department of Integrative Neurophysiology; Center for Neurogenomics and Cognitive Research, VU University
| | - Huibert D. Mansvelder
- Department of Integrative Neurophysiology; Center for Neurogenomics and Cognitive Research, VU University
| | - Marjo S. van der Knaap
- Department of Pediatrics/Child Neurology; Neuroscience Campus Amsterdam, VU University Medical Center
- Department of Functional Genomics; Center for Neurogenomics and Cognitive Research, VU University
| |
Collapse
|
17
|
The Italian National Centre for Rare Diseases: where research and public health translate into action. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2014; 12 Suppl 3:s591-605. [PMID: 24922300 DOI: 10.2450/2014.0040-14s] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Brignone MS, Lanciotti A, Visentin S, De Nuccio C, Molinari P, Camerini S, Diociaiuti M, Petrini S, Minnone G, Crescenzi M, Laudiero LB, Bertini E, Petrucci TC, Ambrosini E. Megalencephalic leukoencephalopathy with subcortical cysts protein-1 modulates endosomal pH and protein trafficking in astrocytes: relevance to MLC disease pathogenesis. Neurobiol Dis 2014; 66:1-18. [PMID: 24561067 PMCID: PMC4003525 DOI: 10.1016/j.nbd.2014.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/20/2014] [Accepted: 02/10/2014] [Indexed: 11/28/2022] Open
Abstract
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare leukodystrophy caused by mutations in the gene encoding MLC1, a membrane protein mainly expressed in astrocytes in the central nervous system. Although MLC1 function is unknown, evidence is emerging that it may regulate ion fluxes. Using biochemical and proteomic approaches to identify MLC1 interactors and elucidate MLC1 function we found that MLC1 interacts with the vacuolar ATPase (V-ATPase), the proton pump that regulates endosomal acidity. Because we previously showed that in intracellular organelles MLC1 directly binds Na, K-ATPase, which controls endosomal pH, we studied MLC1 endosomal localization and trafficking and MLC1 effects on endosomal acidity and function using human astrocytoma cells overexpressing wild-type (WT) MLC1 or MLC1 carrying pathological mutations. We found that WT MLC1 is abundantly expressed in early (EEA1(+), Rab5(+)) and recycling (Rab11(+)) endosomes and uses the latter compartment to traffic to the plasma membrane during hyposmotic stress. We also showed that WT MLC1 limits early endosomal acidification and influences protein trafficking in astrocytoma cells by stimulating protein recycling, as revealed by FITC-dextran measurement of endosomal pH and transferrin protein recycling assay, respectively. WT MLC1 also favors recycling to the plasma-membrane of the TRPV4 cation channel which cooperates with MLC1 to activate calcium influx in astrocytes during hyposmotic stress. Although MLC disease-causing mutations differentially affect MLC1 localization and trafficking, all the mutated proteins fail to influence endosomal pH and protein recycling. This study demonstrates that MLC1 modulates endosomal pH and protein trafficking suggesting that alteration of these processes contributes to MLC pathogenesis.
Collapse
Affiliation(s)
- Maria S Brignone
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Angela Lanciotti
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Sergio Visentin
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Chiara De Nuccio
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Paola Molinari
- Department of Pharmacology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Serena Camerini
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Marco Diociaiuti
- Department of Technology and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Stefania Petrini
- Unit of Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Pediatric Research Hospital, Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Gaetana Minnone
- Unit of Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Pediatric Research Hospital, Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Marco Crescenzi
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Luisa Bracci Laudiero
- Unit of Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Pediatric Research Hospital, Piazza S. Onofrio 4, 00165 Rome, Italy; Institute of Translational Pharmacology, CNR, Via del Fosso Cavaliere 100, 00133 Rome, Italy.
| | - Enrico Bertini
- Unit of Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Pediatric Research Hospital, Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Tamara C Petrucci
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Elena Ambrosini
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|