1
|
Mishra NM, Spitznagel BD, Du Y, Mohamed YK, Qin Y, Weaver CD, Emmitte KA. Structure-Activity Relationship Studies in a Series of 2-Aryloxy- N-(pyrimidin-5-yl)acetamide Inhibitors of SLACK Potassium Channels. Molecules 2024; 29:5494. [PMID: 39683653 DOI: 10.3390/molecules29235494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Epilepsy of infancy with migrating focal seizures (EIMFS) is a rare, serious, and pharmacoresistant epileptic disorder often linked to gain-of-function mutations in the KCNT1 gene. KCNT1 encodes the sodium-activated potassium channel known as SLACK, making small molecule inhibitors of SLACK channels a compelling approach to the treatment of EIMFS and other epilepsies associated with KCNT1 mutations. In this manuscript, we describe a hit optimization effort executed within a series of 2-aryloxy-N-(pyrimidin-5-yl)acetamides that were identified via a high-throughput screen. We systematically prepared analogs in four distinct regions of the scaffold and evaluated their functional activity in a whole-cell, automated patch clamp (APC) assay to establish structure-activity relationships for wild-type (WT) SLACK inhibition. Two selected analogs were also profiled for selectivity versus other members of the Slo family of potassium channels, of which SLACK is a member, and versus a panel of structurally diverse ion channels. The same two analogs were evaluated for activity versus the WT mouse channel as well as two clinically relevant mutant human channels.
Collapse
Affiliation(s)
- Nigam M Mishra
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | - Yu Du
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Yasmeen K Mohamed
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Ying Qin
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- College of Biomedical and Translational Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - C David Weaver
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Kyle A Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
2
|
Zheng R, Li Z, Wang Q, Liu S, Liu N, Li Y, Zhu G, Liu Z, Huang Z, Zhang L. Discovery of Potent and Selective Blockers Targeting the Epilepsy-Associated K Na1.1 Channel. J Med Chem 2024; 67:19519-19545. [PMID: 39445572 DOI: 10.1021/acs.jmedchem.4c01815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Gain-of-function (GOF) mutations of the sodium-activated potassium channel KNa1.1 (Slack, Slo2.2, or KCa4.1) induce severe, drug-resistant forms of epilepsy in infants and children. Although quinidine has shown promise in treating KCNT1-related epilepsies compared to other drugs, its limited efficacy and substantial side effects necessitate the development of new KNa1.1 channel inhibitors. In this study, we developed a novel class of KNa1.1 inhibitors using combined silico approaches and structural optimization. Among these inhibitors, compound Z05 was identified as a selective potential KNa1.1 inhibitor, especially against the hERG channel. Moreover, its binding site and potential counteraction to a GOF mutant Y796H were identified by the mutation studies. Our data also showed that Z05 had significant pharmacological profiles, including high brain penetration and moderate oral bioavailability, offering a valuable in vitro tool compound for further drug development in treating KCNT1-related epilepsies.
Collapse
Affiliation(s)
- Ruqiu Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhongtang Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo 315832, China
| | - Qiufeng Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Shiqi Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ningfeng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yiyan Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Guiwang Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo 315832, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
3
|
Shore AN, Li K, Safari M, Qunies AM, Spitznagel BD, Weaver CD, Emmitte K, Frankel W, Weston MC. Heterozygous expression of a Kcnt1 gain-of-function variant has differential effects on somatostatin- and parvalbumin-expressing cortical GABAergic neurons. eLife 2024; 13:RP92915. [PMID: 39392867 PMCID: PMC11469685 DOI: 10.7554/elife.92915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024] Open
Abstract
More than 20 recurrent missense gain-of-function (GOF) mutations have been identified in the sodium-activated potassium (KNa) channel gene KCNT1 in patients with severe developmental and epileptic encephalopathies (DEEs), most of which are resistant to current therapies. Defining the neuron types most vulnerable to KCNT1 GOF will advance our understanding of disease mechanisms and provide refined targets for precision therapy efforts. Here, we assessed the effects of heterozygous expression of a Kcnt1 GOF variant (Kcnt1Y777H) on KNa currents and neuronal physiology among cortical glutamatergic and GABAergic neurons in mice, including those expressing vasoactive intestinal polypeptide (VIP), somatostatin (SST), and parvalbumin (PV), to identify and model the pathogenic mechanisms of autosomal dominant KCNT1 GOF variants in DEEs. Although the Kcnt1Y777H variant had no effects on glutamatergic or VIP neuron function, it increased subthreshold KNa currents in both SST and PV neurons but with opposite effects on neuronal output; SST neurons became hypoexcitable with a higher rheobase current and lower action potential (AP) firing frequency, whereas PV neurons became hyperexcitable with a lower rheobase current and higher AP firing frequency. Further neurophysiological and computational modeling experiments showed that the differential effects of the Kcnt1Y777H variant on SST and PV neurons are not likely due to inherent differences in these neuron types, but to an increased persistent sodium current in PV, but not SST, neurons. The Kcnt1Y777H variant also increased excitatory input onto, and chemical and electrical synaptic connectivity between, SST neurons. Together, these data suggest differential pathogenic mechanisms, both direct and compensatory, contribute to disease phenotypes, and provide a salient example of how a pathogenic ion channel variant can cause opposite functional effects in closely related neuron subtypes due to interactions with other ionic conductances.
Collapse
Affiliation(s)
- Amy N Shore
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology ResearchRoanokeUnited States
- Department of Neurological Sciences, University of VermontBurlingtonUnited States
| | - Keyong Li
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology ResearchRoanokeUnited States
| | - Mona Safari
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology ResearchRoanokeUnited States
- Translational Biology, Medicine, and Health Graduate Program, Fralin Biomedical Research Institute at Virginia Tech CarilionRoanokeUnited States
| | - Alshaima'a M Qunies
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science CenterFort WorthUnited States
- School of Biomedical Sciences, University of North Texas Health Science CenterFort WorthUnited States
| | - Brittany D Spitznagel
- Department of Pharmacology, Vanderbilt UniversityNashvilleUnited States
- Vanderbilt Institute of Chemical Biology, Vanderbilt UniversityNashvilleUnited States
- Department of Chemistry, Vanderbilt UniversityNashvilleUnited States
| | - C David Weaver
- Department of Pharmacology, Vanderbilt UniversityNashvilleUnited States
- Vanderbilt Institute of Chemical Biology, Vanderbilt UniversityNashvilleUnited States
- Department of Chemistry, Vanderbilt UniversityNashvilleUnited States
| | - Kyle Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science CenterFort WorthUnited States
| | - Wayne Frankel
- Institute for Genomic Medicine, Columbia UniversityNew YorkUnited States
- Department of Neurology, Columbia UniversityNew YorkUnited States
| | - Matthew C Weston
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology ResearchRoanokeUnited States
- Department of Neurological Sciences, University of VermontBurlingtonUnited States
- Translational Biology, Medicine, and Health Graduate Program, Fralin Biomedical Research Institute at Virginia Tech CarilionRoanokeUnited States
- School of Neuroscience, Virginia TechBlacksburgUnited States
| |
Collapse
|
4
|
Shore AN, Li K, Safari M, Qunies AM, Spitznagel BD, Weaver CD, Emmitte KA, Frankel WN, Weston MC. Heterozygous expression of a Kcnt1 gain-of-function variant has differential effects on SST- and PV-expressing cortical GABAergic neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.11.561953. [PMID: 37873369 PMCID: PMC10592778 DOI: 10.1101/2023.10.11.561953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
More than twenty recurrent missense gain-of-function (GOF) mutations have been identified in the sodium-activated potassium (KNa) channel gene KCNT1 in patients with severe developmental and epileptic encephalopathies (DEEs), most of which are resistant to current therapies. Defining the neuron types most vulnerable to KCNT1 GOF will advance our understanding of disease mechanisms and provide refined targets for precision therapy efforts. Here, we assessed the effects of heterozygous expression of a Kcnt1 GOF variant (Y777H) on KNa currents and neuronal physiology among cortical glutamatergic and GABAergic neurons in mice, including those expressing vasoactive intestinal polypeptide (VIP), somatostatin (SST), and parvalbumin (PV), to identify and model the pathogenic mechanisms of autosomal dominant KCNT1 GOF variants in DEEs. Although the Kcnt1-Y777H variant had no effects on glutamatergic or VIP neuron function, it increased subthreshold KNa currents in both SST and PV neurons but with opposite effects on neuronal output; SST neurons became hypoexcitable with a higher rheobase current and lower action potential (AP) firing frequency, whereas PV neurons became hyperexcitable with a lower rheobase current and higher AP firing frequency. Further neurophysiological and computational modeling experiments showed that the differential effects of the Y777H variant on SST and PV neurons are not likely due to inherent differences in these neuron types, but to an increased persistent sodium current in PV, but not SST, neurons. The Y777H variant also increased excitatory input onto, and chemical and electrical synaptic connectivity between, SST neurons. Together, these data suggest differential pathogenic mechanisms, both direct and compensatory, contribute to disease phenotypes, and provide a salient example of how a pathogenic ion channel variant can cause opposite functional effects in closely related neuron subtypes due to interactions with other ionic conductances.
Collapse
Affiliation(s)
- Amy N. Shore
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology Research, Roanoke, VA, USA
- Department of Neurological Sciences, University of Vermont, Burlington, VT, USA
| | - Keyong Li
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology Research, Roanoke, VA, USA
| | - Mona Safari
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology Research, Roanoke, VA, USA
- Translational Biology, Medicine, and Health Graduate Program, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Alshaima’a M. Qunies
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
- School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Brittany D. Spitznagel
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - C. David Weaver
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Kyle A. Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Wayne N. Frankel
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
| | - Matthew C. Weston
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology Research, Roanoke, VA, USA
- Department of Neurological Sciences, University of Vermont, Burlington, VT, USA
- Translational Biology, Medicine, and Health Graduate Program, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
- School of Neuroscience, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
5
|
Gras M, Bearden D, West J, Nabbout R. Efficacy of anti-seizure medications and alternative therapies (ketogenic diet, CBD, and quinidine) in KCNT1-related epilepsy: A systematic review. Epilepsia Open 2024; 9:1176-1191. [PMID: 39093319 PMCID: PMC11296097 DOI: 10.1002/epi4.12975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 08/04/2024] Open
Abstract
OBJECTIVE KCNT1-related epilepsies encompass three main phenotypes: (i) epilepsy of infancy with migrating focal seizures (EIMFS), (ii) autosomal dominant or sporadic sleep-related hypermotor epilepsy [(AD)SHE], and (iii) different types of developmental and epileptic encephalopathies (DEE). Many patients present with drug-resistant seizures and global developmental delays. In addition to conventional anti-seizure medications (ASM), multiple alternative therapies have been tested including the ketogenic diet (KD), cannabidiol (CBD-including Epidyolex © and other CBD derivatives) and quinidine (QUIN). We aimed to clarify the current state of the art concerning the benefits of those therapies administered to the three groups of patients. METHODS We performed a literature review on PubMed and EMBase with the keyword "KCNT1" and selected articles reporting qualitative and/or quantitative information on responses to these treatments. A treatment was considered beneficial if it improved seizure frequency and/or intensity and/or quality of life. Patients were grouped by phenotype. RESULTS A total of 43 studies including 197 patients were reviewed. For EIMFS patients (32 studies, 135 patients), KD resulted in benefit in 62.5% (25/40), all types of CBD resulted in benefit in 50% (6/12), and QUIN resulted in benefit in 44.6% (25/56). For (AD)SHE patients (10 studies, 32 patients), we found only one report of treatment with KD, with no benefit noted. QUIN was trialed in 8 patients with no reported benefit. For DEE patients (10 studies, 30 patients), KD resulted in benefit for 4/7, CBD for 1/2, and QUIN for 6/9. In all groups, conventional ASM are rarely reported as beneficial (in 5%-25% of patients). SIGNIFICANCE Ketogenic diet, CBD, and QUIN treatments appear to be beneficial in a subset of patient with drug-resistant epilepsy. The KD and CBD are reasonable to trial in patients with KCNT1-related epilepsy. Further studies are needed to identify optimal treatment strategies and to establish predictive response factors. PLAIN LANGUAGE SUMMARY We performed an extensive review of scientific articles providing information about the therapeutic management of epilepsy in patients with epilepsy linked to a mutation in the KCNT1 gene. Conventional anti-seizure treatments were rarely reported to be beneficial. The ketogenic diet (a medical diet with very high fat, adequate protein and very low carbohydrate intake) and cannabidiol appeared to be useful, but larger studies are needed to reach a conclusion.
Collapse
Affiliation(s)
- Mathilde Gras
- Reference Center for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades Hospital, APHP, Member of EPICAREUniversité Paris CitéParisFrance
- Institut Imagine, INSERM U1163, Université Paris CiteParisFrance
| | - David Bearden
- Division of Child Neurology, Department of NeurologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Justin West
- KCNT1 Epilepsy Foundation (501C3). President. Co‐Founder. Director of Clinical MedicineNewport BeachCaliforniaUSA
| | - Rima Nabbout
- Reference Center for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades Hospital, APHP, Member of EPICAREUniversité Paris CitéParisFrance
- Institut Imagine, INSERM U1163, Université Paris CiteParisFrance
| |
Collapse
|
6
|
Di Matteo F, Mancuso F, Turcio R, Ciaglia T, Stagno C, Di Chio C, Campiglia P, Bertamino A, Giofrè SV, Ostacolo C, Iraci N. KCNT1 Channel Blockers: A Medicinal Chemistry Perspective. Molecules 2024; 29:2940. [PMID: 38931004 PMCID: PMC11206332 DOI: 10.3390/molecules29122940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Potassium channels have recently emerged as suitable target for the treatment of epileptic diseases. Among potassium channels, KCNT1 channels are the most widely characterized as responsible for several epileptic and developmental encephalopathies. Nevertheless, the medicinal chemistry of KCNT1 blockers is underdeveloped so far. In the present review, we describe and analyse the papers addressing the issue of KCNT1 blockers' development and identification, also evidencing the pros and the cons of the scientific approaches therein described. After a short introduction describing the epileptic diseases and the structure-function of potassium channels, we provide an extensive overview of the chemotypes described so far as KCNT1 blockers, and the scientific approaches used for their identification.
Collapse
Affiliation(s)
- Francesca Di Matteo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy (R.T.); (T.C.)
| | - Francesca Mancuso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Rita Turcio
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy (R.T.); (T.C.)
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy (R.T.); (T.C.)
| | - Claudio Stagno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Carla Di Chio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy (R.T.); (T.C.)
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy (R.T.); (T.C.)
| | - Salvatore Vincenzo Giofrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Carmine Ostacolo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy (R.T.); (T.C.)
| | - Nunzio Iraci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
7
|
Iraci N, Carotenuto L, Ciaglia T, Belperio G, Di Matteo F, Mosca I, Carleo G, Giovanna Basilicata M, Ambrosino P, Turcio R, Puzo D, Pepe G, Gomez-Monterrey I, Soldovieri MV, Di Sarno V, Campiglia P, Miceli F, Bertamino A, Ostacolo C, Taglialatela M. In Silico Assisted Identification, Synthesis, and In Vitro Pharmacological Characterization of Potent and Selective Blockers of the Epilepsy-Associated KCNT1 Channel. J Med Chem 2024; 67:9124-9149. [PMID: 38782404 PMCID: PMC11181338 DOI: 10.1021/acs.jmedchem.4c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 05/25/2024]
Abstract
Gain-of-function (GoF) variants in KCNT1 channels cause severe, drug-resistant forms of epilepsy. Quinidine is a known KCNT1 blocker, but its clinical use is limited due to severe drawbacks. To identify novel KCNT1 blockers, a homology model of human KCNT1 was built and used to screen an in-house library of compounds. Among the 20 molecules selected, five (CPK4, 13, 16, 18, and 20) showed strong KCNT1-blocking ability in an in vitro fluorescence-based assay. Patch-clamp experiments confirmed a higher KCNT1-blocking potency of these compounds when compared to quinidine, and their selectivity for KCNT1 over hERG and Kv7.2 channels. Among identified molecules, CPK20 displayed the highest metabolic stability; this compound also blocked KCNT2 currents, although with a lower potency, and counteracted GoF effects prompted by 2 recurrent epilepsy-causing KCNT1 variants (G288S and A934T). The present results provide solid rational basis for future design of novel compounds to counteract KCNT1-related neurological disorders.
Collapse
Affiliation(s)
- Nunzio Iraci
- Department
of Chemical, Biological, Pharmaceutical and Environmental Sciences
(CHIBIOFARAM), University of Messina, Viale F. Stagno d’Alcontres
31, 98166 Messina, Italy
| | - Lidia Carotenuto
- Department
of Neuroscience, Reproductive Sciences and Dentistry, University Federico II of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - Tania Ciaglia
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy
| | - Giorgio Belperio
- Department
of Science and Technology, University of
Sannio, Via F. De Sanctis, 82100 Benevento, Italy
| | - Francesca Di Matteo
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy
| | - Ilaria Mosca
- Department
of Medicine and Health Science Vincenzo Tiberio, University of Molise, Via C. Gazzani, 86100 Campobasso, Italy
| | - Giusy Carleo
- Department
of Neuroscience, Reproductive Sciences and Dentistry, University Federico II of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - Manuela Giovanna Basilicata
- Department
of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, P.zza L. Miraglia 2, 80138 Naples, Italy
| | - Paolo Ambrosino
- Department
of Science and Technology, University of
Sannio, Via F. De Sanctis, 82100 Benevento, Italy
| | - Rita Turcio
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy
| | - Deborah Puzo
- Department
of Medicine and Health Science Vincenzo Tiberio, University of Molise, Via C. Gazzani, 86100 Campobasso, Italy
| | - Giacomo Pepe
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy
| | - Isabel Gomez-Monterrey
- Department
of Pharmacy, University Federico II of Naples, Via D. Montesano 49, 80131 Naples, Italy
| | - Maria Virginia Soldovieri
- Department
of Medicine and Health Science Vincenzo Tiberio, University of Molise, Via C. Gazzani, 86100 Campobasso, Italy
| | - Veronica Di Sarno
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy
| | - Pietro Campiglia
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy
| | - Francesco Miceli
- Department
of Neuroscience, Reproductive Sciences and Dentistry, University Federico II of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - Alessia Bertamino
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy
| | - Carmine Ostacolo
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy
| | - Maurizio Taglialatela
- Department
of Neuroscience, Reproductive Sciences and Dentistry, University Federico II of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| |
Collapse
|
8
|
Qunies AM, Spitznagel BD, Du Y, Peprah PK, Mohamed YK, Weaver CD, Emmitte KA. Structure-Activity Relationship Studies in a Series of Xanthine Inhibitors of SLACK Potassium Channels. Molecules 2024; 29:2437. [PMID: 38893312 PMCID: PMC11173529 DOI: 10.3390/molecules29112437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Gain-of-function mutations in the KCNT1 gene, which encodes the sodium-activated potassium channel known as SLACK, are associated with the rare but devastating developmental and epileptic encephalopathy known as epilepsy of infancy with migrating focal seizures (EIMFS). The design of small molecule inhibitors of SLACK channels represents a potential therapeutic approach to the treatment of EIMFS, other childhood epilepsies, and developmental disorders. Herein, we describe a hit optimization effort centered on a xanthine SLACK inhibitor (8) discovered via a high-throughput screen. Across three distinct regions of the chemotype, we synthesized 58 new analogs and tested each one in a whole-cell automated patch-clamp assay to develop structure-activity relationships for inhibition of SLACK channels. We further evaluated selected analogs for their selectivity versus a variety of other ion channels and for their activity versus clinically relevant SLACK mutants. Selectivity within the series was quite good, including versus hERG. Analog 80 (VU0948578) was a potent inhibitor of WT, A934T, and G288S SLACK, with IC50 values between 0.59 and 0.71 µM across these variants. VU0948578 represents a useful in vitro tool compound from a chemotype that is distinct from previously reported small molecule inhibitors of SLACK channels.
Collapse
Affiliation(s)
- Alshaima’a M. Qunies
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | - Yu Du
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Paul K. Peprah
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Yasmeen K. Mohamed
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - C. David Weaver
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Kyle A. Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
9
|
Mosca I, Freri E, Ambrosino P, Belperio G, Granata T, Canafoglia L, Ragona F, Solazzi R, Filareto I, Castellotti B, Messina G, Gellera C, DiFrancesco JC, Soldovieri MV, Taglialatela M. Case report: Marked electroclinical improvement by fluoxetine treatment in a patient with KCNT1-related drug-resistant focal epilepsy. Front Cell Neurosci 2024; 18:1367838. [PMID: 38644974 PMCID: PMC11027738 DOI: 10.3389/fncel.2024.1367838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/11/2024] [Indexed: 04/23/2024] Open
Abstract
Variants in KCNT1 are associated with a wide spectrum of epileptic phenotypes, including epilepsy of infancy with migrating focal seizures (EIMFS), non-EIMFS developmental and epileptic encephalopathies, autosomal dominant or sporadic sleep-related hypermotor epilepsy, and focal epilepsy. Here, we describe a girl affected by drug-resistant focal seizures, developmental delay and behavior disorders, caused by a novel, de novo heterozygous missense KCNT1 variant (c.2809A > G, p.S937G). Functional characterization in transiently transfected Chinese Hamster Ovary (CHO) cells revealed a strong gain-of-function effect determined by the KCNT1 p.S937G variant compared to wild-type, consisting in an increased maximal current density and a hyperpolarizing shift in current activation threshold. Exposure to the antidepressant drug fluoxetine inhibited currents expressed by both wild-type and mutant KCNT1 channels. Treatment of the proband with fluoxetine led to a prolonged electroclinical amelioration, with disappearance of seizures and better EEG background organization, together with an improvement in behavior and mood. Altogether, these results suggest that, based on the proband's genetic and functional characteristics, the antidepressant drug fluoxetine may be repurposed for the treatment of focal epilepsy caused by gain-of-function variants in KCNT1. Further studies are needed to verify whether this approach could be also applied to other phenotypes of the KCNT1-related epilepsies spectrum.
Collapse
Affiliation(s)
- Ilaria Mosca
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, Campobasso, Italy
| | - Elena Freri
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Paolo Ambrosino
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Giorgio Belperio
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Tiziana Granata
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Laura Canafoglia
- Department of Diagnostic and Technology, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Francesca Ragona
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Roberta Solazzi
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Ilaria Filareto
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Barbara Castellotti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Giuliana Messina
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Cinzia Gellera
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | | | - Maria Virginia Soldovieri
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, Campobasso, Italy
| | | |
Collapse
|
10
|
Wu J, El-Hassar L, Datta D, Thomas M, Zhang Y, Jenkins DP, DeLuca NJ, Chatterjee M, Gribkoff VK, Arnsten AFT, Kaczmarek LK. Interaction Between HCN and Slack Channels Regulates mPFC Pyramidal Cell Excitability in Working Memory Circuits. Mol Neurobiol 2024; 61:2430-2445. [PMID: 37889366 DOI: 10.1007/s12035-023-03719-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
The ability of monkeys and rats to carry out spatial working memory tasks has been shown to depend on the persistent firing of pyramidal cells in the prefrontal cortex (PFC), arising from recurrent excitatory connections on dendritic spines. These spines express hyperpolarization-activated cyclic nucleotide-gated (HCN) channels whose open state is increased by cAMP signaling, and which markedly alter PFC network connectivity and neuronal firing. In traditional neural circuits, activation of these non-selective cation channels leads to neuronal depolarization and increased firing rate. Paradoxically, cAMP activation of HCN channels in PFC pyramidal cells reduces working memory-related neuronal firing. This suggests that activation of HCN channels may hyperpolarize rather than depolarize these neurons. The current study tested the hypothesis that Na+ influx through HCN channels activates Slack Na+-activated K+ (KNa) channels to hyperpolarize the membrane. We have found that HCN and Slack KNa channels co-immunoprecipitate in cortical extracts and that, by immunoelectron microscopy, they colocalize at postsynaptic spines of PFC pyramidal neurons. A specific blocker of HCN channels, ZD7288, reduces KNa current in pyramidal cells that express both HCN and Slack channels, but has no effect on KNa currents in an HEK cell line expressing Slack without HCN channels, indicating that blockade of HCN channels in neurons reduces K+ current indirectly by lowering Na+ influx. Activation of HCN channels by cAMP in a cell line expressing a Ca2+ reporter results in elevation of cytoplasmic Ca2+, but the effect of cAMP is reversed if the HCN channels are co-expressed with Slack channels. Finally, we used a novel pharmacological blocker of Slack channels to show that inhibition of Slack in rat PFC improves working memory performance, an effect previously demonstrated for blockers of HCN channels. Our results suggest that the regulation of working memory by HCN channels in PFC pyramidal neurons is mediated by an HCN-Slack channel complex that links activation HCN channels to suppression of neuronal excitability.
Collapse
Affiliation(s)
- Jing Wu
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Lynda El-Hassar
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Dibyadeep Datta
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Merrilee Thomas
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Yalan Zhang
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - David P Jenkins
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Nicholas J DeLuca
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Manavi Chatterjee
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Valentin K Gribkoff
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Amy F T Arnsten
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Leonard K Kaczmarek
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, 06520, USA.
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
11
|
Hussain R, Lim CX, Shaukat Z, Islam A, Caseley EA, Lippiat JD, Rychkov GY, Ricos MG, Dibbens LM. Drosophila expressing mutant human KCNT1 transgenes make an effective tool for targeted drug screening in a whole animal model of KCNT1-epilepsy. Sci Rep 2024; 14:3357. [PMID: 38336906 PMCID: PMC10858247 DOI: 10.1038/s41598-024-53588-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Mutations in the KCNT1 potassium channel cause severe forms of epilepsy which are poorly controlled with current treatments. In vitro studies have shown that KCNT1-epilepsy mutations are gain of function, significantly increasing K+ current amplitudes. To investigate if Drosophila can be used to model human KCNT1 epilepsy, we generated Drosophila melanogaster lines carrying human KCNT1 with the patient mutation G288S, R398Q or R928C. Expression of each mutant channel in GABAergic neurons gave a seizure phenotype which responded either positively or negatively to 5 frontline epilepsy drugs most commonly administered to patients with KCNT1-epilepsy, often with little or no improvement of seizures. Cannabidiol showed the greatest reduction of the seizure phenotype while some drugs increased the seizure phenotype. Our study shows that Drosophila has the potential to model human KCNT1- epilepsy and can be used as a tool to assess new treatments for KCNT1- epilepsy.
Collapse
Affiliation(s)
- Rashid Hussain
- Epilepsy Research Group, Clinical and Health Sciences, Australian Centre for Precision Health, University of South Australia, Adelaide, SA, 5000, Australia
| | - Chiao Xin Lim
- Epilepsy Research Group, Clinical and Health Sciences, Australian Centre for Precision Health, University of South Australia, Adelaide, SA, 5000, Australia
- Pharmacy, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia
| | - Zeeshan Shaukat
- Epilepsy Research Group, Clinical and Health Sciences, Australian Centre for Precision Health, University of South Australia, Adelaide, SA, 5000, Australia
| | - Anowarul Islam
- Epilepsy Research Group, Clinical and Health Sciences, Australian Centre for Precision Health, University of South Australia, Adelaide, SA, 5000, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Emily A Caseley
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Jonathan D Lippiat
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Grigori Y Rychkov
- Epilepsy Research Group, Clinical and Health Sciences, Australian Centre for Precision Health, University of South Australia, Adelaide, SA, 5000, Australia
- School of Biomedicine, University of Adelaide, Adelaide, SA, 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, 5005, Australia
| | - Michael G Ricos
- Epilepsy Research Group, Clinical and Health Sciences, Australian Centre for Precision Health, University of South Australia, Adelaide, SA, 5000, Australia
| | - Leanne M Dibbens
- Epilepsy Research Group, Clinical and Health Sciences, Australian Centre for Precision Health, University of South Australia, Adelaide, SA, 5000, Australia.
| |
Collapse
|
12
|
Yuan T, Wang Y, Jin Y, Yang H, Xu S, Zhang H, Chen Q, Li N, Ma X, Song H, Peng C, Geng Z, Dong J, Duan G, Sun Q, Yang Y, Yang F, Huang Z. Coupling of Slack and Na V1.6 sensitizes Slack to quinidine blockade and guides anti-seizure strategy development. eLife 2024; 12:RP87559. [PMID: 38289338 PMCID: PMC10942592 DOI: 10.7554/elife.87559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Quinidine has been used as an anticonvulsant to treat patients with KCNT1-related epilepsy by targeting gain-of-function KCNT1 pathogenic mutant variants. However, the detailed mechanism underlying quinidine's blockade against KCNT1 (Slack) remains elusive. Here, we report a functional and physical coupling of the voltage-gated sodium channel NaV1.6 and Slack. NaV1.6 binds to and highly sensitizes Slack to quinidine blockade. Homozygous knockout of NaV1.6 reduces the sensitivity of native sodium-activated potassium currents to quinidine blockade. NaV1.6-mediated sensitization requires the involvement of NaV1.6's N- and C-termini binding to Slack's C-terminus and is enhanced by transient sodium influx through NaV1.6. Moreover, disrupting the Slack-NaV1.6 interaction by viral expression of Slack's C-terminus can protect against SlackG269S-induced seizures in mice. These insights about a Slack-NaV1.6 complex challenge the traditional view of 'Slack as an isolated target' for anti-epileptic drug discovery efforts and can guide the development of innovative therapeutic strategies for KCNT1-related epilepsy.
Collapse
Affiliation(s)
- Tian Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Yifan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Yuchen Jin
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Hui Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Shuai Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Heng Zhang
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang UniversityZhejiangChina
| | - Qian Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Na Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Xinyue Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Huifang Song
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Chao Peng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Ze Geng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Jie Dong
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Guifang Duan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Qi Sun
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Yang Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue UniversityWest LafayetteUnited States
| | - Fan Yang
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang UniversityZhejiangChina
- Department of Biophysics, Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, HangzhouZhejiangChina
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
- IDG/McGovern Institute for Brain Research, Peking UniversityBeijingChina
| |
Collapse
|
13
|
Khan R, Chaturvedi P, Sahu P, Ludhiadch A, Singh P, Singh G, Munshi A. Role of Potassium Ion Channels in Epilepsy: Focus on Current Therapeutic Strategies. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:67-87. [PMID: 36578258 DOI: 10.2174/1871527322666221227112621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Epilepsy is one of the prevalent neurological disorders characterized by disrupted synchronization between inhibitory and excitatory neurons. Disturbed membrane potential due to abnormal regulation of neurotransmitters and ion transport across the neural cell membrane significantly contributes to the pathophysiology of epilepsy. Potassium ion channels (KCN) regulate the resting membrane potential and are involved in neuronal excitability. Genetic alterations in the potassium ion channels (KCN) have been reported to result in the enhancement of the release of neurotransmitters, the excitability of neurons, and abnormal rapid firing rate, which lead to epileptic phenotypes, making these ion channels a potential therapeutic target for epilepsy. The aim of this study is to explore the variations reported in different classes of potassium ion channels (KCN) in epilepsy patients, their functional evaluation, and therapeutic strategies to treat epilepsy targeting KCN. METHODOLOGY A review of all the relevant literature was carried out to compile this article. RESULTS A large number of variations have been reported in different genes encoding various classes of KCN. These genetic alterations in KCN have been shown to be responsible for disrupted firing properties of neurons. Antiepileptic drugs (AEDs) are the main therapeutic strategy to treat epilepsy. Some patients do not respond favorably to the AEDs treatment, resulting in pharmacoresistant epilepsy. CONCLUSION Further to address the challenges faced in treating epilepsy, recent approaches like optogenetics, chemogenetics, and genome editing, such as clustered regularly interspaced short palindromic repeats (CRISPR), are emerging as target-specific therapeutic strategies.
Collapse
Affiliation(s)
- Rahul Khan
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Pragya Chaturvedi
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Prachi Sahu
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Abhilash Ludhiadch
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Paramdeep Singh
- Department of Radiology, All India Institute of Medical Sciences, Bathinda, Punjab, 151001 India
| | - Gagandeep Singh
- Department of Neurology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| |
Collapse
|
14
|
Qunies AM, Spitznagel BD, Du Y, David Weaver C, Emmitte KA. Design, synthesis, and biological evaluation of a novel series of 1,2,4-oxadiazole inhibitors of SLACK potassium channels: Identification of in vitro tool VU0935685. Bioorg Med Chem 2023; 95:117487. [PMID: 37812884 PMCID: PMC10842602 DOI: 10.1016/j.bmc.2023.117487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/11/2023]
Abstract
Malignant migrating partial seizure of infancy (MMPSI) is a devastating and pharmacoresistant form of infantile epilepsy. MMPSI has been linked to multiple gain-of-function (GOF) mutations in the KCNT1 gene, which encodes for a potassium channel often referred to as SLACK. SLACK channels are sodium-activated potassium channels distributed throughout the central nervous system (CNS) and the periphery. The investigation described here aims to discover SLACK channel inhibitor tool compounds and profile their pharmacokinetic and pharmacodynamic properties. A SLACK channel inhibitor VU0531245 (VU245) was identified via a high-throughput screen (HTS) campaign. Structure-activity relationship (SAR) studies were conducted in five distinct regions of the hit VU245. VU245 analogs were evaluated for their ability to affect SLACK channel activity using a thallium flux assay in HEK-293 cells stably expressing wild-type (WT) human SLACK. Selected analogs were tested for metabolic stability in mouse liver microsomes and plasma-protein binding in mouse plasma. The same set of analogs was tested via thallium flux for activity versus human A934T SLACK and other structurally related potassium channels, including SLICK and Maxi-K. In addition, potencies for selected VU245 analogs were obtained using whole-cell electrophysiology (EP) assays in CHO cells stably expressing WT human SLACK through an automated patch clamp system. Results revealed that this scaffold tolerates structural changes in some regions, with some analogs demonstrating improved SLACK inhibitory activity, good selectivity against the other channels tested, and modest improvements in metabolic clearance. Analog VU0935685 represents a new, structurally distinct small-molecule inhibitor of SLACK channels that can serve as an in vitro tool for studying this target.
Collapse
Affiliation(s)
- Alshaima'a M Qunies
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | - Yu Du
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - C David Weaver
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Kyle A Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| |
Collapse
|
15
|
Zhang J, Liu S, Fan J, Yan R, Huang B, Zhou F, Yuan T, Gong J, Huang Z, Jiang D. Structural basis of human Slo2.2 channel gating and modulation. Cell Rep 2023; 42:112858. [PMID: 37494189 DOI: 10.1016/j.celrep.2023.112858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/16/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023] Open
Abstract
The sodium-activated Slo2.2 channel is abundantly expressed in the brain, playing a critical role in regulating neuronal excitability. The Na+-binding site and the underlying mechanisms of Na+-dependent activation remain unclear. Here, we present cryoelectron microscopy (cryo-EM) structures of human Slo2.2 in closed, open, and inhibitor-bound form at resolutions of 2.6-3.2 Å, revealing gating mechanisms of Slo2.2 regulation by cations and a potent inhibitor. The cytoplasmic gating ring domain of the closed Slo2.2 harbors multiple K+ and Zn2+ sites, which stabilize the channel in the closed conformation. The open Slo2.2 structure reveals at least two Na+-sensitive sites where Na+ binding induces expansion and rotation of the gating ring that opens the inner gate. Furthermore, a potent inhibitor wedges into a pocket formed by pore helix and S6 helix and blocks the pore. Together, our results provide a comprehensive structural framework for the investigation of Slo2.2 channel gating, Na+ sensation, and inhibition.
Collapse
Affiliation(s)
- Jiangtao Zhang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shiqi Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China; IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Junping Fan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Rui Yan
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Bo Huang
- Beijing StoneWise Technology Co Ltd., Haidian District, Beijing, China
| | - Feng Zhou
- Beijing StoneWise Technology Co Ltd., Haidian District, Beijing, China
| | - Tian Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China; IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Jianke Gong
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China; IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China.
| | - Daohua Jiang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Hinckley CA, Zhu Z, Chu JH, Gubbels C, Danker T, Cherry JJ, Whelan CD, Engle SJ, Nguyen V. Functional evaluation of epilepsy-associated KCNT1 variants in multiple cellular systems reveals a predominant gain of function impact on channel properties. Epilepsia 2023; 64:2126-2136. [PMID: 37177976 DOI: 10.1111/epi.17648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/15/2023]
Abstract
OBJECTIVE Gain of function variants in the sodium-activated potassium channel KCNT1 have been associated with pediatric epilepsy disorders. Here, we systematically examine a spectrum of KCNT1 variants and establish their impact on channel function in multiple cellular systems. METHODS KCNT1 variants identified from published reports and genetic screening of pediatric epilepsy patients were expressed in Xenopus oocytes and HEK cell lines. Variant impact on current magnitude, current-voltage relationships, and sodium ion modulation were examined. RESULTS We determined basic properties of KCNT1 in Xenopus oocyte and HEK systems, including the role of extra- and intracellular sodium in regulating KCNT1 activity. The most common six KCNT1 variants demonstrated strong gain of function (GOF) effects on one or more channel properties. Analysis of 36 total variants identified phenotypic heterogeneity but a strong tendency for pathogenic variants to exert GOF effects on channel properties. By controlling intracellular sodium, we demonstrate that multiple pathogenic KCNT1 variants modulate channel voltage dependence by altering the sensitivity to sodium ions. SIGNIFICANCE This study represents the largest systematic functional examination of KCNT1 variants to date. We both confirm previously reported GOF channel phenotypes and expand the number of variants with in vitro GOF effects. Our data provide further evidence that novel KCNT1 variants identified in epilepsy patients lead to disease through generalizable GOF mechanisms including increases in current magnitude and/or current-voltage relationships.
Collapse
Affiliation(s)
| | | | | | | | - Timm Danker
- NMI Technologietransfer GmbH, Reutlingen, Germany
| | | | | | | | | |
Collapse
|
17
|
Cioclu MC, Mosca I, Ambrosino P, Puzo D, Bayat A, Wortmann SB, Koch J, Strehlow V, Shirai K, Matsumoto N, Sanders SJ, Michaud V, Legendre M, Riva A, Striano P, Muhle H, Pendziwiat M, Lesca G, Mangano GD, Nardello R, Lemke JR, Møller RS, Soldovieri MV, Rubboli G, Taglialatela M. KCNT2-Related Disorders: Phenotypes, Functional, and Pharmacological Properties. Ann Neurol 2023; 94:332-349. [PMID: 37062836 DOI: 10.1002/ana.26662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/18/2023]
Abstract
OBJECTIVE Pathogenic variants in KCNT2 are rare causes of developmental epileptic encephalopathy (DEE). We herein describe the phenotypic and genetic features of patients with KCNT2-related DEE, and the in vitro functional and pharmacological properties of KCNT2 channels carrying 14 novel or previously untested variants. METHODS Twenty-five patients harboring KCNT2 variants were investigated: 12 were identified through an international collaborative network, 13 were retrieved from the literature. Clinical data were collected and included in a standardized phenotyping sheet. Novel variants were detected using exome sequencing and classified using ACMG criteria. Functional and pharmacological studies were performed by whole-cell electrophysiology in HEK-293 and SH-SY5Y cells. RESULTS The phenotypic spectrum encompassed: (a) intellectual disability/developmental delay (21/22 individuals with available information), ranging from mild to severe/profound; (b) epilepsy (15/25); (c) neurological impairment, with altered muscle tone (14/22); (d) dysmorphisms (13/20). Nineteen pathogenic KCNT2 variants were found (9 new, 10 reported previously): 16 missense, 1 in-frame deletion of a single amino acid, 1 nonsense, and 1 frameshift. Among tested variants, 8 showed gain-of-function (GoF), and 6 loss-of-function (LoF) features when expressed heterologously in vitro. Quinidine and fluoxetine blocked all GoF variants, whereas loxapine and riluzole activated some LoF variants while blocking others. INTERPRETATION We expanded the phenotypic and genotypic spectrum of KCNT2-related disorders, highlighting novel genotype-phenotype associations. Pathogenic KCNT2 variants cause GoF or LoF in vitro phenotypes, and each shows a unique pharmacological profile, suggesting the need for in vitro functional and pharmacological investigation to enable targeted therapies based on the molecular phenotype. ANN NEUROL 2023;94:332-349.
Collapse
Affiliation(s)
- Maria Cristina Cioclu
- Department of Epilepsy Genetics and Personalized Medicine (member of ERN EpiCARE), Danish Epilepsy Centre, Dianalund, Denmark
- Department of Biomedical, Metabolic, and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Ilaria Mosca
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Paolo Ambrosino
- Dept. of Science and Technology, University of Sannio, Benevento, Italy
| | - Deborah Puzo
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Allan Bayat
- Department of Epilepsy Genetics and Personalized Medicine (member of ERN EpiCARE), Danish Epilepsy Centre, Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Saskia B Wortmann
- University Children's Hospital, Paracelsus Medical University, Salzburg, Austria
- Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Johannes Koch
- University Children's Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Vincent Strehlow
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Kentaro Shirai
- Department of Pediatrics, Tsuchiura Kyodo General Hospital, Tsuchiura, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Stephan J Sanders
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
| | - Vincent Michaud
- Service de Génétique Médicale, Centre de Référence Anomalies du Développement et Syndrome Malformatifs, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
- Maladies rares: Génétique et Métabolisme (MRGM), INSERM U1211, Université de Bordeaux, Bordeaux, France
| | - Marine Legendre
- Service de Génétique Médicale, Centre de Référence Anomalies du Développement et Syndrome Malformatifs, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Antonella Riva
- IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Pasquale Striano
- IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Hiltrud Muhle
- Department of Neuropediatrics, University Medical Centre Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| | - Manuela Pendziwiat
- Department of Neuropediatrics, University Medical Centre Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Gaetan Lesca
- Pathophysiology and Genetics of Neuron and Muscle (PNMG), UCBL, CNRS UMR5261-INSERM U1315, Lyon, France
- Department of Medical Genetics, University Hospital of Lyon and Claude Bernard Lyon I University, Lyon, France
| | - Giuseppe Donato Mangano
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Rosaria Nardello
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine (member of ERN EpiCARE), Danish Epilepsy Centre, Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Maria Virginia Soldovieri
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Guido Rubboli
- Department of Epilepsy Genetics and Personalized Medicine (member of ERN EpiCARE), Danish Epilepsy Centre, Dianalund, Denmark
- University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
18
|
Wu J, El-Hassar L, Datta D, Thomas M, Zhang Y, Jenkins DP, DeLuca NJ, Chatterjee M, Gribkoff VK, Arnsten AFT, Kaczmarek LK. Interaction Between HCN and Slack Channels Regulates mPFC Pyramidal Cell Excitability and Working Memory. RESEARCH SQUARE 2023:rs.3.rs-2870277. [PMID: 37205397 PMCID: PMC10187370 DOI: 10.21203/rs.3.rs-2870277/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The ability of monkeys and rats to carry out spatial working memory tasks has been shown to depend on the persistent firing of pyramidal cells in the prefrontal cortex (PFC), arising from recurrent excitatory connections on dendritic spines. These spines express hyperpolarization-activated cyclic nucleotide-gated (HCN) channels whose open state is increased by cAMP signaling, and which markedly alter PFC network connectivity and neuronal firing. In traditional neural circuits, activation of these non-selective cation channels leads to neuronal depolarization and increased firing rate. Paradoxically, cAMP activation of HCN channels in PFC pyramidal cells reduces working memory-related neuronal firing. This suggests that activation of HCN channels may hyperpolarize rather than depolarize these neurons. The current study tested the hypothesis that Na+ influx through HCN channels activates Slack Na+-activated K+ (KNa) channels to hyperpolarize the membrane. We have found that HCN and Slack KNa channels coimmunoprecipitate in cortical extracts and that, by immunoelectron microscopy, they colocalize at postsynaptic spines of PFC pyramidal neurons. A specific blocker of HCN channels, ZD7288, reduces KNa current in pyramidal cells that express both HCN and Slack channels, but has no effect on KNa currents in an HEK cell line expressing Slack without HCN channels, indicating that blockade of HCN channels in neurons reduces K+ +current indirectly by lowering Na+ influx. Activation of HCN channels by cAMP in a cell line expressing a Ca2+ reporter results in elevation of cytoplasmic Ca2+, but the effect of cAMP is reversed if the HCN channels are co-expressed with Slack channels. Finally, we used a novel pharmacological blocker of Slack channels to show that inhibition of Slack in rat PFC improves working memory performance, an effect previously demonstrated for blockers of HCN channels. Our results suggest that the regulation of working memory by HCN channels in PFC pyramidal neurons is mediated by an HCN-Slack channel complex that links activation HCN channels to suppression of neuronal excitability.
Collapse
Affiliation(s)
- Jing Wu
- Yale University School of Medicine
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Liu R, Sun L, Wang Y, Wang Q, Wu J. New use for an old drug: quinidine in KCNT1-related epilepsy therapy. Neurol Sci 2023; 44:1201-1206. [PMID: 36437393 DOI: 10.1007/s10072-022-06521-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
KCNT1 has been known to encode a subunit of the tetrameric sodium activated potassium channel (KNa1.1). Pathogenic variants of KCNT1, especially gain-of-function (GOF) variants, are associated with multiple epileptic disorders which are often refractory to conventional anti-seizure medications and summarized as KCNT1-related epilepsy. Although the detailed pathogenic mechanisms of KCNT1-related epilepsy remain unknown, increasing studies attempt to find effective medications for those patients by utilizing quinidine to inhibit hyperexcitable KNa1.1. However, it has been shown that controversial outcomes among studies and partial success in some individuals may be due to multiple factors, such as poor blood-brain barrier (BBB) penetration, mutation-dependent manner, phenotype-genotype associations, and rational therapeutic schedule. In recent years, with higher resolution of KNa1.1 structure in different activation states and advanced synthetic techniques, it improves the process performance of therapy targeting at KNa1.1 channel to achieve more effective outcomes. Here, we systematically reviewed the study history of quinidine on KCNT1-related epilepsy and its corresponding therapeutic effects. Then, we analyzed and summarized the possible causes behind the different outcomes of the application of quinidine. Finally, we outlooked the recent advances in precision medicine treatment for KCNT1-related epilepsy.
Collapse
Affiliation(s)
- Ru Liu
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Loushi Rd, Wuhan, 430070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Lei Sun
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450008, Henan, China
| | - Yunfu Wang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Qun Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Jianping Wu
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Loushi Rd, Wuhan, 430070, China.
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
| |
Collapse
|
20
|
Potassium channelopathies associated with epilepsy-related syndromes and directions for therapeutic intervention. Biochem Pharmacol 2023; 208:115413. [PMID: 36646291 DOI: 10.1016/j.bcp.2023.115413] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
A number of mutations to members of several CNS potassium (K) channel families have been identified which result in rare forms of neonatal onset epilepsy, or syndromes of which one prominent characteristic is a form of epilepsy. Benign Familial Neonatal Convulsions or Seizures (BFNC or BFNS), also referred to as Self-Limited Familial Neonatal Epilepsy (SeLNE), results from mutations in 2 members of the KV7 family (KCNQ) of K channels; while generally self-resolving by about 15 weeks of age, these mutations significantly increase the probability of generalized seizure disorders in the adult, in some cases they result in more severe developmental syndromes. Epilepsy of Infancy with Migrating Focal Seizures (EIMSF), or Migrating Partial Seizures of Infancy (MMPSI), is a rare severe form of epilepsy linked primarily to gain of function mutations in a member of the sodium-dependent K channel family, KCNT1 or SLACK. Finally, KCNMA1 channelopathies, including Liang-Wang syndrome (LIWAS), are rare combinations of neurological symptoms including seizure, movement abnormalities, delayed development and intellectual disabilities, with Liang-Wang syndrome an extremely serious polymalformative syndrome with a number of neurological sequelae including epilepsy. These are caused by mutations in the pore-forming subunit of the large-conductance calcium-activated K channel (BK channel) KCNMA1. The identification of these rare but significant channelopathies has resulted in a resurgence of interest in their treatment by direct pharmacological or genetic modulation. We will briefly review the genetics, biophysics and pharmacology of these K channels, their linkage with the 3 syndromes described above, and efforts to more effectively target these syndromes.
Collapse
|
21
|
Burbano LE, Li M, Jancovski N, Jafar-Nejad P, Richards K, Sedo A, Soriano A, Rollo B, Jia L, Gazina EV, Piltz S, Adikusuma F, Thomas PQ, Kopsidas H, Rigo F, Reid CA, Maljevic S, Petrou S. Antisense oligonucleotide therapy for KCNT1 encephalopathy. JCI Insight 2022; 7:146090. [PMID: 36173683 PMCID: PMC9746904 DOI: 10.1172/jci.insight.146090] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 09/27/2022] [Indexed: 01/12/2023] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) are characterized by pharmaco-resistant seizures with concomitant intellectual disability. Epilepsy of infancy with migrating focal seizures (EIMFS) is one of the most severe of these syndromes. De novo variants in ion channels, including gain-of-function variants in KCNT1, which encodes for sodium activated potassium channel protein KNa1.1, have been found to play a major role in the etiology of EIMFS. Here, we test a potential precision therapeutic approach in KCNT1-associated DEE using a gene-silencing antisense oligonucleotide (ASO) approach. We generated a mouse model carrying the KCNT1 p.P924L pathogenic variant; only the homozygous animals presented with the frequent, debilitating seizures and developmental compromise that are seen in patients. After a single intracerebroventricular bolus injection of a Kcnt1 gapmer ASO in symptomatic mice at postnatal day 40, seizure frequency was significantly reduced, behavioral abnormalities improved, and overall survival was extended compared with mice treated with a control ASO (nonhybridizing sequence). ASO administration at neonatal age was also well tolerated and effective in controlling seizures and extending the life span of treated animals. The data presented here provide proof of concept for ASO-based gene silencing as a promising therapeutic approach in KCNT1-associated epilepsies.
Collapse
Affiliation(s)
- Lisseth Estefania Burbano
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Melody Li
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Nikola Jancovski
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Kay Richards
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Alicia Sedo
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Ben Rollo
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Linghan Jia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Elena V. Gazina
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Sandra Piltz
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Fatwa Adikusuma
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Paul Q. Thomas
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Helen Kopsidas
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Christopher A. Reid
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Snezana Maljevic
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Steven Petrou
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia.,Praxis Precision Medicines, Cambridge, Massachusetts, USA
| |
Collapse
|
22
|
Miziak B, Czuczwar SJ. Approaches for the discovery of drugs that target K Na 1.1 channels in KCNT1-associated epilepsy. Expert Opin Drug Discov 2022; 17:1313-1328. [PMID: 36408599 DOI: 10.1080/17460441.2023.2150164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
INTRODUCTION There are approximately 70 million people with epilepsy and about 30% of patients are not satisfactorily treated. A link between gene mutations and epilepsy is well documented. A number of pathological variants of KCNT1 gene (encoding the weakly voltage-dependent sodium-activated potassium channel - KNa 1.1) mutations has been found. For instance, epilepsy of infancy with migrating focal seizures, autosomal sleep-related hypermotor epilepsy or Ohtahara syndrome have been associated with KCNT1 gene mutations. AREAS COVERED Several methods for studies on KNa 1.1 channels have been reviewed - patch clamp analysis, Förster resonance energy transfer spectroscopy and whole-exome sequencing. The authors also review available drugs for the management of KCNT1 epilepsies. EXPERT OPINION The current methods enable deeper insights into electrophysiology of KNa 1.1 channels or its functioning in different activation states. It is also possible to identify a given KCNT1 mutation. Quinidine and cannabidiol show variable efficacy as add-on to baseline antiepileptic drugs so more effective treatments are required. A combined approach with the methods shown above, in silico methods and the animal model of KCNT1 epilepsies seems likely to create personalized treatment of patients with KCNT1 gene mutations.
Collapse
Affiliation(s)
- Barbara Miziak
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | | |
Collapse
|
23
|
Hughes E, Oates S, Pal DK. Intolerance to quinidine in a n-of-1 trial for KCNT1 associated epilepsy of infancy with migrating focal seizures. Seizure 2022; 103:46-50. [DOI: 10.1016/j.seizure.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/30/2022] [Accepted: 10/18/2022] [Indexed: 11/27/2022] Open
|
24
|
Qunies AM, Mishra NM, Spitznagel BD, Du Y, Acuña VS, David Weaver C, Emmitte KA. Structure-activity relationship studies in a new series of 2-amino-N-phenylacetamide inhibitors of Slack potassium channels. Bioorg Med Chem Lett 2022; 76:129013. [PMID: 36184030 PMCID: PMC10230575 DOI: 10.1016/j.bmcl.2022.129013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/02/2022]
Abstract
In this Letter we describe structure-activity relationship (SAR) studies conducted in five distinct regions of a new 2-amino-N-phenylacetamides series of Slack potassium channel inhibitors exemplified by recently disclosed high-throughput screening (HTS) hit VU0606170 (4). New analogs were screened in a thallium (Tl+) flux assay in HEK-293 cells stably expressing wild-type human (WT) Slack. Selected analogs were screened in Tl+ flux versus A934T Slack and other Slo family members Slick and Maxi-K and evaluated in whole-cell electrophysiology (EP) assays using an automated patch clamp system. Results revealed the series to have flat SAR with significant structural modifications resulting in a loss of Slack activity. More minor changes led to compounds with Slack activity and Slo family selectivity similar to the HTS hit.
Collapse
Affiliation(s)
- Alshaima'a M Qunies
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA; Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Nigam M Mishra
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | | | - Yu Du
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Valerie S Acuña
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - C David Weaver
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Kyle A Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
25
|
Xu D, Chen S, Yang J, Wang X, Fang Z, Li M. Precision therapy with quinidine of KCNT1-related epileptic disorders: a systematic review. Br J Clin Pharmacol 2022; 88:5096-5112. [PMID: 35940594 DOI: 10.1111/bcp.15479] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/04/2022] [Accepted: 07/27/2022] [Indexed: 11/27/2022] Open
Abstract
AIMS Despite numerous studies on quinidine therapies for epilepsies associated with KCNT1 gene mutations, there is no consensus on its clinical utility. Thus, we reviewed studies evaluating the efficacy and safety of quinidine in KCNT1-related epileptic disorders. METHODS Electronic databases were queried for in vivo and in vitro studies on quinidine therapy in KCNT1-related epilepsies published on or before May 1st, 2022. The evaluation of evidence was done as per the American Academy of Neurology's classification scheme. Identification of significant factors that possibly influenced therapeutic effects of quinidine were performed using χ2 tests. RESULTS Twenty-seven studies containing 82 patient records were reviewed. Records of eighty patients with 33 KCNT1 mutations were analyzed, of which 20 patients had gained ≥50% seizure reduction due to quinidine therapy. However, quinidine therapy often had different effects on patients with the same KCNT1 mutation. Age, genotypes of KCNT1 mutations, seizure types and brain MRI did not significantly influence the therapeutic effect of quinidine. Prolonged QTc was the most common among all adverse events with quinidine. Notably, results of in vitro quinidine tests did not correspond with in vivo tests. CONCLUSIONS Therapeutic effects of quinidine on KCNT1-related epilepsies remained indefinite as contradictory results were detected in similar patients. Age, seizure types, genotypes of KCNT1 mutations and brain MRI did not influence the therapeutic effects of quinidine. Insensitivity to quinidine by a certain Kcnt1 genotype in molecular tests predictive of its inefficacy in human populations of the respective mutation.
Collapse
Affiliation(s)
- Da Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Yang
- Department of neurology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Xiufeng Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Fang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Man Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Yang H, Yang X, Cai F, Gan S, Yang S, Wu L. Analysis of clinical phenotypic and genotypic spectra in 36 children patients with Epilepsy of Infancy with Migrating Focal Seizures. Sci Rep 2022; 12:10187. [PMID: 35715422 PMCID: PMC9205988 DOI: 10.1038/s41598-022-13974-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/31/2022] [Indexed: 01/01/2023] Open
Abstract
Epilepsy of Infancy with Migrating Focal Seizures (EIMFS) is a rare developmental and epileptic encephalopathy (DEEs) with unknown etiology, and poor prognosis. In order to explore new genetic etiology of EIMFS and new precision medicine treatment strategies, 36 children with EIMFS were enrolled in this study. 17/36 cases had causative variants across 11 genes, including 6 novel EIMFS genes: PCDH19, ALDH7A1, DOCK6, PRRT2, ALG1 and ATP7A. 13/36 patients had ineffective seizure control, 14/36 patients had severe retardation and 6/36 patients died. Of them, the genes for ineffective seizure control, severe retardation or death include KCNT1, SCN2A, SCN1A, ALG1, ATP7A and WWOX. 17 patients had abnormal MRI, of which 8 had ineffective seizure control, 7 had severe retardation and 4 died. 13 patients had hypsarrhythmia, of which 6 had ineffective seizure control, 6 had severe retardation and 2 died. Also, 7 patients had burst suppression, of which 1 had ineffective seizure control, 3 had severe retardation and 3 died. This study is the first to report that ALDH7A1, ATP7A, DOCK6, PRRT2, ALG1, and PCDH19 mutations cause the phenotypic spectrum of EIMFS to expand the genotypic spectrum. The genes KCNT1, SCN2A, SCN1A, ALG1, ATP7A and WWOX may be associated with poor prognosis. The patients presenting with MRI abnormalities, hypsarrhythmia and burst suppression in EEG may be associated with poor prognosis.
Collapse
Affiliation(s)
- Haiyan Yang
- Department of Neurology, Hunan Children's Hospital, Ziyuan Road 86th, Changsha, 410007, Hunan, People's Republic of China
| | - Xiaofan Yang
- Department of Pediatrics, Qilu Hospital of Shangdong University, Jinan, People's Republic of China
| | - Fang Cai
- Department of Neurology, Chenzhou No 1 People's Hospital, Chenzhou, People's Republic of China
| | - Siyi Gan
- Department of Neurology, Hunan Children's Hospital, Ziyuan Road 86th, Changsha, 410007, Hunan, People's Republic of China
| | - Sai Yang
- Department of Neurology, Hunan Children's Hospital, Ziyuan Road 86th, Changsha, 410007, Hunan, People's Republic of China
| | - Liwen Wu
- Department of Neurology, Hunan Children's Hospital, Ziyuan Road 86th, Changsha, 410007, Hunan, People's Republic of China.
| |
Collapse
|
27
|
Liu R, Sun L, Wang Y, Jia M, Wang Q, Cai X, Wu J. Double-edged Role of K Na Channels in Brain Tuning: Identifying Epileptogenic Network Micro-Macro Disconnection. Curr Neuropharmacol 2022; 20:916-928. [PMID: 34911427 PMCID: PMC9881102 DOI: 10.2174/1570159x19666211215104829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/09/2021] [Accepted: 12/10/2021] [Indexed: 11/22/2022] Open
Abstract
Epilepsy is commonly recognized as a disease driven by generalized hyperexcited and hypersynchronous neural activity. Sodium-activated potassium channels (KNa channels), which are encoded by the Slo 2.2 and Slo 2.1 genes, are widely expressed in the central nervous system and considered as "brakes" to adjust neuronal adaptation through regulating action potential threshold or after-hyperpolarization under physiological condition. However, the variants in KNa channels, especially gain-of-function variants, have been found in several childhood epileptic conditions. Most previous studies focused on mapping the epileptic network on the macroscopic scale while ignoring the value of microscopic changes. Notably, paradoxical role of KNa channels working on individual neuron/microcircuit and the macroscopic epileptic expression highlights the importance of understanding epileptogenic network through combining microscopic and macroscopic methods. Here, we first illustrated the molecular and physiological function of KNa channels on preclinical seizure models and patients with epilepsy. Next, we summarized current hypothesis on the potential role of KNa channels during seizures to provide essential insight into what emerged as a micro-macro disconnection at different levels. Additionally, we highlighted the potential utility of KNa channels as therapeutic targets for developing innovative anti-seizure medications.
Collapse
Affiliation(s)
- Ru Liu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China;,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China;,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Lei Sun
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China;,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China;,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | | | - Meng Jia
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China;,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China;,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qun Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China;,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiang Cai
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China;,Address correspondence to these authors at the Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Tel: +0086-18062552085; E-mail: Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China; Tel: +0086-13319285082; E-mail:
| | - Jianping Wu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China;,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China;,China National Clinical Research Center for Neurological Diseases, Beijing, China;,Address correspondence to these authors at the Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Tel: +0086-18062552085; E-mail: Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China; Tel: +0086-13319285082; E-mail:
| |
Collapse
|
28
|
Gertler TS, Cherian S, DeKeyser JM, Kearney JA, George AL. K Na1.1 gain-of-function preferentially dampens excitability of murine parvalbumin-positive interneurons. Neurobiol Dis 2022; 168:105713. [PMID: 35346832 PMCID: PMC9169414 DOI: 10.1016/j.nbd.2022.105713] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/07/2022] [Accepted: 03/24/2022] [Indexed: 10/25/2022] Open
Abstract
KCNT1 encodes the sodium-activated potassium channel KNa1.1, expressed preferentially in the frontal cortex, hippocampus, cerebellum, and brainstem. Pathogenic missense variants in KCNT1 are associated with intractable epilepsy, namely epilepsy of infancy with migrating focal seizures (EIMFS), and sleep-related hypermotor epilepsy (SHE). In vitro studies of pathogenic KCNT1 variants support predominantly a gain-of-function molecular mechanism, yet how these variants behave in a neuron or ultimately drive formation of an epileptogenic circuit is an important and timely question. Using CRISPR/Cas9 gene editing, we introduced a gain-of-function variant into the endogenous mouse Kcnt1 gene. Compared to wild-type (WT) littermates, heterozygous and homozygous knock-in mice displayed greater seizure susceptibility to the chemoconvulsants kainate and pentylenetetrazole (PTZ), but not to flurothyl. Using acute slice electrophysiology in heterozygous and homozygous Kcnt1 knock-in and WT littermates, we demonstrated that CA1 hippocampal pyramidal neurons exhibit greater amplitude of miniature inhibitory postsynaptic currents in mutant mice with no difference in frequency, suggesting greater inhibitory tone associated with the Kcnt1 mutation. To address alterations in GABAergic signaling, we bred Kcnt1 knock-in mice to a parvalbumin-tdTomato reporter line, and found that parvalbumin-expressing (PV+) interneurons failed to fire repetitively with large amplitude current injections and were more prone to depolarization block. These alterations in firing can be recapitulated by direct application of the KNa1.1 channel activator loxapine in WT but are occluded in knock-in littermates, supporting a direct channel gain-of-function mechanism. Taken together, these results suggest that KNa1.1 gain-of-function dampens interneuron excitability to a greater extent than it impacts pyramidal neuron excitability, driving seizure susceptibility in a mouse model of KCNT1-associated epilepsy.
Collapse
Affiliation(s)
- Tracy S Gertler
- Division of Pediatric Neurology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, United States of America; Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States of America.
| | - Suraj Cherian
- Division of Pediatric Neurology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, United States of America; Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States of America
| | - Jean-Marc DeKeyser
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States of America
| | - Jennifer A Kearney
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States of America
| | - Alfred L George
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States of America.
| |
Collapse
|
29
|
Small-molecule inhibitors of Slack potassium channels as potential therapeutics for childhood epilepsies. Pharm Pat Anal 2022; 11:45-56. [PMID: 35369761 PMCID: PMC9260495 DOI: 10.4155/ppa-2022-0002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Slack channels are sodium-activated potassium channels that are encoded by the KCNT1 gene. Several KCNT1 gain of function mutations have been linked to malignant migrating partial seizures of infancy. Quinidine is an anti-arrhythmic drug that functions as a moderately potent inhibitor of Slack channels; however, quinidine use is limited by its poor selectivity, safety and pharmacokinetic profile. Slack channels represent an interesting target for developing novel therapeutics for the treatment of malignant migrating partial seizures of infancy and other childhood epilepsies; thus, ongoing efforts are directed toward the discovery of small-molecules that inhibit Slack currents. This review summarizes patent applications published in 2020-2021 that describe the discovery of novel small-molecule Slack inhibitors.
Collapse
|
30
|
Zhang Q, Liu Y, Xu J, Teng Y, Zhang Z. The Functional Properties, Physiological Roles, Channelopathy and Pharmacological Characteristics of the Slack (KCNT1) Channel. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1349:387-400. [PMID: 35138624 DOI: 10.1007/978-981-16-4254-8_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The KCNT1 gene encodes the sodium-activated potassium channel that is abundantly expressed in the central nervous system of mammalians and plays an important role in reducing neuronal excitability. Structurally, the KCNT1 channel is absent of voltage sensor but possesses a long C-terminus including RCK1 and RCK2domain, to which the intracellular sodium and chloride bind to activate the channel. Recent publications using electron cryo-microscopy (cryo-EM) revealed the open and closed structural characteristics of the KCNT1 channel and co-assembly of functional domains. The activation of the KCNT1 channel regulates various physiological processes including nociceptive behavior, itch, spatial learning. Meanwhile, malfunction of this channel causes important pathophysiological consequences, including Fragile X syndrome and a wide spectrum of seizure disorders. This review comprehensively describes the structure, expression patterns, physiological functions of the KCNT1 channel and emphasizes the channelopathy of gain-of-function KCNT1 mutations in epilepsy.
Collapse
Affiliation(s)
- Qi Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Ye Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jie Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yue Teng
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Zhe Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China.
| |
Collapse
|
31
|
Lin Z, Sang T, Yang Y, Wu Y, Dong Y, Ji T, Zhang Y, Wu Y, Gao K, Jiang Y. Efficacy of Anti-seizure Medications, Quinidine, and Ketogenic Diet Therapy for KCNT1-Related Epilepsy and Genotype-Efficacy Correlation Analysis. Front Neurol 2022; 12:834971. [PMID: 35116000 PMCID: PMC8804090 DOI: 10.3389/fneur.2021.834971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
AimTo evaluate the efficacy of anti-seizure medications (ASMs), quinidine, and ketogenic diet therapy (KDT) for KCNT1-related epilepsy and to explore genotype-efficacy correlations.MethodsWe collected the data for KCNT1-related epilepsy cases from our hospital's medical records and the literature. In total, 50 patients received quinidine, 23 received classical KDT, and 15 received ASMs; all ASM data were from our hospital owing to the lack of detailed ASM data in the literature. The efficacy rates (ERs) of the treatments were compared; an ER that reduced the number of seizures by ≥50% was considered positive. Efficacy according to genotype was also assessed.ResultsThe ERs for the 30 patients at our hospital were 40, 26.7, 30, and 44.4% for all treatments, ASMs, quinidine, and KDT, respectively. For all patients (ours and those in previous reports), the overall ERs for quinidine and KDT were 26.0 and 43.5%, respectively (P = 0.135). The ERs for quinidine and KDT in functional domain variant-related epilepsy differed significantly (20.6 vs. 53.8%; P = 0.037).InterpretationKDT may be better at treating KCNT1-related epilepsy than quinidine; ASMs were the least effective. KDT is a viable treatment option for functional domain variant-related epilepsy.
Collapse
Affiliation(s)
- Zehong Lin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Tian Sang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Ying Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Yuan Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Yan Dong
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Taoyun Ji
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Kai Gao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
- Kai Gao
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
- *Correspondence: Yuwu Jiang
| |
Collapse
|
32
|
Pharmacogenetics of Drug-Resistant Epilepsy (Review of Literature). Int J Mol Sci 2021; 22:ijms222111696. [PMID: 34769124 PMCID: PMC8584095 DOI: 10.3390/ijms222111696] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
Pharmacogenomic studies in epilepsy are justified by the high prevalence rate of this disease and the high cost of its treatment, frequent drug resistance, different response to the drug, the possibility of using reliable methods to assess the control of seizures and side effects of antiepileptic drugs. Candidate genes encode proteins involved in pharmacokinetic processes (drug transporters, metabolizing enzymes), pharmacodynamic processes (receptors, ion channels, enzymes, regulatory proteins, secondary messengers) and drug hypersensitivity (immune factors). This article provides an overview of the literature on the influence of genetic factors on treatment in epilepsy.
Collapse
|
33
|
Slo2/K Na Channels in Drosophila Protect against Spontaneous and Induced Seizure-like Behavior Associated with an Increased Persistent Na + Current. J Neurosci 2021; 41:9047-9063. [PMID: 34544836 DOI: 10.1523/jneurosci.0290-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/20/2021] [Accepted: 09/13/2021] [Indexed: 11/21/2022] Open
Abstract
Na+ sensitivity is a unique feature of Na+-activated K+ (KNa) channels, making them naturally suited to counter a sudden influx in Na+ ions. As such, it has long been suggested that KNa channels may serve a protective function against excessive excitation associated with neuronal injury and disease. This hypothesis, however, has remained largely untested. Here, we examine KNa channels encoded by the Drosophila Slo2 (dSlo2) gene in males and females. We show that dSlo2/KNa channels are selectively expressed in cholinergic neurons in the adult brain, as well as in glutamatergic motor neurons, where dampening excitation may function to inhibit global hyperactivity and seizure-like behavior. Indeed, we show that effects of feeding Drosophila a cholinergic agonist are exacerbated by the loss of dSlo2/KNa channels. Similar to mammalian Slo2/KNa channels, we show that dSlo2/KNa channels encode a TTX-sensitive K+ conductance, indicating that dSlo2/KNa channels can be activated by Na+ carried by voltage-dependent Na+ channels. We then tested the role of dSlo2/KNa channels in established genetic seizure models in which the voltage-dependent persistent Na+ current (INap) is elevated. We show that the absence of dSlo2/KNa channels increased susceptibility to mechanically induced seizure-like behavior. Similar results were observed in WT flies treated with veratridine, an enhancer of INap Finally, we show that loss of dSlo2/KNa channels in both genetic and pharmacologically primed seizure models resulted in the appearance of spontaneous seizures. Together, our results support a model in which dSlo2/KNa channels, activated by neuronal overexcitation, contribute to a protective threshold to suppress the induction of seizure-like activity.SIGNIFICANCE STATEMENT Slo2/KNa channels are unique in that they constitute a repolarizing K+ pore that is activated by the depolarizing Na+ ion, making them naturally suited to function as a protective "brake" against overexcitation and Na+ overload. Here, we test this hypothesis in vivo by examining how a null mutation of the Drosophila Slo2 (dSlo2)/KNa gene affects seizure-like behavior in genetic and pharmacological models of epilepsy. We show that indeed the loss of dSlo2/KNa channels results in increased incidence and severity of induced seizure behavior, as well as the appearance of spontaneous seizure activity. Our results advance our understanding of neuronal excitability and protective mechanisms that preserve normal physiology and the suppression of seizure susceptibility.
Collapse
|
34
|
Zhang Y, Ali SR, Nabbout R, Barcia G, Kaczmarek LK. A KCNC1 mutation in epilepsy of infancy with focal migrating seizures produces functional channels that fail to be regulated by PKC phosphorylation. J Neurophysiol 2021; 126:532-539. [PMID: 34232791 DOI: 10.1152/jn.00257.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Channelopathies caused by mutations in genes encoding ion channels generally produce a clear change in channel function. Accordingly, mutations in KCNC1, which encodes the voltage-dependent Kv3.1 potassium channel, result in progressive myoclonus epilepsy as well as other developmental and epileptic encephalopathies, and these have been shown to reduce or fully abolish current amplitude. One exception to this is the mutation A513V Kv3.1b, located in the cytoplasmic C-terminal domain of the channel protein. This de novo variant was detected in a patient with epilepsy of infancy with focal migrating seizures (EIFMS), but no difference could be detected between A513V Kv3.1 current and that of wild-type Kv3.1. Using both biochemical and electrophysiological approaches, we have now confirmed that this variant produces functional channels but find that the A513V mutation renders the channel completely insensitive to regulation by phosphorylation at S503, a nearby regulatory site in the C-terminus. In this respect, the mutation resembles those in another channel, KCNT1, which are the major cause of EIFMS. Because the amplitude of Kv3.1 current is constantly adjusted by phosphorylation in vivo, our findings suggest that loss of such regulation contributes to EIFMS phenotype and emphasize the role of channel modulation for normal neuronal function.NEW & NOTEWORTHY Ion channel mutations that cause serious human diseases generally alter the biophysical properties or expression of the channel. We describe a de novo mutation in the Kv3.1 potassium channel that causes severe intellectual disability with early-onset epilepsy. The properties of this channel appear identical to those of wild-type channels, but the mutation prevents phosphorylation of the channel by protein kinase C. Our findings emphasize the role of channel modulation in normal brain function.
Collapse
Affiliation(s)
- Yalan Zhang
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut
| | - Syed R Ali
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut
| | - Rima Nabbout
- Department of Pediatric Neurology, Necker-Enfants Malades Hospital, Centre de Référence Épilepsies Rares, Member of ERN EPICARE, Institut Imagine, Université de Paris, Paris, France
| | - Giulia Barcia
- Department of Pediatric Neurology, Necker-Enfants Malades Hospital, Centre de Référence Épilepsies Rares, Member of ERN EPICARE, Institut Imagine, Université de Paris, Paris, France.,Department of Medical Genetics, Necker-Enfants Malades Hospital, Université de Paris, Paris, France
| | - Leonard K Kaczmarek
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut.,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
35
|
Ziobro JM, Eschbach K, Shellhaas RA. Novel Therapeutics for Neonatal Seizures. Neurotherapeutics 2021; 18:1564-1581. [PMID: 34386906 PMCID: PMC8608938 DOI: 10.1007/s13311-021-01085-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2021] [Indexed: 02/04/2023] Open
Abstract
Neonatal seizures are a common neurologic emergency for which therapies have not significantly changed in decades. Improvements in diagnosis and pathophysiologic understanding of the distinct features of acute symptomatic seizures and neonatal-onset epilepsies present exceptional opportunities for development of precision therapies with potential to improve outcomes. Herein, we discuss the pathophysiology of neonatal seizures and review the evidence for currently available treatment. We present emerging therapies in clinical and preclinical development for the treatment of acute symptomatic neonatal seizures. Lastly, we discuss the role of precision therapies for genetic neonatal-onset epilepsies and address barriers and goals for developing new therapies for clinical care.
Collapse
Affiliation(s)
- Julie M Ziobro
- Department of Pediatrics, Michigan Medicine, C.S. Mott Children's Hospital, University of Michigan, 1540 E. Hospital Dr, Ann Arbor, MI, USA.
| | - Krista Eschbach
- Department of Pediatrics, Section of Neurology, Denver Anschutz School of Medicine, Children's Hospital Colorado, University of Colorado, Aurora, CO, 80045, USA
| | - Renée A Shellhaas
- Department of Pediatrics, Michigan Medicine, C.S. Mott Children's Hospital, University of Michigan, 1540 E. Hospital Dr, Ann Arbor, MI, USA
| |
Collapse
|
36
|
Gong P, Jiao X, Yu D, Yang Z. Case Report: Causative De novo Variants of KCNT2 for Developmental and Epileptic Encephalopathy. Front Genet 2021; 12:649556. [PMID: 34276763 PMCID: PMC8277933 DOI: 10.3389/fgene.2021.649556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/12/2021] [Indexed: 12/03/2022] Open
Abstract
Objective:KCNT2 gene mutations had been described to cause developmental and epileptic encephalopathies (DEEs). In this study, we presented the detailed clinical features and genetic analysis of two unrelated patients carrying two de novo variants in KCNT2 and reviewed eight different cases available in publications. Methods: Likely pathogenic variants were identified by whole exome sequencing; clinical data of the patients were retrospectively collected and analyzed. Results: Our two unrelated patients were diagnosed with Ohtahara syndrome followed by infantile spasms (IS) and possibly the epilepsy of infancy with migrating focal seizures (EIMFS), respectively. They both manifested dysmorphic features with hirsute arms, thick hair, prominent eyebrows, long and thick eyelashes, a broad nasal tip, and short and smooth philtrum. In the eight patients reported previously, two was diagnosed with IS carrying a ‘change-of-function' mutation and a gain-of-function mutation, respectively, two with EIMFS-like carrying a gain-of-function mutation and a loss-of-function mutation, respectively, one with EIMFS carrying a loss-of-function mutation, three with DEE without functional analysis. Among them, two patients with gain-of-function mutations both exhibited dysmorphic features and presented epilepsy phenotype, which was similar to our patients. Conclusion: Overall, the most common phenotypes associated with KCNT2 mutation were IS and EIMFS. Epilepsy phenotype associated with gain- and loss-of-function mutations could overlap. Additional KCNT2 cases will help to make genotype-phenotype correlations clearer.
Collapse
Affiliation(s)
- Pan Gong
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xianru Jiao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Dan Yu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zhixian Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
37
|
Cole BA, Clapcote SJ, Muench SP, Lippiat JD. Targeting K Na1.1 channels in KCNT1-associated epilepsy. Trends Pharmacol Sci 2021; 42:700-713. [PMID: 34074526 DOI: 10.1016/j.tips.2021.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022]
Abstract
Gain-of-function (GOF) pathogenic variants of KCNT1, the gene encoding the largest known potassium channel subunit, KNa1.1, are associated with developmental and epileptic encephalopathies accompanied by severe psychomotor and intellectual disabilities. Blocking hyperexcitable KNa1.1 channels with quinidine, a class I antiarrhythmic drug, has shown variable success in patients in part because of dose-limiting off-target effects, poor blood-brain barrier (BBB) penetration, and low potency. In recent years, high-resolution cryogenic electron microscopy (cryo-EM) structures of the chicken KNa1.1 channel in different activation states have been determined, and animal models of the diseases have been generated. Alongside increasing information about the functional effects of GOF pathogenic variants on KNa1.1 channel behaviour and how they lead to hyperexcitability, these tools will facilitate the development of more effective treatment strategies. We review the range of KCNT1 variants and their functional effects, the challenges posed by current treatment strategies, and recent advances in finding more potent and selective therapeutic interventions for KCNT1-related epilepsies.
Collapse
Affiliation(s)
- Bethan A Cole
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Steven J Clapcote
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Stephen P Muench
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | |
Collapse
|
38
|
Kravetz MC, Viola MS, Prenz J, Curi M, Bramuglia GF, Tenembaum S. Case Report of Novel Genetic Variant in KCNT1 Channel and Pharmacological Treatment With Quinidine. Precision Medicine in Refractory Epilepsy. Front Pharmacol 2021; 12:648519. [PMID: 34122071 PMCID: PMC8194824 DOI: 10.3389/fphar.2021.648519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/26/2021] [Indexed: 11/16/2022] Open
Abstract
Case introduction: In this work we present a female infant patient with epilepsy of infancy with migrating focal seizures (EIMFS). Although many pharmacological schemes were attempted, she developed an encephalopathy with poor response to antiepileptic drugs and progressive cerebral dysfunction. Aim: To present the pharmacological response and therapeutic drug monitoring of a paediatric patient with a severe encephalopathy carrying a genetic variant in KCNT1 gene, whose identification led to include quinidine (QND) in the treatment regimen as an antiepileptic drug. Case report: Patient showed slow rhythmic activity (theta range) over left occipital areas with temporal propagation and oculo-clonic focal seizures and without tonic spasms three months after birth. At the age of 18 months showed severe impairments of motor and intellectual function with poor eye contact. When the patient was 4 years old, a genetic variant in the exon 24 of the KCNT1 gene was found. This led to the diagnosis of EIMFS. Due to antiepileptic treatment failed to control seizures, QND a KCNT1 blocker, was introduced as a therapeutic alternative besides topiramate (200 mg/day) and nitrazepam (2 mg/day). Therapeutic drug monitoring (TDM) of QND plasma levels needed to be implemented to establish individual therapeutic range and avoid toxicity. TDM for dose adjustment was performed to establish the individual therapeutic range of the patient. Seizures were under control with QND levels above 1.5 mcg/ml (65–70 mg/kg q. i.d). In addition, QND levels higher than 4.0 mcg/ml, were related to higher risk of suffering arrhythmia due to prolongation of QT segment. Despite initial intention to withdrawal topiramate completely, QND was no longer effective by itself and failed to maintain seizures control. Due to this necessary interaction between quinidine and topiramate, topiramate was stablished in a maintenance dose of 40 mg/day. Conclusion: The implementation of Precision Medicine by using tools such as Next Generation Sequencing and TDM led to diagnose and select a targeted therapy for the treatment of a KCNT1-related epilepsy in a patient presented with EIMFS in early infancy and poor response to antiepileptic drugs. QND an old antiarrhythmic drug, due to its activity as KCNT1 channel blocker, associated to topiramate resulted in seizures control. Due to high variability observed in QND levels, TDM and pharmacokinetic characterization allowed to optimize drug regimen to maintain QND concentration between the individual therapeutic range and diminish toxicity.
Collapse
Affiliation(s)
- M C Kravetz
- Department of Pharmacology, Faculty of Farmacy and Biochemistry, University of Buenos Aires, Buenos Aires City, Argentina
| | - M S Viola
- Department of Pharmacology, Faculty of Farmacy and Biochemistry, University of Buenos Aires, Buenos Aires City, Argentina
| | - J Prenz
- Department of Cardiology, Garrahan Hospital, Buenos Aires City, Argentina
| | - M Curi
- Department of Cardiology, Garrahan Hospital, Buenos Aires City, Argentina
| | - G F Bramuglia
- Department of Pharmacology, Faculty of Farmacy and Biochemistry, University of Buenos Aires, Buenos Aires City, Argentina.,Fundacion Investigar, Buenos Aires City, Argentina
| | - S Tenembaum
- Department of Neurology, Garrahan Hospital, Buenos Aires City, Argentina
| |
Collapse
|
39
|
Venti V, Ciccia L, Scalia B, Sciuto L, Cimino C, Marino S, Praticò AD, Falsaperla R. KCNT1-Related Epilepsy: A Review. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1728688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
KCNT1 gene encodes the sodium-dependent potassium channel reported as a causal factor for several different epileptic disorders. The gene has been also linked with cardiac disorders and in a family to sudden unexpected death in epilepsy. KCNT1 mutations, in most cases, result in a gain of function causing a neuronal hyperpolarization with loss of inhibition. Many early-onset epileptic encephalopathies related to gain of function of KCNT1 gene have been described, most often associated with two phenotypes: malignant migrating focal seizures of infancy and familial autosomal-dominant nocturnal frontal lobe epilepsy; however, there is no clear phenotype–genotype correlation, in fact same mutations have been represented in patients with West syndrome, Ohtahara syndrome, and early myoclonic encephalopathy. Additional neurologic features include intellectual disability, psychiatric disorders, hypotonia, microcephaly, strabismus, and movement disorders. Conventional anticonvulsant, vagal stimulation, and ketogenic diet have been used in the absence of clinical benefit in individuals with KCNT1-related epilepsy; in some patients, quinidine therapy off-label has been practiced successfully. This review aims to describe the characteristics of the gene, the phenotypes related to genetic mutations with the possible genotype–phenotype correlations and the treatments proposed to date, discussing the comorbidities reported in the literature.
Collapse
Affiliation(s)
- Valeria Venti
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Lina Ciccia
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Bruna Scalia
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura Sciuto
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Carla Cimino
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Simona Marino
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Andrea D. Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| |
Collapse
|
40
|
Mandato C, Siano MA, Nazzaro L, Gelzo M, Francalanci P, Rizzo F, D'Agostino Y, Morleo M, Brillante S, Weisz A, Franco B, Vajro P. A ZFYVE19 gene mutation associated with neonatal cholestasis and cilia dysfunction: case report with a novel pathogenic variant. Orphanet J Rare Dis 2021; 16:179. [PMID: 33853651 PMCID: PMC8048179 DOI: 10.1186/s13023-021-01775-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/09/2021] [Indexed: 11/10/2022] Open
Abstract
Background ZFYVE19 (Zinc Finger FYVE-Type Containing 19) mutations have most recently been associated to a novel type of high gamma-glutamyl transpeptidase (GGT), non-syndromic, neonatal-onset intrahepatic chronic cholestasis possibly associated to cilia dysfunction. Herein, we report a new case with further studies of whole exome sequencing (WES) and immunofluorescence in primary cilia of her cultured fibroblasts which confirm the observation. Results A now 5-year-old girl born to clinically healthy consanguineous Moroccan parents was assessed at 59 days of life due to severe cholestatic jaundice with increased serum bile acids and GGT, and preserved hepatocellular synthetic function. Despite fibrosis/cirrhosis and biliary ducts proliferation on liver biopsy suggested an extrahepatic biliary obstacle, normal intra-operatory cholangiography excluded biliary atresia. Under choleretic treatment, she maintained a clinically stable anicteric cholestasis but developped hyperlipidemia. After exclusion of the main causes of cholestasis by multiple tests, abnormal concentrations of sterols and WES led to a diagnosis of hereditary sitosterolemia (OMIM #618666), likely unrelated to her cholestasis. Further sequencing investigation revealed a homozygous non-sense mutation (p.Arg223Ter) in ZFYVE19 leading to a 222 aa truncated protein and present in both heterozygous parents. Immunofluorescence analysis of primary cilia on cultured skin fibroblasts showed a ciliary phenotype mainly defined by fragmented cilia and centrioles abnormalities. Conclusions Our findings are consistent with and expands the recent evidence linking ZFYVE19 to a novel, likely non-syndromic, high GGT-PFIC phenotype with neonatal onset. Due to the possible role of ZFYVE19 in cilia function and the unprecedented coexistence of a coincidental hereditary sterol disorder in our case, continuous monitoring will be necessary to substantiate type of liver disease progression and/or possible emergence of a multisystemic involvement. What mentioned above confirms that the application of WES in children with undiagnosed cholestasis may lead to the identification of new causative genes, widening the knowledge on the pathophysiology. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-01775-8.
Collapse
Affiliation(s)
- Claudia Mandato
- Department of Pediatrics, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Maria Anna Siano
- Postgraduate School of Pediatrics Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Allende, 84081, Baronissi, (SA), Italy
| | - Lucia Nazzaro
- Pediatric Clinic, "SS. Giovanni Di Dio and Ruggi D'Aragona" University of Salerno Hospital, Via San Leonardo, 84131, Salerno, Italy
| | - Monica Gelzo
- Department of Molecular Medicine and Medical Biotechnology, Faculty of Medicine, University of Naples Federico II, Naples, Italy
| | - Paola Francalanci
- Pathology Unit. Department of Laboratories, IRCCS Bambino Gesù Pediatric Hospital, Rome, Italy
| | - Francesca Rizzo
- Medical Genomics Program, "SS. Giovanni Di Dio and Ruggi D'Aragona" University of Salerno Hospital, Salerno, Italy.,Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno and Genome Research Center for Health (CRGS), Baronissi, (SA), Italy
| | - Ylenia D'Agostino
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno and Genome Research Center for Health (CRGS), Baronissi, (SA), Italy
| | - Manuela Morleo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Simona Brillante
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Alessandro Weisz
- Medical Genomics Program, "SS. Giovanni Di Dio and Ruggi D'Aragona" University of Salerno Hospital, Salerno, Italy.,Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno and Genome Research Center for Health (CRGS), Baronissi, (SA), Italy
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy.,Medical Genetics, Department of Medical Translational Science, Faculty of Medicine, University of Naples "Federico II", Naples, Italy
| | - Pietro Vajro
- Postgraduate School of Pediatrics Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Allende, 84081, Baronissi, (SA), Italy. .,Pediatric Clinic, "SS. Giovanni Di Dio and Ruggi D'Aragona" University of Salerno Hospital, Via San Leonardo, 84131, Salerno, Italy.
| |
Collapse
|
41
|
Griffin AM, Kahlig KM, Hatch RJ, Hughes ZA, Chapman ML, Antonio B, Marron BE, Wittmann M, Martinez-Botella G. Discovery of the First Orally Available, Selective K Na1.1 Inhibitor: In Vitro and In Vivo Activity of an Oxadiazole Series. ACS Med Chem Lett 2021; 12:593-602. [PMID: 33859800 PMCID: PMC8040054 DOI: 10.1021/acsmedchemlett.0c00675] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
The gene KCNT1 encodes the sodium-activated potassium channel KNa1.1 (Slack, Slo2.2). Variants in the KCNT1 gene induce a gain-of-function (GoF) phenotype in ionic currents and cause a spectrum of intractable neurological disorders in infants and children, including epilepsy of infancy with migrating focal seizures (EIMFS) and autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). Effective treatment options for KCNT1-related disease are absent, and novel therapies are urgently required. We describe the development of a novel class of oxadiazole KNa1.1 inhibitors, leading to the discovery of compound 31 that reduced seizures and interictal spikes in a mouse model of KCNT1 GoF.
Collapse
Affiliation(s)
- Andrew M Griffin
- Praxis Precision Medicines, Research Innovation, Cambridge, Massachusetts 02142, United States
| | - Kristopher M Kahlig
- Praxis Precision Medicines, Research Innovation, Cambridge, Massachusetts 02142, United States
| | - Robert John Hatch
- Praxis Precision Medicines, Research Innovation, Cambridge, Massachusetts 02142, United States
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
| | - Zoë A Hughes
- Praxis Precision Medicines, Research Innovation, Cambridge, Massachusetts 02142, United States
| | | | | | - Brian E Marron
- Praxis Precision Medicines, Research Innovation, Cambridge, Massachusetts 02142, United States
| | - Marion Wittmann
- Praxis Precision Medicines, Research Innovation, Cambridge, Massachusetts 02142, United States
| | | |
Collapse
|
42
|
Kuchenbuch M, Nabbout R, Yochum M, Sauleau P, Modolo J, Wendling F, Benquet P. In silico model reveals the key role of GABA in KCNT1-epilepsy in infancy with migrating focal seizures. Epilepsia 2021; 62:683-697. [PMID: 33617692 DOI: 10.1111/epi.16834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/08/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE This study was undertaken to investigate how gain of function (GOF) of slack channel due to a KCNT1 pathogenic variant induces abnormal neuronal cortical network activity and generates specific electroencephalographic (EEG) patterns of epilepsy in infancy with migrating focal seizures. METHODS We used detailed microscopic computational models of neurons to explore the impact of GOF of slack channel (explicitly coded) on each subtype of neurons and on a cortical micronetwork. Then, we adapted a thalamocortical macroscopic model considering results obtained in detailed models and immature properties related to epileptic brain in infancy. Finally, we compared simulated EEGs resulting from the macroscopic model with interictal and ictal patterns of affected individuals using our previously reported EEG markers. RESULTS The pathogenic variants of KCNT1 strongly decreased the firing rate properties of γ-aminobutyric acidergic (GABAergic) interneurons and, to a lesser extent, those of pyramidal cells. This change led to hyperexcitability with increased synchronization in a cortical micronetwork. At the macroscopic scale, introducing slack GOF effect resulted in epilepsy of infancy with migrating focal seizures (EIMFS) EEG interictal patterns. Increased excitation-to-inhibition ratio triggered seizure, but we had to add dynamic depolarizing GABA between somatostatin-positive interneurons and pyramidal cells to obtain migrating seizure. The simulated migrating seizures were close to EIMFS seizures, with similar values regarding the delay between the different ictal activities (one of the specific EEG markers of migrating focal seizures due to KCNT1 pathogenic variants). SIGNIFICANCE This study illustrates the interest of biomathematical models to explore pathophysiological mechanisms bridging the gap between the functional effect of gene pathogenic variants and specific EEG phenotype. Such models can be complementary to in vitro cellular and animal models. This multiscale approach provides an in silico framework that can be further used to identify candidate innovative therapies.
Collapse
Affiliation(s)
- Mathieu Kuchenbuch
- LTSI-U1099, Université de Rennes 1, INSERM, Rennes, France.,Department of Pediatric Neurology, Reference Center for Rare Epilepsies, Hôpital Necker-Enfants malades, member of European Network EPICARE, Paris, France.,Laboratory of Translational Research for Neurological Disorders (UMR 1163), IHU Imagine Institute of Genetic Diseases, INSERM, University of Paris, Paris, France
| | - Rima Nabbout
- Department of Pediatric Neurology, Reference Center for Rare Epilepsies, Hôpital Necker-Enfants malades, member of European Network EPICARE, Paris, France.,Laboratory of Translational Research for Neurological Disorders (UMR 1163), IHU Imagine Institute of Genetic Diseases, INSERM, University of Paris, Paris, France
| | - Maxime Yochum
- LTSI-U1099, Université de Rennes 1, INSERM, Rennes, France
| | - Paul Sauleau
- CHU de Rennes (Department of Neurophysiology), "Behavior and Basal Ganglia" Research Unit (EA4712), University of Rennes, Rennes, France
| | - Julien Modolo
- LTSI-U1099, Université de Rennes 1, INSERM, Rennes, France
| | | | - Pascal Benquet
- LTSI-U1099, Université de Rennes 1, INSERM, Rennes, France
| |
Collapse
|
43
|
Spitznagel BD, Mishra NM, Qunies AM, Prael FJ, Du Y, Kozek KA, Lazarenko RM, Denton JS, Emmitte KA, Weaver CD. VU0606170, a Selective Slack Channels Inhibitor, Decreases Calcium Oscillations in Cultured Cortical Neurons. ACS Chem Neurosci 2020; 11:3658-3671. [PMID: 33143429 DOI: 10.1021/acschemneuro.0c00583] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Malignant migrating partial seizures of infancy is a rare, devastating form of epilepsy most commonly associated with gain-of-function mutations in the potassium channel, Slack. Not only is this condition almost completely pharmacoresistant, there are not even selective drug-like tools available to evaluate whether inhibition of these overactivated, mutant Slack channels may represent a viable path forward toward new antiepileptic therapies. Therefore, we used a high-throughput thallium flux assay to screen a drug-like, 100 000-compound library in search of inhibitors of both wild-type and a disease-associated mutant Slack channel. Using this approach, we discovered VU0606170, a selective Slack channel inhibitor with low micromolar potency. Critically, VU0606170 also proved effective at significantly decreasing the firing rate in overexcited, spontaneously firing cortical neuron cultures. Taken together, our data provide compelling evidence that selective inhibition of Slack channel activity can be achieved with small molecules and that inhibition of Slack channel activity in neurons produces efficacy consistent with an antiepileptic effect. Thus, the identification of VU0606170 provides a much-needed tool for advancing our understanding of the role of the Slack channel in normal physiology and disease as well as its potential as a target for therapeutic intervention.
Collapse
Affiliation(s)
- Brittany D. Spitznagel
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Nigam M. Mishra
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Alshaima’a M. Qunies
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
- Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Francis J. Prael
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Yu Du
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Krystian A. Kozek
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Vanderbilt Medical Scientist Training Program, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Roman M. Lazarenko
- Department of Anesthesiology, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Jerod S. Denton
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Anesthesiology, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Kyle A. Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - C. David Weaver
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
44
|
Sisodiya SM. Precision medicine and therapies of the future. Epilepsia 2020; 62 Suppl 2:S90-S105. [PMID: 32776321 PMCID: PMC8432144 DOI: 10.1111/epi.16539] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/24/2022]
Abstract
Precision medicine in the epilepsies has gathered much attention, especially with gene discovery pushing forward new understanding of disease biology. Several targeted treatments are emerging, some with considerable sophistication and individual‐level tailoring. There have been rare achievements in improving short‐term outcomes in a few very select patients with epilepsy. The prospects for further targeted, repurposed, or novel treatments seem promising. Along with much‐needed success, difficulties are also arising. Precision treatments do not always work, and sometimes are inaccessible or do not yet exist. Failures of precision medicine may not find their way to broader scrutiny. Precision medicine is not a new concept: It has been boosted by genetics and is often focused on genetically determined epilepsies, typically considered to be driven in an individual by a single genetic variant. Often the mechanisms generating the full clinical phenotype from such a perceived single cause are incompletely understood. The impact of additional genetic variation and other factors that might influence the clinical presentation represent complexities that are not usually considered. Precision success and precision failure are usually equally incompletely explained. There is a need for more comprehensive evaluation and a more rigorous framework, bringing together information that is both necessary and sufficient to explain clinical presentation and clinical responses to precision treatment in a precision approach that considers the full picture not only of the effects of a single variant, but also of its genomic and other measurable environment, within the context of the whole person. As we may be on the brink of a treatment revolution, progress must be considered and reasoned: One possible framework is proposed for the evaluation of precision treatments.
Collapse
Affiliation(s)
- Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Bucks, UK
| |
Collapse
|
45
|
Kessi M, Chen B, Peng J, Tang Y, Olatoutou E, He F, Yang L, Yin F. Intellectual Disability and Potassium Channelopathies: A Systematic Review. Front Genet 2020; 11:614. [PMID: 32655623 PMCID: PMC7324798 DOI: 10.3389/fgene.2020.00614] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/20/2020] [Indexed: 01/15/2023] Open
Abstract
Intellectual disability (ID) manifests prior to adulthood as severe limitations to intellectual function and adaptive behavior. The role of potassium channelopathies in ID is poorly understood. Therefore, we aimed to evaluate the relationship between ID and potassium channelopathies. We hypothesized that potassium channelopathies are strongly associated with ID initiation, and that both gain- and loss-of-function mutations lead to ID. This systematic review explores the burden of potassium channelopathies, possible mechanisms, advancements using animal models, therapies, and existing gaps. The literature search encompassed both PubMed and Embase up to October 2019. A total of 75 articles describing 338 cases were included in this review. Nineteen channelopathies were identified, affecting the following genes: KCNMA1, KCNN3, KCNT1, KCNT2, KCNJ10, KCNJ6, KCNJ11, KCNA2, KCNA4, KCND3, KCNH1, KCNQ2, KCNAB1, KCNQ3, KCNQ5, KCNC1, KCNB1, KCNC3, and KCTD3. Twelve of these genes presented both gain- and loss-of-function properties, three displayed gain-of-function only, three exhibited loss-of-function only, and one had unknown function. How gain- and loss-of-function mutations can both lead to ID remains largely unknown. We identified only a few animal studies that focused on the mechanisms of ID in relation to potassium channelopathies and some of the few available therapeutic options (channel openers or blockers) appear to offer limited efficacy. In conclusion, potassium channelopathies contribute to the initiation of ID in several instances and this review provides a comprehensive overview of which molecular players are involved in some of the most prominent disease phenotypes.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China.,Kilimanjaro Christian Medical University College, Moshi, Tanzania.,Mawenzi Regional Referral Hospital, Moshi, Tanzania
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Yulin Tang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Eleonore Olatoutou
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| |
Collapse
|
46
|
Cole BA, Johnson RM, Dejakaisaya H, Pilati N, Fishwick CWG, Muench SP, Lippiat JD. Structure-Based Identification and Characterization of Inhibitors of the Epilepsy-Associated K Na1.1 (KCNT1) Potassium Channel. iScience 2020; 23:101100. [PMID: 32408169 PMCID: PMC7225746 DOI: 10.1016/j.isci.2020.101100] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/02/2020] [Accepted: 04/21/2020] [Indexed: 12/23/2022] Open
Abstract
Drug-resistant epileptic encephalopathies of infancy have been associated with KCNT1 gain-of-function mutations, which increase the activity of KNa1.1 sodium-activated potassium channels. Pharmacological inhibition of hyperactive KNa1.1 channels by quinidine has been proposed as a stratified treatment, but mostly this has not been successful, being linked to the low potency and lack of specificity of the drug. Here we describe the use of a previously determined cryo-electron microscopy-derived KNa1.1 structure and mutational analysis to identify how quinidine binds to the channel pore and, using computational methods, screened for compounds predicated to bind to this site. We describe six compounds that inhibited KNa1.1 channels with low- and sub-micromolar potencies, likely also through binding in the intracellular pore vestibule. In hERG inhibition and cytotoxicity assays, two compounds were ineffective. These may provide starting points for the development of new pharmacophores and could become tool compounds to study this channel further.
Collapse
Affiliation(s)
- Bethan A Cole
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Rachel M Johnson
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Hattapark Dejakaisaya
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Nadia Pilati
- Autifony Srl, Istituto di Ricerca Pediatrica Citta' della Speranza, Corso Stati Uniti, 4f, 35127 Padova, Italy
| | - Colin W G Fishwick
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | - Stephen P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Jonathan D Lippiat
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
47
|
Niu LG, Liu P, Wang ZW, Chen B. Slo2 potassium channel function depends on RNA editing-regulated expression of a SCYL1 protein. eLife 2020; 9:53986. [PMID: 32314960 PMCID: PMC7195191 DOI: 10.7554/elife.53986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/20/2020] [Indexed: 12/28/2022] Open
Abstract
Slo2 potassium channels play important roles in neuronal function, and their mutations in humans may cause epilepsies and cognitive defects. However, it is largely unknown how Slo2 is regulated by other proteins. Here we show that the function of C. elegans Slo2 (SLO-2) depends on adr-1, a gene important to RNA editing. ADR-1 promotes SLO-2 function not by editing the transcripts of slo-2 but those of scyl-1, which encodes an orthologue of mammalian SCYL1. Transcripts of scyl-1 are greatly decreased in adr-1 mutants due to deficient RNA editing at a single adenosine in their 3’-UTR. SCYL-1 physically interacts with SLO-2 in neurons. Single-channel open probability (Po) of neuronal SLO-2 is ~50% lower in scyl-1 knockout mutant than wild type. Moreover, human Slo2.2/Slack Po is doubled by SCYL1 in a heterologous expression system. These results suggest that SCYL-1/SCYL1 is an evolutionarily conserved regulator of Slo2 channels.
Collapse
Affiliation(s)
- Long-Gang Niu
- Department of Neuroscience, University of Connecticut Health Center, Farmington, United States
| | - Ping Liu
- Department of Neuroscience, University of Connecticut Health Center, Farmington, United States
| | - Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut Health Center, Farmington, United States
| | - Bojun Chen
- Department of Neuroscience, University of Connecticut Health Center, Farmington, United States
| |
Collapse
|
48
|
Tan TY, Sedmík J, Fitzgerald MP, Halevy RS, Keegan LP, Helbig I, Basel-Salmon L, Cohen L, Straussberg R, Chung WK, Helal M, Maroofian R, Houlden H, Juusola J, Sadedin S, Pais L, Howell KB, White SM, Christodoulou J, O'Connell MA. Bi-allelic ADARB1 Variants Associated with Microcephaly, Intellectual Disability, and Seizures. Am J Hum Genet 2020; 106:467-483. [PMID: 32220291 DOI: 10.1016/j.ajhg.2020.02.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/26/2020] [Indexed: 11/15/2022] Open
Abstract
The RNA editing enzyme ADAR2 is essential for the recoding of brain transcripts. Impaired ADAR2 editing leads to early-onset epilepsy and premature death in a mouse model. Here, we report bi-allelic variants in ADARB1, the gene encoding ADAR2, in four unrelated individuals with microcephaly, intellectual disability, and epilepsy. In one individual, a homozygous variant in one of the double-stranded RNA-binding domains (dsRBDs) was identified. In the others, variants were situated in or around the deaminase domain. To evaluate the effects of these variants on ADAR2 enzymatic activity, we performed in vitro assays with recombinant proteins in HEK293T cells and ex vivo assays with fibroblasts derived from one of the individuals. We demonstrate that these ADAR2 variants lead to reduced editing activity on a known ADAR2 substrate. We also demonstrate that one variant leads to changes in splicing of ADARB1 transcript isoforms. These findings reinforce the importance of RNA editing in brain development and introduce ADARB1 as a genetic etiology in individuals with intellectual disability, microcephaly, and epilepsy.
Collapse
Affiliation(s)
- Tiong Yang Tan
- Victorian Clinical Genetics Services, Melbourne 3052, Australia; Murdoch Children's Research Institute, Melbourne 3052, Australia; Department of Pediatrics, University of Melbourne, Melbourne 3052, Australia.
| | - Jiří Sedmík
- Central European Institute of Technology, Masaryk University, Kamenice 735/5, A35, Brno 62500, Czech Republic
| | - Mark P Fitzgerald
- Division of Neurology, Departments of Neurology and Pediatrics, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Rivka Sukenik Halevy
- Raphael Recanati Genetic Institute, Rabin Medical Center-Beilinson Hospital, Petah Tikva 49100, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Liam P Keegan
- Central European Institute of Technology, Masaryk University, Kamenice 735/5, A35, Brno 62500, Czech Republic
| | - Ingo Helbig
- Division of Neurology, Departments of Neurology and Pediatrics, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lina Basel-Salmon
- Raphael Recanati Genetic Institute, Rabin Medical Center-Beilinson Hospital, Petah Tikva 49100, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; Felsenstein Medical Research Center, Petah Tikva 49100, Israel
| | - Lior Cohen
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petah Tikva 49100, Israel
| | - Rachel Straussberg
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; Pediatric Neurology Unit, Schneider Children's Medical Center of Israel, Petah Tikva 49100, Israel
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Mayada Helal
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Reza Maroofian
- Department of Neuromuscular Disorders, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Henry Houlden
- Department of Neuromuscular Disorders, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
| | | | - Simon Sadedin
- Victorian Clinical Genetics Services, Melbourne 3052, Australia; Murdoch Children's Research Institute, Melbourne 3052, Australia
| | - Lynn Pais
- Broad Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Katherine B Howell
- Murdoch Children's Research Institute, Melbourne 3052, Australia; Department of Pediatrics, University of Melbourne, Melbourne 3052, Australia; Department of Neurology, Royal Children's Hospital, Parkville 3052, Australia
| | - Susan M White
- Victorian Clinical Genetics Services, Melbourne 3052, Australia; Murdoch Children's Research Institute, Melbourne 3052, Australia; Department of Pediatrics, University of Melbourne, Melbourne 3052, Australia
| | - John Christodoulou
- Victorian Clinical Genetics Services, Melbourne 3052, Australia; Murdoch Children's Research Institute, Melbourne 3052, Australia; Department of Pediatrics, University of Melbourne, Melbourne 3052, Australia
| | - Mary A O'Connell
- Central European Institute of Technology, Masaryk University, Kamenice 735/5, A35, Brno 62500, Czech Republic.
| |
Collapse
|
49
|
Mao X, Bruneau N, Gao Q, Becq H, Jia Z, Xi H, Shu L, Wang H, Szepetowski P, Aniksztejn L. The Epilepsy of Infancy With Migrating Focal Seizures: Identification of de novo Mutations of the KCNT2 Gene That Exert Inhibitory Effects on the Corresponding Heteromeric K Na1.1/K Na1.2 Potassium Channel. Front Cell Neurosci 2020; 14:1. [PMID: 32038177 PMCID: PMC6992647 DOI: 10.3389/fncel.2020.00001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/06/2020] [Indexed: 12/21/2022] Open
Abstract
The epilepsy of infancy with migrating focal seizures (EIMFS; previously called Malignant migrating partial seizures of infancy) are early-onset epileptic encephalopathies (EOEE) that associate multifocal ictal discharges and profound psychomotor retardation. EIMFS have a genetic origin and are mostly caused by de novo mutations in the KCNT1 gene, and much more rarely in the KCNT2 gene. KCNT1 and KCNT2 respectively encode the KNa1.1 (Slack) and KNa1.2 (Slick) subunits of the sodium-dependent voltage-gated potassium channel KNa. Functional analyses of the corresponding mutant homomeric channels in vitro suggested gain-of-function effects. Here, we report two novel, de novo truncating mutations of KCNT2: one mutation is frameshift (p.L48Qfs43), is situated in the N-terminal domain, and was found in a patient with EOEE (possibly EIMFS); the other mutation is nonsense (p.K564*), is located in the C-terminal region, and was found in a typical EIMFS patient. Using whole-cell patch-clamp recordings, we have analyzed the functional consequences of those two novel KCNT2 mutations on reconstituted KNa1.2 homomeric and KNa1.1/KNa1.2 heteromeric channels in transfected chinese hamster ovary (CHO) cells. We report that both mutations significantly impacted on KNa function; notably, they decreased the global current density of heteromeric channels by ~25% (p.K564*) and ~55% (p.L48Qfs43). Overall our data emphasize the involvement of KCNT2 in EOEE and provide novel insights into the role of heteromeric KNa channel in the severe KCNT2-related epileptic phenotypes. This may have important implications regarding the elaboration of future treatment.
Collapse
Affiliation(s)
- Xiao Mao
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Changsha, China
| | - Nadine Bruneau
- INSERM, Aix-Marseille University, INMED, UMR1249, Marseille, France
| | - Quwen Gao
- Department of Epilepsy, General Hospital of Southern Theater Command, Guangzhou, China
| | - Hélène Becq
- INSERM, Aix-Marseille University, INMED, UMR1249, Marseille, France
| | - Zhengjun Jia
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Changsha, China
| | - Hui Xi
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Changsha, China
| | - Li Shu
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Changsha, China
| | - Hua Wang
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Changsha, China
| | | | | |
Collapse
|
50
|
Barcia G, Chemaly N, Kuchenbuch M, Eisermann M, Gobin-Limballe S, Ciorna V, Macaya A, Lambert L, Dubois F, Doummar D, Billette de Villemeur T, Villeneuve N, Barthez MA, Nava C, Boddaert N, Kaminska A, Bahi-Buisson N, Milh M, Auvin S, Bonnefont JP, Nabbout R. Epilepsy with migrating focal seizures: KCNT1 mutation hotspots and phenotype variability. NEUROLOGY-GENETICS 2019; 5:e363. [PMID: 31872048 PMCID: PMC6878841 DOI: 10.1212/nxg.0000000000000363] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 09/04/2019] [Indexed: 01/29/2023]
Abstract
Objective To report new sporadic cases and 1 family with epilepsy of infancy with migrating focal seizures (EIMFSs) due to KCNT1 gain-of-function and to assess therapies' efficacy including quinidine. Methods We reviewed the clinical, EEG, and molecular data of 17 new patients with EIMFS and KCNT1 mutations, in collaboration with the network of the French reference center for rare epilepsies. Results The mean seizure onset age was 1 month (range: 1 hour to 4 months), and all children had focal motor seizures with autonomic signs and migrating ictal pattern on EEG. Three children also had infantile spasms and hypsarrhythmia. The identified KCNT1 variants clustered as “hot spots” on the C-terminal domain, and all mutations occurred de novo except the p.R398Q mutation inherited from the father with nocturnal frontal lobe epilepsy, present in 2 paternal uncles, one being asymptomatic and the other with single tonic-clonic seizure. In 1 patient with EIMFS, we identified the p.R1106Q mutation associated with Brugada syndrome and saw no abnormality in cardiac rhythm. Quinidine was well tolerated when administered to 2 and 4-year-old patients but did not reduce seizure frequency. Conclusions The majority of the KCNT1 mutations appear to cluster in hot spots essential for the channel activity. A same mutation can be linked to a spectrum of conditions ranging from EMFSI to asymptomatic carrier, even in the same family. None of the antiepileptic therapies displayed clinical efficacy, including quinidine in 2 patients.
Collapse
Affiliation(s)
- Giulia Barcia
- Service de Génétique (G.B., J.-P.B., S.G.-L.), Groupe Hospitalier Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM U1163 (G.B., N.B-.B., R.N.), Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France; Service de Neurologie Pédiatrique (N.C., N.B-.B., A.K., R.N.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Centre de Référence des Epilepsies Rares (N.C., A.K., R.N.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM U1129 (N.N., A.K., R.N.), Paris, France; Service de Neurophysiologie Clinique et Pédiatrie (M.K.), INSERM U1099, Hôpital Universitaire de Rennes, Université de Rennes, France; Service de Neurophysiologie Clinique (M.E., A.K.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Génétique Clinique (V.C.), Hôpital Femme Mère Enfant, Metz-Thionville, France; Pediatric Neurology Research Group (A.M.), Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Service de Génétique Clinique (L.L.), Hôpital d'Enfants, CHU de Nancy, Vandoeuvre-Lès-Nancy, France; Service de Pédiatrie (F.D.), CHU de Grenoble, France; Service de Neurologie Pédiatrique (D.D., T.B.V.), Hôpital Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Neurologie Pédiatrique (N.V., M.M.), APHM, Hôpital d'Enfants de La Timone, Marseille, France; Service de Neurologie Pédiatrique (M-.A.B., M.M.), Centre Hospitalier Universitaire de Tours, Tours, France; Département de Génétique (C.N., M.M.), Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Radiologie Pédiatrique (N.B., M.M.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Université Aix-Marseille (M.M.), INSERM, MMG, UMR-S 1251, Faculté de Médecine, Marseille, France; and Unité de Neurologie Pédiatrique (S.A.), Hôpital Rober Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Nicole Chemaly
- Service de Génétique (G.B., J.-P.B., S.G.-L.), Groupe Hospitalier Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM U1163 (G.B., N.B-.B., R.N.), Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France; Service de Neurologie Pédiatrique (N.C., N.B-.B., A.K., R.N.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Centre de Référence des Epilepsies Rares (N.C., A.K., R.N.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM U1129 (N.N., A.K., R.N.), Paris, France; Service de Neurophysiologie Clinique et Pédiatrie (M.K.), INSERM U1099, Hôpital Universitaire de Rennes, Université de Rennes, France; Service de Neurophysiologie Clinique (M.E., A.K.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Génétique Clinique (V.C.), Hôpital Femme Mère Enfant, Metz-Thionville, France; Pediatric Neurology Research Group (A.M.), Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Service de Génétique Clinique (L.L.), Hôpital d'Enfants, CHU de Nancy, Vandoeuvre-Lès-Nancy, France; Service de Pédiatrie (F.D.), CHU de Grenoble, France; Service de Neurologie Pédiatrique (D.D., T.B.V.), Hôpital Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Neurologie Pédiatrique (N.V., M.M.), APHM, Hôpital d'Enfants de La Timone, Marseille, France; Service de Neurologie Pédiatrique (M-.A.B., M.M.), Centre Hospitalier Universitaire de Tours, Tours, France; Département de Génétique (C.N., M.M.), Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Radiologie Pédiatrique (N.B., M.M.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Université Aix-Marseille (M.M.), INSERM, MMG, UMR-S 1251, Faculté de Médecine, Marseille, France; and Unité de Neurologie Pédiatrique (S.A.), Hôpital Rober Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Mathieu Kuchenbuch
- Service de Génétique (G.B., J.-P.B., S.G.-L.), Groupe Hospitalier Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM U1163 (G.B., N.B-.B., R.N.), Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France; Service de Neurologie Pédiatrique (N.C., N.B-.B., A.K., R.N.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Centre de Référence des Epilepsies Rares (N.C., A.K., R.N.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM U1129 (N.N., A.K., R.N.), Paris, France; Service de Neurophysiologie Clinique et Pédiatrie (M.K.), INSERM U1099, Hôpital Universitaire de Rennes, Université de Rennes, France; Service de Neurophysiologie Clinique (M.E., A.K.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Génétique Clinique (V.C.), Hôpital Femme Mère Enfant, Metz-Thionville, France; Pediatric Neurology Research Group (A.M.), Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Service de Génétique Clinique (L.L.), Hôpital d'Enfants, CHU de Nancy, Vandoeuvre-Lès-Nancy, France; Service de Pédiatrie (F.D.), CHU de Grenoble, France; Service de Neurologie Pédiatrique (D.D., T.B.V.), Hôpital Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Neurologie Pédiatrique (N.V., M.M.), APHM, Hôpital d'Enfants de La Timone, Marseille, France; Service de Neurologie Pédiatrique (M-.A.B., M.M.), Centre Hospitalier Universitaire de Tours, Tours, France; Département de Génétique (C.N., M.M.), Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Radiologie Pédiatrique (N.B., M.M.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Université Aix-Marseille (M.M.), INSERM, MMG, UMR-S 1251, Faculté de Médecine, Marseille, France; and Unité de Neurologie Pédiatrique (S.A.), Hôpital Rober Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Monika Eisermann
- Service de Génétique (G.B., J.-P.B., S.G.-L.), Groupe Hospitalier Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM U1163 (G.B., N.B-.B., R.N.), Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France; Service de Neurologie Pédiatrique (N.C., N.B-.B., A.K., R.N.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Centre de Référence des Epilepsies Rares (N.C., A.K., R.N.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM U1129 (N.N., A.K., R.N.), Paris, France; Service de Neurophysiologie Clinique et Pédiatrie (M.K.), INSERM U1099, Hôpital Universitaire de Rennes, Université de Rennes, France; Service de Neurophysiologie Clinique (M.E., A.K.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Génétique Clinique (V.C.), Hôpital Femme Mère Enfant, Metz-Thionville, France; Pediatric Neurology Research Group (A.M.), Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Service de Génétique Clinique (L.L.), Hôpital d'Enfants, CHU de Nancy, Vandoeuvre-Lès-Nancy, France; Service de Pédiatrie (F.D.), CHU de Grenoble, France; Service de Neurologie Pédiatrique (D.D., T.B.V.), Hôpital Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Neurologie Pédiatrique (N.V., M.M.), APHM, Hôpital d'Enfants de La Timone, Marseille, France; Service de Neurologie Pédiatrique (M-.A.B., M.M.), Centre Hospitalier Universitaire de Tours, Tours, France; Département de Génétique (C.N., M.M.), Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Radiologie Pédiatrique (N.B., M.M.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Université Aix-Marseille (M.M.), INSERM, MMG, UMR-S 1251, Faculté de Médecine, Marseille, France; and Unité de Neurologie Pédiatrique (S.A.), Hôpital Rober Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Stéphanie Gobin-Limballe
- Service de Génétique (G.B., J.-P.B., S.G.-L.), Groupe Hospitalier Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM U1163 (G.B., N.B-.B., R.N.), Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France; Service de Neurologie Pédiatrique (N.C., N.B-.B., A.K., R.N.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Centre de Référence des Epilepsies Rares (N.C., A.K., R.N.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM U1129 (N.N., A.K., R.N.), Paris, France; Service de Neurophysiologie Clinique et Pédiatrie (M.K.), INSERM U1099, Hôpital Universitaire de Rennes, Université de Rennes, France; Service de Neurophysiologie Clinique (M.E., A.K.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Génétique Clinique (V.C.), Hôpital Femme Mère Enfant, Metz-Thionville, France; Pediatric Neurology Research Group (A.M.), Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Service de Génétique Clinique (L.L.), Hôpital d'Enfants, CHU de Nancy, Vandoeuvre-Lès-Nancy, France; Service de Pédiatrie (F.D.), CHU de Grenoble, France; Service de Neurologie Pédiatrique (D.D., T.B.V.), Hôpital Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Neurologie Pédiatrique (N.V., M.M.), APHM, Hôpital d'Enfants de La Timone, Marseille, France; Service de Neurologie Pédiatrique (M-.A.B., M.M.), Centre Hospitalier Universitaire de Tours, Tours, France; Département de Génétique (C.N., M.M.), Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Radiologie Pédiatrique (N.B., M.M.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Université Aix-Marseille (M.M.), INSERM, MMG, UMR-S 1251, Faculté de Médecine, Marseille, France; and Unité de Neurologie Pédiatrique (S.A.), Hôpital Rober Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Viorica Ciorna
- Service de Génétique (G.B., J.-P.B., S.G.-L.), Groupe Hospitalier Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM U1163 (G.B., N.B-.B., R.N.), Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France; Service de Neurologie Pédiatrique (N.C., N.B-.B., A.K., R.N.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Centre de Référence des Epilepsies Rares (N.C., A.K., R.N.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM U1129 (N.N., A.K., R.N.), Paris, France; Service de Neurophysiologie Clinique et Pédiatrie (M.K.), INSERM U1099, Hôpital Universitaire de Rennes, Université de Rennes, France; Service de Neurophysiologie Clinique (M.E., A.K.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Génétique Clinique (V.C.), Hôpital Femme Mère Enfant, Metz-Thionville, France; Pediatric Neurology Research Group (A.M.), Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Service de Génétique Clinique (L.L.), Hôpital d'Enfants, CHU de Nancy, Vandoeuvre-Lès-Nancy, France; Service de Pédiatrie (F.D.), CHU de Grenoble, France; Service de Neurologie Pédiatrique (D.D., T.B.V.), Hôpital Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Neurologie Pédiatrique (N.V., M.M.), APHM, Hôpital d'Enfants de La Timone, Marseille, France; Service de Neurologie Pédiatrique (M-.A.B., M.M.), Centre Hospitalier Universitaire de Tours, Tours, France; Département de Génétique (C.N., M.M.), Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Radiologie Pédiatrique (N.B., M.M.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Université Aix-Marseille (M.M.), INSERM, MMG, UMR-S 1251, Faculté de Médecine, Marseille, France; and Unité de Neurologie Pédiatrique (S.A.), Hôpital Rober Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alfons Macaya
- Service de Génétique (G.B., J.-P.B., S.G.-L.), Groupe Hospitalier Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM U1163 (G.B., N.B-.B., R.N.), Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France; Service de Neurologie Pédiatrique (N.C., N.B-.B., A.K., R.N.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Centre de Référence des Epilepsies Rares (N.C., A.K., R.N.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM U1129 (N.N., A.K., R.N.), Paris, France; Service de Neurophysiologie Clinique et Pédiatrie (M.K.), INSERM U1099, Hôpital Universitaire de Rennes, Université de Rennes, France; Service de Neurophysiologie Clinique (M.E., A.K.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Génétique Clinique (V.C.), Hôpital Femme Mère Enfant, Metz-Thionville, France; Pediatric Neurology Research Group (A.M.), Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Service de Génétique Clinique (L.L.), Hôpital d'Enfants, CHU de Nancy, Vandoeuvre-Lès-Nancy, France; Service de Pédiatrie (F.D.), CHU de Grenoble, France; Service de Neurologie Pédiatrique (D.D., T.B.V.), Hôpital Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Neurologie Pédiatrique (N.V., M.M.), APHM, Hôpital d'Enfants de La Timone, Marseille, France; Service de Neurologie Pédiatrique (M-.A.B., M.M.), Centre Hospitalier Universitaire de Tours, Tours, France; Département de Génétique (C.N., M.M.), Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Radiologie Pédiatrique (N.B., M.M.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Université Aix-Marseille (M.M.), INSERM, MMG, UMR-S 1251, Faculté de Médecine, Marseille, France; and Unité de Neurologie Pédiatrique (S.A.), Hôpital Rober Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Laetitia Lambert
- Service de Génétique (G.B., J.-P.B., S.G.-L.), Groupe Hospitalier Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM U1163 (G.B., N.B-.B., R.N.), Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France; Service de Neurologie Pédiatrique (N.C., N.B-.B., A.K., R.N.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Centre de Référence des Epilepsies Rares (N.C., A.K., R.N.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM U1129 (N.N., A.K., R.N.), Paris, France; Service de Neurophysiologie Clinique et Pédiatrie (M.K.), INSERM U1099, Hôpital Universitaire de Rennes, Université de Rennes, France; Service de Neurophysiologie Clinique (M.E., A.K.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Génétique Clinique (V.C.), Hôpital Femme Mère Enfant, Metz-Thionville, France; Pediatric Neurology Research Group (A.M.), Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Service de Génétique Clinique (L.L.), Hôpital d'Enfants, CHU de Nancy, Vandoeuvre-Lès-Nancy, France; Service de Pédiatrie (F.D.), CHU de Grenoble, France; Service de Neurologie Pédiatrique (D.D., T.B.V.), Hôpital Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Neurologie Pédiatrique (N.V., M.M.), APHM, Hôpital d'Enfants de La Timone, Marseille, France; Service de Neurologie Pédiatrique (M-.A.B., M.M.), Centre Hospitalier Universitaire de Tours, Tours, France; Département de Génétique (C.N., M.M.), Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Radiologie Pédiatrique (N.B., M.M.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Université Aix-Marseille (M.M.), INSERM, MMG, UMR-S 1251, Faculté de Médecine, Marseille, France; and Unité de Neurologie Pédiatrique (S.A.), Hôpital Rober Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Fanny Dubois
- Service de Génétique (G.B., J.-P.B., S.G.-L.), Groupe Hospitalier Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM U1163 (G.B., N.B-.B., R.N.), Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France; Service de Neurologie Pédiatrique (N.C., N.B-.B., A.K., R.N.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Centre de Référence des Epilepsies Rares (N.C., A.K., R.N.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM U1129 (N.N., A.K., R.N.), Paris, France; Service de Neurophysiologie Clinique et Pédiatrie (M.K.), INSERM U1099, Hôpital Universitaire de Rennes, Université de Rennes, France; Service de Neurophysiologie Clinique (M.E., A.K.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Génétique Clinique (V.C.), Hôpital Femme Mère Enfant, Metz-Thionville, France; Pediatric Neurology Research Group (A.M.), Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Service de Génétique Clinique (L.L.), Hôpital d'Enfants, CHU de Nancy, Vandoeuvre-Lès-Nancy, France; Service de Pédiatrie (F.D.), CHU de Grenoble, France; Service de Neurologie Pédiatrique (D.D., T.B.V.), Hôpital Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Neurologie Pédiatrique (N.V., M.M.), APHM, Hôpital d'Enfants de La Timone, Marseille, France; Service de Neurologie Pédiatrique (M-.A.B., M.M.), Centre Hospitalier Universitaire de Tours, Tours, France; Département de Génétique (C.N., M.M.), Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Radiologie Pédiatrique (N.B., M.M.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Université Aix-Marseille (M.M.), INSERM, MMG, UMR-S 1251, Faculté de Médecine, Marseille, France; and Unité de Neurologie Pédiatrique (S.A.), Hôpital Rober Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Diane Doummar
- Service de Génétique (G.B., J.-P.B., S.G.-L.), Groupe Hospitalier Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM U1163 (G.B., N.B-.B., R.N.), Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France; Service de Neurologie Pédiatrique (N.C., N.B-.B., A.K., R.N.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Centre de Référence des Epilepsies Rares (N.C., A.K., R.N.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM U1129 (N.N., A.K., R.N.), Paris, France; Service de Neurophysiologie Clinique et Pédiatrie (M.K.), INSERM U1099, Hôpital Universitaire de Rennes, Université de Rennes, France; Service de Neurophysiologie Clinique (M.E., A.K.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Génétique Clinique (V.C.), Hôpital Femme Mère Enfant, Metz-Thionville, France; Pediatric Neurology Research Group (A.M.), Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Service de Génétique Clinique (L.L.), Hôpital d'Enfants, CHU de Nancy, Vandoeuvre-Lès-Nancy, France; Service de Pédiatrie (F.D.), CHU de Grenoble, France; Service de Neurologie Pédiatrique (D.D., T.B.V.), Hôpital Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Neurologie Pédiatrique (N.V., M.M.), APHM, Hôpital d'Enfants de La Timone, Marseille, France; Service de Neurologie Pédiatrique (M-.A.B., M.M.), Centre Hospitalier Universitaire de Tours, Tours, France; Département de Génétique (C.N., M.M.), Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Radiologie Pédiatrique (N.B., M.M.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Université Aix-Marseille (M.M.), INSERM, MMG, UMR-S 1251, Faculté de Médecine, Marseille, France; and Unité de Neurologie Pédiatrique (S.A.), Hôpital Rober Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Thierry Billette de Villemeur
- Service de Génétique (G.B., J.-P.B., S.G.-L.), Groupe Hospitalier Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM U1163 (G.B., N.B-.B., R.N.), Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France; Service de Neurologie Pédiatrique (N.C., N.B-.B., A.K., R.N.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Centre de Référence des Epilepsies Rares (N.C., A.K., R.N.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM U1129 (N.N., A.K., R.N.), Paris, France; Service de Neurophysiologie Clinique et Pédiatrie (M.K.), INSERM U1099, Hôpital Universitaire de Rennes, Université de Rennes, France; Service de Neurophysiologie Clinique (M.E., A.K.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Génétique Clinique (V.C.), Hôpital Femme Mère Enfant, Metz-Thionville, France; Pediatric Neurology Research Group (A.M.), Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Service de Génétique Clinique (L.L.), Hôpital d'Enfants, CHU de Nancy, Vandoeuvre-Lès-Nancy, France; Service de Pédiatrie (F.D.), CHU de Grenoble, France; Service de Neurologie Pédiatrique (D.D., T.B.V.), Hôpital Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Neurologie Pédiatrique (N.V., M.M.), APHM, Hôpital d'Enfants de La Timone, Marseille, France; Service de Neurologie Pédiatrique (M-.A.B., M.M.), Centre Hospitalier Universitaire de Tours, Tours, France; Département de Génétique (C.N., M.M.), Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Radiologie Pédiatrique (N.B., M.M.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Université Aix-Marseille (M.M.), INSERM, MMG, UMR-S 1251, Faculté de Médecine, Marseille, France; and Unité de Neurologie Pédiatrique (S.A.), Hôpital Rober Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Nathalie Villeneuve
- Service de Génétique (G.B., J.-P.B., S.G.-L.), Groupe Hospitalier Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM U1163 (G.B., N.B-.B., R.N.), Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France; Service de Neurologie Pédiatrique (N.C., N.B-.B., A.K., R.N.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Centre de Référence des Epilepsies Rares (N.C., A.K., R.N.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM U1129 (N.N., A.K., R.N.), Paris, France; Service de Neurophysiologie Clinique et Pédiatrie (M.K.), INSERM U1099, Hôpital Universitaire de Rennes, Université de Rennes, France; Service de Neurophysiologie Clinique (M.E., A.K.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Génétique Clinique (V.C.), Hôpital Femme Mère Enfant, Metz-Thionville, France; Pediatric Neurology Research Group (A.M.), Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Service de Génétique Clinique (L.L.), Hôpital d'Enfants, CHU de Nancy, Vandoeuvre-Lès-Nancy, France; Service de Pédiatrie (F.D.), CHU de Grenoble, France; Service de Neurologie Pédiatrique (D.D., T.B.V.), Hôpital Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Neurologie Pédiatrique (N.V., M.M.), APHM, Hôpital d'Enfants de La Timone, Marseille, France; Service de Neurologie Pédiatrique (M-.A.B., M.M.), Centre Hospitalier Universitaire de Tours, Tours, France; Département de Génétique (C.N., M.M.), Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Radiologie Pédiatrique (N.B., M.M.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Université Aix-Marseille (M.M.), INSERM, MMG, UMR-S 1251, Faculté de Médecine, Marseille, France; and Unité de Neurologie Pédiatrique (S.A.), Hôpital Rober Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marie-Anne Barthez
- Service de Génétique (G.B., J.-P.B., S.G.-L.), Groupe Hospitalier Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM U1163 (G.B., N.B-.B., R.N.), Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France; Service de Neurologie Pédiatrique (N.C., N.B-.B., A.K., R.N.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Centre de Référence des Epilepsies Rares (N.C., A.K., R.N.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM U1129 (N.N., A.K., R.N.), Paris, France; Service de Neurophysiologie Clinique et Pédiatrie (M.K.), INSERM U1099, Hôpital Universitaire de Rennes, Université de Rennes, France; Service de Neurophysiologie Clinique (M.E., A.K.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Génétique Clinique (V.C.), Hôpital Femme Mère Enfant, Metz-Thionville, France; Pediatric Neurology Research Group (A.M.), Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Service de Génétique Clinique (L.L.), Hôpital d'Enfants, CHU de Nancy, Vandoeuvre-Lès-Nancy, France; Service de Pédiatrie (F.D.), CHU de Grenoble, France; Service de Neurologie Pédiatrique (D.D., T.B.V.), Hôpital Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Neurologie Pédiatrique (N.V., M.M.), APHM, Hôpital d'Enfants de La Timone, Marseille, France; Service de Neurologie Pédiatrique (M-.A.B., M.M.), Centre Hospitalier Universitaire de Tours, Tours, France; Département de Génétique (C.N., M.M.), Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Radiologie Pédiatrique (N.B., M.M.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Université Aix-Marseille (M.M.), INSERM, MMG, UMR-S 1251, Faculté de Médecine, Marseille, France; and Unité de Neurologie Pédiatrique (S.A.), Hôpital Rober Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Caroline Nava
- Service de Génétique (G.B., J.-P.B., S.G.-L.), Groupe Hospitalier Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM U1163 (G.B., N.B-.B., R.N.), Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France; Service de Neurologie Pédiatrique (N.C., N.B-.B., A.K., R.N.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Centre de Référence des Epilepsies Rares (N.C., A.K., R.N.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM U1129 (N.N., A.K., R.N.), Paris, France; Service de Neurophysiologie Clinique et Pédiatrie (M.K.), INSERM U1099, Hôpital Universitaire de Rennes, Université de Rennes, France; Service de Neurophysiologie Clinique (M.E., A.K.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Génétique Clinique (V.C.), Hôpital Femme Mère Enfant, Metz-Thionville, France; Pediatric Neurology Research Group (A.M.), Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Service de Génétique Clinique (L.L.), Hôpital d'Enfants, CHU de Nancy, Vandoeuvre-Lès-Nancy, France; Service de Pédiatrie (F.D.), CHU de Grenoble, France; Service de Neurologie Pédiatrique (D.D., T.B.V.), Hôpital Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Neurologie Pédiatrique (N.V., M.M.), APHM, Hôpital d'Enfants de La Timone, Marseille, France; Service de Neurologie Pédiatrique (M-.A.B., M.M.), Centre Hospitalier Universitaire de Tours, Tours, France; Département de Génétique (C.N., M.M.), Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Radiologie Pédiatrique (N.B., M.M.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Université Aix-Marseille (M.M.), INSERM, MMG, UMR-S 1251, Faculté de Médecine, Marseille, France; and Unité de Neurologie Pédiatrique (S.A.), Hôpital Rober Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Nathalie Boddaert
- Service de Génétique (G.B., J.-P.B., S.G.-L.), Groupe Hospitalier Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM U1163 (G.B., N.B-.B., R.N.), Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France; Service de Neurologie Pédiatrique (N.C., N.B-.B., A.K., R.N.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Centre de Référence des Epilepsies Rares (N.C., A.K., R.N.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM U1129 (N.N., A.K., R.N.), Paris, France; Service de Neurophysiologie Clinique et Pédiatrie (M.K.), INSERM U1099, Hôpital Universitaire de Rennes, Université de Rennes, France; Service de Neurophysiologie Clinique (M.E., A.K.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Génétique Clinique (V.C.), Hôpital Femme Mère Enfant, Metz-Thionville, France; Pediatric Neurology Research Group (A.M.), Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Service de Génétique Clinique (L.L.), Hôpital d'Enfants, CHU de Nancy, Vandoeuvre-Lès-Nancy, France; Service de Pédiatrie (F.D.), CHU de Grenoble, France; Service de Neurologie Pédiatrique (D.D., T.B.V.), Hôpital Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Neurologie Pédiatrique (N.V., M.M.), APHM, Hôpital d'Enfants de La Timone, Marseille, France; Service de Neurologie Pédiatrique (M-.A.B., M.M.), Centre Hospitalier Universitaire de Tours, Tours, France; Département de Génétique (C.N., M.M.), Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Radiologie Pédiatrique (N.B., M.M.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Université Aix-Marseille (M.M.), INSERM, MMG, UMR-S 1251, Faculté de Médecine, Marseille, France; and Unité de Neurologie Pédiatrique (S.A.), Hôpital Rober Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Anna Kaminska
- Service de Génétique (G.B., J.-P.B., S.G.-L.), Groupe Hospitalier Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM U1163 (G.B., N.B-.B., R.N.), Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France; Service de Neurologie Pédiatrique (N.C., N.B-.B., A.K., R.N.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Centre de Référence des Epilepsies Rares (N.C., A.K., R.N.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM U1129 (N.N., A.K., R.N.), Paris, France; Service de Neurophysiologie Clinique et Pédiatrie (M.K.), INSERM U1099, Hôpital Universitaire de Rennes, Université de Rennes, France; Service de Neurophysiologie Clinique (M.E., A.K.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Génétique Clinique (V.C.), Hôpital Femme Mère Enfant, Metz-Thionville, France; Pediatric Neurology Research Group (A.M.), Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Service de Génétique Clinique (L.L.), Hôpital d'Enfants, CHU de Nancy, Vandoeuvre-Lès-Nancy, France; Service de Pédiatrie (F.D.), CHU de Grenoble, France; Service de Neurologie Pédiatrique (D.D., T.B.V.), Hôpital Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Neurologie Pédiatrique (N.V., M.M.), APHM, Hôpital d'Enfants de La Timone, Marseille, France; Service de Neurologie Pédiatrique (M-.A.B., M.M.), Centre Hospitalier Universitaire de Tours, Tours, France; Département de Génétique (C.N., M.M.), Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Radiologie Pédiatrique (N.B., M.M.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Université Aix-Marseille (M.M.), INSERM, MMG, UMR-S 1251, Faculté de Médecine, Marseille, France; and Unité de Neurologie Pédiatrique (S.A.), Hôpital Rober Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Nadia Bahi-Buisson
- Service de Génétique (G.B., J.-P.B., S.G.-L.), Groupe Hospitalier Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM U1163 (G.B., N.B-.B., R.N.), Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France; Service de Neurologie Pédiatrique (N.C., N.B-.B., A.K., R.N.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Centre de Référence des Epilepsies Rares (N.C., A.K., R.N.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM U1129 (N.N., A.K., R.N.), Paris, France; Service de Neurophysiologie Clinique et Pédiatrie (M.K.), INSERM U1099, Hôpital Universitaire de Rennes, Université de Rennes, France; Service de Neurophysiologie Clinique (M.E., A.K.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Génétique Clinique (V.C.), Hôpital Femme Mère Enfant, Metz-Thionville, France; Pediatric Neurology Research Group (A.M.), Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Service de Génétique Clinique (L.L.), Hôpital d'Enfants, CHU de Nancy, Vandoeuvre-Lès-Nancy, France; Service de Pédiatrie (F.D.), CHU de Grenoble, France; Service de Neurologie Pédiatrique (D.D., T.B.V.), Hôpital Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Neurologie Pédiatrique (N.V., M.M.), APHM, Hôpital d'Enfants de La Timone, Marseille, France; Service de Neurologie Pédiatrique (M-.A.B., M.M.), Centre Hospitalier Universitaire de Tours, Tours, France; Département de Génétique (C.N., M.M.), Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Radiologie Pédiatrique (N.B., M.M.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Université Aix-Marseille (M.M.), INSERM, MMG, UMR-S 1251, Faculté de Médecine, Marseille, France; and Unité de Neurologie Pédiatrique (S.A.), Hôpital Rober Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Mathieu Milh
- Service de Génétique (G.B., J.-P.B., S.G.-L.), Groupe Hospitalier Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM U1163 (G.B., N.B-.B., R.N.), Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France; Service de Neurologie Pédiatrique (N.C., N.B-.B., A.K., R.N.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Centre de Référence des Epilepsies Rares (N.C., A.K., R.N.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM U1129 (N.N., A.K., R.N.), Paris, France; Service de Neurophysiologie Clinique et Pédiatrie (M.K.), INSERM U1099, Hôpital Universitaire de Rennes, Université de Rennes, France; Service de Neurophysiologie Clinique (M.E., A.K.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Génétique Clinique (V.C.), Hôpital Femme Mère Enfant, Metz-Thionville, France; Pediatric Neurology Research Group (A.M.), Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Service de Génétique Clinique (L.L.), Hôpital d'Enfants, CHU de Nancy, Vandoeuvre-Lès-Nancy, France; Service de Pédiatrie (F.D.), CHU de Grenoble, France; Service de Neurologie Pédiatrique (D.D., T.B.V.), Hôpital Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Neurologie Pédiatrique (N.V., M.M.), APHM, Hôpital d'Enfants de La Timone, Marseille, France; Service de Neurologie Pédiatrique (M-.A.B., M.M.), Centre Hospitalier Universitaire de Tours, Tours, France; Département de Génétique (C.N., M.M.), Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Radiologie Pédiatrique (N.B., M.M.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Université Aix-Marseille (M.M.), INSERM, MMG, UMR-S 1251, Faculté de Médecine, Marseille, France; and Unité de Neurologie Pédiatrique (S.A.), Hôpital Rober Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Stéphane Auvin
- Service de Génétique (G.B., J.-P.B., S.G.-L.), Groupe Hospitalier Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM U1163 (G.B., N.B-.B., R.N.), Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France; Service de Neurologie Pédiatrique (N.C., N.B-.B., A.K., R.N.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Centre de Référence des Epilepsies Rares (N.C., A.K., R.N.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM U1129 (N.N., A.K., R.N.), Paris, France; Service de Neurophysiologie Clinique et Pédiatrie (M.K.), INSERM U1099, Hôpital Universitaire de Rennes, Université de Rennes, France; Service de Neurophysiologie Clinique (M.E., A.K.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Génétique Clinique (V.C.), Hôpital Femme Mère Enfant, Metz-Thionville, France; Pediatric Neurology Research Group (A.M.), Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Service de Génétique Clinique (L.L.), Hôpital d'Enfants, CHU de Nancy, Vandoeuvre-Lès-Nancy, France; Service de Pédiatrie (F.D.), CHU de Grenoble, France; Service de Neurologie Pédiatrique (D.D., T.B.V.), Hôpital Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Neurologie Pédiatrique (N.V., M.M.), APHM, Hôpital d'Enfants de La Timone, Marseille, France; Service de Neurologie Pédiatrique (M-.A.B., M.M.), Centre Hospitalier Universitaire de Tours, Tours, France; Département de Génétique (C.N., M.M.), Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Radiologie Pédiatrique (N.B., M.M.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Université Aix-Marseille (M.M.), INSERM, MMG, UMR-S 1251, Faculté de Médecine, Marseille, France; and Unité de Neurologie Pédiatrique (S.A.), Hôpital Rober Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jean-Paul Bonnefont
- Service de Génétique (G.B., J.-P.B., S.G.-L.), Groupe Hospitalier Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM U1163 (G.B., N.B-.B., R.N.), Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France; Service de Neurologie Pédiatrique (N.C., N.B-.B., A.K., R.N.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Centre de Référence des Epilepsies Rares (N.C., A.K., R.N.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM U1129 (N.N., A.K., R.N.), Paris, France; Service de Neurophysiologie Clinique et Pédiatrie (M.K.), INSERM U1099, Hôpital Universitaire de Rennes, Université de Rennes, France; Service de Neurophysiologie Clinique (M.E., A.K.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Génétique Clinique (V.C.), Hôpital Femme Mère Enfant, Metz-Thionville, France; Pediatric Neurology Research Group (A.M.), Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Service de Génétique Clinique (L.L.), Hôpital d'Enfants, CHU de Nancy, Vandoeuvre-Lès-Nancy, France; Service de Pédiatrie (F.D.), CHU de Grenoble, France; Service de Neurologie Pédiatrique (D.D., T.B.V.), Hôpital Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Neurologie Pédiatrique (N.V., M.M.), APHM, Hôpital d'Enfants de La Timone, Marseille, France; Service de Neurologie Pédiatrique (M-.A.B., M.M.), Centre Hospitalier Universitaire de Tours, Tours, France; Département de Génétique (C.N., M.M.), Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Radiologie Pédiatrique (N.B., M.M.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Université Aix-Marseille (M.M.), INSERM, MMG, UMR-S 1251, Faculté de Médecine, Marseille, France; and Unité de Neurologie Pédiatrique (S.A.), Hôpital Rober Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Rima Nabbout
- Service de Génétique (G.B., J.-P.B., S.G.-L.), Groupe Hospitalier Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM U1163 (G.B., N.B-.B., R.N.), Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France; Service de Neurologie Pédiatrique (N.C., N.B-.B., A.K., R.N.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Centre de Référence des Epilepsies Rares (N.C., A.K., R.N.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM U1129 (N.N., A.K., R.N.), Paris, France; Service de Neurophysiologie Clinique et Pédiatrie (M.K.), INSERM U1099, Hôpital Universitaire de Rennes, Université de Rennes, France; Service de Neurophysiologie Clinique (M.E., A.K.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Génétique Clinique (V.C.), Hôpital Femme Mère Enfant, Metz-Thionville, France; Pediatric Neurology Research Group (A.M.), Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Service de Génétique Clinique (L.L.), Hôpital d'Enfants, CHU de Nancy, Vandoeuvre-Lès-Nancy, France; Service de Pédiatrie (F.D.), CHU de Grenoble, France; Service de Neurologie Pédiatrique (D.D., T.B.V.), Hôpital Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Neurologie Pédiatrique (N.V., M.M.), APHM, Hôpital d'Enfants de La Timone, Marseille, France; Service de Neurologie Pédiatrique (M-.A.B., M.M.), Centre Hospitalier Universitaire de Tours, Tours, France; Département de Génétique (C.N., M.M.), Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France; Service de Radiologie Pédiatrique (N.B., M.M.), Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; Université Aix-Marseille (M.M.), INSERM, MMG, UMR-S 1251, Faculté de Médecine, Marseille, France; and Unité de Neurologie Pédiatrique (S.A.), Hôpital Rober Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|