1
|
Song Y, Song Q, Tan F, Wang Y, Li C, Liao S, Yu K, Mei Z, Lv L. Seliciclib alleviates ulcerative colitis by inhibiting ferroptosis and improving intestinal inflammation. Life Sci 2024; 351:122794. [PMID: 38866218 DOI: 10.1016/j.lfs.2024.122794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic, recurrent, non-specific inflammatory disease, and the pathogenesis of the disease remains unclear. Ferroptosis is a form of programmed cell death characterized by the accumulation of iron-dependent lipid peroxides, which are simultaneously closely related to reactive oxygen species (ROS). Although seliciclib is highly effective against immune inflammation, its mechanism on colitis is unclear. This study demonstrated that seliciclib administration partially inhibited ferroptosis, alleviating symptoms and inflammation in experimental colitis. METHODS The mouse UC model was induced by 3.0 % dextran sodium sulfate (DSS) for 7 days and treated with seliciclib (10 mg/kg) for 5 days. In the in vitro model, LPS (100 μg/mL) was used for induction and seliciclib (10 μM) was applied for 2 h. Meanwhile, appropriate histopathology, inflammatory response, oxidative stress, and ferroptosis regulators were measured. RESULTS This study primarily investigated the role of seliciclib in regulating ferroptosis in UC. Bioinformatics analysis indicated that Dual oxidase 2 (DUOX2) may serve a role involved in the ferroptosis of UC. The experimental findings demonstrated that seliciclib alleviates symptoms and inflammation in DSS-induced UC mice and partially mitigates the occurrence of ferroptosis both in vivo and in vitro, possibly through the modulation of DUOX2. CONCLUSIONS Ferroptosis is strongly associated with the development of colitis, and seliciclib plays an essential role in ferroptosis and inflammation in UC. The suppression of ferroptosis in the intestinal epithelium could be a therapeutic approach for UC.
Collapse
Affiliation(s)
- Ya Song
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, 400010 Chongqing, China.
| | - Qian Song
- The Second College of Clinical Medicine, Chongqing Medical University, 1 Yixue Road, Yuzhong, 400016 Chongqing, China.
| | - Fangyan Tan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, 400010 Chongqing, China.
| | - Yanhui Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, 400010 Chongqing, China
| | - Chuanfei Li
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, 400010 Chongqing, China
| | - Shengtao Liao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, 400010 Chongqing, China.
| | - Keqi Yu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, 400010 Chongqing, China
| | - Zhechuan Mei
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, 400010 Chongqing, China.
| | - Lin Lv
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, 400010 Chongqing, China.
| |
Collapse
|
2
|
Zhang S, Huang Y, Lu G, Zhang Z, Wang Y, Liu Y, Wang W, Li Q, Li P, Wen Q, Cui B, Zhang F. Comparison between washed microbiota transplantation and infliximab: Medical cost during long-term management in patients with inflammatory bowel disease. J Chin Med Assoc 2024; 87:109-118. [PMID: 37988085 DOI: 10.1097/jcma.0000000000001025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Both infliximab (IFX) and fecal microbiota transplantation (FMT) have shown the efficacy for inflammatory bowel disease (IBD). However, there has no head-to-head study on the cost-value of the such treatments on IBD. This study aimed to compare the medical costs using IFX and the new method of FMT (washed microbiota transplantation [WMT]) in the long-term management for IBD under the current health economic condition in China. METHODS Patients with IBD who underwent initial WMT via upper gastrointestinal endoscopy, mid-gut tube, or colonic transendoscopic enteral tubing at a university hospital between April 2013 and August 2021 and achieved the long-term sustainment with WMT or WMT combined with mesalazine until August 2022 were recruited in the real-world. The costs and hospitalizations were analyzed among two therapies mentioned above and IFX standard therapy. The charge of WMT was stable in the long term at our center, and the charge of IFX came from virtual statistics publicized by China Healthcare Security. RESULTS Sixty eligible patients with IBD were included in the study. The long-term costs of patients using WMT monotherapy annually or per hospitalization were lower than those on WMT combined with mesalazine, respectively ( p < 0.001, respectively). The cumulative costs of IFX at the time of 0.52 and 0.85 years exceeded that of the above WMT, respectively ( p < 0.001, respectively). Besides, patients on WMT monotherapy paid 51.1 k CNY annually in the nonsustain phase but cut down the costs by 7.2 k CNY and duration of hospitalization by 5.1 days per hospitalization when reaching the goal of sustainment. CONCLUSION This study demonstrated that WMT could dramatically reduce the cost and duration of hospitalizations in the long-term sustainment in the current Chinese IBD cohort. Compared with IFX, WMT could be a good way for the patients with IBD achieving long-term sustainment and saving medical costs.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Lab of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yihao Huang
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Lab of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Gaochen Lu
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Lab of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zulun Zhang
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Lab of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yun Wang
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Lab of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yujie Liu
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Lab of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weihong Wang
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Lab of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qianqian Li
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Lab of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pan Li
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Lab of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Quan Wen
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Lab of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bota Cui
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Lab of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Faming Zhang
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Lab of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Microbiotherapy, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
- National Clinical Research Center for Digestive Diseases, Xi'an, China
| |
Collapse
|
3
|
Katkar GD, Sayed IM, Anandachar MS, Castillo V, Vidales E, Toobian D, Usmani F, Sawires JR, Leriche G, Yang J, Sandborn WJ, Das S, Sahoo D, Ghosh P. Artificial intelligence-rationalized balanced PPARα/γ dual agonism resets dysregulated macrophage processes in inflammatory bowel disease. Commun Biol 2022; 5:231. [PMID: 35288651 PMCID: PMC8921270 DOI: 10.1038/s42003-022-03168-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
A computational platform, Boolean network explorer (BoNE), has recently been developed to infuse AI-enhanced precision into drug discovery; it enables invariant Boolean Implication Networks of disease maps for prioritizing high-value targets. Here we used BoNE to query an Inflammatory Bowel Disease (IBD)-map and prioritize a therapeutic strategy that involves dual agonism of two nuclear receptors, PPARα/γ. Balanced agonism of PPARα/γ was predicted to modulate macrophage processes, ameliorate colitis, 'reset' the gene expression network from disease to health. Predictions were validated using a balanced and potent PPARα/γ-dual-agonist (PAR5359) in Citrobacter rodentium- and DSS-induced murine colitis models. Using inhibitors and agonists, we show that balanced-dual agonism promotes bacterial clearance efficiently than individual agonists, both in vivo and in vitro. PPARα is required and sufficient to induce the pro-inflammatory cytokines and cellular ROS, which are essential for bacterial clearance and immunity, whereas PPARγ-agonism blunts these responses, delays microbial clearance; balanced dual agonism achieved controlled inflammation while protecting the gut barrier and 'reversal' of the transcriptomic network. Furthermore, dual agonism reversed the defective bacterial clearance observed in PBMCs derived from IBD patients. These findings not only deliver a macrophage modulator for use as barrier-protective therapy in IBD, but also highlight the potential of BoNE to rationalize combination therapy.
Collapse
Affiliation(s)
- Gajanan D Katkar
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, USA
| | - Ibrahim M Sayed
- Department of Pathology, University of California San Diego, San Diego, USA.,Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | | - Vanessa Castillo
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, USA
| | - Eleadah Vidales
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, USA
| | - Daniel Toobian
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, USA
| | - Fatima Usmani
- Department of Pathology, University of California San Diego, San Diego, USA
| | - Joseph R Sawires
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, USA
| | - Geoffray Leriche
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, USA
| | - Jerry Yang
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, USA
| | - William J Sandborn
- Department of Medicine, University of California San Diego, San Diego, USA.
| | - Soumita Das
- Department of Pathology, University of California San Diego, San Diego, USA.
| | - Debashis Sahoo
- Department of Computer Science and Engineering, Jacob's School of Engineering, University of California San Diego, San Diego, USA. .,Department of Pediatrics, University of California San Diego, San Diego, USA. .,Rebecca and John Moore Comprehensive Cancer Center, University of California San Diego, San Diego, USA.
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, USA. .,Department of Medicine, University of California San Diego, San Diego, USA. .,Rebecca and John Moore Comprehensive Cancer Center, University of California San Diego, San Diego, USA. .,Veterans Affairs Medical Center, La Jolla, San Diego, USA.
| |
Collapse
|
4
|
Zhao H, Du Y, Liu L, Du Y, Cui K, Yu P, Li L, Zhu Y, Jiang W, Li Z, Tang H, Ma W. Oral Nanozyme-Engineered Probiotics for the Treatment of Ulcerative Colitis. J Mater Chem B 2022; 10:4002-4011. [PMID: 35503001 DOI: 10.1039/d2tb00300g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background: Probiotic-based therapy for ulcerative colitis (UC) is a novel and promising approach that has gained much popularity in recent years. However, probiotics may be easily captured and destroyed by...
Collapse
Affiliation(s)
- Huan Zhao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Yurong Du
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Lei Liu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yabing Du
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Kang Cui
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Pu Yu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Li Li
- The First Affiliated Hospital of Henan Polytechnic University, Jiaozuo 454003, China
| | - Yanjie Zhu
- Department of Pathology, Central Hospital of Kaifeng City, KaiFeng, Henan, 475000, China
| | - Wei Jiang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Zhen Li
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, Henan, 451464, China.
| | - Hao Tang
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, Henan, 451464, China.
| | - Wang Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
5
|
Artificial intelligence guided discovery of a barrier-protective therapy in inflammatory bowel disease. Nat Commun 2021; 12:4246. [PMID: 34253728 PMCID: PMC8275683 DOI: 10.1038/s41467-021-24470-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/21/2021] [Indexed: 12/19/2022] Open
Abstract
Modeling human diseases as networks simplify complex multi-cellular processes, helps understand patterns in noisy data that humans cannot find, and thereby improves precision in prediction. Using Inflammatory Bowel Disease (IBD) as an example, here we outline an unbiased AI-assisted approach for target identification and validation. A network was built in which clusters of genes are connected by directed edges that highlight asymmetric Boolean relationships. Using machine-learning, a path of continuum states was pinpointed, which most effectively predicted disease outcome. This path was enriched in gene-clusters that maintain the integrity of the gut epithelial barrier. We exploit this insight to prioritize one target, choose appropriate pre-clinical murine models for target validation and design patient-derived organoid models. Potential for treatment efficacy is confirmed in patient-derived organoids using multivariate analyses. This AI-assisted approach identifies a first-in-class gut barrier-protective agent in IBD and predicted Phase-III success of candidate agents. Traditional drug discovery process use differential, Bayesian and other network based approaches. We developed a Boolean approach for building disease maps and prioritizing pre-clinical models to discover a first-in-class therapy to restore and protect the leaky gut barrier in inflammatory bowel disease.
Collapse
|
6
|
Sayed IM, Suarez K, Lim E, Singh S, Pereira M, Ibeawuchi SR, Katkar G, Dunkel Y, Mittal Y, Chattopadhyay R, Guma M, Boland BS, Dulai PS, Sandborn WJ, Ghosh P, Das S. Host engulfment pathway controls inflammation in inflammatory bowel disease. FEBS J 2020; 287:3967-3988. [PMID: 32003126 DOI: 10.1111/febs.15236] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 12/20/2019] [Accepted: 01/29/2020] [Indexed: 12/13/2022]
Abstract
Chronic diseases, including inflammatory bowel disease (IBD) urgently need new biomarkers as a significant proportion of patients, do not respond to current medications. Inflammation is a common factor in these diseases, and microbial sensing in the intestinal tract is critical to initiate the inflammation. We have identified ELMO1 (engulfment and cell motility protein 1) as a microbial sensor in epithelial and phagocytic cells that turns on inflammatory signals. Using a stem cell-based 'gut-in-a-dish' coculture model, we studied the interactions between microbes, epithelium, and monocytes in the context of IBD. To mimic the in vivo cell physiology, enteroid-derived monolayers (EDMs) were generated from the organoids isolated from WT and ELMO1-/- mice and colonic biopsies of IBD patients. The EDMs were infected with the IBD-associated microbes to monitor the inflammatory responses. ELMO1-depleted EDMs displayed a significant reduction in bacterial internalization, a decrease in pro-inflammatory cytokine productions and monocyte recruitment. The expression of ELMO1 is elevated in the colonic epithelium and in the inflammatory infiltrates within the lamina propria of IBD patients where the higher expression is positively correlated with the elevated expression of pro-inflammatory cytokines, MCP-1 and TNF-α. MCP-1 is released from the epithelium and recruits monocytes to the site of inflammation. Once recruited, monocytes require ELMO1 to engulf the bacteria and propagate a robust TNF-α storm. These findings highlight that the dysregulated epithelial ELMO1 → MCP-1 axis can serve as an early biomarker in the diagnostics of IBD and other inflammatory disorders.
Collapse
Affiliation(s)
- Ibrahim M Sayed
- Department of Pathology, University of California, San Diego, CA, USA
| | - Katherine Suarez
- Department of Pathology, University of California, San Diego, CA, USA
| | - Eileen Lim
- Department of Pathology, University of California, San Diego, CA, USA
| | - Sujay Singh
- Department of Pathology, University of California, San Diego, CA, USA
| | - Matheus Pereira
- Department of Pathology, University of California, San Diego, CA, USA
| | | | - Gajanan Katkar
- Department of Cellular & Molecular Medicine, University of California, San Diego, CA, USA
| | - Ying Dunkel
- Department of Medicine, University of California, San Diego, CA, USA
| | - Yash Mittal
- Department of Medicine, University of California, San Diego, CA, USA
| | - Ranajoy Chattopadhyay
- Department of Cellular & Molecular Medicine, University of California, San Diego, CA, USA
| | - Monica Guma
- Department of Medicine, University of California, San Diego, CA, USA
| | - Brigid S Boland
- Department of Medicine, University of California, San Diego, CA, USA
| | - Parambir S Dulai
- Department of Medicine, University of California, San Diego, CA, USA
| | | | - Pradipta Ghosh
- Department of Medicine, University of California, San Diego, CA, USA.,Department of Cellular & Molecular Medicine, University of California, San Diego, CA, USA
| | - Soumita Das
- Department of Pathology, University of California, San Diego, CA, USA
| |
Collapse
|
7
|
Sutcliffe S, Kalyan S, Pankovich J, Chen JMH, Gluck R, Thompson D, Bosiljcic M, Bazett M, Fedorak RN, Panaccione R, Axler J, Marshall JK, Mullins DW, Kabakchiev B, McGovern DPB, Jang J, Coldman A, Vandermeirsch G, Bressler B, Gunn H. Novel Microbial-Based Immunotherapy Approach for Crohn's Disease. Front Med (Lausanne) 2019; 6:170. [PMID: 31380382 PMCID: PMC6659126 DOI: 10.3389/fmed.2019.00170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/08/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Current Crohn's disease (CD) therapies focus on suppressing immune function and come with consequent risk, such as infection and cancer. Notwithstanding, most CD patients still experience disease progression. There is a need for new CD treatment strategies that offer better health outcomes for patients. Aims: To assess safety, efficacy, and tolerability of a novel microbial-derived immunotherapy, QBECO, that aims to restore rather than suppress immune function in CD. Methods: A randomized, double-blind, placebo-controlled trial was conducted in 68 patients with moderate-to-severe CD. Primary endpoints: safety and Week 8 clinical improvement. Secondary endpoints: Week 8 clinical response and remission. Week 8 responders continued blinded treatment through Week 16; non-responders received open-label QBECO from Weeks 9–16. Exploratory analyses included immune biomarker and genotype assessments. Results: QBECO was well-tolerated. Mean reduction in Crohn's Disease Activity Index (CDAI) score was −68 for QBECO vs. −31 for placebo at Week 8. Improvement with QBECO continued through Week 16 (-130 CDAI reduction). Week 8 QBECO clinical response, improvement and remission rates were 41.2%, 32.4%, 29.4% vs. 26.5%, 23.5%, 23.5% for placebo. TNFα inhibitor-naïve subjects achieved higher response rates at Week 8 with QBECO (64%) vs. placebo (26%). Specific immune biomarkers were identified that linked to QBECO response. Conclusion: This proof-of-concept study supports further investigation for the use of QBECO as a novel immunotherapy approach for CD. Biomarker analyses suggests it may be feasible to personalize CD treatment with QBECO. Larger trials are now needed to confirm clinical improvement and the unique biological findings. Clinical Trial Number: NCT01809275 (https://clinicaltrials.gov/ct2/show/NCT01809275)
Collapse
Affiliation(s)
| | - Shirin Kalyan
- Qu Biologics Inc., Vancouver, BC, Canada.,Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | - Darby Thompson
- Emmes Canada, Burnaby, BC, Canada.,Department of Statistics and Actuarial Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | | | | - Richard N Fedorak
- Division of Gastroenterology, University of Alberta, Edmonton, AB, Canada
| | - Remo Panaccione
- Inflammatory Bowel Disease Unit, University of Calgary, Calgary, AB, Canada
| | - Jeffrey Axler
- Toronto Digestive Disease Associates Inc., Vaughan, ON, Canada
| | - John K Marshall
- Department of Medicine and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - David W Mullins
- Department of Microbiology, Immunology and Medical Education, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Boyko Kabakchiev
- Zane Cohen Centre for Digestive Diseases, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | | | - Julie Jang
- Qu Biologics Inc., Vancouver, BC, Canada
| | - Andrew Coldman
- Cancer Control Research, British Columbia Cancer Agency, Vancouver, BC, Canada
| | | | - Brian Bressler
- Gastrointestinal Research Institute, Vancouver, BC, Canada
| | - Hal Gunn
- Qu Biologics Inc., Vancouver, BC, Canada
| |
Collapse
|
8
|
O'Neill L, McCormick J, Gao W, Veale DJ, McCarthy GM, Murphy CC, Fearon U, Molloy ES. Interleukin-6 does not upregulate pro-inflammatory cytokine expression in an ex vivo model of giant cell arteritis. Rheumatol Adv Pract 2019; 3:rkz011. [PMID: 31431999 PMCID: PMC6649906 DOI: 10.1093/rap/rkz011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/17/2019] [Indexed: 11/14/2022] Open
Abstract
Objective The aim of this study was to examine the pro-inflammatory effects of IL-6 in ex vivo temporal artery explant cultures. Methods Patients meeting 1990 ACR classification criteria for GCA were prospectively recruited. Temporal artery biopsies were obtained and temporal artery explants cultured ex vivo with IL-6 (10-40 ng/ml) in the presence or absence of its soluble receptor (sIL-6R; 20 ng/ml) for 24 h. Explant supernatants were harvested after 24 h and assayed for IFN-γ, TNF-α, Serum amyloid A, IL-1β, IL-17, IL-8, angiotensin II and VEGF by ELISA. Myofibroblast outgrowths, cytoskeletal rearrangement and wound repair assays were performed. Results IL-6 augmented production of VEGF, but not of any of the other pro-inflammatory mediators assayed. No differences were observed in the explants cultured in the presence or absence of the sIL-6R or between those with a positive (n = 11) or negative (n = 17) temporal artery biopsy. IL-6 did not enhance myofibroblast proliferation or migration. Western blot analysis confirmed signalling activation, with increased expression of pSTAT3 in response to IL-6+sIL-6R. Conclusion IL-6 stimulation of temporal artery explants from patients with GCA neither increased expression of key pro-inflammatory mediators nor influenced myofibroblast proliferation or migration.
Collapse
Affiliation(s)
- Lorraine O'Neill
- Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Dublin Academic Medical Centre, Royal College of Surgeons, Ireland
| | - Jennifer McCormick
- Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Dublin Academic Medical Centre, Royal College of Surgeons, Ireland
| | - Wei Gao
- Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Dublin Academic Medical Centre, Royal College of Surgeons, Ireland
| | - Douglas J Veale
- Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Dublin Academic Medical Centre, Royal College of Surgeons, Ireland
| | - Geraldine M McCarthy
- Mater Misericordiae University Hospital, Dublin Academic Medical Centre, Royal College of Surgeons, Ireland
| | - Conor C Murphy
- Department of Ophthalmology, Royal Victoria Eye and Ear Hospital, Royal College of Surgeons, Ireland
| | - Ursula Fearon
- Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Dublin Academic Medical Centre, Royal College of Surgeons, Ireland
| | - Eamonn S Molloy
- Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Dublin Academic Medical Centre, Royal College of Surgeons, Ireland
| |
Collapse
|
9
|
Zhang B, Liu Y, Lan X, Xu X, Zhang X, Li X, Zhao Y, Li G, Du C, Lu S, Wang H. Oral Escherichia coli expressing IL-35 meliorates experimental colitis in mice. J Transl Med 2018; 16:71. [PMID: 29554971 PMCID: PMC5859778 DOI: 10.1186/s12967-018-1441-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/05/2018] [Indexed: 12/21/2022] Open
Abstract
Background Ulcerative colitis (UC) is a type of inflammatory bowel disease (IBD) characterized by chronic inflammation of colon. It is commonly believed that the imbalance of immune system and overwhelming production of cytokines are involved in the pathogenesis of UC. Recent studies demonstrated that interleukin-35 (IL-35), a key player in the regulation of inflammation, has been identified as potential therapeutic target to treat UC. However, conventional intravenous administration is costly and inconvenient. The present study was designed to establish a novel IL-35 delivery system and investigate its therapeutic effects on dextran sulfate sodium (DSS)-induced experimental colitis in mice for the first time. Methods An engineered Escherichia coli (E. coli/IL-35) expressing IL-35 was constructed. Adult male BALB/c mice randomly got the oral administration of E. coli/IL-35, empty plasmid-transformed E. coli (E. coli0) or PBS for treatment following ingestion of 3% DSS solution for 5 days. Normal mice were used as control group. Colonic and splenic tissues were collected on day 10 post-DSS-induction. Clinical signs, disease activity index (DAI), pathological and immunohistological changes, cytokine profiles and cell populations were evaluated. Results Intragastric administration of E. coli/IL-35 effectively protected the colitis mice from DSS assimilation including weight loss and colon shortening. Pathological analysis showed significantly lower DAI score and much less intra-colon infiltration of neutrophils and CD3+ cells in the IL-35 treated group. Moreover, E. coli/IL-35-treated mice demonstrated much less CD4+ IL-17A+ Th17 cells and a higher level of CD4+CD25+Foxp3+ Tregs in spleen and mesenteric lymph nodes, as well as increased colon and serum level of IL-10 and IL-35 and decreased levels of IL-6. Conclusions Our study showed that E. coli/IL-35 as a novel oral IL-35 delivery system alleviated inflammatory damage of colonic tissue in the colitic mice. Genetic therapeutic strategies using engineered E. coli encoding immunoregulatory cytokines may provide a potential approach for the treatment of IBD.
Collapse
Affiliation(s)
- Baoren Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Yi Liu
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xu Lan
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Xiaoxi Xu
- Department of Endocrinology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoning Zhang
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiang Li
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Yiming Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Guang Li
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Caigan Du
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, Canada.,Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Shanzheng Lu
- Department of Anorectal Surgery, People's Hospital of Hunan Province, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China. .,Tianjin General Surgery Institute, Tianjin, China.
| |
Collapse
|
10
|
Wang H, Felt SA, Guracar I, Taviani V, Zhou J, Sigrist RMS, Zhang H, Liau J, Vilches-Moure JG, Tian L, Saenz Y, Bettinger T, Hargreaves BA, Lutz AM, Willmann JK. Anatomical Road Mapping Using CT and MR Enterography for Ultrasound Molecular Imaging of Small Bowel Inflammation in Swine. Eur Radiol 2017; 28:2068-2076. [PMID: 29170798 DOI: 10.1007/s00330-017-5148-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/27/2017] [Accepted: 10/18/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVES To evaluate the feasibility and time saving of fusing CT and MR enterography with ultrasound for ultrasound molecular imaging (USMI) of inflammation in an acute small bowel inflammation of swine. METHODS Nine swine with ileitis were scanned with either CT (n = 3) or MR (n = 6) enterography. Imaging times to load CT/MR images onto a clinical ultrasound machine, fuse them to ultrasound with an anatomical landmark-based approach, and identify ileitis were compared to the imaging times without anatomical road mapping. Inflammation was then assessed by USMI using dual selectin-targeted (MBSelectin) and control (MBControl) contrast agents in diseased and healthy control bowel segments, followed by ex vivo histology. RESULTS Cross-sectional image fusion with ultrasound was feasible with an alignment error of 13.9 ± 9.7 mm. Anatomical road mapping significantly reduced (P < 0.001) scanning times by 40%. Localising ileitis was achieved within 1.0 min. Subsequently performed USMI demonstrated significantly (P < 0.001) higher imaging signal using MBSelectin compared to MBControl and histology confirmed a significantly higher inflammation score (P = 0.006) and P- and E-selectin expression (P ≤ 0.02) in inflamed vs. healthy bowel. CONCLUSIONS Fusion of CT and MR enterography data sets with ultrasound in real time is feasible and allows rapid anatomical localisation of ileitis for subsequent quantification of inflammation using USMI. KEY POINTS • Real-time fusion of CT/MRI with ultrasound to localise ileitis is feasible. • Anatomical road mapping using CT/MRI significantly decreases the scanning time for USMI. • USMI allows quantification of inflammation in swine, verified with ex vivo histology.
Collapse
Affiliation(s)
- Huaijun Wang
- Department of Radiology, Stanford University, School of Medicine, 300 Pasteur Drive, Room H1307, Stanford, CA, 94305-5621, USA
| | - Stephen A Felt
- Department of Comparative Medicine, Stanford University, Stanford, CA, USA
| | - Ismayil Guracar
- Siemens Healthcare, Ultrasound Business Unit, Mountain View, CA, USA
| | - Valentina Taviani
- Department of Radiology, Stanford University, School of Medicine, 300 Pasteur Drive, Room H1307, Stanford, CA, 94305-5621, USA
| | - Jianhua Zhou
- Department of Radiology, Stanford University, School of Medicine, 300 Pasteur Drive, Room H1307, Stanford, CA, 94305-5621, USA
| | - Rosa Maria Silveira Sigrist
- Department of Radiology, Stanford University, School of Medicine, 300 Pasteur Drive, Room H1307, Stanford, CA, 94305-5621, USA
| | - Huiping Zhang
- Department of Radiology, Stanford University, School of Medicine, 300 Pasteur Drive, Room H1307, Stanford, CA, 94305-5621, USA
| | - Joy Liau
- Department of Radiology, Stanford University, School of Medicine, 300 Pasteur Drive, Room H1307, Stanford, CA, 94305-5621, USA
| | | | - Lu Tian
- Department of Health, Research & Policy, Stanford University, Stanford, CA, USA
| | - Yamil Saenz
- Department of Comparative Medicine, Stanford University, Stanford, CA, USA
| | | | - Brian A Hargreaves
- Department of Radiology, Stanford University, School of Medicine, 300 Pasteur Drive, Room H1307, Stanford, CA, 94305-5621, USA
| | - Amelie M Lutz
- Department of Radiology, Stanford University, School of Medicine, 300 Pasteur Drive, Room H1307, Stanford, CA, 94305-5621, USA
| | - Jürgen K Willmann
- Department of Radiology, Stanford University, School of Medicine, 300 Pasteur Drive, Room H1307, Stanford, CA, 94305-5621, USA.
| |
Collapse
|
11
|
Ahola-Olli AV, Würtz P, Havulinna AS, Aalto K, Pitkänen N, Lehtimäki T, Kähönen M, Lyytikäinen LP, Raitoharju E, Seppälä I, Sarin AP, Ripatti S, Palotie A, Perola M, Viikari JS, Jalkanen S, Maksimow M, Salomaa V, Salmi M, Kettunen J, Raitakari OT. Genome-wide Association Study Identifies 27 Loci Influencing Concentrations of Circulating Cytokines and Growth Factors. Am J Hum Genet 2017; 100:40-50. [PMID: 27989323 DOI: 10.1016/j.ajhg.2016.11.007] [Citation(s) in RCA: 399] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 11/11/2016] [Indexed: 12/14/2022] Open
Abstract
Circulating cytokines and growth factors are regulators of inflammation and have been implicated in autoimmune and metabolic diseases. In this genome-wide association study (GWAS) of up to 8,293 Finns we identified 27 genome-widely significant loci (p < 1.2 × 10-9) for one or more cytokines. Fifteen of the associated variants had expression quantitative trait loci in whole blood. We provide genetic instruments to clarify the causal roles of cytokine signaling and upstream inflammation in immune-related and other chronic diseases. We further link inflammatory markers with variants previously associated with autoimmune diseases such as Crohn disease, multiple sclerosis, and ulcerative colitis and hereby elucidate the molecular mechanisms underpinning these diseases and suggest potential drug targets.
Collapse
|
12
|
Strebel K, Nielsen SRH, Biagini M, Qvist N. Effect of Humira® on Intestinal Anastomotic Response in Rabbits. J INVEST SURG 2016; 28:167-72. [PMID: 26065592 DOI: 10.3109/08941939.2014.995244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIM The aim of this study was to compare the strength and degree of inflammation in small intestinal anastomoses in rabbits after repeated preoperative treatment with the TNF-α antibody, adalimumab (Humira®), compared to placebo. METHOD Thirty-three New Zealand white female rabbits were randomized to three weeks of weekly subcutaneous injections of adalimumab (n = 24) or placebo (n = 9). After this treatment regime, two end to end anastomoses were performed in the ileum. Following euthanasia on postoperative day 5 the anastomoses were evaluated for minimal tensile strength (MITS) and histological parameters of wound healing using a modified Verhofstad Scale. RESULTS There were no statistically significant differences between the adalimumab and placebo groups in terms of MITS or histological parameters. Multiple regression analyzes revealed that there was no association between MITS and treatment, numbers of sutures, length of surgery, preoperative weight gain, postoperative weight loss or histological score. On the day of surgery the median serum concentration of adalimumab was 5.4 μg/ml (3.4-8.6). CONCLUSION Repeated preoperative treatment with adalimumab had no significant influence on MITS or histological score in anastomoses in the small intestine of the rabbits.
Collapse
|
13
|
Development of a Recombinant Xenogeneic Tumor Necrosis Factor Alpha Protein Vaccine To Protect Mice from Experimental Colitis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:1269-75. [PMID: 26466602 DOI: 10.1128/cvi.00331-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/01/2015] [Indexed: 02/08/2023]
Abstract
Previous studies have highlighted the efficacy of tumor necrosis factor alpha (TNF-α) inhibitors, including monoclonal antibodies and soluble receptors, in the treatment and management of intestinal bowel disease (IBD). However, because of the immunogenicity of xenogeneic TNF-α inhibitors, antidrug antibodies (ADAs) can be triggered after repeated administration. An alternative way to target TNF-α is active immunization to elicit the production of high titers of neutralizing antibodies. In this study, we prepared a xenogeneic TNF-α protein vaccine and studied the protective effects in experimental colitis models. The xenogeneic TNF-α protein vaccine could overcome self-tolerance and induce TNF-α-specific neutralizing antibody. Moreover, the xenogeneic TNF-α protein vaccine could protect mice from acute and chronic colitis induced by dextran sodium sulfate (DSS). One possible explanation for this protective effect is the production of TNF-α-specific neutralizing antibody, which absorbed the biological activity of mouse TNF-α (mTNF-α) and failed to induce T lymphocyte apoptosis. In summary, use of the xenogeneic TNF-α protein vaccine may be a potent therapeutic strategy for IBD.
Collapse
|
14
|
Wang H, Felt SA, Machtaler S, Guracar I, Luong R, Bettinger T, Tian L, Lutz AM, Willmann JK. Quantitative Assessment of Inflammation in a Porcine Acute Terminal Ileitis Model: US with a Molecularly Targeted Contrast Agent. Radiology 2015; 276:809-17. [PMID: 25965901 DOI: 10.1148/radiol.2015142478] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE To evaluate the feasibility and reproducibility of ultrasonography (US) performed with dual-selectin-targeted contrast agent microbubbles (MBs) for assessment of inflammation in a porcine acute terminal ileitis model, with histologic findings as a reference standard. MATERIALS AND METHODS The study had institutional Animal Care and Use Committee approval. Acute terminal ileitis was established in 19 pigs; four pigs served as control pigs. The ileum was imaged with clinical-grade dual P- and E-selectin-targeted MBs (MBSelectin) at increasing doses (0.5, 1.0, 2.5, 5.0, 10, and 20 × 10(8) MB per kilogram of body weight) and with control nontargeted MBs (MBControl). For reproducibility testing, examinations were repeated twice after the MBSelectin and MBControl injections. After imaging, scanned ileal segments were analyzed ex vivo both for inflammation grade (by using hematoxylin-eosin staining) and for expression of selectins (by using quantitative immunofluorescence analysis). Statistical analysis was performed by using the t test, intraclass correlation coefficients (ICCs), and Spearman correlation analysis. RESULTS Imaging signal increased linearly (P < .001) between a dose of 0.5 and a dose of 5.0 × 10(8) MB/kg and plateaued between a dose of 10 and a dose of 20 × 10(8) MB/kg. Imaging signals were reproducible (ICC = 0.70), and administration of MBSelectin in acute ileitis resulted in a significantly higher (P < .001) imaging signal compared with that in control ileum and MBControl. Ex vivo histologic grades of inflammation correlated well with in vivo US signal (ρ = 0.79), and expression levels of both P-selectin (37.4% ± 14.7 [standard deviation] of vessels positive; P < .001) and E-selectin (31.2% ± 25.7) in vessels in the bowel wall of segments with ileitis were higher than in control ileum (5.1% ± 3.7 for P-selectin and 4.8% ± 2.3 for E-selectin). CONCLUSION Quantitative measurements of inflammation obtained by using dual-selectin-targeted US are reproducible and correlate well with the extent of inflammation at histologic examination in a porcine acute ileitis model as a next step toward clinical translation.
Collapse
Affiliation(s)
- Huaijun Wang
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Dr, Room H1307; Stanford, CA 94305-5621 (H.W., S.M., A.M.L., J.K.W.); Department of Comparative Medicine (S.A.F., R.L.) and Department of Health, Research and Policy (L.T.), Stanford University, Stanford, Calif; Ultrasound Business Unit, Siemens Healthcare, Mountain View, Calif (I.G.); and Bracco Suisse, Geneva, Switzerland (T.B.)
| | - Stephen A Felt
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Dr, Room H1307; Stanford, CA 94305-5621 (H.W., S.M., A.M.L., J.K.W.); Department of Comparative Medicine (S.A.F., R.L.) and Department of Health, Research and Policy (L.T.), Stanford University, Stanford, Calif; Ultrasound Business Unit, Siemens Healthcare, Mountain View, Calif (I.G.); and Bracco Suisse, Geneva, Switzerland (T.B.)
| | - Steven Machtaler
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Dr, Room H1307; Stanford, CA 94305-5621 (H.W., S.M., A.M.L., J.K.W.); Department of Comparative Medicine (S.A.F., R.L.) and Department of Health, Research and Policy (L.T.), Stanford University, Stanford, Calif; Ultrasound Business Unit, Siemens Healthcare, Mountain View, Calif (I.G.); and Bracco Suisse, Geneva, Switzerland (T.B.)
| | - Ismayil Guracar
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Dr, Room H1307; Stanford, CA 94305-5621 (H.W., S.M., A.M.L., J.K.W.); Department of Comparative Medicine (S.A.F., R.L.) and Department of Health, Research and Policy (L.T.), Stanford University, Stanford, Calif; Ultrasound Business Unit, Siemens Healthcare, Mountain View, Calif (I.G.); and Bracco Suisse, Geneva, Switzerland (T.B.)
| | - Richard Luong
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Dr, Room H1307; Stanford, CA 94305-5621 (H.W., S.M., A.M.L., J.K.W.); Department of Comparative Medicine (S.A.F., R.L.) and Department of Health, Research and Policy (L.T.), Stanford University, Stanford, Calif; Ultrasound Business Unit, Siemens Healthcare, Mountain View, Calif (I.G.); and Bracco Suisse, Geneva, Switzerland (T.B.)
| | - Thierry Bettinger
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Dr, Room H1307; Stanford, CA 94305-5621 (H.W., S.M., A.M.L., J.K.W.); Department of Comparative Medicine (S.A.F., R.L.) and Department of Health, Research and Policy (L.T.), Stanford University, Stanford, Calif; Ultrasound Business Unit, Siemens Healthcare, Mountain View, Calif (I.G.); and Bracco Suisse, Geneva, Switzerland (T.B.)
| | - Lu Tian
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Dr, Room H1307; Stanford, CA 94305-5621 (H.W., S.M., A.M.L., J.K.W.); Department of Comparative Medicine (S.A.F., R.L.) and Department of Health, Research and Policy (L.T.), Stanford University, Stanford, Calif; Ultrasound Business Unit, Siemens Healthcare, Mountain View, Calif (I.G.); and Bracco Suisse, Geneva, Switzerland (T.B.)
| | - Amelie M Lutz
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Dr, Room H1307; Stanford, CA 94305-5621 (H.W., S.M., A.M.L., J.K.W.); Department of Comparative Medicine (S.A.F., R.L.) and Department of Health, Research and Policy (L.T.), Stanford University, Stanford, Calif; Ultrasound Business Unit, Siemens Healthcare, Mountain View, Calif (I.G.); and Bracco Suisse, Geneva, Switzerland (T.B.)
| | - Jürgen K Willmann
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Dr, Room H1307; Stanford, CA 94305-5621 (H.W., S.M., A.M.L., J.K.W.); Department of Comparative Medicine (S.A.F., R.L.) and Department of Health, Research and Policy (L.T.), Stanford University, Stanford, Calif; Ultrasound Business Unit, Siemens Healthcare, Mountain View, Calif (I.G.); and Bracco Suisse, Geneva, Switzerland (T.B.)
| |
Collapse
|
15
|
Abad C, Cheung-Lau G, Coute-Monvoisin AC, Waschek JA. Vasoactive intestinal peptide-deficient mice exhibit reduced pathology in trinitrobenzene sulfonic acid-induced colitis. Neuroimmunomodulation 2015; 22:203-12. [PMID: 25301381 PMCID: PMC4297532 DOI: 10.1159/000364912] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 05/28/2014] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVES Vasoactive intestinal peptide (VIP) is an immunomodulatory neuropeptide with therapeutic properties in multiple murine models of inflammatory disease including the trinitrobenzene-sulfonic acid (TNBS)-colitis model of Crohn's disease. Understanding the spectrum of biological actions of endogenously produced VIP may help us dissect the complex and multifactorial pathogenesis of such inflammatory diseases. Our goal was to determine the contribution of endogenously produced VIP to TNBS-colitis by using VIP knockout (KO) mice. METHODS TNBS was intracolonically administered to wild-type (WT) and VIP KO mice, and weight loss and colitis were assessed over time. Colon histopathological changes and myeloperoxidase activities were analyzed and the levels of tumor necrosis factor (TNF)-α and interleukin (IL)-6 in colon and serum quantified. The proliferative response in vitro of splenocytes from TNBS WT and VIP KO administered mice to anti-CD3 and anti-CD28 was determined. RESULTS VIP KO mice did not exhibit the predicted exacerbated response to TNBS. Instead, they developed a milder clinical profile than WT mice, with lower TNF-α and IL-6 levels. Such potential defects seem selective, because other parameters such as the histopathological scores and the cytokine levels in the colon did not differ between the two strains of mice. Moreover, splenocytes from TNBS-treated VIP KO mice exhibited an enhanced proliferative response to anti-CD3/CD28 stimulation in vitro. CONCLUSION Chronic loss of VIP in mice leads to a disruption of certain but not all immunological compartments, corroborating recent findings that VIP KO mice exhibit reduced mortality in the lipopolysaccharide-induced endotoxemia model and attenuated clinical development of experimental autoimmune encephalomyelitis while developing robust T-cell responses.
Collapse
Affiliation(s)
| | | | | | - James A. Waschek
- Corresponding author: James A. Waschek, Ph.D., 635 Charles E
Young Drive South, Los Angeles CA 90095, Phone number (310)-825-0179, FAX (310)-206-5061,
| |
Collapse
|
16
|
Turner MD, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2563-2582. [PMID: 24892271 DOI: 10.1016/j.bbamcr.2014.05.014] [Citation(s) in RCA: 1386] [Impact Index Per Article: 126.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 12/14/2022]
Abstract
Inflammation occurs as a result of exposure of tissues and organs to harmful stimuli such as microbial pathogens, irritants, or toxic cellular components. The primary physical manifestations of inflammation are redness, swelling, heat, pain, and loss of function to the affected area. These processes involve the major cells of the immune system, including monocytes, macrophages, neutrophils, basophils, dendritic cells, mast cells, T-cells, and B-cells. However, examination of a range of inflammatory lesions demonstrates the presence of specific leukocytes in any given lesion. That is, the inflammatory process is regulated in such a way as to ensure that the appropriate leukocytes are recruited. These events are in turn controlled by a host of extracellular molecular regulators, including members of the cytokine and chemokine families that mediate both immune cell recruitment and complex intracellular signalling control mechanisms that characterise inflammation. This review will focus on the role of the main cytokines, chemokines, and their receptors in the pathophysiology of auto-inflammatory disorders, pro-inflammatory disorders, and neurological disorders involving inflammation.
Collapse
Affiliation(s)
- Mark D Turner
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom.
| | - Belinda Nedjai
- Leukocyte Biology Section, National Heart and Lung Institute, Imperial College, South Kensington, London SW7 2AZ, United Kingdom
| | - Tara Hurst
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom
| | - Daniel J Pennington
- Blizard Institute, Barts and The London School of Medicine, Queen Mary University of London, Whitechapel, London E1 2AT, United Kingdom
| |
Collapse
|
17
|
Sobczak M, Fabisiak A, Murawska N, Wesołowska E, Wierzbicka P, Wlazłowski M, Wójcikowska M, Zatorski H, Zwolińska M, Fichna J. Current overview of extrinsic and intrinsic factors in etiology and progression of inflammatory bowel diseases. Pharmacol Rep 2014; 66:766-75. [PMID: 25149979 DOI: 10.1016/j.pharep.2014.04.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/29/2014] [Accepted: 04/09/2014] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel diseases (IBD) are chronic, relapsing disorders affecting gastrointestinal (GI) tract and associated with intestinal mucosa damage and inflammation. The principal therapeutic goals in IBD include control of the intestinal inflammation and treatment of the major symptoms, mainly abdominal pain and diarrhea. Current therapeutic strategies for IBD rely on the use of non-specific anti-inflammatory agents and immunosuppressive drugs (e.g. aminosalicylates, monoclonal antibodies, and antibiotics), which cause severe side effects, and - in a significant number of patients - do not induce long-term benefits. In this review, we summarize the epidemiology and the most important risk factors of IBD, including genetic, immunological and environmental. Our main focus is to discuss pharmacological targets for current and future treatments of IBD.
Collapse
Affiliation(s)
- Marta Sobczak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | - Adam Fabisiak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | - Natalia Murawska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | - Ewelina Wesołowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | - Paulina Wierzbicka
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | - Marcin Wlazłowski
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | - Marta Wójcikowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | - Hubert Zatorski
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | - Marta Zwolińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland.
| |
Collapse
|
18
|
Abstract
: Inflammatory bowel disease accounts for significant patient morbidity in the Western world. Several immunosuppressive therapies are available but are associated with potential significant adverse effects. In addition, there remains a cohort of patients with refractory or relapsing disease. Therefore, the search for novel therapeutic agents continues. In this review, we evaluate the role of a number of designated cytokines that are candidates in the pathogenesis of inflammatory bowel disease and discuss how their manipulation has been explored as a therapeutic strategy for this disease. The interleukins (ILs) chosen for discussion reflect those that currently show most promise as future therapeutic targets, as well as discussing the role of some of the most recently identified ILs, such as IL-27, IL-33, IL-35, and IL-22, in this context.
Collapse
|
19
|
Abstract
BACKGROUND Children with Crohn's disease (CD) suffer from malnutrition. Understanding substrate utilization during exercise may help patients with CD sustain a healthy active lifestyle without compromising nutrition. The aim of this study was to determine whether substrate utilization and bioavailability during exercise are altered in children with CD compared with controls. METHODS Seven children with CD (mean age ± SD: 15.2 ± 2.3 yr) and 7 controls (14.4 ± 2.3 yr) were matched by sex and biological age. Participants completed 60 minutes of cycling at an intensity equivalent to 50% of their peak mechanical power. Rates of total fat and carbohydrate (CHO) oxidation, the amount of fat and CHO oxidized, and the contribution of fat and CHO to total energy expenditure were calculated from expired gases collected during exercise. Blood was collected before, during, and at the end of exercise and analyzed for insulin, free fatty acids, and glucose. RESULTS Whole-body fat oxidation rate (expressed in mg · kg(-1) of body weight per min) during exercise was lower in children with CD (5.8 ± 1.0) compared with controls (8.0 ± 2.2, P < 0.05). Children with CD relied significantly more on CHO, with approximately 10% greater contribution toward total energy expenditure (P < 0.05) than controls. There were no differences in plasma insulin, free fatty acids, or glucose between the groups. CONCLUSIONS Fat metabolism during exercise seems to be impaired in children with CD. A greater reliance on CHO is required to meet the energy demands of submaximal exercise.
Collapse
|
20
|
Serum interleukin-6 expression level and its clinical significance in patients with dermatomyositis. Clin Dev Immunol 2013; 2013:717808. [PMID: 24082909 PMCID: PMC3776358 DOI: 10.1155/2013/717808] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 08/02/2013] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To analyze serum interleukin-6 (IL-6) expression level and its clinical significance in patients with dermatomyositis. METHODS Blood samples from 23 adult patients with dermatomyositis (DM), 22 with systemic lupus erythematosus (SLE), 22 with rheumatoid arthritis (RA), 16 with Sjögren's syndrome (SS), and 20 healthy controls were collected. The IL-6 concentration was detected by chemiluminescence immunoassay. Correlations between IL-6 expression levels and clinical features or laboratory findings in patients with DM were investigated. RESULTS IL-6 expression level of DM patients was significantly higher than that of normal controls, significantly lower than that of RA patients, and slightly lower than that of SLE or SS patients with no significant differences. The incidence of fever was significantly higher in the IL-6 elevated group. Serum ferritin (SF) and C-reactive protein (CRP) were positively correlated with IL-6. CONCLUSIONS IL-6 plays a less important role in DM than in RA. IL-6 monoclonal antibodies may have poor effect in patients with DM.
Collapse
|
21
|
Leone Roberti Maggiore U, Bellati F, Ruscito I, Gasparri ML, Alessandri F, Venturini PL, Ferrero S. Monoclonal antibodies therapies for ovarian cancer. Expert Opin Biol Ther 2013; 13:739-64. [PMID: 23373587 DOI: 10.1517/14712598.2013.767328] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Despite aggressive debulking surgery, intraperitoneal therapies and the use of new drugs for chemotherapy, patients with ovarian cancer (OC) still have poor prognosis and, therefore, new strategies for its management are needed. Molecular-targeted agents can be considered a new option in drug research. Several antigens related to OC have been isolated and they could be potential target of monoclonal antibodies (mAbs); therefore, different mAbs have been developed and are emerging as new potential OC treatments. AREAS COVERED This article aims to review the literature on the use of mAbs in the treatment of OC. The purposes of this manuscript are to offer a brief explanation of the mechanisms of action of mAbs and to help readers in understanding the current role of mAbs in the treatment of OC. EXPERT OPINION A deeper knowledge of the molecular biology of OC has brought new developments in targeted therapies. Among these therapies, bevacizumab demonstrated the higher clinical efficacy. Further larger trials are needed to better define the role of the other mAbs in OC treatment. There is a strong need to identify and validate robust biomarkers for a more focused patient selection and for tailoring therapies, optimizing dose and assessing response.
Collapse
Affiliation(s)
- Umberto Leone Roberti Maggiore
- University of Genoa, San Martino Hospital and National Institute for Cancer Research, Department of Obstetrics and Gynecology, Largo R. Benzi 1, 16132 Genoa, Italy
| | | | | | | | | | | | | |
Collapse
|