1
|
Epshtein Y, Mathew B, Chen W, Jacobson JR. UCHL1 Regulates Radiation Lung Injury via Sphingosine Kinase-1. Cells 2023; 12:2405. [PMID: 37830619 PMCID: PMC10572187 DOI: 10.3390/cells12192405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
GADD45a is a gene we previously reported as a mediator of responses to acute lung injury. GADD45a-/- mice express decreased Akt and increased Akt ubiquitination due to the reduced expression of UCHL1 (ubiquitin c-terminal hydrolase L1), a deubiquitinating enzyme, while GADD45a-/- mice have increased their susceptibility to radiation-induced lung injury (RILI). Separately, we have reported a role for sphingolipids in RILI, evidenced by the increased RILI susceptibility of SphK1-/- (sphingosine kinase 1) mice. A mechanistic link between UCHL1 and sphingolipid signaling in RILI is suggested by the known polyubiquitination of SphK1. Thus, we hypothesized that the regulation of SphK1 ubiquitination by UCHL1 mediates RILI. Initially, human lung endothelial cells (EC) subjected to radiation demonstrated a significant upregulation of UCHL1 and SphK1. The ubiquitination of EC SphK1 after radiation was confirmed via the immunoprecipitation of SphK1 and Western blotting for ubiquitin. Further, EC transfected with siRNA specifically for UCHL1 or pretreated with LDN-5744, as a UCHL1 inhibitor, prior to radiation were noted to have decreased ubiquitinated SphK1 in both conditions. Further, the inhibition of UCHL1 attenuated sphingolipid-mediated EC barrier enhancement was measured by transendothelial electrical resistance. Finally, LDN pretreatment significantly augmented murine RILI severity. Our data support the fact that the regulation of SphK1 expression after radiation is mediated by UCHL1. The modulation of UCHL1 affecting sphingolipid signaling may represent a novel RILI therapeutic strategy.
Collapse
Affiliation(s)
| | | | | | - Jeffrey R. Jacobson
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL 60612, USA; (Y.E.); (W.C.)
| |
Collapse
|
2
|
Sadeghi N, Fazli G, Bayat AA, Fatemi R, Ebrahimnejhad N, Salimi A, Zarei O, Rabbani H. Cell Surface Vimentin Detection in Cancer Cells by Peptide-Based Monoclonal Antibody. Avicenna J Med Biotechnol 2023; 15:68-75. [PMID: 37034891 PMCID: PMC10073919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/07/2023] [Indexed: 04/11/2023] Open
Abstract
Background Vimentin is a prominent Intermediate Filaments (IFs) protein expressed in different mesenchymal origin cell types. Besides a wide range of cellular function roles associated with vimentin expression, its dysregulation and cell surface expression in the induction of malignancy properties have been reported extensively, making it a promising cancer-specific target. Therefore, this study aimed to generate and characterize anti-vimentin monoclonal antibodies. Methods A 14-mer synthetic peptide from vimentin was conjugated to Keyhole Limpet Hemocyanin (KLH) and used for immunization of Blab/C mice and monoclonal production by conventional hybridoma technology. The monoclonal antibody was purified using affinity chromatography of supernatants from the selected hybridoma cells. ELISA, Immunoprecipitation-Western blotting (IP-WB), Immunocytochemistry (ICC), and flow cytometry were employed to characterize the produced monoclonal antibody in terms of interaction with vimentin immunizing peptide as well as vimentin protein. Results Amid the several obtained producing anti-vimentin antibody hybridomas, the 7C11-D9 clone (IgG1 isotype with kappa light chain) showed higher reactivity with the immunizing peptide, and led to its selection for purification and characterization. The purified antibody could detect vimentin protein in IP-WB, ICC and flow cytometry of the normal and cancerous cells with different origin. No vimentin expression was found in normal healthy Peripheral Blood Mononuclear Cell (PBMC). Conclusion Taken together, 7C11-D9 anti-vimentin monoclonal antibody might be used as immune diagnostic or immune therapeutic tool where detection or targeting of vimentin in a wide range of organisms is required.
Collapse
Affiliation(s)
- Niloufar Sadeghi
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ghazaleh Fazli
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ali Ahmad Bayat
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Raminasadat Fatemi
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Nasim Ebrahimnejhad
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ali Salimi
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Omid Zarei
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Hodjattallah Rabbani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
3
|
A proteolytic method for evaluating O-GlcNAcylation on proteins of similar molecular weight to antibody heavy chain after immunoprecipitation. Anal Biochem 2020; 611:114001. [PMID: 33129762 DOI: 10.1016/j.ab.2020.114001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/12/2020] [Accepted: 10/21/2020] [Indexed: 11/21/2022]
Abstract
Investigating a protein of interest that runs at the same molecular weight as antibody heavy chain is a frequent deterrent to its evaluation by immunoprecipitation. Methods of minimizing the detection of the immunoprecipitating antibody are available. However, these still present a barrier to evaluating if intracellular proteins are modified by the O-GlcNAc post-translation protein modification due to interfering glycosylation on antibodies. IdeZ protease specifically cleaves antibody at the hinge region, allowing collapse of the antibody fragments to 25 kDa after denaturation. Thus, this proteolytic method uniquely allows evaluation of O-GlcNAcylation of proteins of interest formerly obscured by antibody heavy chain.
Collapse
|
4
|
Chanasit W, Gonzaga ZJC, Rehm BHA. Analysis of the alginate O-acetylation machinery in Pseudomonas aeruginosa. Appl Microbiol Biotechnol 2020; 104:2179-2191. [PMID: 31900562 DOI: 10.1007/s00253-019-10310-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/06/2019] [Accepted: 12/08/2019] [Indexed: 12/11/2022]
Abstract
O-acetylation of alginate produced by the opportunistic human pathogen Pseudomonas aeruginosa significantly contributes to its pathogenesis. Three proteins, AlgI, AlgJ and AlgF have been implicated to form a complex and act together with AlgX for O-acetylation of alginate. AlgI was proposed to transfer the acetyl group across the cytoplasmic membrane, while periplasmic AlgJ was hypothesised to transfer the acetyl group to AlgX that acetylates alginate. To elucidate the proposed O-acetylation multiprotein complex, isogenic knockout mutants of algI, algJ and algF genes were generated in the constitutively alginate overproducing P. aeruginosa PDO300 to enable mutual stability studies. All knockout mutants were O-acetylation negative and complementation with the respective genes in cis or trans restored O-acetylation of alginate. Interestingly, only the AlgF deletion impaired alginate production suggesting a link to the alginate polymerisation/secretion multiprotein complex. Mutual stability experiments indicated that AlgI and AlgF interact independent of AlgJ as well as impact on stability of the alginate polymerisation/secretion multiprotein complex. Deletion of AlgJ did not destabilise AlgX and vice versa. When the alginate polymerase, Alg8, was absent, then AlgI and AlgF stability was strongly impaired supporting a link of the O-acetylation machinery with alginate polymerisation. Pull-down experiments suggested that AlgI interacts with AlgJ, while AlgF interacts with AlgJ and AlgI. Overall, these results suggested that AlgI-AlgJ-AlgF form a multiprotein complex linked via Alg8 to the envelope-spanning alginate polymerisation/secretion multiprotein complex to mediate O-acetylation of nascent alginate. Here, we provide the first insight on how the O-acetylation machinery is associated with alginate production.
Collapse
Affiliation(s)
- Wankuson Chanasit
- Department of Biology, Faculty of Science, Thaksin University, Pa Phayom, Patthalung, 93210, Thailand
| | - Zennia Jean C Gonzaga
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Brisbane, QLD, 4111, Australia
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Brisbane, QLD, 4111, Australia.
| |
Collapse
|
5
|
Tay YL, Amanah A, Adenan MI, Wahab HA, Tan ML. Mitragynine, an euphoric compound inhibits hERG1a/1b channel current and upregulates the complexation of hERG1a-Hsp90 in HEK293-hERG1a/1b cells. Sci Rep 2019; 9:19757. [PMID: 31874991 PMCID: PMC6930223 DOI: 10.1038/s41598-019-56106-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 11/06/2019] [Indexed: 11/24/2022] Open
Abstract
Mitragyna speciosa Korth (M. speciosa) has been widely used as a recreational product, however, there are growing concerns on the abuse potentials and toxicity of the plant. Several poisoning and fatal cases involving kratom and mitragynine have been reported but the underlying causes remain unclear. The human ether-a-go-go-related gene 1 (hERG1) encodes the pore-forming subunit underlying cardiac rapidly delayed rectifier potassium current (IKr). Pharmacological blockade of the IKr can cause acquired long QT syndrome, leading to lethal cardiac arrhythmias. This study aims to elucidate the mechanisms of mitragynine-induced inhibition on hERG1a/1b current. Electrophysiology experiments were carried out using Port-a-Patch system. Quantitative RT-PCR, Western blot analysis, immunofluorescence and co-immunoprecipitation methods were used to determine the effects of mitragynine on hERG1a/1b expression and hERG1-cytosolic chaperones interaction. Mitragynine was found to inhibit the IKr current with an IC50 value of 332.70 nM. It causes a significant reduction of the fully-glycosylated (fg) hERG1a protein expression but upregulates both core-glycosylated (cg) expression and hERG1a-Hsp90 complexes, suggesting possible impaired hERG1a trafficking. In conclusion, mitragynine inhibits hERG1a/1b current through direct channel blockade at lower concentration, but at higher concentration, it upregulates the complexation of hERG1a-Hsp90 which may be inhibitory towards channel trafficking.
Collapse
Affiliation(s)
- Yea Lu Tay
- Malaysian Institute of Pharmaceuticals & Nutraceuticals, NIBM, Ministry of Energy, Science, Technology, Environment and Climate Change (MESTECC), Pulau Pinang, 11700, Malaysia
| | - Azimah Amanah
- Malaysian Institute of Pharmaceuticals & Nutraceuticals, NIBM, Ministry of Energy, Science, Technology, Environment and Climate Change (MESTECC), Pulau Pinang, 11700, Malaysia
| | - Mohd Ilham Adenan
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Selangor Darul Ehsan, 42300, Malaysia
| | - Habibah Abdul Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang, 11700, Malaysia
| | - Mei Lan Tan
- Malaysian Institute of Pharmaceuticals & Nutraceuticals, NIBM, Ministry of Energy, Science, Technology, Environment and Climate Change (MESTECC), Pulau Pinang, 11700, Malaysia. .,School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang, 11700, Malaysia. .,Advanced Medical and Dental Institute, Universiti Sains Malaysia, SAINS@BERTAM, Kepala Batas, Pulau Pinang, 13200, Malaysia.
| |
Collapse
|
6
|
Quantitation of norovirus-specific IgG before and after infection in immunocompromised patients. Braz J Microbiol 2019; 51:183-187. [PMID: 31656022 DOI: 10.1007/s42770-019-00176-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/12/2019] [Indexed: 01/09/2023] Open
Abstract
Noroviruses (NoV) cause the majority of non-bacterial gastroenteritis cases worldwide, with genotype II.4 being the most common. The aim of our study was to quantitate norovirus-specific IgG in immunocompromised patients before and after laboratory-confirmed norovirus infection. A quantitative ELISA was developed by coating ELISA plates with recombinantly expressed P domain of GII.1 capsid protein. After testing mouse sera drawn before and after immunization with GII.1- and GII.4 P domain, sera from GII.1- and GII.4 infected patients were tested. The assay reliably detected preexisting NoV-specific IgG antibodies. Sera drawn after infection showed increased antibody concentrations. Antibodies elicited by GII.1- and GII.4 infections could be detected with coated GII.1 capsid protein. IgG levels remained constant during the first week and then increased in the second week after laboratory diagnosis. The results show that immunocompromised patients elicited IgG responses to NoV infections that could be reliably detected with our quantitative ELISA.
Collapse
|
7
|
Wang Q, Peng Z, Long H, Deng X, Huang K. Polyubiquitylation of α-tubulin at K304 is required for flagellar disassembly in Chlamydomonas. J Cell Sci 2019; 132:jcs.229047. [PMID: 30765466 DOI: 10.1242/jcs.229047] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 02/06/2019] [Indexed: 12/20/2022] Open
Abstract
Cilia/flagella are structurally conserved and dynamic organelles; their assembly and disassembly are coordinated with the cell cycle and cell differentiation. Several post-translational modifications, including acetylation, methylation, phosphorylation and ubiquitylation, participate in ciliary disassembly. However, the detailed mechanism and the role of ubiquitylation in ciliary disassembly are unclear. This study identified 20 proteins that were ubiquitylated in shortening flagella of Chlamydomonas α-Tubulin was the most abundant ubiquitylated protein and it was labeled with K63 polyubiquitin chains primarily at K304. Expression of an α-tubulin mutant (K304R), which could not be ubiquitylated, decreased the rate of flagellar disassembly and resulted in an enrichment of the mutant form in the axoneme, suggesting that ubiquitylation of α-tubulin is required for the normal kinetics of axonemal disassembly. Immunoprecipitation and glutathione-S-transferase pulldown assays demonstrated that the retrograde intraflagellar transport (IFT) protein, IFT139, interacted with a variety of ubiquitylated proteins, including α-tubulin, suggesting that IFT-A was responsible for transporting ubiquitylated proteins out of the flagella. Our data suggest an important role for ubiquitylation and retrograde IFT in ciliary disassembly.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Qiyu Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhao Peng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Huan Long
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Xuan Deng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| |
Collapse
|
8
|
Engel JA, Norris EL, Gilson P, Przyborski J, Shonhai A, Blatch GL, Skinner-Adams TS, Gorman J, Headlam M, Andrews KT. Proteomic analysis of Plasmodium falciparum histone deacetylase 1 complex proteins. Exp Parasitol 2019; 198:7-16. [PMID: 30682336 DOI: 10.1016/j.exppara.2019.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/01/2018] [Accepted: 01/20/2019] [Indexed: 01/12/2023]
Abstract
Plasmodium falciparum histone deacetylases (PfHDACs) are an important class of epigenetic regulators that alter protein lysine acetylation, contributing to regulation of gene expression and normal parasite growth and development. PfHDACs are therefore under investigation as drug targets for malaria. Despite this, our understanding of the biological roles of these enzymes is only just beginning to emerge. In higher eukaryotes, HDACs function as part of multi-protein complexes and act on both histone and non-histone substrates. Here, we present a proteomics analysis of PfHDAC1 immunoprecipitates, identifying 26 putative P. falciparum complex proteins in trophozoite-stage asexual intraerythrocytic parasites. The co-migration of two of these (P. falciparum heat shock proteins 70-1 and 90) with PfHDAC1 was validated using Blue Native PAGE combined with Western blot. These data provide a snapshot of possible PfHDAC1 interactions and a starting point for future studies focused on elucidating the broader function of PfHDACs in Plasmodium parasites.
Collapse
Affiliation(s)
- Jessica A Engel
- Griffith Institute for Drug Discovery, Griffith University, Queensland, Australia
| | - Emma L Norris
- QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Paul Gilson
- Burnet Institute, Monash University, Victoria, Australia
| | - Jude Przyborski
- Centre of Infectious Diseases, Parasitology, University Hospital Heidelberg, Germany
| | - Addmore Shonhai
- Biochemistry Department, University of Venda, Thohoyandou, South Africa
| | - Gregory L Blatch
- The Vice Chancellery, The University of Notre Dame Australia, Fremantle, WA, Australia
| | - Tina S Skinner-Adams
- Griffith Institute for Drug Discovery, Griffith University, Queensland, Australia
| | - Jeffrey Gorman
- QIMR Berghofer Medical Research Institute, Queensland, Australia
| | | | - Katherine T Andrews
- Griffith Institute for Drug Discovery, Griffith University, Queensland, Australia.
| |
Collapse
|
9
|
Bass JJ, Wilkinson DJ, Rankin D, Phillips BE, Szewczyk NJ, Smith K, Atherton PJ. An overview of technical considerations for Western blotting applications to physiological research. Scand J Med Sci Sports 2017; 27:4-25. [PMID: 27263489 PMCID: PMC5138151 DOI: 10.1111/sms.12702] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2016] [Indexed: 12/11/2022]
Abstract
The applications of Western/immunoblotting (WB) techniques have reached multiple layers of the scientific community and are now considered routine procedures in the field of physiology. This is none more so than in relation to skeletal muscle physiology (i.e., resolving the mechanisms underpinning adaptations to exercise). Indeed, the inclusion of WB data is now considered an essential aspect of many such physiological publications to provide mechanistic insight into regulatory processes. Despite this popularity, and due to the ubiquitous and relatively inexpensive availability of WB equipment, the quality of WB in publications and subsequent analysis and interpretation of the data can be variable, perhaps resulting in spurious conclusions. This may be due to poor laboratory technique and/or lack of comprehension of the critical steps involved in WB and what quality control procedures should be in place to ensure robust data generation. The present review aims to provide a detailed description and critique of WB procedures and technicalities, from sample collection through preparation, blotting and detection, to analysis of the data collected. We aim to provide the reader with improved expertise to critically conduct, evaluate, and troubleshoot the WB process, to produce reproducible and reliable blots.
Collapse
Affiliation(s)
- J J Bass
- MRC/ARUK Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby, UK
| | - D J Wilkinson
- MRC/ARUK Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby, UK
| | - D Rankin
- MRC/ARUK Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby, UK
| | - B E Phillips
- MRC/ARUK Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby, UK
| | - N J Szewczyk
- MRC/ARUK Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby, UK
| | - K Smith
- MRC/ARUK Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby, UK
| | - P J Atherton
- MRC/ARUK Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby, UK
| |
Collapse
|
10
|
Wang R, Wang X, Wu JQ, Ni B, Wen LB, Huang L, Liao Y, Tong GZ, Ding C, Mao X. Efficient porcine reproductive and respiratory syndrome virus entry in MARC-145 cells requires EGFR-PI3K-AKT-LIMK1-COFILIN signaling pathway. Virus Res 2016; 225:23-32. [DOI: 10.1016/j.virusres.2016.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/16/2016] [Accepted: 09/08/2016] [Indexed: 01/24/2023]
|
11
|
Efficacy and Mechanism of Action of Low Dose Emetine against Human Cytomegalovirus. PLoS Pathog 2016; 12:e1005717. [PMID: 27336364 PMCID: PMC4919066 DOI: 10.1371/journal.ppat.1005717] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/02/2016] [Indexed: 12/21/2022] Open
Abstract
Infection with human cytomegalovirus (HCMV) is a threat for pregnant women and immunocompromised hosts. Although limited drugs are available, development of new agents against HCMV is desired. Through screening of the LOPAC library, we identified emetine as HCMV inhibitor. Additional studies confirmed its anti-HCMV activities in human foreskin fibroblasts: EC50−40±1.72 nM, CC50−8±0.56 μM, and selectivity index of 200. HCMV inhibition occurred after virus entry, but before DNA replication, and resulted in decreased expression of viral proteins. Synergistic virus inhibition was achieved when emetine was combined with ganciclovir. In a mouse CMV (MCMV) model, emetine was well-tolerated, displayed long half-life, preferential distribution to tissues over plasma, and effectively suppressed MCMV. Since the in vitro anti-HCMV activity of emetine decreased significantly in low-density cells, a mechanism involving cell cycle regulation was suspected. HCMV inhibition by emetine depended on ribosomal processing S14 (RPS14) binding to MDM2, leading to disruption of HCMV-induced MDM2-p53 and MDM2-IE2 interactions. Irrespective of cell density, emetine induced RPS14 translocation into the nucleus during infection. In infected high-density cells, MDM2 was available for interaction with RPS14, resulting in disruption of MDM2-p53 interaction. However, in low-density cells the pre-existing interaction of MDM2-p53 could not be disrupted, and RPS14 could not interact with MDM2. In high-density cells the interaction of MDM2-RPS14 resulted in ubiquitination and degradation of RPS14, which was not observed in low-density cells. In infected-only or in non-infected emetine-treated cells, RPS14 failed to translocate into the nucleus, hence could not interact with MDM2, and was not ubiquitinated. HCMV replicated similarly in RPS14 knockdown or control cells, but emetine did not inhibit virus replication in the former cell line. The interaction of MDM2-p53 was maintained in infected RPS14 knockdown cells despite emetine treatment, confirming a unique mechanism by which emetine exploits RPS14 to disrupt MDM2-p53 interaction. Summarized, emetine may represent a promising candidate for HCMV therapy alone or in combination with ganciclovir through a novel host-dependent mechanism. Infection with human Cytomegalovirus (HCMV) is a growing and pressing problem, creating ongoing management and therapeutic challenges. Despite the availability of DNA polymerase inhibitors, development of new strategies for HCMV therapy is needed. We report for the first time on the efficacy of an old drug (emetine) against HCMV in vitro and mouse CMV in vivo, using exceedingly low drug doses. We also provide evidence for a specific host-dependent anti-CMV mechanism of emetine in vitro, thus uncovering a cellular function that can be further studied for drug development. Our work provides a novel direction for HCMV therapeutics through repurposing of an old agent, at substantially lower doses, and inhibiting HCMV indirectly through host activities critical for virus replication.
Collapse
|
12
|
Vaz PK, Hartley CA, Browning GF, Devlin JM. Marsupial and monotreme serum immunoglobulin binding by proteins A, G and L and anti-kangaroo antibody. J Immunol Methods 2015; 427:94-9. [PMID: 26523413 DOI: 10.1016/j.jim.2015.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/28/2015] [Accepted: 10/28/2015] [Indexed: 12/20/2022]
Abstract
Serological studies are often conducted to examine exposure to infectious agents in wildlife populations. However, specific immunological reagents for wildlife species are seldom available and can limit the study of infectious diseases in these animals. This study examined the ability of four commercially available immunoglobulin-binding reagents to bind serum immunoglobulins from 17 species within the Marsupialia and Monotremata. Serum samples were assessed for binding, using immunoblots and ELISAs (Enzyme-linked immunosorbent assays), to three microbially-derived proteins - staphylococcal protein A, streptococcal protein G and peptostreptococcal protein L. Additionally, an anti-kangaroo antibody was included for comparison. The inter- and intra-familial binding patterns of the reagents to serum immunoglobulins varied and evolutionary distance between animal species was not an accurate predictor of the ability of reagents to bind immunoglobulins. Results from this study can be used to inform the selection of appropriate immunological reagents in future serological studies in these clades.
Collapse
Affiliation(s)
- Paola K Vaz
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Carol A Hartley
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Glenn F Browning
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Joanne M Devlin
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
13
|
Heerkens EHJ, Quinn L, Withers SB, Heagerty AM. β Integrins mediate FAK Y397 autophosphorylation of resistance arteries during eutrophic inward remodeling in hypertension. J Vasc Res 2014; 51:305-14. [PMID: 25300309 PMCID: PMC4224252 DOI: 10.1159/000365479] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 06/23/2014] [Indexed: 11/19/2022] Open
Abstract
Human essential hypertension is characterized by eutrophic inward remodeling of the resistance arteries with little evidence of hypertrophy. Upregulation of αVβ3 integrin is crucial during this process. In order to investigate the role of focal adhesion kinase (FAK) activation in this process, the level of FAK Y397 autophosphorylation was studied in small blood vessels from young TGR(mRen2)27 animals as blood pressure rose and eutrophic inward remodeling took place. Between weeks 4 and 5, this process was completed and accompanied by a significant increase in FAK phosphorylation compared with normotensive control animals. Phosphorylated (p)FAK Y397 was coimmunoprecipitated with both β1- and β3-integrin-specific antibodies. In contrast, only a fraction (<10-fold) was coprecipitated with the β3 integrin subunit in control vessels. Inhibition of eutrophic remodeling by cRGDfV treatment of TGR(mRen2)27 rats resulted in the development of smooth-muscle-cell hypertrophy and a significant further enhancement of FAK Y397 phosphorylation, but this time with exclusive coassociation of pFAK Y397 with integrin β1. We established that phosphorylation of FAK Y397 with association with β1 and β3 integrins occurs with pressure-induced eutrophic remodeling. Inhibiting this process leads to an adaptive hypertrophic vascular response induced by a distinct β1-mediated FAK phosphorylation pattern.
Collapse
|
14
|
Grainger DL, Hudong B, Chang D, Lan P. Cleaning up Western blot signals from immunoprecipitated samples using alternative detection methods. Biotechniques 2014. [DOI: 10.2144/000114149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
High background signal is a common problem experienced when detecting proteins isolated through immunoprecipitation (IP) by Western blotting (WB). The most frequent cause of high background is signal interference from the heavy and light chain fragments of the denatured immunoprecipitating (or capture) antibody ' by-products of IP labeled by species-specific secondary antibodies at the WB stage. Here we comment on alternative methods for the detection of immunoprecipitated proteins by WB that avoid labeling of the heavy and light chain to varying extents. Certain methods have been described elsewhere (1), however, their use remains less widespread than traditional detection methods despite offering the researcher considerable advantages.
Collapse
|
15
|
Dohler F, Sepulveda-Falla D, Krasemann S, Altmeppen H, Schlüter H, Hildebrand D, Zerr I, Matschke J, Glatzel M. High molecular mass assemblies of amyloid-β oligomers bind prion protein in patients with Alzheimer's disease. ACTA ACUST UNITED AC 2014; 137:873-86. [PMID: 24519981 DOI: 10.1093/brain/awt375] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Alzheimer's disease is the most common form of dementia and the generation of oligomeric species of amyloid-β is causal to the initiation and progression of it. Amyloid-β oligomers bind to the N-terminus of plasma membrane-bound cellular prion protein (PrP(C)) initiating a series of events leading to synaptic degeneration. Composition of bound amyloid-β oligomers, binding regions within PrP(C), binding affinities and modifiers of this interaction have been almost exclusively studied in cell culture or murine models of Alzheimer's disease and our knowledge on PrP(C)-amyloid-β interaction in patients with Alzheimer's disease is limited regarding occurrence, binding regions in PrP(C), and size of bound amyloid-β oligomers. Here we employed a PrP(C)-amyloid-β binding assay and size exclusion chromatography on neuropathologically characterized Alzheimer's disease and non-demented control brains (n = 15, seven female, eight male, average age: 79.2 years for Alzheimer's disease and n = 10, three female, seven male, average age: 66.4 years for controls) to investigate amyloid-β-PrP(C) interaction. PrP(C)-amyloid-β binding always occurred in Alzheimer's disease brains and was never detected in non-demented controls. Neither expression level of PrP(C) nor known genetic modifiers of Alzheimer's disease, such as the PrP(C) codon 129 polymorphism, influenced this interaction. In Alzheimer's disease brains, binding of amyloid-β to PrP(C) occurred via the PrP(C) N-terminus. For synthetic amyloid-β42, small oligomeric species showed prominent binding to PrP(C), whereas in Alzheimer's disease brains larger protein assemblies containing amyloid-β42 bound efficiently to PrP(C). These data confirm Alzheimer's disease specificity of binding of amyloid-β to PrP(C) via its N-terminus in a large cohort of Alzheimer's disease/control brains. Differences in sizes of separated protein fractions between synthetic and brain-derived amyloid-β binding to PrP(C) suggest that larger assemblies of amyloid-β or additional non-amyloid-β components may play a role in binding of amyloid-β42 to PrP(C) in Alzheimer's disease.
Collapse
Affiliation(s)
- Frank Dohler
- 1 Institute of Neuropathology, University Medical Centre Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Jørgensen ML, Friis NA, Just J, Madsen P, Petersen SV, Kristensen P. Expression of single-chain variable fragments fused with the Fc-region of rabbit IgG in Leishmania tarentolae. Microb Cell Fact 2014; 13:9. [PMID: 24428896 PMCID: PMC3917567 DOI: 10.1186/1475-2859-13-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 01/04/2014] [Indexed: 12/03/2022] Open
Abstract
Background In recent years the generation of antibodies by recombinant methods, such as phage display technology, has increased the speed by which antibodies can be obtained. However, in some cases when recombinant antibodies have to be validated, expression in E. coli can be problematic. This primarily occurs when codon usage or protein folding of specific antibody fragments is incompatible with the E. coli translation and folding machinery, for instance when recombinant antibody formats that include the Fc-region are needed. In such cases other expression systems can be used, including the protozoan parasite Leishmania tarentolae (L. tarentolae). This novel host for recombinant protein expression has recently shown promising properties for the expression of single-chain antibody fragments. We have utilised the L. tarentolae T7-TR system to achieve expression and secretion of two scFvs fused to the Fc-region of rabbit immunoglobulin G (IgG). Results Based on the commercial vector pLEXSY_IE-blecherry4 (Jena Bioscience; Cat. No. EGE-255), we generated a vector containing the Fragment Crystallisable (Fc) region of rabbit IgG allowing insertions of single chain antibody fragments (scFvs) in frame via Ncol/Notl cloning (pMJ_LEXSY-rFc). For the expression of rabbit Fc-fusion scFvs (scFv-rFc) we cloned two scFvs binding to human vimentin (LOB7 scFv) and murine laminin (A10 scFv) respectively, into the modified vector. The LOB7-rFc and A10-rFc fusions expressed at levels up to 2.95 mg/L in L. tarentolae T7-TR. Both scFv-rFcs were purified from the culture supernatants using protein A affinity chromatography. Additionally, we expressed three different scFvs without the rFc regions using a similar expression cassette, obtaining yields up to 1.00 mg/L. Conclusions To our knowledge, this is the first time that antibody fragments with intact Fc-region of immunoglobulin have been produced in L. tarentolae. Using the plasmid pMJ_LEXSY-rFc, L. tarentolae T7-TR can be applied as an efficient tool for expression of rFc fusion antibody fragments, allowing easy purification from the growth medium. This system provides an alternative in cases where antibody constructs express poorly in standard prokaryotic systems. Furthermore, in cases where bivalent Fc-fused antibody constructs are needed, using L. tarentolae for expression provides an efficient alternative to mammalian expression.
Collapse
Affiliation(s)
| | | | | | | | | | - Peter Kristensen
- Department of Engineering, Aarhus University, Gustav Wieds Vej 10, Aarhus, Denmark.
| |
Collapse
|
17
|
Malnoë A, Wang F, Girard-Bascou J, Wollman FA, de Vitry C. Thylakoid FtsH protease contributes to photosystem II and cytochrome b6f remodeling in Chlamydomonas reinhardtii under stress conditions. THE PLANT CELL 2014; 26:373-90. [PMID: 24449688 PMCID: PMC3963582 DOI: 10.1105/tpc.113.120113] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 11/28/2013] [Accepted: 12/18/2013] [Indexed: 05/18/2023]
Abstract
FtsH is the major thylakoid membrane protease found in organisms performing oxygenic photosynthesis. Here, we show that FtsH from Chlamydomonas reinhardtii forms heterooligomers comprising two subunits, FtsH1 and FtsH2. We characterized this protease using FtsH mutants that we identified through a genetic suppressor approach that restored phototrophic growth of mutants originally defective for cytochrome b6f accumulation. We thus extended the spectrum of FtsH substrates in the thylakoid membranes beyond photosystem II, showing the susceptibility of cytochrome b6f complexes (and proteins involved in the ci heme binding pathway to cytochrome b6) to FtsH. We then show how FtsH is involved in the response of C. reinhardtii to macronutrient stress. Upon phosphorus starvation, photosynthesis inactivation results from an FtsH-sensitive photoinhibition process. In contrast, we identified an FtsH-dependent loss of photosystem II and cytochrome b6f complexes in darkness upon sulfur deprivation. The D1 fragmentation pattern observed in the latter condition was similar to that observed in photoinhibitory conditions, which points to a similar degradation pathway in these two widely different environmental conditions. Our experiments thus provide extensive evidence that FtsH plays a major role in the quality control of thylakoid membrane proteins and in the response of C. reinhardtii to light and macronutrient stress.
Collapse
|
18
|
Buelli S, Rosanò L, Gagliardini E, Corna D, Longaretti L, Pezzotta A, Perico L, Conti S, Rizzo P, Novelli R, Morigi M, Zoja C, Remuzzi G, Bagnato A, Benigni A. β-arrestin-1 drives endothelin-1-mediated podocyte activation and sustains renal injury. J Am Soc Nephrol 2013; 25:523-33. [PMID: 24371298 DOI: 10.1681/asn.2013040362] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Activation of endothelin-A receptor (ET(A)R) by endothelin-1 (ET-1) drives epithelial-to-mesenchymal transition in ovarian tumor cells through β-arrestin signaling. Here, we investigated whether this pathogenetic pathway could affect podocyte phenotype in proliferative glomerular disorders. In cultured mouse podocytes, ET-1 caused loss of the podocyte differentiation marker synaptopodin and acquisition of the mesenchymal marker α-smooth muscle actin. ET-1 promoted podocyte migration via ET(A)R activation and increased β-arrestin-1 expression. Activated ET(A)R recruited β-arrestin-1 to form a trimeric complex with Src leading to epithelial growth factor receptor (EGFR) transactivation and β-catenin phosphorylation, which promoted gene transcription of Snail. Increased Snail expression fostered ET-1-induced migration as confirmed by Snail knockdown experiments. Silencing of β-arrestin-1 prevented podocyte phenotypic changes and motility and inhibited ET(A)R-driven signaling. In vitro findings were confirmed in doxorubicin (Adriamycin)-induced nephropathy. Mice receiving Adriamycin developed renal injury with loss of podocytes and hyperplastic lesion formation; β-arrestin-1 expression increased in visceral podocytes and in podocytes entrapped in pseudo-crescents. Administration of the selective ET(A)R antagonist sitaxsentan prevented podocyte loss, formation of the hyperplastic lesions, and normalized expression of glomerular β-arrestin-1 and Snail. Increased β-arrestin-1 levels in podocytes retrieved from crescents of patients with proliferative glomerulopathies confirmed the translational relevance of these findings and suggest the therapeutic potential of ET(A)R antagonism for a group of diseases still needing a specific treatment.
Collapse
Affiliation(s)
- Simona Buelli
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Bergamo, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Errington TM, Macara IG. Depletion of the adaptor protein NCK increases UV-induced p53 phosphorylation and promotes apoptosis. PLoS One 2013; 8:e76204. [PMID: 24086708 PMCID: PMC3781058 DOI: 10.1371/journal.pone.0076204] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/21/2013] [Indexed: 01/08/2023] Open
Abstract
The cellular response to DNA damage requires the coordination of many proteins involved in diverse molecular processes. Discrete molecular pathways are becoming increasingly well understood, but the interconnectivity and coordination of multiple pathways remains less clear. We now show that NCK, an adapter protein involved in cytoskeletal responses to tyrosine kinase receptor signaling, accumulates in the nucleus in response to DNA damage and this translocation can be blocked by specific inhibition of the ATR protein kinase. Strikingly, HeLa cells depleted of NCK undergo apoptosis shortly after UV irradiation, as monitored by caspase-3 cleavage and PARP cleavage. This rapid, hyperactive apoptosis in NCK depleted cells might be p53 dependent, because loss of NCK also increased UV-induced p53 phosphorylation. Importantly, depletion of SOCS7, which is necessary for NCK nuclear translocation, phenocopies NCK depletion, indicating the nuclear accumulation of NCK is responsible for these molecular events. There are two NCK isoforms that have mostly redundant functions, and although NCK2 appears to have a greater contribution, depletion of NCK1 or NCK2, led to increased p53 phosphorylation and early apoptosis after UV exposure. These data reveal a novel function for NCK in regulating p53 phosphorylation and apoptosis, and provide evidence for interconnectedness of growth factor signaling proteins and the DNA damage response.
Collapse
Affiliation(s)
- Timothy M. Errington
- Department of Microbiology, Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Ian G. Macara
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
20
|
Membrane localization of membrane type 1 matrix metalloproteinase by CD44 regulates the activation of pro-matrix metalloproteinase 9 in osteoclasts. BIOMED RESEARCH INTERNATIONAL 2013; 2013:302392. [PMID: 23984338 PMCID: PMC3745902 DOI: 10.1155/2013/302392] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 06/22/2013] [Accepted: 06/22/2013] [Indexed: 12/02/2022]
Abstract
CD44, MT1-MMP, and MMP9 are implicated in the migration of osteoclast and bone resorption. This study was designed to determine the functional relationship between CD44 and MT1-MMP in the activation of pro-MMP9. We used osteoclasts isolated from wild-type and CD44-null mice. Results showed that MT1-MMP is present in multiple forms with a molecular mass ~63, 55, and 45 kDa in the membrane of wild-type osteoclasts. CD44-null osteoclasts demonstrated a 55 kDa active MT1-MMP form in the membrane and conditioned medium. It failed to activate pro-MMP9 because TIMP2 binds and inhibits this MT1-MMP (~55 kDa) in CD44-null osteoclasts. The role of MT1-MMP in the activation of pro-MMP9, CD44 expression, and migration was confirmed by knockdown of MT1-MMP in wild-type osteoclasts. Although knockdown of MMP9 suppressed osteoclast migration, it had no effects on MT1-MMP activity or CD44 expression. These results suggest that CD44 and MT1-MMP are directly or indirectly involved in the regulation of pro-MMP9 activation. Surface expression of CD44, membrane localization of MT1-MMP, and activation of pro-MMP9 are the necessary sequence of events in osteoclast migration.
Collapse
|
21
|
Olson CM, Donovan MR, Spellberg MJ, Marr MT. The insulin receptor cellular IRES confers resistance to eIF4A inhibition. eLife 2013; 2:e00542. [PMID: 23878722 PMCID: PMC3713452 DOI: 10.7554/elife.00542] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 06/11/2013] [Indexed: 11/17/2022] Open
Abstract
Under conditions of stress, such as limited growth factor signaling, translation is inhibited by the action of 4E-BP and PDCD4. These proteins, through inhibition of eIF4E and eIF4A, respectively, impair cap-dependent translation. Under stress conditions FOXO transcription factors activate 4E-BP expression amplifying the repression. Here we show that Drosophila FOXO binds the PDCD4 promoter and stimulates the transcription of PDCD4 in response to stress. We have shown previously that the 5′ UTR of the Drosophila insulin-like receptor (dINR) supports cap-independent translation that is resistant to 4E-BP. Using hippuristanol, an eIF4A inhibitor, we find that translation of dINR UTR containing transcripts are also resistant to eIF4A inhibition. In addition, the murine insulin receptor and insulin-like growth factor receptor 5′ UTRs support cap-independent translation and have a similar resistance to hippuristanol. This resistance to inhibition of eIF4E and eIF4A indicates a conserved strategy to allow translation of growth factor receptors under stress conditions. DOI:http://dx.doi.org/10.7554/eLife.00542.001 Protein synthesis in eukaryotes occurs in two stages: transcription of DNA into messenger RNA (mRNA) in the nucleus, and then translation of that mRNA into a protein by ribosomes in the cytoplasm. These processes are regulated by a complex network of signaling pathways that enables cells to tailor protein synthesis to match current conditions. This involves regulating the expression of the genes that code for these proteins. When cells experience stressful events, such as a shortage of oxygen or nutrients, they reduce the synthesis of most proteins. This response is regulated, in part, by a signaling pathway known as the insulin and insulin-like receptor pathway. In particular, stressful events inhibit a protein complex called eIF4F, which normally initiates the translation of mRNA molecules by binding to a structure on one end of the mRNA called the 5′ cap. Despite this general inhibition, the production of certain other proteins—including the insulin receptor itself—is actually increased in response to stress. Olson et al. have carried out a series of experiments to explore how inhibition of the eIF4F protein complex influences the translation of the mRNA for the insulin receptor. The eIF4F complex is made up of three proteins, including one that binds to the 5′ cap and a helicase that unwinds the RNA. Previous work in the fruit fly Drosophila showed that translation of this mRNA can continue even if formation of the eIF4F complex is inhibited by targeting the cap binding protein. Olsen et al. now show that translation of this mRNA is also independent of the helicase. Instead, translation is maintained under these conditions because the insulin receptor mRNA contains a sequence called an internal ribosome entry site, which allows ribosomes to bind to the mRNA without the influence of the 5′ cap. Olson et al. reveal the details of this regulatory pathway in Drosophila and show that similar mechanisms are at work in mammalian cells, suggesting this pathway represents a crucial regulatory process that has been conserved during evolution. A key question for future research is whether other genes within the insulin and insulin-receptor like signaling pathway use this same trick to evade translational inhibitors. DOI:http://dx.doi.org/10.7554/eLife.00542.002
Collapse
Affiliation(s)
- Calla M Olson
- Department of Biology and the Rosenstiel Basic Medical Sciences Research Center , Brandeis University , Waltham , United States
| | | | | | | |
Collapse
|
22
|
Hochdörfer T, Tiedje C, Stumpo DJ, Blackshear PJ, Gaestel M, Huber M. LPS-induced production of TNF-α and IL-6 in mast cells is dependent on p38 but independent of TTP. Cell Signal 2013; 25:1339-47. [PMID: 23499908 DOI: 10.1016/j.cellsig.2013.02.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 02/26/2013] [Indexed: 02/08/2023]
Abstract
The production of the proinflammatory cytokines TNF-α and IL-6 is regulated by various mRNA-binding proteins, influencing stability and translation of the respective transcripts. Research in macrophages has shown the importance of the p38-MK2-tristetraprolin (TTP) axis for regulation of TNF-α mRNA stability and translation. In the current study we examined a possible involvement of p38 and TTP in LPS-induced cytokine production in bone marrow-derived mast cells (BMMCs). Using pharmacological inhibitors we initially found a strong dependence of LPS-induced TNF-α and IL-6 production on p38 activation, whereas activation of the Erk pathway appeared dispensable. LPS treatment also induced p38-dependent expression of the TTP gene. This prompted us to analyze the proinflammatory cytokine response in BMMCs generated from TTP-deficient mice. Unexpectedly, there were no significant differences in cytokine production between TTP-deficient and WT BMMCs in response to LPS. Gene expression and cytokine production of TNF-α and IL-6 as well as stability of the TNF-α transcript were comparable between TTP-deficient and WT BMMCs. In contrast to TTP mRNA expression, TTP protein expression could not be detected in BMMCs. While we successfully precipitated and detected TTP from lysates of LPS-stimulated RAW 264.7 macrophages, this was not accomplished from BMMC lysates. In contrast, we found mRNA and protein expressions of the other TIS11 family members connected to regulation of mRNA stability, BRF1 and BRF2, and detected their interaction with 14-3-3 proteins. These data suggest that control of cytokine mRNA stability and translation in MCs is exerted by proteins different from TTP.
Collapse
Affiliation(s)
- Thomas Hochdörfer
- RWTH Aachen University, Medical Faculty, Institute of Biochemistry and Molecular Immunology, Aachen, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Thomson G, Watson A, Caldecott K, Denneny O, Depledge P, Hamilton N, Hopkins G, Jordan A, Morrow C, Raoof A, Waddell I, Ogilvie D. Generation of assays and antibodies to facilitate the study of human 5'-tyrosyl DNA phosphodiesterase. Anal Biochem 2013; 436:145-50. [PMID: 23416181 DOI: 10.1016/j.ab.2013.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/28/2013] [Accepted: 02/04/2013] [Indexed: 01/29/2023]
Abstract
Topoisomerases regulate DNA topology by the transient cleavage and religation of DNA during transcription and replication. Topoisomerase II (Topo II) poisons such as etoposide can induce abortive DNA strand breaks in which Topo II remains covalently bound to a 5' DNA strand terminus via a phosphotyrosyl linker. Tyrosyl DNA phosphodiesterase 2 (Tdp2) is a recently discovered human 5'-tyrosyl DNA phosphodiesterase that repairs this topoisomerase-mediated DNA damage, thereby playing a central role in maintaining normal DNA topology in cells. Cellular depletion of Tdp2 has been shown to result in increased susceptibility and sensitivity to Topo II-induced DNA double-strand breaks, thereby revealing Tdp2 as a potentially attractive anticancer target. No drug-like inhibitors of Tdp2 have been identified to date, and assays suitable for high-throughput screening (HTS) have not been widely reported. Here we have identified a new and effective chromogenic substrate for Tdp2 and developed a homogeneous and robust HTS assay. A second novel Tdp2 assay was also developed to cross-validate hit matter identified from an HTS. In addition, a new and specific Tdp2 antibody is described. Together, these new tools will aid in the identification of novel Tdp2 inhibitors and the investigation of the role of Tdp2 in cancer.
Collapse
Affiliation(s)
- Graeme Thomson
- Cancer Research UK Drug Discovery Unit, Paterson Institute for Cancer Research, University of Manchester, Manchester M20 4BX, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Han SO, Xiao K, Kim J, Wu JH, Wisler JW, Nakamura N, Freedman NJ, Shenoy SK. MARCH2 promotes endocytosis and lysosomal sorting of carvedilol-bound β(2)-adrenergic receptors. ACTA ACUST UNITED AC 2012; 199:817-30. [PMID: 23166351 PMCID: PMC3514787 DOI: 10.1083/jcb.201208192] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The β2-adrenergic receptor antagonist carvedilol recruits MARCH2, a unique E3 ubiquitin ligase, to promote receptor endocytosis and lysosomal trafficking. Lysosomal degradation of ubiquitinated β2-adrenergic receptors (β2ARs) serves as a major mechanism of long-term desensitization in response to prolonged agonist stimulation. Surprisingly, the βAR antagonist carvedilol also induced ubiquitination and lysosomal trafficking of both endogenously expressed β2ARs in vascular smooth muscle cells (VSMCs) and overexpressed Flag-β2ARs in HEK-293 cells. Carvedilol prevented β2AR recycling, blocked recruitment of Nedd4 E3 ligase, and promoted the dissociation of the deubiquitinases USP20 and USP33. Using proteomics approaches (liquid chromatography–tandem mass spectrometry), we identified that the E3 ligase MARCH2 interacted with carvedilol-bound β2AR. The association of MARCH2 with internalized β2ARs was stabilized by carvedilol and did not involve β-arrestin. Small interfering RNA–mediated down-regulation of MARCH2 ablated carvedilol-induced ubiquitination, endocytosis, and degradation of endogenous β2ARs in VSMCs. These findings strongly suggest that specific ligands recruit distinct E3 ligase machineries to activated cell surface receptors and direct their intracellular itinerary. In response to β blocker therapy with carvedilol, MARCH2 E3 ligase activity regulates cell surface β2AR expression and, consequently, its signaling.
Collapse
Affiliation(s)
- Sang-oh Han
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Co-Immunoprecipitation. Methods Cell Biol 2012. [DOI: 10.1016/b978-0-12-405914-6.00002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Wang Y, Taylor TH, Arriaga EA. Analysis of the bioactivity of magnetically immunoisolated peroxisomes. Anal Bioanal Chem 2011; 402:41-9. [PMID: 22065344 DOI: 10.1007/s00216-011-5476-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/30/2011] [Accepted: 10/04/2011] [Indexed: 10/15/2022]
Abstract
Peroxisomes produce reactive oxygen species which may participate in biotransformations of innate biomolecules and xenobiotics. Isolating functional peroxisomes with low levels of contaminants would be a useful tool to investigate biotransformations occurring in these organelles that are usually confounded with biotransformations occurring in other co-isolated organelles. Here, we immunoisolate peroxisomes and demonstrate that the impurity level after isolation is low and that peroxisomes retain their biological activity. In this method, an antibody targeting a 70-kDa peroxisomal membrane protein was immobilized to silanized magnetic iron oxide beads (1-4 μm in diameter) coated with Protein A. Peroxisomes from L6 rat myoblast homogenates were magnetically captured, washed, and then analyzed for subcellular composition using enzymatic assays. Based on the ratio of peroxisomal to lysosomal activity, the retained fraction is 70-fold enriched relative to the unretained fraction. Similarly, the ratio of peroxisomal activity to mitochondrial content suggests that the retained fraction is >30-fold enriched relative to the unretained fraction. H(2)O(2) production from the β-oxidation of palmitoyl-CoA demonstrated that the isolated peroxisomal fraction was biologically active. Capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) analysis confirmed that the immunopurified fractions were capable of transforming the anticancer drug doxorubicin and the fatty acid analog, BODIPY 500/510 C1C12. Besides its use to investigate peroxisome biotransformations in health and disease, the combination of magnetic immunoisolation with CE-LIF could be widely applicable to investigate subcellular-specific biotransformations of xenobiotics occurring at immunoisolated subcellular compartments.
Collapse
Affiliation(s)
- Yaohua Wang
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
27
|
β-arrestin1 mediates metastatic growth of breast cancer cells by facilitating HIF-1-dependent VEGF expression. Oncogene 2011; 31:282-92. [PMID: 21685944 PMCID: PMC3179824 DOI: 10.1038/onc.2011.238] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
β-Arrestins 1 and 2 are multifunctional adaptor proteins originally discovered for their role in desensitizing seven-transmembrane receptor signaling via the heterotrimeric guanine nucleotide-binding proteins. Recently identified roles of β-arrestins include regulation of cancer cell chemotaxis and proliferation. Herein, we report that β-arrestin1 expression regulates breast tumor colonization in nude mice and cancer cell viability during hypoxia. β-Arrestin1 robustly interacts with nuclear hypoxia-induced factor-1α (HIF-1α) that is stabilized during hypoxia and potentiates HIF-1-dependent transcription of the angiogenic factor vascular endothelial growth factor-A (VEGF-A). Increased expression of β-arrestin1 in human breast cancer (infiltrating ductal carcinoma or IDC and metastatic IDC) correlates with increased levels of VEGF-A. While the anti-angiogenic drug thalidomide inhibits HIF-1-dependent VEGF transcription in breast carcinoma cells, it does not prevent HIF-1α stabilization, but leads to aberrant localization of HIF-1α to the perinuclear compartments and surprisingly stimulates nuclear export of β-arrestin1. Additionally, imatinib mesylate that inhibits release of VEGF induces nuclear export of β-arrestin1-HIF-1α complexes. Our findings suggest that β-arrestin1 regulates nuclear signaling during hypoxia to promote survival of breast cancer cells via VEGF signaling and that drugs that induce its translocation from the nucleus to the cytoplasm could be useful in anti-angiogenic and breast cancer therapies.
Collapse
|
28
|
Xu YZ, Thuraisingam T, Marino R, Radzioch D. Recruitment of SWI/SNF complex is required for transcriptional activation of the SLC11A1 gene during macrophage differentiation of HL-60 cells. J Biol Chem 2011; 286:12839-49. [PMID: 21300803 DOI: 10.1074/jbc.m110.185637] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The solute carrier family 11 member 1 (SLC11A1) gene is strictly regulated and exclusively expressed in myeloid lineage cells. However, little is known about the transcriptional regulation of the SLC11A1 gene during myeloid development. In this study, we used HL-60 cells as a model to investigate the regulatory elements/factors involved in the transactivation of the SLC11A1 gene during phorbol 12-myristate 13-acetate (PMA)-induced macrophage differentiation of HL-60 cells. Promoter deletion analysis showed that a 7-base AP-1-like element (TGACTCT) was critical for the responsiveness of the SLC11A1 promoter to PMA. Stimulation by PMA induced the binding of ATF-3 and the recruitment of two components of the SWI/SNF complex, BRG1 and β-actin, to this element in an ATF-3-dependent manner. RNAi-mediated depletion of ATF-3 or BRG1 markedly decreased SLC11A1 gene expression and its promoter activity induced by PMA. Luciferase reporter experiments demonstrated that ATF-3 cooperated with BRG1 and β-actin to activate the SLC11A1 promoter. Furthermore, we showed that PMA can induce the proximal (GT/AC)(n) repeat sequence to convert to the Z-DNA structure in the SLC11A1 gene promoter, and depletion of BRG1 resulted in a significant decrease of Z-DNA formation. Our results demonstrated that recruitment of the SWI/SNF complex initiated Z-DNA formation and subsequently helped to transactivate the SLC11A1 gene.
Collapse
Affiliation(s)
- Yong Zhong Xu
- Division of Experimental Medicine, Department of Medicine, Montreal General Hospital Research Institute, McGill University, Montreal, Quebec H3G 1A4, Canada
| | | | | | | |
Collapse
|
29
|
Yu T, Calvo L, Anta B, López-Benito S, Southon E, Chao MV, Tessarollo L, Arévalo JC. Regulation of trafficking of activated TrkA is critical for NGF-mediated functions. Traffic 2011; 12:521-34. [PMID: 21199218 DOI: 10.1111/j.1600-0854.2010.01156.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Upon activation by nerve growth factor (NGF), TrkA is internalized, trafficked and sorted through different endosomal compartments. Proper TrkA trafficking and sorting are crucial events as alteration of these processes hinders NGF-mediated functions. However, it is not fully known which proteins are involved in the trafficking and sorting of TrkA. Here we report that Nedd4-2 regulates the trafficking of TrkA and NGF functions in sensory neurons. Depletion of Nedd4-2 disrupts the correct sorting of activated TrkA at the early and late endosome stages, resulting in an accumulation of TrkA in these compartments and, as a result of the reduced trafficking to the degradative pathway, TrkA is either reverted to the cell surface through the recycling pathway or retrogradely transported to the cell body. In addition, Nedd4-2 depletion enhances TrkA signaling and the survival of NGF-dependent dorsal root ganglion neurons, but not those of brain-derived neurotrophic factor-dependent neurons. Furthermore, neurons from a knock-in mouse expressing a TrkA mutant that does not bind Nedd4-2 protein exhibit increased NGF-mediated signaling and cell survival. Our data indicate that TrkA trafficking and sorting are regulated by Nedd4-2 protein.
Collapse
Affiliation(s)
- Tao Yu
- Department of Cell Biology and Pathology, Instituto de Neurociencias de Castilla y León (INCyL), Universidad de Salamanca, Salamanca 37007, Spain
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Mercedes-Camacho AY, Etzkorn FA. Enzyme-linked enzyme-binding assay for Pin1 WW domain ligands. Anal Biochem 2010; 402:77-82. [PMID: 20230769 PMCID: PMC2876714 DOI: 10.1016/j.ab.2010.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 03/10/2010] [Accepted: 03/10/2010] [Indexed: 11/16/2022]
Abstract
Peptidyl prolyl cis-trans isomerase (PPIase) interacting with NIMA-1 (Pin1) catalyzes the cis-trans isomerization of pSer/pThr-Pro amide bonds. Pin1 is a two-domain protein that represents a promising target for the treatment of cancer. Both domains of Pin1 bind the pSer/pThr-Pro motif; PPIase enzymatic activity occurs in the catalytic domain, and the WW domain acts as a recognition module for the pSer/pThr-Pro motif. An assay we call an enzyme-linked enzyme-binding assay (ELEBA) was developed to measure the K(d) of ligands that bind selectively to the WW domain. A ligand specific for the WW domain of Pin1 was covalently immobilized in a 96-well plate. Commercially available Pin1 conjugated to horseradish peroxidase was used for chemiluminescent detection of ligands that block the association of the WW domain with immobilized ligand. The peptide ligands were derived from the cell cycle regulatory phosphatase, Cdc25c, residues 45-50. The K(d) values for Fmoc-VPRpTPVGGGK-NH2 and Ac-VPRpTPV-NH2 were determined to be 36+/-4 and 110+/-30 microM, respectively. The ELEBA offers a selective approach for detecting ligands that bind to the Pin1 WW domain, even in the presence of the catalytic domain. This method may be applied to any dual specificity, multidomain protein.
Collapse
Affiliation(s)
| | - Felicia A. Etzkorn
- Departments of Chemistry and Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
| |
Collapse
|
31
|
Wang K, Sengupta S, Magnani L, Wilson CA, Henry RW, Knott JG. Brg1 is required for Cdx2-mediated repression of Oct4 expression in mouse blastocysts. PLoS One 2010; 5:e10622. [PMID: 20485553 PMCID: PMC2868905 DOI: 10.1371/journal.pone.0010622] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 04/22/2010] [Indexed: 11/18/2022] Open
Abstract
During blastocyst formation the segregation of the inner cell mass (ICM) and trophectoderm is governed by the mutually antagonistic effects of the transcription factors Oct4 and Cdx2. Evidence indicates that suppression of Oct4 expression in the trophectoderm is mediated by Cdx2. Nonetheless, the underlying epigenetic modifiers required for Cdx2-dependent repression of Oct4 are largely unknown. Here we show that the chromatin remodeling protein Brg1 is required for Cdx2-mediated repression of Oct4 expression in mouse blastocysts. By employing a combination of RNA interference (RNAi) and gene expression analysis we found that both Brg1 Knockdown (KD) and Cdx2 KD blastocysts exhibit widespread expression of Oct4 in the trophectoderm. Interestingly, in Brg1 KD blastocysts and Cdx2 KD blastocysts, the expression of Cdx2 and Brg1 is unchanged, respectively. To address whether Brg1 cooperates with Cdx2 to repress Oct4 transcription in the developing trophectoderm, we utilized preimplantation embryos, trophoblast stem (TS) cells and Cdx2-inducible embryonic stem (ES) cells as model systems. We found that: (1) combined knockdown (KD) of Brg1 and Cdx2 levels in blastocysts resulted in increased levels of Oct4 transcripts compared to KD of Brg1 or Cdx2 alone, (2) endogenous Brg1 co-immunoprecipitated with Cdx2 in TS cell extracts, (3) in blastocysts Brg1 and Cdx2 co-localize in trophectoderm nuclei and (4) in Cdx2-induced ES cells Brg1 and Cdx2 are recruited to the Oct4 promoter. Lastly, to determine how Brg1 may induce epigenetic silencing of the Oct4 gene, we evaluated CpG methylation at the Oct4 promoter in the trophectoderm of Brg1 KD blastocysts. This analysis revealed that Brg1-dependent repression of Oct4 expression is independent of DNA methylation at the blastocyst stage. In toto, these results demonstrate that Brg1 cooperates with Cdx2 to repress Oct4 expression in the developing trophectoderm to ensure normal development.
Collapse
Affiliation(s)
- Kai Wang
- Developmental Epigenetics Laboratory, Department of Animal Science, Michigan State University, East Lansing, Michigan, United States of America
| | - Satyaki Sengupta
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Luca Magnani
- Developmental Epigenetics Laboratory, Department of Animal Science, Michigan State University, East Lansing, Michigan, United States of America
| | - Catherine A. Wilson
- Developmental Epigenetics Laboratory, Department of Animal Science, Michigan State University, East Lansing, Michigan, United States of America
| | - R. William Henry
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Jason G. Knott
- Developmental Epigenetics Laboratory, Department of Animal Science, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
32
|
Liu CC, Pearson C, Bu G. Cooperative folding and ligand-binding properties of LRP6 beta-propeller domains. J Biol Chem 2009; 284:15299-307. [PMID: 19339249 DOI: 10.1074/jbc.m807285200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Wnt/beta-catenin signaling controls cell growth during development, and its misregulation in adults can cause human diseases. LRP6, the essential co-receptor for the Wnt pathway, consists of four beta-propeller domains flanked by epidermal growth factor repeats in its extracellular region. To understand the maturation and ligand-binding properties of individual BP domains, we generated soluble receptor consisting of individual BPs, as well as combinations of these domains. We show that BP1, BP2, and BP4 each can be folded and secreted, and their secretion was enhanced by co-expression of Mesd, a molecular chaperone essential for LRP6 folding and maturation. BP3 is not secreted when expressed on its own or in combination with BP2 or BP1 and 2 (BP12); however, folding and secretion of BP3 is vastly enhanced when expressed together with BP4. Similar cooperative folding and maturation was observed between BP1 and BP2. These results suggest that BP1 forms a functional folding unit with BP2, whereas BP3 folds together with BP4. Using these BP constructs, we also found that BP12 and BP34 constitute independent ligand-binding domains capable of binding Wnt3a, Dkk1, and Mesd. The ability of Mesd to block the binding of both Wnt3a and Dkk1 to LRP6 enables this specialized chaperone to function as a Wnt signaling modulator. Together, our studies reveal unique properties of the LRP6 BP domains and provide novel tools to understand LRP6 function in ligand binding and Wnt signaling. Our results also support the development of soluble LRP6 receptors and Mesd as potential therapeutic molecules that target Wnt signaling.
Collapse
Affiliation(s)
- Chia-Chen Liu
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
33
|
Binding of Drosophila ORC proteins to anaphase chromosomes requires cessation of mitotic cyclin-dependent kinase activity. Mol Cell Biol 2008; 29:140-9. [PMID: 18955499 DOI: 10.1128/mcb.00981-08] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The initial step in the acquisition of replication competence by eukaryotic chromosomes is the binding of the multisubunit origin recognition complex, ORC. We describe a transgenic Drosophila model which enables dynamic imaging of a green fluorescent protein (GFP)-tagged Drosophila melanogaster ORC subunit, DmOrc2-GFP. It is functional in genetic complementation, expressed at physiological levels, and participates quantitatively in complex formation. This fusion protein is therefore able to depict both the holocomplex DmOrc1-6 and the core complex DmOrc2-6 formed by the Drosophila initiator proteins. Its localization can be monitored in vivo along the cell cycle and development. DmOrc2-GFP is not detected on metaphase chromosomes but binds rapidly to anaphase chromatin in Drosophila embryos. Expression of either stable cyclin A, B, or B3 prevents this reassociation, suggesting that cessation of mitotic cyclin-dependent kinase activity is essential for binding of the DmOrc proteins to chromosomes.
Collapse
|
34
|
Rab32 regulates melanosome transport in Xenopus melanophores by protein kinase a recruitment. Curr Biol 2007; 17:2030-4. [PMID: 17997311 DOI: 10.1016/j.cub.2007.10.051] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 10/10/2007] [Accepted: 10/12/2007] [Indexed: 12/30/2022]
Abstract
Intracellular transport is essential for cytoplasm organization, but mechanisms regulating transport are mostly unknown. In Xenopus melanophores, melanosome transport is regulated by cAMP-dependent protein kinase A (PKA). Melanosome aggregation is triggered by melatonin, whereas dispersion is induced by melanocyte-stimulating hormone (MSH). The action of hormones is mediated by cAMP: High cAMP in MSH-treated cells stimulates PKA, whereas low cAMP in melatonin-treated cells inhibits it. PKA activity is typically restricted to specific cell compartments by A-kinase anchoring proteins (AKAPs). Recently, Rab32 has been implicated in protein trafficking to melanosomes and shown to function as an AKAP on mitochondria. Here, we tested the hypothesis that Rab32 is involved in regulation of melanosome transport by PKA. We demonstrated that Rab32 is localized to the surface of melanosomes in a GTP-dependent manner and binds to the regulatory subunit RIIalpha of PKA. Both RIIalpha and Cbeta subunits of PKA are required for transport regulation and are recruited to melanosomes by Rab32. Overexpression of wild-type Rab32, but not mutants unable to bind PKA or melanosomes, inhibits melanosome aggregation by melatonin. Therefore, in melanophores, Rab32 is a melanosome-specific AKAP that is essential for regulation of melanosome transport.
Collapse
|
35
|
Lal A, Abdelmohsen K, Pullmann R, Kawai T, Galban S, Yang X, Brewer G, Gorospe M. Posttranscriptional derepression of GADD45alpha by genotoxic stress. Mol Cell 2006; 22:117-28. [PMID: 16600875 DOI: 10.1016/j.molcel.2006.03.016] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2005] [Revised: 01/20/2006] [Accepted: 03/20/2006] [Indexed: 12/01/2022]
Abstract
The growth arrest- and DNA damage-inducible gene GADD45alpha is potently upregulated in response to stress stimuli. Here, two RNA binding proteins, the mRNA decay-promoting AUF1 and the translational suppressor TIAR, were found to interact specifically with the 3' untranslated region (UTR) of the GADD45alpha mRNA in HeLa cells. These associations were prominent in unstimulated cells, decreasing dramatically after treatment with the genotoxin methyl methanesulfonate (MMS). Analysis of both endogenous and chimeric GADD45alpha mRNA revealed that in untreated cells AUF1 strongly reduced GADD45alpha mRNA stability, whereas TIAR potently inhibited GADD45alpha translation. After genotoxic stress, AUF1 and TIAR dissociated from the GADD45alpha mRNA, thereby allowing coordinated elevations in both GADD45alpha mRNA half-life and translation rate, respectively. We propose that the posttranscriptional derepression of GADD45alpha critically contributes to its potent upregulation after DNA damage.
Collapse
Affiliation(s)
- Ashish Lal
- Laboratory of Cellular and Molecular Biology, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA.
| | | | | | | | | | | | | | | |
Collapse
|