1
|
Wang S, Suluku R, Jalloh MB, Samba AF, Jiang B, Xie Y, Harding D, Zhang M, Sahr F, Sesay ME, Squire JS, Vandi MA, Kallon MN, Zhang S, Hu R, Zhao Y, Mi Z. Molecular characterization of an outbreak-involved Bacillus anthracis strain confirms the spillover of anthrax from West Africa. Infect Dis Poverty 2024; 13:6. [PMID: 38221635 PMCID: PMC10788998 DOI: 10.1186/s40249-023-01172-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND Anthrax, a zoonotic disease caused by the spore-forming bacterium Bacillus anthracis, remains a major global public health concern, especially in countries with limited resources. Sierra Leone, a West African country historically plagued by anthrax, has almost been out of report on this disease in recent decades. In this study, we described a large-scale anthrax outbreak affecting both animals and humans and attempted to characterize the pathogen using molecular techniques. METHODS The causative agent of the animal outbreak in Port Loko District, Sierra Leone, between March and May 2022 was identified using the nanopore sequencing technique. A nationwide active surveillance was implemented from May 2022 to June 2023 to monitor the occurrence of anthrax-specific symptoms in humans. Suspected cases were subsequently verified using quantitative polymerase chain reaction. Full-genome sequencing was accomplished by combining long-read and short-read sequencing methods. Subsequent phylogenetic analysis was performed based on the full-chromosome single nucleotide polymorphisms. RESULTS The outbreak in Port Loko District, Sierra Leone, led to the death of 233 animals between March 26th and May 16th, 2022. We ruled out the initial suspicion of Anaplasma species and successfully identified B. anthracis as the causative agent of the outbreak. As a result of the government's prompt response, out of the 49 suspected human cases identified during the one-year active surveillance, only 6 human cases tested positive, all within the first month after the official declaration of the outbreak. The phylogenetic analysis indicated that the BaSL2022 isolate responsible for the outbreak was positioned in the A.Br.153 clade within the TransEuroAsian group of B. anthracis. CONCLUSIONS We successfully identified a large-scale anthrax outbreak in Sierra Leone. The causative isolate of B. anthracis, BaSL2022, phylogenetically bridged other lineages in A.Br.153 clade and neighboring genetic groups, A.Br.144 and A.Br.148, eventually confirming the spillover of anthrax from West Africa. Given the wide dissemination of B. anthracis spores, it is highly advisable to effectively monitor the potential reoccurrence of anthrax outbreaks and to launch campaigns to improve public awareness regarding anthrax in Sierra Leone.
Collapse
Affiliation(s)
- Shuchao Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Roland Suluku
- Department of Animal Sciences, School of Agriculture and Food Sciences, Njala University, Njala, Sierra Leone.
| | - Mohamed B Jalloh
- Department of Microbiology, College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | - Ahmed F Samba
- Ministry of Agriculture and Food Sciences, Freetown, Sierra Leone
| | - Baogui Jiang
- Beijing Institute of Microbiology and Epidemiology, 20 East Street, Fengtai District, Beijing, China
| | - Yubiao Xie
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Doris Harding
- Ministry of Health and Sanitation, Freetown, Sierra Leone
| | | | - Foday Sahr
- Department of Microbiology, College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | - Mahmud E Sesay
- Department of Animal Sciences, School of Agriculture and Food Sciences, Njala University, Njala, Sierra Leone
| | - James S Squire
- Ministry of Health and Sanitation, Freetown, Sierra Leone
| | | | - Moinina N Kallon
- Department of Animal Sciences, School of Agriculture and Food Sciences, Njala University, Njala, Sierra Leone
| | - Shoufeng Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Rongliang Hu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yuee Zhao
- Beijing Institute of Microbiology and Epidemiology, 20 East Street, Fengtai District, Beijing, China.
| | - Zhiqiang Mi
- Beijing Institute of Microbiology and Epidemiology, 20 East Street, Fengtai District, Beijing, China.
| |
Collapse
|
2
|
Identification of Universally Applicable and Species-Specific Marker Peptides for Bacillus anthracis. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101549. [PMID: 36294983 PMCID: PMC9605612 DOI: 10.3390/life12101549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022]
Abstract
Anthrax is a zoonotic infection caused by the bacterium Bacillus anthracis (BA). Specific identification of this pathogen often relies on targeting genes located on two extrachromosomal plasmids, which represent the major pathogenicity factors of BA. However, more recent findings show that these plasmids have also been found in other closely related Bacillus species. In this study, we investigated the possibility of identifying species-specific and universally applicable marker peptides for BA. For this purpose, we applied a high-resolution mass spectrometry-based approach for 42 BA isolates. Along with the genomic sequencing data and by developing a bioinformatics data evaluation pipeline, which uses a database containing most of the publicly available protein sequences worldwide (UniParc), we were able to identify eleven universal marker peptides unique to BA. These markers are located on the chromosome and therefore, might overcome known problems, such as observable loss of plasmids in environmental species, plasmid loss during cultivation in the lab, and the fact that the virulence plasmids are not necessarily a unique feature of BA. The identified chromosomally encoded markers in this study could extend the small panel of already existing chromosomal targets and along with targets for the virulence plasmids, may pave the way to an even more reliable identification of BA using genomics- as well as proteomics-based techniques.
Collapse
|
3
|
Reoccurring bovine anthrax in Germany on the same pasture after 12 years. J Clin Microbiol 2022; 60:e0229121. [PMID: 35195442 PMCID: PMC8925895 DOI: 10.1128/jcm.02291-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The zoonotic disease anthrax, caused by the endospore-forming bacterium Bacillus anthracis, is very rare in Germany. In the state of Bavaria, the last case occurred in July of 2009, resulting in four dead cows. In August of 2021, the disease reemerged after heavy rains, killing one gestating cow. Notably, both outbreaks affected the same pasture, suggesting a close epidemiological connection. B. anthracis could be grown from blood culture, and the presence of both virulence plasmids (pXO1 and pXO2) was confirmed by PCR. Also, recently developed diagnostic tools enabled rapid detection of B. anthracis cells and nucleic acids directly in clinical samples. The complete genome of the strain isolated from blood, designated BF-5, was DNA sequenced and phylogenetically grouped within the B.Br.CNEVA clade, which is typical for European B. anthracis strains. The genome was almost identical to BF-1, the isolate from 2009, separated only by three single nucleotide polymorphisms (SNPs) on the chromosome, one on plasmid pXO2 and three indel regions. Further, B. anthracis DNA was detected by PCR from soil samples taken from spots in the pasture where the cow had fallen. New tools based on phage receptor-binding proteins enabled the microscopic detection and isolation of B. anthracis directly from soil samples. These environmental isolates were genotyped and found to be identical to BF-5 in terms of SNPs. Therefore, it seems that the BF-5 genotype is currently the prevalent one at the affected premises. The area contaminated by the cadaver was subsequently disinfected with formaldehyde.
Collapse
|
4
|
In-Depth Analysis of Bacillus anthracis 16S rRNA Genes and Transcripts Reveals Intra- and Intergenomic Diversity and Facilitates Anthrax Detection. mSystems 2022; 7:e0136121. [PMID: 35076271 PMCID: PMC8788319 DOI: 10.1128/msystems.01361-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Analysis of 16S rRNA (rRNA) genes provides a central means of taxonomic classification of bacterial species. Based on presumed sequence identity among species of the Bacillus cereus sensu lato group, the 16S rRNA genes of B. anthracis have been considered unsuitable for diagnosis of the anthrax pathogen. With the recent identification of a single nucleotide polymorphism in some 16S rRNA gene copies, specific identification of B. anthracis becomes feasible. Here, we designed and evaluated a set of in situ, in vitro, and in silico assays to assess the unknown 16S state of B. anthracis from different perspectives. Using a combination of digital PCR, fluorescence in situ hybridization, long-read genome sequencing, and bioinformatics, we were able to detect and quantify a unique 16S rRNA gene allele of B. anthracis (16S-BA-allele). This allele was found in all available B. anthracis genomes and may facilitate differentiation of the pathogen from any close relative. Bioinformatics analysis of 959 B. anthracis SRA data sets inferred that abundances and genomic arrangements of the 16S-BA-allele and the entire rRNA operon copy numbers differ considerably between strains. Expression ratios of 16S-BA-alleles were proportional to the respective genomic allele copy numbers. The findings and experimental tools presented here provide detailed insights into the intra- and intergenomic diversity of 16S rRNA genes and may pave the way for improved identification of B. anthracis and other pathogens with diverse rRNA operons. IMPORTANCE For severe infectious diseases, precise pathogen detection is crucial for antibiotic therapy and patient survival. Identification of Bacillus anthracis, the causative agent of the zoonosis anthrax, can be challenging when querying specific nucleotide sequences such as in small subunit rRNA (16S rRNA) genes, which are commonly used for typing of bacteria. This study analyzed on a broad genomic scale a cryptic and hitherto underappreciated allelic variant of the bacterium’s 16S rRNA genes and their transcripts using a set of in situ, in vitro, and in silico assays and found significant intra- and intergenomic heterogeneity in the distribution of the allele and overall rRNA operon copy numbers. This allelic variation was uniquely species specific, which enabled sensitive pathogen detection on both DNA and transcript levels. The methodology used here is likely also applicable to other pathogens that are otherwise difficult to discriminate from their less harmful relatives.
Collapse
|
5
|
Abstract
Bacillus anthracis, present in two forms of vegetative cells and spores, is a pathogen that infects humans through contact with infected animals or contaminated animal products and is also maliciously used in terrorist acts. Therefore, a rapid and sensitive test for B. anthracis is necessary but challenging. The challenge comes from the following aspects: an accurate distinction of B. anthracis from other Bacillus species due to their high genomic similarity and the horizontal gene transfer between Bacillus members; direct detection of the B. anthracis spores without damaging them for component extraction to avoid the risk of spore atomization; and the rapid detections of B. anthracis in complex samples, such as soil and suspicious powders, without sample pretreatments and expensive large-scale equipment. Although culturing B. anthracis from samples is the conventional method for the detection of B. anthracis, it is time-consuming and the detection results would not be easy to interpret because many Bacillus species share similar phenotypic features such as a lack of motility and hemolysis, resistance to gamma phages, and so on. Intensive and extensive effort has been expended to develop reliable detection technologies, among which biosensors exhibit comprehensive advantages in terms of sensitivity, specificity, and portability. Here, we briefly review the research progress, providing highlights of the latest achievements and our own practice and experience. The contents can be summarized in three aspects: the discovery of detection targets, including genes, toxins, and other components; the creation of molecular recognition elements, such as monoclonal antibodies, single-chain antibody fragments, specific peptides, and aptamers; and the design and construction of biosensing systems by the integration of appropriate molecular recognition elements and transducer devices. These sensor devices have their own characteristics and different principles. For example, the surface plasmon resonance biosensor and quartz crystal microbalance biosensor are very sensitive, while the multiplex PCR-on-a-chip can detect multitargets. Biosensors for direct spore detection are highly recommended because they are not only fast but also avoid contamination from aerosol-containing spores. The introduction of nanotechnology has significantly improved the performance of biosensors. Superparamagnetic nanoparticles and phage-displayed gold nanoparticle ligand peptides have made the results of spore detection visible to the naked eye. Because of space constraints, many advanced biosensors for B. anthracis are not described in detail but are cited as references. Although biosensors provide a variety of options for various application scenarios, the challenges have not been fully addressed, which leaves room for the development of more advanced and practical B. anthracis detection means.
Collapse
Affiliation(s)
- Dian-Bing Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng-Meng Cui
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
6
|
Braun P, Nguyen MDT, Walter MC, Grass G. Ultrasensitive Detection of Bacillus anthracis by Real-Time PCR Targeting a Polymorphism in Multi-Copy 16S rRNA Genes and Their Transcripts. Int J Mol Sci 2021; 22:12224. [PMID: 34830105 PMCID: PMC8618755 DOI: 10.3390/ijms222212224] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 02/03/2023] Open
Abstract
The anthrax pathogen Bacillus anthracis poses a significant threat to human health. Identification of B. anthracis is challenging because of the bacterium's close genetic relationship to other Bacillus cereus group species. Thus, molecular detection is founded on species-specific PCR targeting single-copy genes. Here, we validated a previously recognized multi-copy target, a species-specific single nucleotide polymorphism (SNP) present in 2-5 copies in every B. anthracis genome analyzed. For this, a hydrolysis probe-based real-time PCR assay was developed and rigorously tested. The assay was specific as only B. anthracis DNA yielded positive results, was linear over 9 log10 units, and was sensitive with a limit of detection (LoD) of 2.9 copies/reaction. Though not exhibiting a lower LoD than established single-copy PCR targets (dhp61 or PL3), the higher copy number of the B. anthracis-specific 16S rRNA gene alleles afforded ≤2 unit lower threshold (Ct) values. To push the detection limit even further, the assay was adapted for reverse transcription PCR on 16S rRNA transcripts. This RT-PCR assay was also linear over 9 log10 units and was sensitive with an LoD of 6.3 copies/reaction. In a dilution series of experiments, the 16S RT-PCR assay achieved a thousand-fold higher sensitivity than the DNA-targeting assays. For molecular diagnostics, we recommend a real-time RT-PCR assay variant in which both DNA and RNA serve as templates (thus, no requirement for DNase treatment). This can at least provide results equaling the DNA-based implementation if no RNA is present but is superior even at the lowest residual rRNA concentrations.
Collapse
Affiliation(s)
| | | | | | - Gregor Grass
- Bundeswehr Institute of Microbiology (IMB), 80937 Munich, Germany; (P.B.); (M.D.-T.N.); (M.C.W.)
| |
Collapse
|
7
|
Braun P, Rupprich N, Neif D, Grass G. Enzyme-Linked Phage Receptor Binding Protein Assays (ELPRA) Enable Identification of Bacillus anthracis Colonies. Viruses 2021; 13:1462. [PMID: 34452328 PMCID: PMC8402711 DOI: 10.3390/v13081462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 01/04/2023] Open
Abstract
Bacteriophage receptor binding proteins (RBPs) are employed by viruses to recognize specific surface structures on bacterial host cells. Recombinant RBPs have been utilized for detection of several pathogens, typically as fusions with reporter enzymes or fluorescent proteins. Identification of Bacillus anthracis, the etiological agent of anthrax, can be difficult because of the bacterium's close relationship with other species of the Bacillus cereussensu lato group. Here, we facilitated the identification of B. anthracis using two implementations of enzyme-linked phage receptor binding protein assays (ELPRA). We developed a single-tube centrifugation assay simplifying the rapid analysis of suspect colonies. A second assay enables identification of suspect colonies from mixed overgrown solid (agar) media derived from the complex matrix soil. Thus, these tests identified vegetative cells of B. anthracis with little processing time and may support or confirm pathogen detection by molecular methods such as polymerase chain reaction.
Collapse
Affiliation(s)
| | | | | | - Gregor Grass
- Department of Bacteriology and Toxinology, Bundeswehr Institute of Microbiology (IMB), 80937 Munich, Germany; (P.B.); (N.R.); (D.N.)
| |
Collapse
|
8
|
Development of a set of three real-time loop-mediated isothermal amplification (LAMP) assays for detection of Bacillus anthracis, the causative agent of anthrax. Folia Microbiol (Praha) 2021; 66:587-596. [PMID: 33834427 DOI: 10.1007/s12223-021-00869-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 04/03/2021] [Indexed: 10/21/2022]
Abstract
Bacillus anthracis, the causative agent of anthrax is a Gram-positive, non-motile, spore forming bacterium. Its spores can persist in soil and water for years and can also be aerosolized. A rapid, sensitive and specific method to detect B. anthracis is important for clinical management and preventing spread of anthrax. Loop-mediated isothermal amplification (LAMP) assay is a rapid technique that amplifies target DNA in isothermal conditions with high sensitivity and specificity. In this study, a LAMP assay set targeting a chromosomal and two plasmid markers was developed. The individual assays of the LAMP set targeting pXO1 plasmid (lef), pXO2 plasmid (capB), and chromosome (BA5345) sequences could detect 10, 250, and 100 fg of genomic DNA and 10, 100, and 50 copies of the DNA targets harboured in recombinant plasmids, respectively. The lef and capB LAMP assays could detect ≥ 1 × 103 CFU per mL of bacteria in spiked human blood samples, while BA5345 LAMP assay could detect ≥ 1 × 104 CFU of bacteria per mL of spiked blood. The amplification was monitored in real-time by turbidimeter, and visual detection was also accomplished under normal and UV light after adding SYBR Green 1 dye on completion of the reaction. The assay set was found to be highly sensitive and did not cross-react with the closely related Bacillus spp. and other bacterial strains used in the study.
Collapse
|
9
|
Tournier JN, Rougeaux C. Anthrax Toxin Detection: From In Vivo Studies to Diagnostic Applications. Microorganisms 2020; 8:microorganisms8081103. [PMID: 32717946 PMCID: PMC7464488 DOI: 10.3390/microorganisms8081103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 11/16/2022] Open
Abstract
Anthrax toxins are produced by Bacillus anthracis throughout infection and shape the physiopathogenesis of the disease. They are produced in low quantities but are highly efficient. They have thus been long ignored, but recent biochemical methods have improved our knowledge in animal models. This article reviews the various methods that have been used and how they could be applied to clinical diagnosis.
Collapse
Affiliation(s)
- Jean-Nicolas Tournier
- Unité Bactériologie Biothérapies Anti-infectieuses et Immunité, Institut de Recherche Biomédicale des Armées (IRBA), 1 place Général Valérie André, 91220 Brétigny sur Orge, France;
- Centre National de Référence-Laboratoire Expert Charbon, 1 place Général Valérie André, 91220 Brétigny sur Orge, France
- Innovative Vaccine Laboratory, Institut Pasteur, 28 rue du docteur Roux, 75015 Paris, France
- Ecole du Val-de-Grâce, 1 place Alphonse Laveran, 75005 Paris, France
| | - Clémence Rougeaux
- Unité Bactériologie Biothérapies Anti-infectieuses et Immunité, Institut de Recherche Biomédicale des Armées (IRBA), 1 place Général Valérie André, 91220 Brétigny sur Orge, France;
- Centre National de Référence-Laboratoire Expert Charbon, 1 place Général Valérie André, 91220 Brétigny sur Orge, France
- Correspondence: ; Tel.: +33-178-651-891
| |
Collapse
|
10
|
Rapid Microscopic Detection of Bacillus anthracis by Fluorescent Receptor Binding Proteins of Bacteriophages. Microorganisms 2020; 8:microorganisms8060934. [PMID: 32575866 PMCID: PMC7356292 DOI: 10.3390/microorganisms8060934] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022] Open
Abstract
Bacillus anthracis, the etiological agent of anthrax disease, is typically diagnosed by immunological and molecular methods such as polymerase chain reaction (PCR). Alternatively, mass spectrometry techniques may aid in confirming the presence of the pathogen or its toxins. However, because of the close genetic relationship between B. anthracis and other members of the Bacillus cereus sensu lato group (such as Bacillus cereus or Bacillus thuringiensis) mis- or questionable identification occurs frequently. Also, bacteriophages such as phage gamma (which is highly specific for B. anthracis) have been in use for anthrax diagnostics for many decades. Here we employed host cell-specific receptor binding proteins (RBP) of (pro)-phages, also known as tail or head fibers, to develop a microscopy-based approach for the facile, rapid and unambiguous detection of B. anthracis cells. For this, the genes of (putative) RBP from Bacillus phages gamma, Wip1, AP50c and from lambdoid prophage 03 located on the chromosome of B. anthracis were selected. Respective phage genes were heterologously expressed in Escherichia coli and purified as fusions with fluorescent proteins. B. anthracis cells incubated with either of the reporter fusion proteins were successfully surface-labeled. Binding specificity was confirmed as RBP fusion proteins did not bind to most isolates of a panel of other B. cereus s.l. species or to more distantly related bacteria. Remarkably, RBP fusions detected encapsulated B. anthracis cells, thus RBP were able to penetrate the poly-γ-d-glutamate capsule of B. anthracis. From these results we anticipate this RBP-reporter assay may be useful for rapid confirmative identification of B. anthracis.
Collapse
|
11
|
Muller J, Mohammad I, Warner S, Paskin R, Constable F, Fegan M. Genetic Diversity of Australian Bacillus anthracis Isolates Revealed by Multiple-Locus Variable-Number Tandem Repeat Analysis. Microorganisms 2020; 8:microorganisms8060886. [PMID: 32545283 PMCID: PMC7355618 DOI: 10.3390/microorganisms8060886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 11/16/2022] Open
Abstract
Outbreaks of anthrax occur sporadically in Australia and most commonly in the "anthrax belt", a region which extends from southern Queensland through the centre of New South Wales and into northern Victoria. Little is known about the epidemiological links between Bacillus anthracis isolates taken from different outbreaks and the diversity of strains within Australia. We used multiple-locus variable-number tandem repeat analysis employing 25 markers (MLVA25) to genotype 99 B. anthracis isolates from an archival collection of Australian isolates. MLVA25 genotyping revealed eight unique genotypes which clustered within the previously defined A3 genotype of B. anthracis. Genotyping of B. anthracis strains from outbreaks of disease in Victoria identified the presence of multiple genotypes associated with these outbreaks. The geographical distribution of genotypes within Australia suggests that a single genotype was introduced into the eastern states of Australia, followed by the spread and localised differentiation of the pathogen (MLVA25 genotypes MG1-MG6) throughout the anthrax belt. In contrast, unexplained occurrences of disease in areas outside of this anthrax belt which are associated with different genotypes, (MLVA25 genotypes MG7 and MG8) indicate separate introductions of B. anthracis into Australia.
Collapse
Affiliation(s)
- Janine Muller
- Agriculture Victoria, Department of Jobs Precincts and Regions, Agribio, La Trobe University, 5 Ring Road, Bundoora, Victoria 3083, Australia; (I.M.); (F.C.); (M.F.)
- Correspondence:
| | - Ilhan Mohammad
- Agriculture Victoria, Department of Jobs Precincts and Regions, Agribio, La Trobe University, 5 Ring Road, Bundoora, Victoria 3083, Australia; (I.M.); (F.C.); (M.F.)
| | - Simone Warner
- Environment Protection Authority Victoria, Centre for Applied Sciences, Ernest Jones Drive, Macleod, Victoria 3085, Australia;
| | - Roger Paskin
- OMNI Animal Health Consultancy, 6/35 McLaren Street, Mount Barker, South Australia 5251, Australia;
| | - Fiona Constable
- Agriculture Victoria, Department of Jobs Precincts and Regions, Agribio, La Trobe University, 5 Ring Road, Bundoora, Victoria 3083, Australia; (I.M.); (F.C.); (M.F.)
| | - Mark Fegan
- Agriculture Victoria, Department of Jobs Precincts and Regions, Agribio, La Trobe University, 5 Ring Road, Bundoora, Victoria 3083, Australia; (I.M.); (F.C.); (M.F.)
| |
Collapse
|
12
|
Evaluation of a Highly Efficient DNA Extraction Method for Bacillus anthracis Endospores. Microorganisms 2020; 8:microorganisms8050763. [PMID: 32443768 PMCID: PMC7285266 DOI: 10.3390/microorganisms8050763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 11/19/2022] Open
Abstract
A variety of methods have been established in order to optimize the accessibility of DNA originating from Bacillusanthracis cells and endospores to facilitate highly sensitive molecular diagnostics. However, most endospore lysis techniques have not been evaluated in respect to their quantitative proficiencies. Here, we started by systematically assessing the efficiencies of 20 DNA extraction kits for vegetative B.anthracis cells. Of these, the Epicentre MasterPure kit gave the best DNA yields and quality suitable for further genomic analysis. Yet, none of the kits tested were able to extract reasonable quantities of DNA from cores of the endospores. Thus, we developed a mechanical endospore lysis protocol, facilitating the extraction of high-quality DNA. Transmission electron microscopy or the labelling of spores with the indicator dye propidium monoazide was utilized to assess lysis efficiency. Finally, the yield and quality of genomic spore DNA were quantified by PCR and they were found to be dependent on lysis matrix composition, instrumental parameters, and the method used for subsequent DNA purification. Our final standardized lysis and DNA extraction protocol allows for the quantitative detection of low levels (<50 CFU/mL) of B. anthracis endospores and it is suitable for direct quantification, even under resource-limited field conditions, where culturing is not an option.
Collapse
|
13
|
Zhang P, Zhang Y, Zhao Y, Song Y, Niu C, Sui Z, Wang J, Yang R, Wei D. Calibration of an Upconverting Phosphor-Based Quantitative Immunochromatographic Assay for Detecting Yersinia pestis, Brucella spp., and Bacillus anthracis Spores. Front Cell Infect Microbiol 2020; 10:147. [PMID: 32391285 PMCID: PMC7192967 DOI: 10.3389/fcimb.2020.00147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/19/2020] [Indexed: 12/14/2022] Open
Abstract
Yersinia pestis, Brucella spp., and Bacillus anthracis are pathogens that can cause infectious zoonotic diseases with high mortality rates. An upconverting phosphor-based quantitative immunochromatographic (UPT-LF) assay, a point-of-care testing method suitable for resource-limited areas, was calibrated to quantitatively detect pathogenic bacteria. The bacterial purity or activity were ensured via staining methods and growth curves, respectively. Growth assays showed that the classic plate-counting method underestimated bacterial numbers compared with the bacterial counting method recommended by the reference material of the National Institutes for Food and Drug Control, China. The detection results of the UPT-LF assay differed significantly between the bacterial cultures in liquid and solid media and between different strains. Accelerated stability assessments and freeze-thaw experiments showed that the stability of the corresponding antigens played an important role in calibrating the UPT-LF assay. In this study, a new calibration system was developed for quantitative immunochromatography for detecting pathogenic bacteria. The results demonstrated the necessity of calibration for standardizing point-of-care testing methods.
Collapse
Affiliation(s)
- Pingping Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,Beijing Key Laboratory of POCT for Bioemergency and Clinic, Beijing, China
| | - Yuanyuan Zhang
- Division of Tuberculosis Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,Beijing Key Laboratory of POCT for Bioemergency and Clinic, Beijing, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,Beijing Key Laboratory of POCT for Bioemergency and Clinic, Beijing, China
| | - Chunyan Niu
- Center for Advanced Measurements Science, National Institutes of Metrology, Beijing, China
| | - Zhiwei Sui
- Center for Advanced Measurements Science, National Institutes of Metrology, Beijing, China
| | - Jing Wang
- Center for Advanced Measurements Science, National Institutes of Metrology, Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,Beijing Key Laboratory of POCT for Bioemergency and Clinic, Beijing, China
| | - Dong Wei
- Division of Tuberculosis Vaccines, National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
14
|
Rohde A, Papp S, Feige P, Grunow R, Kaspari O. Development of a novel selective agar for the isolation and detection of Bacillus anthracis. J Appl Microbiol 2020; 129:311-318. [PMID: 32052540 DOI: 10.1111/jam.14615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/30/2020] [Accepted: 02/11/2020] [Indexed: 11/27/2022]
Abstract
AIMS The aim of this study was to develop a novel selective agar for the specific isolation and detection of Bacillus anthracis. METHODS AND RESULTS Based on published data on antibiotic resistance and susceptibility of B. anthracis and other closely related species of the Bacillus cereus sensu lato group, a new selective agar formulation termed CEFOMA (Bacillus CEreus sensu lato group-specific antibiotics, FOsfomycin, MAcrolides) was developed and evaluated. All tested strains of B. anthracis were able to grow on CEFOMA with the same colony number as on non-selective media, whereas CEFOMA inhibited the growth of the other species within the B. cereus sensu lato group. In comparison to other selective agars, CEFOMA had a superior performance and considerably reduced the total amount of accompanying flora in soil. Furthermore, B. anthracis was successfully isolated from deliberately spiked soil samples. CONCLUSIONS CEFOMA is a highly promising selective agar for the efficient isolation of B. anthracis from environmental samples with a large bacterial background flora. SIGNIFICANCE AND IMPACT OF THE STUDY The isolation of B. anthracis from environmental samples is severely impaired by the lack of adequate selective agars which suppress the growth of other bacteria. CEFOMA agar represents an important improvement and suitable alternative to currently used selective agars.
Collapse
Affiliation(s)
- A Rohde
- Highly Pathogenic Microorganisms (ZBS 2), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - S Papp
- Highly Pathogenic Microorganisms (ZBS 2), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - P Feige
- Highly Pathogenic Microorganisms (ZBS 2), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - R Grunow
- Highly Pathogenic Microorganisms (ZBS 2), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - O Kaspari
- Highly Pathogenic Microorganisms (ZBS 2), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
15
|
Abstract
A matched case-control study was conducted in Bangladesh by enrolling case smallholdings of cattle affected with anthrax in the period of October 2010 to December 2014. The cases were initially reported by mass media and/or in surveillance reports from authorities concerned in the country. In total, 43 case smallholdings were enrolled. For each case, a control was matched by similarity in herd-size and rearing of animals, selected from a distantly located (within 3-10 km) place but within the same sub-district of the case farm. Data collected by administering a prototype questionnaire were analysed by matched-pair analysis and multivariable conditional logistic regression. Out of the 43 smallholdings, 41 were located in three adjoining districts: Pabna, Sirajganj and Tangail, apparently forming a spatial cluster, could be termed 'anthrax hot spot' in Bangladesh. Sick animal on farm or a nearby farm slaughtered in the recent past (odds ratio (OR) 12.2, 95% confidence interval (CI) 1.6-93.4, P = 0.016)), history of heavy rains occurring in the last 2 weeks preceding an outbreak (OR 13.1, 95% CI 1.2-147.1, P = 0.037) and disposing of dead animal into nearby water body (OR 11.9, 95% CI 1.0-145.3, P = 0.052) were independent risk factors for anthrax in cattle in the country.
Collapse
|
16
|
Pisarenko SV, Eremenko EI, Ryazanova AG, Kovalev DA, Buravtseva NP, Aksenova LY, Evchenko AY, Semenova OV, Bobrisheva OV, Kuznetsova IV, Golovinskaya TM, Tchmerenko DK, Kulichenko AN, Morozov VY. Genotyping and phylogenetic location of one clinical isolate of Bacillus anthracis isolated from a human in Russia. BMC Microbiol 2019; 19:165. [PMID: 31315564 PMCID: PMC6637652 DOI: 10.1186/s12866-019-1542-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/11/2019] [Indexed: 12/05/2022] Open
Abstract
Background Anthrax is a zoonotic disease caused by the Gram-positive bacterium Bacillus anthracis. In Russia, there are more than 35 thousand anthrax stationary unfavourable sites. At the same time, there is very little published information about the isolates of B. anthracis from the territory of Russia. In this study, we report the use of whole genome sequencing (WGS) and bioinformatics analysis to characterize B. anthracis 81/1 strain isolated in Russia in 1969 from a person during an outbreak of the disease in the Stavropol region. Results We used 232 B. anthracis genomes, which are currently available in the GenBank database, to determine the place of the Russian isolate in the global phylogeny of B. anthracis. The studied strain was characterized by PCR-based genetic methods, such as Multiple-Locus Variable-Number Tandem Repeat Analysis (MLVA), canonical single nucleotide polymorphisms (canSNP), as well as the method of full-genomic analysis of nucleotide polymorphisms (wgSNP). The results indicate that the Russian B. anthracis 81/1 strain belongs to Trans-Eurasion (TEA) group, the most representative in the world. Conclusions In this study, the full genomic sequence of virulent B. anthracis strain from Russia was characterized for the first time. As a result of complex phylogenetic analysis, the place of this isolate was determined in the global phylogenetic structure of the B. anthracis population, expanding our knowledge of anthrax phylogeography in Russia. Electronic supplementary material The online version of this article (10.1186/s12866-019-1542-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sergey V Pisarenko
- Stavropol Research Anti-Plague Institute, 13-15 Sovetskaya Str, Stavropol, 355035, Russia.
| | - Eugene I Eremenko
- Stavropol Research Anti-Plague Institute, 13-15 Sovetskaya Str, Stavropol, 355035, Russia
| | - Alla G Ryazanova
- Stavropol Research Anti-Plague Institute, 13-15 Sovetskaya Str, Stavropol, 355035, Russia
| | - Dmitry A Kovalev
- Stavropol Research Anti-Plague Institute, 13-15 Sovetskaya Str, Stavropol, 355035, Russia
| | - Nina P Buravtseva
- Stavropol Research Anti-Plague Institute, 13-15 Sovetskaya Str, Stavropol, 355035, Russia
| | - Lyudmila Yu Aksenova
- Stavropol Research Anti-Plague Institute, 13-15 Sovetskaya Str, Stavropol, 355035, Russia
| | - Anna Yu Evchenko
- Stavropol Research Anti-Plague Institute, 13-15 Sovetskaya Str, Stavropol, 355035, Russia
| | - Olga V Semenova
- Stavropol Research Anti-Plague Institute, 13-15 Sovetskaya Str, Stavropol, 355035, Russia
| | - Olga V Bobrisheva
- Stavropol Research Anti-Plague Institute, 13-15 Sovetskaya Str, Stavropol, 355035, Russia
| | - Irina V Kuznetsova
- Stavropol Research Anti-Plague Institute, 13-15 Sovetskaya Str, Stavropol, 355035, Russia
| | - Tatyana M Golovinskaya
- Stavropol Research Anti-Plague Institute, 13-15 Sovetskaya Str, Stavropol, 355035, Russia
| | - Dmitriy K Tchmerenko
- Stavropol Research Anti-Plague Institute, 13-15 Sovetskaya Str, Stavropol, 355035, Russia
| | - Alexander N Kulichenko
- Stavropol Research Anti-Plague Institute, 13-15 Sovetskaya Str, Stavropol, 355035, Russia
| | - Vitaliy Yu Morozov
- Stavropol State Agrarian University, Stavropol, 355017, Russian Federation
| |
Collapse
|
17
|
Boskani T, Edvinsson B, Wahab T. Development of nineteen Taqman real-time PCR assays for screening and detection of select highly pathogenic bacteria. Infect Ecol Epidemiol 2019. [DOI: 10.1080/20008686.2018.1553462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Talar Boskani
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | - Benjamin Edvinsson
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
- Unit of Freeze Dried and Inhalation, AstraZeneca Sweden Operations, Sweden
| | - Tara Wahab
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| |
Collapse
|
18
|
Lienemann T, Beyer W, Pelkola K, Rossow H, Rehn A, Antwerpen M, Grass G. Genotyping and phylogenetic placement of Bacillus anthracis isolates from Finland, a country with rare anthrax cases. BMC Microbiol 2018; 18:102. [PMID: 30176810 PMCID: PMC6122712 DOI: 10.1186/s12866-018-1250-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/27/2018] [Indexed: 11/24/2022] Open
Abstract
Background Anthrax, the zoonotic disease caused by the gram-positive bacterium Bacillus anthracis, is nowadays rare in northern parts of Europe including Finland and Scandinavia. Only two minor outbreaks of anthrax in 1988 and in 2004 and one sporadic infection in 2008 have been detected in animals in Finland since the 1970’s. Here, we report on two Finnish B. anthracis strains that were isolated from spleen and liver of a diseased calf related to the outbreak in 1988 (strain HKI4363/88) and from a local scrotum and testicle infection of a bull in 2008 (strain BA2968). These infections occurred in two rural Finnish regions, i.e., Ostrobothnia in western Finland and Päijänne Tavastia in southern Finland, respectively. Results The isolates were genetically characterized by PCR-based methods such as multilocus variable number of tandem repeat analysis (MLVA) and whole genome-sequence analysis (WGS). Phylogenetic comparison of the two strains HKI4363/88 and BA2968 by chromosomal single nucleotide polymorphism (SNP) analysis grouped these organisms within their relatives of the minor canonical A-branch canSNP-group A.Br.003/004 (A.Br.V770) or canonical B-branch B.Br.001/002, respectively. Strain HKI4363/88 clustered relatively closely with other members of the A.Br.003/004 lineage from Europe, South Africa, and South America. In contrast, strain BA2968 clearly constituted a new sublineage within B.Br.001/002 with its closest relative being HYO01 from South Korea. Conclusions Our results suggest that Finland harbors both unique (autochthonous) and more widely distributed, common clades of B. anthracis. We suspect that members of the common clades such as strains HKI4363/88 have been introduced only recently by anthropogenic activities involving importation of contaminated animal products. On the other hand, autochthonous strains such as isolate BA2968 probably have an older history of their introduction into Finland as evidenced by a high number of single nucleotide variant sites in their genomes. Electronic supplementary material The online version of this article (10.1186/s12866-018-1250-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Taru Lienemann
- Finnish Food Safety Authority (Evira), Veterinary Bacteriology and Pathology Research Unit, Helsinki, Finland
| | | | - Kirsti Pelkola
- Finnish Food Safety Authority (Evira), Veterinary Bacteriology and Pathology Research Unit, Helsinki, Finland
| | - Heidi Rossow
- Finnish Food Safety Authority (Evira), Risk Assessment Research Unit, Helsinki, Finland
| | | | | | - Gregor Grass
- Bundeswehr Institute of Microbiology, Munich, Germany.
| |
Collapse
|
19
|
Sensitive and Specific Recombinase Polymerase Amplification Assays for Fast Screening, Detection, and Identification of Bacillus anthracis in a Field Setting. Appl Environ Microbiol 2018; 84:AEM.00506-18. [PMID: 29602786 PMCID: PMC5960963 DOI: 10.1128/aem.00506-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/26/2018] [Indexed: 01/02/2023] Open
Abstract
Four isothermal recombinase polymerase amplification (RPA) assays were developed for fast in-field identification of Bacillus anthracis The RPA assays targeted three specific sequences (i.e., the BA_5345 chromosomal marker, the lethal factor lef [from pXO1], and the capsule-biosynthesis-related capA [from pXO2]) and a conserved sequence in the adenylate cyclase gene (adk) for the Bacillus cereus group. B. anthracis-specific RPA assays were tested first with purified genomic DNAs (n = 60), including 11 representatives of B. anthracis, and then with soil (n = 8) and white powder (n = 8) samples spiked with inactivated B. anthracis spores and/or other biological agents. The RPA assays were also tested in another laboratory facility, which blindly provided DNA and lysate samples (n = 30, including 20 B. anthracis strains). RPA assays displayed 100% specificity and sensitivity. The hands-off turnaround times at 42°C ranged from 5 to 6 min for 102 genomic copies. The analytical sensitivity of each RPA assay was ∼10 molecules per reaction. In addition, the BA_5345 and adk RPA assays were assessed under field conditions with a series of surface swabs (n = 13, including 11 swabs contaminated with B. thuringiensis spores) that were blindly brought to the field laboratory by a chemical, biological, radiological, and nuclear (CBRN) sampling team. None of the 13 samples, except the control, tested positive for B. anthracis, and all samples that had been harvested from spore-contaminated surfaces tested positive with the adk RPA assay. All three B. anthracis-specific RPA assays proved suitable for rapid and reliable identification of B. anthracis and therefore could easily be used by first responders under field conditions to quickly discriminate between a deliberate release of B. anthracis spores and a hoax attack involving white powder.IMPORTANCE In recent decades, particularly following the 11 September 2001 and Amerithrax attacks, the world has experienced attempts to sow panic and chaos in society through thousands of white-powder copycats using household powders to mimic real bioterrorism attacks. In such circumstances, field-deployable detection methods are particularly needed to screen samples collected from the scene. The aim is to test the samples directly using a fast and reliable assay for detection of the presence of B. anthracis While this would not preclude further confirmatory tests from being performed in reference laboratories, it would bring useful, timely, and relevant information to local crisis managers and help them make appropriate decisions without having to wait for quantitative PCR results (with turnaround times of a few hours) or phenotypic identification and sequencing (with turnaround times of a few days). In the current investigation, we developed a set of isothermal RPA assays for the rapid screening and identification of B. anthracis in powders and soil samples, with the purpose of discriminating a deliberate release of B. anthracis spores from a hoax attack involving white powder; this would also apply to dispersion by spraying of aerosolized forms of B. anthracis Further work is now ongoing to confirm the first observations and validate the on-site use of these assays by first responders.
Collapse
|
20
|
Improved Discrimination of Bacillus anthracis from Closely Related Species in the Bacillus cereus Sensu Lato Group Based on Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. J Clin Microbiol 2018. [PMID: 29514939 DOI: 10.1128/jcm.01900-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Discrimination of highly pathogenic bacteria, such as Bacillus anthracis, from closely related species based on molecular biological methods is challenging. We applied matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) to a collection of B. anthracis strains and close relatives in order to significantly improve the statistical confidence of identification results for this group of bacteria. Protein mass spectra of 189 verified and diverse Bacillus strains of the Bacillus cereus sensu lato group were generated using MALDI-TOF MS and subsequently analyzed with supervised and unsupervised statistical methods, such as shrinkage discriminant analysis (SDA) and principal-component analysis (PCA). We aimed at identifying specific biomarkers in the protein spectra of B. anthracis not present in closely related Bacillus species. We could identify 7, 10, 18, and 14 B. anthracis-specific biomarker candidates that were absent in B. cereus, B. mycoides, B. thuringiensis, and B. weihenstephanensis strains, respectively. Main spectra (MSP) of a defined collection of Bacillus strains were compiled using the Bruker Biotyper software and added to an in-house reference library. Reevaluation of this library with 15 hitherto untested strains of B. anthracis and B. cereus yielded improved score values. The B. anthracis strains were identified with score values between 2.33 and 2.55 using the in-house database, while the same strains were identified with scores between 1.94 and 2.37 using the commercial database, and no false-positive identifications occurred using the in-house database.
Collapse
|
21
|
Rapid identification of Bacillus anthracis by real-time PCR with dual hybridization probes in environmental swabs. Mol Cell Probes 2017; 37:22-27. [PMID: 29113932 DOI: 10.1016/j.mcp.2017.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 11/21/2022]
Abstract
In the present study, we report the development of a real-time PCR assay for the identification of Bacillus anthracis, based on the amplification of a unique chromosomal marker, the E4 sequence, with dual hybridization probes. The assay was evaluated using a panel of ten B. anthracis strains, two B. anthracis isolates from human clinical samples, 12 B. anthracis environmental swabs and 40 non- B. anthracis strains. All 12 B. anthracis strains and clinical isolates were correctly detected, and the method did not show cross-reactions with other micro-organisms. Likewise, the E4 sequence was not found in those strains of B. thuringiensis and B. cereus closely related (homology > 90%) to B. anthracis by computer analysis. On the other hand, this molecular assay showed a high analytical sensitivity, 3.5 genome equivalents per reaction at 95% probability. Furthermore, the real-time PCR assay allowed sequence-specific detection of the amplicon (melting peak with a Tm of 63.5 °C ± 0.5 °C) without post-amplification procedures, which offers an additional advantage over other qPCR assays for B. anthracis detection. Finally, the performance of the method was successfully evaluated in 12 environmental samples. In summary, we have developed a rapid and specific method for the molecular identification of Bacillus anthracis in environmental samples.
Collapse
|
22
|
Genome Sequence of Historical Bacillus anthracis Strain Tyrol 4675 Isolated from a Bovine Anthrax Case in Austria. GENOME ANNOUNCEMENTS 2017; 5:5/10/e00002-17. [PMID: 28280006 PMCID: PMC5347226 DOI: 10.1128/genomea.00002-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In 1988, an outbreak of anthrax occurred among cattle in the Austrian state of Tyrol. Since then, Austria has been declared anthrax-free. Here, we report the draft genome sequence of one of these last outbreak strains, Bacillus anthracis Tyrol 4675, isolated from a diseased cow.
Collapse
|
23
|
Schwarz NG, Loderstaedt U, Hahn A, Hinz R, Zautner AE, Eibach D, Fischer M, Hagen RM, Frickmann H. Microbiological laboratory diagnostics of neglected zoonotic diseases (NZDs). Acta Trop 2017; 165:40-65. [PMID: 26391646 DOI: 10.1016/j.actatropica.2015.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 08/03/2015] [Accepted: 09/04/2015] [Indexed: 02/06/2023]
Abstract
This review reports on laboratory diagnostic approaches for selected, highly pathogenic neglected zoonotic diseases, i.e. anthrax, bovine tuberculosis, brucellosis, echinococcosis, leishmaniasis, rabies, Taenia solium-associated diseases (neuro-/cysticercosis & taeniasis) and trypanosomiasis. Diagnostic options, including microscopy, culture, matrix-assisted laser-desorption-ionisation time-of-flight mass spectrometry, molecular approaches and serology are introduced. These procedures are critically discussed regarding their diagnostic reliability and state of evaluation. For rare diseases reliable evaluation data are scarce due to the rarity of samples. If bio-safety level 3 is required for cultural growth, but such high standards of laboratory infrastructure are not available, serological and molecular approaches from inactivated sample material might be alternatives. Multiple subsequent testing using various test platforms in a stepwise approach may improve sensitivity and specificity. Cheap and easy to use tests, usually called "rapid diagnostic tests" (RDTs) may impact disease control measures, but should not preclude developing countries from state of the art diagnostics.
Collapse
|
24
|
Rume FI, Ahsan CR, Biswas PK, Yasmin M, Braun P, Walter MC, Antwerpen M, Grass G, Hanczaruk M. Unexpected genomic relationships between Bacillus anthracis strains from Bangladesh and Central Europe. INFECTION GENETICS AND EVOLUTION 2016; 45:66-74. [PMID: 27543395 DOI: 10.1016/j.meegid.2016.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/11/2016] [Accepted: 08/15/2016] [Indexed: 12/28/2022]
Abstract
The zoonosis anthrax caused by the bacterium Bacillus anthracis has a broad geographical distribution. Active enzootic areas are typically located away from central and northern Europe where cases of the disease occur only sporadically and in limited numbers. In contrast, a few out of the 64 districts of Bangladesh are hyper-endemic for anthrax and there the disease causes major losses in live-stock. In this study we genotyped eight strains of B. anthracis collected from the districts of Sirajganj and Tangail in 2013. All these strains belonged to canSNP group A.Br.001/002 Sterne differing only in a few of 31 tandem-repeat (MLVA)-markers. Whole genome sequences were obtained from five of these strains and compared with genomic information of B. anthracis strains originating from various geographical locations. Characteristic signatures were detected defining two "Bangladesh" clusters potentially useful for rapid molecular epidemiology. From this data high-resolution PCR assays were developed and subsequently tested on additional isolates from Bangladesh and Central Europe. Remarkably, this comparative genomic analysis focusing on SNP-discovery revealed a close genetic relationship between these strains from Bangladesh and historic strains collected between 1991 and 2008 in The Netherlands and Germany, respectively. Possible explanations for these phylogenetic relationships are discussed.
Collapse
Affiliation(s)
- Farzana Islam Rume
- Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh; Department of Microbiology & Public Health, Patuakhali Science and Technology University, Khanpura, Babugonj, Barisal, Bangladesh
| | | | - Paritosh Kumar Biswas
- Department of Microbiology & Veterinary Public Health, Chittagong Veterinary and Animal Sciences University, Chittagong, Bangladesh
| | - Mahmuda Yasmin
- Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Peter Braun
- Bundeswehr Institute of Microbiology, Munich, Germany
| | | | | | - Gregor Grass
- Bundeswehr Institute of Microbiology, Munich, Germany.
| | | |
Collapse
|
25
|
Genome Sequence of Bacillus anthracis Strain Tangail-1 from Bangladesh. GENOME ANNOUNCEMENTS 2016; 4:4/4/e00748-16. [PMID: 27469968 PMCID: PMC4966472 DOI: 10.1128/genomea.00748-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Soil was collected in July 2013 at a site where a cow infected with anthrax had been the month before. Selective culturing yielded Bacillus anthracis strain Tangail-1. Here, we report the draft genome sequence of this Bacillus anthracis isolate that belongs to the canonical A.Br.001/002 clade.
Collapse
|
26
|
Genome Sequence of Bacillus anthracis Strain Stendal, Isolated from an Anthrax Outbreak in Cattle in Germany. GENOME ANNOUNCEMENTS 2016; 4:4/2/e00219-16. [PMID: 27056225 PMCID: PMC4824258 DOI: 10.1128/genomea.00219-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In July 2012, an anthrax outbreak occurred among cattle in northern Germany resulting in ten losses. Here, we report the draft genome sequence of Bacillus anthracis strain Stendal, isolated from one of the diseased cows.
Collapse
|
27
|
Grass G, Ahrens B, Schleenbecker U, Dobrzykowski L, Wagner M, Krüger C, Wölfel R. Technical Note: Simple, scalable, and sensitive protocol for retrieving Bacillus anthracis (and other live bacteria) from heroin. Forensic Sci Int 2016; 259:32-5. [DOI: 10.1016/j.forsciint.2015.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 11/19/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
|
28
|
Braun P, Grass G, Aceti A, Serrecchia L, Affuso A, Marino L, Grimaldi S, Pagano S, Hanczaruk M, Georgi E, Northoff B, Schöler A, Schloter M, Antwerpen M, Fasanella A. Microevolution of Anthrax from a Young Ancestor (M.A.Y.A.) Suggests a Soil-Borne Life Cycle of Bacillus anthracis. PLoS One 2015; 10:e0135346. [PMID: 26266934 PMCID: PMC4534099 DOI: 10.1371/journal.pone.0135346] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/15/2015] [Indexed: 01/10/2023] Open
Abstract
During an anthrax outbreak at the Pollino National Park (Basilicata, Italy) in 2004, diseased cattle were buried and from these anthrax-foci Bacillus anthracis endospores still diffuse to the surface resulting in local accumulations. Recent data suggest that B. anthracis multiplies in soil outside the animal-host body. This notion is supported by the frequent isolation of B. anthracis from soil lacking one or both virulence plasmids. Such strains represent an evolutionary dead end, as they are likely no longer able to successfully infect new hosts. This loss of virulence plasmids is explained most simply by postulating a soil-borne life cycle of the pathogen. To test this hypothesis we investigated possible microevolution at two natural anthrax foci from the 2004 outbreak. If valid, then genotypes of strains isolated from near the surface at these foci should be on a different evolutionary trajectory from those below residing in deeper-laying horizons close to the carcass. Thus, the genetic diversity of B. anthracis isolates was compared conducting Progressive Hierarchical Resolving Assays using Nucleic Acids (PHRANA) and next generation Whole Genome Sequencing (WGS). PHRANA was not discriminatory enough to resolve the fine genetic relationships between the isolates. Conversely, WGS of nine isolates from near-surface and nine from near-carcass revealed five isolate specific SNPs, four of which were found only in different near-surface isolates. In support of our hypothesis, one surface-isolate lacked plasmid pXO1 and also harbored one of the unique SNPs. Taken together, our results suggest a limited soil-borne life cycle of B. anthracis.
Collapse
Affiliation(s)
- Peter Braun
- Bundeswehr Institute of Microbiology, Munich, Germany
- Technische Universität München, Wissenschaftszentrum Weihenstephan, Chair for Soil Ecology, Freising, Germany
| | - Gregor Grass
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Angela Aceti
- Istituto Zooprofilattico Sperimentale of Puglia and Basilicata, Anthrax Reference Institute of Italy, Foggia, Italy
| | - Luigina Serrecchia
- Istituto Zooprofilattico Sperimentale of Puglia and Basilicata, Anthrax Reference Institute of Italy, Foggia, Italy
| | - Alessia Affuso
- Istituto Zooprofilattico Sperimentale of Puglia and Basilicata, Anthrax Reference Institute of Italy, Foggia, Italy
| | - Leonardo Marino
- Istituto Zooprofilattico Sperimentale of Puglia and Basilicata, Anthrax Reference Institute of Italy, Foggia, Italy
| | - Stefania Grimaldi
- Istituto Zooprofilattico Sperimentale of Puglia and Basilicata, Anthrax Reference Institute of Italy, Foggia, Italy
| | - Stefania Pagano
- Istituto Zooprofilattico Sperimentale of Puglia and Basilicata, Anthrax Reference Institute of Italy, Foggia, Italy
| | | | - Enrico Georgi
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Bernd Northoff
- Bundeswehr Institute of Microbiology, Munich, Germany
- Ludwig Maximilians Universität München, Institute for Laboratory Medicine, Munich, Germany
| | - Anne Schöler
- German Research Center for Environmental Health, Research Unit for Environmental Genomics, Neuherberg, Germany
| | - Michael Schloter
- Technische Universität München, Wissenschaftszentrum Weihenstephan, Chair for Soil Ecology, Freising, Germany
- German Research Center for Environmental Health, Research Unit for Environmental Genomics, Neuherberg, Germany
| | | | - Antonio Fasanella
- Istituto Zooprofilattico Sperimentale of Puglia and Basilicata, Anthrax Reference Institute of Italy, Foggia, Italy
| |
Collapse
|
29
|
Advances in Anthrax Detection: Overview of Bioprobes and Biosensors. Appl Biochem Biotechnol 2015; 176:957-77. [PMID: 25987133 DOI: 10.1007/s12010-015-1625-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 04/08/2015] [Indexed: 12/22/2022]
Abstract
Anthrax is an infectious disease caused by Bacillus anthracis. Although anthrax commonly affects domestic and wild animals, it causes a rare but lethal infection in humans. A variety of techniques have been introduced and evaluated to detect anthrax using cultures, polymerase chain reaction, and immunoassays to address the potential threat of anthrax being used as a bioweapon. The high-potential harm of anthrax in bioterrorism requires sensitive and specific detection systems that are rapid, field-ready, and real-time monitoring. Here, we provide a systematic overview of anthrax detection probes with their potential applications in various ultra-sensitive diagnostic systems.
Collapse
|
30
|
Hanczaruk M, Reischl U, Holzmann T, Frangoulidis D, Wagner DM, Keim PS, Antwerpen MH, Meyer H, Grass G. Injectional anthrax in heroin users, Europe, 2000-2012. Emerg Infect Dis 2014; 20:322-3. [PMID: 24447525 PMCID: PMC3901468 DOI: 10.3201/eid2002.120921] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
31
|
van Tongeren SP, Roest HIJ, Degener JE, Harmsen HJM. Bacillus anthracis-like bacteria and other B. cereus group members in a microbial community within the International Space Station: a challenge for rapid and easy molecular detection of virulent B. anthracis. PLoS One 2014; 9:e98871. [PMID: 24945323 PMCID: PMC4063717 DOI: 10.1371/journal.pone.0098871] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 05/08/2014] [Indexed: 11/18/2022] Open
Abstract
For some microbial species, such as Bacillus anthracis, the etiologic agent of the disease anthrax, correct detection and identification by molecular methods can be problematic. The detection of virulent B. anthracis is challenging due to multiple virulence markers that need to be present in order for B. anthracis to be virulent and its close relationship to Bacillus cereus and other members of the B. cereus group. This is especially the case in environments where build-up of Bacillus spores can occur and several representatives of the B. cereus group may be present, which increases the chance for false-positives. In this study we show the presence of B. anthracis-like bacteria and other members of the B. cereus group in a microbial community within the human environment of the International Space Station and their preliminary identification by using conventional culturing as well as molecular techniques including 16S rDNA sequencing, PCR and real-time PCR. Our study shows that when monitoring the microbial hygiene in a given human environment, health risk assessment is troublesome in the case of virulent B. anthracis, especially if this should be done with rapid, easy to apply and on-site molecular methods.
Collapse
Affiliation(s)
- Sandra P. van Tongeren
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- * E-mail:
| | - Hendrik I. J. Roest
- Department of Bacteriology & TSEs, Central Veterinary Institute (CVI), part of Wageningen UR, Lelystad, The Netherlands
| | - John E. Degener
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hermie J. M. Harmsen
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
32
|
Veitch J, Kansara A, Bailey D, Kustos I. Severe systemic Bacillus anthracis infection in an intravenous drug user. BMJ Case Rep 2014; 2014:bcr-2013-201921. [PMID: 24526196 DOI: 10.1136/bcr-2013-201921] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
There has recently been an outbreak of injectional anthrax infection secondary to contaminated heroin use in the UK and Europe. We present a case of a 37-year-old man presenting with pain and swelling in the groin following injection of heroin into the area. He was initially treated for severe cellulitis, however, he failed to respond to appropriate antimicrobial therapy. He went onto develop a widespread rash; it was then that a diagnosis of injectional anthrax infection was considered. Appropriate investigations were initiated including serum sample and tissue biopsy, and the diagnosis was confirmed. Management included extensive surgical debridement and a prolonged course of combination antibiotic therapy. The authors summarise the important steps in diagnosis and the management options in patients presenting with this life-threatening infection.
Collapse
|
33
|
Hanczaruk M, Reischl U, Holzmann T, Frangoulidis D, Wagner DM, Keim PS, Antwerpen MH, Meyer H, Grass G. Injectional Anthrax in Heroin Users, Europe, 2000–2012. Emerg Infect Dis 2014. [DOI: 10.3201/eid1302/120921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
34
|
Ågren J, Hamidjaja RA, Hansen T, Ruuls R, Thierry S, Vigre H, Janse I, Sundström A, Segerman B, Koene M, Löfström C, Van Rotterdam B, Derzelle S. In silico and in vitro evaluation of PCR-based assays for the detection of Bacillus anthracis chromosomal signature sequences. Virulence 2013; 4:671-85. [PMID: 24005110 DOI: 10.4161/viru.26288] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Bacillus anthracis, the causative agent of anthrax, is a zoonotic pathogen that is relatively common throughout the world and may cause life threatening diseases in animals and humans. There are many PCR-based assays in use for the detection of B. anthracis. While most of the developed assays rely on unique markers present on virulence plasmids pXO1 and pXO2, relatively few assays incorporate chromosomal DNA markers due to the close relatedness of B. anthracis to the B. cereus group strains. For the detection of chromosomal DNA, different genes have been used, such as BA813, rpoB, gyrA, plcR, S-layer, and prophage-lambda. Following a review of the literature, an in silico analysis of all signature sequences reported for identification of B. anthracis was conducted. Published primer and probe sequences were compared for specificity against 134 available Bacillus spp. genomes. Although many of the chromosomal targets evaluated are claimed to be specific to B. anthracis, cross-reactions with closely related B. cereus and B. thuringiensis strains were often observed. Of the 35 investigated PCR assays, only 4 were 100% specific for the B. anthracis chromosome. An interlaboratory ring trial among five European laboratories was then performed to evaluate six assays, including the WHO recommended procedures, using a collection of 90 Bacillus strains. Three assays performed adequately, yielding no false positive or negative results. All three assays target chromosomal markers located within the lambdaBa03 prophage region (PL3, BA5345, and BA5357). Detection limit was further assessed for one of these highly specific assays.
Collapse
Affiliation(s)
- Joakim Ågren
- National Veterinary Institute; Department of Bacteriology; Uppsala, Sweden; Department of Biomedical Sciences and Veterinary Public Health; Swedish University of Agricultural Sciences (SLU); Uppsala, Sweden
| | - Raditijo A Hamidjaja
- National Institute for Public Health and the Environment; Centre for Infectious Disease Control; Laboratory for Zoonoses and Environmental Microbiology; Bilthoven, the Netherlands
| | - Trine Hansen
- National Food Institute; Technical University of Denmark; Søborg, Denmark
| | - Robin Ruuls
- Central Veterinary Institute of Wageningen University and Research Centre; Lelystad, the Netherlands
| | - Simon Thierry
- University Paris-Est Anses; Animal Health Laboratory; Maisons-Alfort, France
| | - Håkan Vigre
- National Food Institute; Technical University of Denmark; Søborg, Denmark
| | - Ingmar Janse
- National Institute for Public Health and the Environment; Centre for Infectious Disease Control; Laboratory for Zoonoses and Environmental Microbiology; Bilthoven, the Netherlands
| | - Anders Sundström
- National Veterinary Institute; Department of Bacteriology; Uppsala, Sweden
| | - Bo Segerman
- National Veterinary Institute; Department of Bacteriology; Uppsala, Sweden
| | - Miriam Koene
- Central Veterinary Institute of Wageningen University and Research Centre; Lelystad, the Netherlands
| | - Charlotta Löfström
- National Food Institute; Technical University of Denmark; Søborg, Denmark
| | - Bart Van Rotterdam
- National Institute for Public Health and the Environment; Centre for Infectious Disease Control; Laboratory for Zoonoses and Environmental Microbiology; Bilthoven, the Netherlands
| | - Sylviane Derzelle
- University Paris-Est Anses; Animal Health Laboratory; Maisons-Alfort, France
| |
Collapse
|
35
|
Deng H, Zhang X, Kumar A, Zou G, Zhang X, Liang XJ. Long genomic DNA amplicons adsorption onto unmodified gold nanoparticles for colorimetric detection of Bacillus anthracis. Chem Commun (Camb) 2013; 49:51-3. [DOI: 10.1039/c2cc37037a] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Venieri D, Markogiannaki E, Chatzisymeon E, Diamadopoulos E, Mantzavinos D. Inactivation of Bacillus anthracis in water by photocatalytic, photolytic and sonochemical treatment. Photochem Photobiol Sci 2013; 12:645-52. [DOI: 10.1039/c2pp25198a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Thavachelvam K, Tuteja U, Sarika K, Nagendra S, Kumar S. Reverse line blot macroarray for simultaneous detection and characterization of four biological warfare agents. Indian J Microbiol 2012; 53:41-7. [PMID: 24426077 DOI: 10.1007/s12088-012-0330-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/29/2012] [Indexed: 11/26/2022] Open
Abstract
The need for a rapid detection and characterization of biowarfare (BW) agents cannot be over emphasized. With diverse array of potential BW pathogen available presently, rapid identification of the pathogen is crucial, so that specific therapy and control measures can be initiated. We have developed a multiplex polymerase chain reaction based reverse line blot macroarray to simultaneously detect four pathogens of BW importance viz. Bacillus anthracis, Yersinia pestis, Brucella melitensis and Burkholderia pseudomallei. The multiplex PCR utilizes 14 pairs of primers targeting 18 specific markers. These markers include genes which are genus specific, species-specific chromosomal sequences and virulence markers of plasmid origin. The assay was evaluated on various human, environment and animal isolates. The assay w successful in simultaneous detection and characterization of isolates of the four pathogens on as a single platform with sensitivity ranging from 0.3 pg to 0.3 ng of genomic DNA. The assay was able to detect 5 × 10(2) cfu/ml for B. anthracis, 8 × 10(2) cfu/ml for Yersinia sp., 1.4 × 10(2) cfu/ml for B. melitensis and 4 × 10(2) cfu/ml for B. pseudomallei.
Collapse
Affiliation(s)
- Kulanthaivel Thavachelvam
- Division of Microbiology, Defence Research and Development Establishment, Jhansi Road, Gwalior, 474002 India
| | - Urmil Tuteja
- Division of Microbiology, Defence Research and Development Establishment, Jhansi Road, Gwalior, 474002 India
| | - Kumari Sarika
- Division of Microbiology, Defence Research and Development Establishment, Jhansi Road, Gwalior, 474002 India
| | - Suryanarayana Nagendra
- Division of Microbiology, Defence Research and Development Establishment, Jhansi Road, Gwalior, 474002 India
| | - Subodh Kumar
- Division of Microbiology, Defence Research and Development Establishment, Jhansi Road, Gwalior, 474002 India
| |
Collapse
|
38
|
Taylor-McCabe K, Shou Y, Hong-Geller E. Effects of Bacillus anthracis hydrophobicity and induction of host cell death on sample collection from environmental surfaces. J GEN APPL MICROBIOL 2012; 58:113-9. [PMID: 22688242 DOI: 10.2323/jgam.58.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The objective of this study is to determine whether DNA signature recovery of Bacillus anthracis strains from different environmental substrates correlates with pathogen cell surface hydrophobicity and induction of host cell death. We compared recovery of DNA signatures from a panel of B. anthracis strains collected from two environmental substrates, non-porous surfaces and soil, using real-time qPCR. We further assessed both cell surface hydrophobicity of the B. anthracis strains by contact angle measurements and host cell viability in response to B. anthracis infection in a mouse macrophage cell model system. Our studies demonstrated correlation between reduced B. anthracis sample recovery from environmental substrates and increased cell surface hydrophobicity. Surprisingly, the most hydrophilic strain, K4596, which exhibited the highest level of recovery from the environmental surfaces, induced the highest level of host cell cytotoxicity compared to more hydrophobic B. anthracis strains in the panel. Our results suggest that cell surface hydrophobicity may play a leading role in mediating pathogen adherence to environmental surfaces. These findings can contribute to the optimization of pathogen detection efforts by understanding how bacterial parameters such as hydrophobicity and induction of host cell death affect bacterial adherence to environmental surfaces.
Collapse
|
39
|
Price EP, Seymour ML, Sarovich DS, Latham J, Wolken SR, Mason J, Vincent G, Drees KP, Beckstrom-Sternberg SM, Phillippy AM, Koren S, Okinaka RT, Chung WK, Schupp JM, Wagner DM, Vipond R, Foster JT, Bergman NH, Burans J, Pearson T, Brooks T, Keim P. Molecular epidemiologic investigation of an anthrax outbreak among heroin users, Europe. Emerg Infect Dis 2012; 18:1307-13. [PMID: 22840345 PMCID: PMC3414016 DOI: 10.3201/eid1808.111343] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In December 2009, two unusual cases of anthrax were diagnosed in heroin users in Scotland. A subsequent anthrax outbreak in heroin users emerged throughout Scotland and expanded into England and Germany, sparking concern of nefarious introduction of anthrax spores into the heroin supply. To better understand the outbreak origin, we used established genetic signatures that provided insights about strain origin. Next, we sequenced the whole genome of a representative Bacillus anthracis strain from a heroin user (Ba4599), developed Ba4599-specific single-nucleotide polymorphism assays, and genotyped all available material from other heroin users with anthrax. Of 34 case-patients with B. anthracis-positive PCR results, all shared the Ba4599 single-nucleotide polymorphism genotype. Phylogeographic analysis demonstrated that Ba4599 was closely related to strains from Turkey and not to previously identified isolates from Scotland or Afghanistan, the presumed origin of the heroin. Our results suggest accidental contamination along the drug trafficking route through a cutting agent or animal hides used to smuggle heroin into Europe.
Collapse
Affiliation(s)
- Erin P Price
- Northern Arizona University, Flagstaff, Arizona, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Doellinger J, Schroeder K, Witt N, Heunemann C, Nitsche A. Comparison of real-time PCR and MassTag PCR for the multiplex detection of highly pathogenic agents. Mol Cell Probes 2012; 26:177-81. [PMID: 22819946 DOI: 10.1016/j.mcp.2012.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 06/06/2012] [Accepted: 07/10/2012] [Indexed: 11/30/2022]
Abstract
Multiplex PCR assays are a cost- as well as labour-effective way to analyse one sample for several pathogens simultaneously. Besides the mutual competition of the individual PCR reactions included in a multiplex PCR assay, their specific read-out displays a limiting factor for the total number of PCR reactions that can be multiplexed. In this study, two PCR systems with different read-out approaches are compared, using a pentaplex PCR assay for the detection of highly pathogenic agents. A pentaplex assay was used since five represents the current limit of real-time PCR multiplexing capacity due to the low resolution of fluorescence emission peaks of the current equipment. In contrast, MassTag PCR as a quite new technique offers the possibility to detect up to 20-30 target sequences from one reaction. After extensive and separate optimisation of the PCR protocol for both platforms, a comparative probit analysis showed good sensitivities for MassTag and real-time PCR detection. Nevertheless, the detection limits of MassTag PCR have been undercut by the real-time PCR for each target. We therefore conclude that MassTag PCR is a useful diagnostic technique for the sensitive screening for pathogens by highly multiplexed PCR assays, but cannot reach the sensitivity of real-time PCR for lower multiplexed PCR assays.
Collapse
Affiliation(s)
- Joerg Doellinger
- Centre for Biological Security, Robert Koch Institute, Berlin, Germany.
| | | | | | | | | |
Collapse
|
41
|
Rapid detection methods for Bacillus anthracis in environmental samples: a review. Appl Microbiol Biotechnol 2012; 93:1411-22. [DOI: 10.1007/s00253-011-3845-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 12/12/2011] [Accepted: 12/14/2011] [Indexed: 12/11/2022]
|
42
|
Deng H, Xu Y, Liu Y, Che Z, Guo H, Shan S, Sun Y, Liu X, Huang K, Ma X, Wu Y, Liang XJ. Gold nanoparticles with asymmetric polymerase chain reaction for colorimetric detection of DNA sequence. Anal Chem 2012; 84:1253-8. [PMID: 22243128 DOI: 10.1021/ac201713t] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We developed a novel strategy for rapid colorimetric analysis of a specific DNA sequence by combining gold nanoparticles (AuNPs) with an asymmetric polymerase chain reaction (As-PCR). In the presence of the correct DNA template, the bound oligonucleotides on the surface of AuNPs selectively hybridized to form complementary sequences of single-stranded DNA (ssDNA) target generated from As-PCR. DNA hybridization resulted in self-assembly and aggregation of AuNPs, and a concomitant color change from ruby red to blue-purple occurred. This approach is simpler than previous methods, as it requires a simple mixture of the asymmetric PCR product with gold colloid conjugates. Thus, it is a convenient colorimetric method for specific nucleic acid sequence analysis with high specificity and sensitivity. Most importantly, the marked color change occurs at a picogram detection level after standing for several minutes at room temperature. Linear amplification minimizes the potential risk of PCR product cross-contamination. The efficiency to detect Bacillus anthracis in clinical samples clearly indicates the practical applicability of this approach.
Collapse
Affiliation(s)
- Hua Deng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Li D, Truong TV, Bills TM, Holt BC, VanDerwerken DN, Williams JR, Acharya A, Robison RA, Tolley HD, Lee ML. GC/MS Method for Positive Detection of Bacillus anthracis Endospores. Anal Chem 2012; 84:1637-44. [DOI: 10.1021/ac202606x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dan Li
- Department
of Chemistry and
Biochemistry, Brigham Young University,
Provo, Utah 84602, United States
| | - Tai V. Truong
- Department
of Chemistry and
Biochemistry, Brigham Young University,
Provo, Utah 84602, United States
| | - Teri M. Bills
- Department of Microbiology and
Molecular Biology, Brigham Young University, Provo, Utah 84602, United States
| | - Brian C. Holt
- Department of Statistics, Brigham Young University, Provo, Utah 84602, United
States
| | | | - John R. Williams
- Department
of Chemistry and
Biochemistry, Brigham Young University,
Provo, Utah 84602, United States
| | - Abhilasha Acharya
- Department
of Chemistry and
Biochemistry, Brigham Young University,
Provo, Utah 84602, United States
| | - Richard A. Robison
- Department of Microbiology and
Molecular Biology, Brigham Young University, Provo, Utah 84602, United States
| | - H. Dennis Tolley
- Department of Statistics, Brigham Young University, Provo, Utah 84602, United
States
| | - Milton L. Lee
- Department
of Chemistry and
Biochemistry, Brigham Young University,
Provo, Utah 84602, United States
| |
Collapse
|
44
|
Wu H, Liu S, Jiang J, Shen G, Yu R. A novel electrochemical biosensor for highly selective detection of protease biomarker from Bacillus licheniformis with d-amino acid containing peptide. Analyst 2012; 137:4829-33. [DOI: 10.1039/c2an36066g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Wielinga PR, de Heer L, de Groot A, Hamidjaja RA, Bruggeman G, Jordan K, van Rotterdam BJ. Evaluation of DNA extraction methods for Bacillus anthracis spores spiked to food and feed matrices at biosafety level 3 conditions. Int J Food Microbiol 2011; 150:122-7. [DOI: 10.1016/j.ijfoodmicro.2011.07.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 05/25/2011] [Accepted: 07/21/2011] [Indexed: 11/30/2022]
|
46
|
MLVA and SNP analysis identified a unique genetic cluster in Bulgarian Bacillus anthracis strains. Eur J Clin Microbiol Infect Dis 2011; 30:923-30. [PMID: 21279731 DOI: 10.1007/s10096-011-1177-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Accepted: 01/13/2011] [Indexed: 10/18/2022]
Abstract
A collection of 40 Bacillus anthracis strains mostly isolated from soil in Bulgaria between 1960 and 1980 were investigated. All strains were proven to be B. anthracis by culture and amplification of a B. anthracis-specific chromosomal marker. PCR demonstrated that in nine strains both virulence plasmids (pX01+/pX02+) and in four strains only one plasmid (pX02+) were present, whereas the majority of strains (n = 27) lacked both plasmids (pX01-/pX02-). Multi-locus-variable number of tandem repeat-analysis (MLVA) using 15 markers differentiated three genotypes. Comparison with typing data of more than 1,000 different B. anthracis strains revealed that Bulgarian genotypes affiliated with the A1.a cluster and form their own unique cluster different from clusters containing strains isolated in geographical proximity, e.g., Turkey, Georgia, Hungary, Albania or Italy. In addition, a new allele of one marker (vrrC2) was identified. Canonical single nucleotide polymorphisms analysis allocated 31 Bulgarian strains into the A.Br.008/009 and nine strains into the A.Br.WNA group, which is the first description of B. anthracis strains of the A.Br.WNA group on the Eurasian continent.
Collapse
|
47
|
Janse I, Hamidjaja RA, Bok JM, van Rotterdam BJ. Reliable detection of Bacillus anthracis, Francisella tularensis and Yersinia pestis by using multiplex qPCR including internal controls for nucleic acid extraction and amplification. BMC Microbiol 2010; 10:314. [PMID: 21143837 PMCID: PMC3016324 DOI: 10.1186/1471-2180-10-314] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 12/08/2010] [Indexed: 11/20/2022] Open
Abstract
Background Several pathogens could seriously affect public health if not recognized timely. To reduce the impact of such highly pathogenic micro-organisms, rapid and accurate diagnostic tools are needed for their detection in various samples, including environmental samples. Results Multiplex real-time PCRs were designed for rapid and reliable detection of three major pathogens that have the potential to cause high morbidity and mortality in humans: B. anthracis, F. tularensis and Y. pestis. The developed assays detect three pathogen-specific targets, including at least one chromosomal target, and one target from B. thuringiensis which is used as an internal control for nucleic acid extraction from refractory spores as well as successful DNA amplification. Validation of the PCRs showed a high analytical sensitivity, specificity and coverage of diverse pathogen strains. Conclusions The multiplex qPCR assays that were developed allow the rapid detection of 3 pathogen-specific targets simultaneously, without compromising sensitivity. The application of B. thuringiensis spores as internal controls further reduces false negative results. This ensures highly reliable detection, while template consumption and laboratory effort are kept at a minimum
Collapse
Affiliation(s)
- Ingmar Janse
- National Institute for Public Health and the Environment, Laboratory for Zoonoses and Environmental Microbiology, Bilthoven, The Netherlands.
| | | | | | | |
Collapse
|
48
|
Validation of laboratory-developed molecular assays for infectious diseases. Clin Microbiol Rev 2010; 23:550-76. [PMID: 20610823 DOI: 10.1128/cmr.00074-09] [Citation(s) in RCA: 351] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Molecular technology has changed the way that clinical laboratories diagnose and manage many infectious diseases. Excellent sensitivity, specificity, and speed have made molecular assays an attractive alternative to culture or enzyme immunoassay methods. Many molecular assays are commercially available and FDA approved. Others, especially those that test for less common analytes, are often laboratory developed. Laboratories also often modify FDA-approved assays to include different extraction systems or additional specimen types. The Clinical Laboratory Improvement Amendments (CLIA) federal regulatory standards require clinical laboratories to establish and document their own performance specifications for laboratory-developed tests to ensure accurate and precise results prior to implementation of the test. The performance characteristics that must be established include accuracy, precision, reportable range, reference interval, analytical sensitivity, and analytical specificity. Clinical laboratories are challenged to understand the requirements and determine the types of experiments and analyses necessary to meet the requirements. A variety of protocols and guidelines are available in various texts and documents. Many of the guidelines are general and more appropriate for assays in chemistry sections of the laboratory but are applied in principle to molecular assays. This review presents information that laboratories may consider in their efforts to meet regulatory requirements.
Collapse
|
49
|
Irenge LM, Durant JF, Tomaso H, Pilo P, Olsen JS, Ramisse V, Mahillon J, Gala JL. Development and validation of a real-time quantitative PCR assay for rapid identification of Bacillus anthracis in environmental samples. Appl Microbiol Biotechnol 2010; 88:1179-92. [PMID: 20827474 DOI: 10.1007/s00253-010-2848-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 08/13/2010] [Accepted: 08/14/2010] [Indexed: 11/28/2022]
Abstract
A real-time polymerase chain reaction (PCR) assay was developed for rapid identification of Bacillus anthracis in environmental samples. These samples often harbor Bacillus cereus bacteria closely related to B. anthracis, which may hinder its specific identification by resulting in false positive signals. The assay consists of two duplex real-time PCR: the first PCR allows amplification of a sequence specific of the B. cereus group (B. anthracis, B. cereus, Bacillus thuringiensis, Bacillus weihenstephanensis, Bacillus pseudomycoides, and Bacillus mycoides) within the phosphoenolpyruvate/sugar phosphotransferase system I gene and a B. anthracis specific single nucleotide polymorphism within the adenylosuccinate synthetase gene. The second real-time PCR assay targets the lethal factor gene from virulence plasmid pXO1 and the capsule synthesis gene from virulence plasmid pXO2. Specificity of the assay is enhanced by the use of minor groove binding probes and/or locked nucleic acids probes. The assay was validated on 304 bacterial strains including 37 B. anthracis, 67 B. cereus group, 54 strains of non-cereus group Bacillus, and 146 Gram-positive and Gram-negative bacteria strains. The assay was performed on various environmental samples spiked with B. anthracis or B. cereus spores. The assay allowed an accurate identification of B. anthracis in environmental samples. This study provides a rapid and reliable method for improving rapid identification of B. anthracis in field operational conditions.
Collapse
Affiliation(s)
- Léonid M Irenge
- Defence Laboratories Department, Belgian Armed Forces, Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Wielinga PR, Hamidjaja RA, Agren J, Knutsson R, Segerman B, Fricker M, Ehling-Schulz M, de Groot A, Burton J, Brooks T, Janse I, van Rotterdam B. A multiplex real-time PCR for identifying and differentiating B. anthracis virulent types. Int J Food Microbiol 2010; 145 Suppl 1:S137-44. [PMID: 20826037 DOI: 10.1016/j.ijfoodmicro.2010.07.039] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 07/27/2010] [Accepted: 07/31/2010] [Indexed: 11/18/2022]
Abstract
Bacillus anthracis is closely related to the endospore forming bacteria Bacillus cereus and Bacillus thuringiensis. For accurate detection of the life threatening pathogen B. anthracis, it is essential to distinguish between these three species. Here we present a novel multiplex real-time PCR for simultaneous specific identification of B. anthracis and discrimination of different B. anthracis virulence types. Specific B. anthracis markers were selected by whole genome comparison and different sets of primers and probes with optimal characteristic for multiplex detection of the B. anthracis chromosome, the B. anthracis pXO1 and pXO2 plasmids and an internal control (IC) were designed. The primer sets were evaluated using a panel of B. anthracis strains and exclusivity was tested using genetically closely related B. cereus strains. The robustness of final primer design was evaluated by laboratories in three different countries using five different real-time PCR thermocyclers. Testing of a panel of more than 20 anthrax strains originating from different locations around the globe, including the recent Swedish anthrax outbreak strain, showed that all strains were detected correctly.
Collapse
Affiliation(s)
- Peter R Wielinga
- National Institute for Public Health and the Environment, Centre for infectious Disease Control, Laboratory for Zoonoses and Environmental Microbiology, Antonie van Leeuwenhoeklaan 9, PO Box 1, Bilthoven, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|