1
|
Ma C, Zhang W, Xing L. Differences in protein lactylation between pale, soft and exudative and red, firm and non-exudative pork. Meat Sci 2025; 221:109736. [PMID: 39740368 DOI: 10.1016/j.meatsci.2024.109736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/25/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025]
Abstract
This study aimed to understand the development of pale, soft, and exudative (PSE) pork from a new perspective by comparing the differences of lactate-induced protein lactylation and its potential regulators including E1A binding protein p300 (p300) and cAMP response element binding protein (CBP) between PSE and red, firm, and non-exudative (RFN) pork at 1 h postmortem. Results demonstrated that PSE pork presented lower glycogen contents and higher lactate levels than RFN pork (P < 0.05). Meanwhile, p300/CBP and protein lactylation levels in PSE pork were higher (P < 0.05). Besides, the immunofluorescence results showed that p300/CBP and lactylated proteins were predominantly localized around the nucleus and sarcolemma membrane with small amounts in the cytoplasm, and these distribution signals were intensified in PSE pork. Importantly, a high degree of co-localization of p300/CBP and lactylated proteins was also observed in postmortem myocytes, confirming that p300/CBP were the critical regulators of lactylation modification in postmortem muscle. This work for the first time demonstrates that protein lactylation levels between PSE and RFN pork were notably diverse, which may potentially be involved in the regulation of various postmortem muscle biochemical metabolism.
Collapse
Affiliation(s)
- Chao Ma
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangang Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lujuan Xing
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Álvarez S, Álvarez C, Mullen AM, O'Neill E, Gagaoua M. Impact of UV pre-treatment on the Longissimus thoracis et lumborum muscle proteomes of dry-aged beef cuts: A characterisation within two sampling locations. Meat Sci 2025; 221:109729. [PMID: 39667196 DOI: 10.1016/j.meatsci.2024.109729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024]
Abstract
This research aimed to explore the changes in two sampling locations (internal and external) of the Longissimus thoracis et lumborum (LTL) beef muscle proteomes subjected to ultraviolet light before dry-aging. It further compared the biological processes and associated proteins at interplay at the external locations of UV pre-treated and control dry-aged samples. Before dry-aging, proteins related to external stimuli were differentially abundant between both locations possibly due to the early post-mortem energy metabolism attempting to compensate for energy deficiencies and stress derived from slaughter and processing. The biochemical status of muscle during chilling and hanging of the carcasses and the impact of the UV pre-treatment may have also influenced the abundance of these proteins before dry-aging. Proteins associated to muscle structure, energy and fatty acids metabolism were differentially abundant between locations after 21 days of dry-aging. These dynamic changes in the meat proteome and related biological processes suggested that both evolved differently between the two sampling locations during dry-aging, and these may underlie the development of dry-aged beef properties. The proteome of the external locations sampled from UV pre-treated beef loins was compared to control counterparts during dry-aging. The results show that aging time appeared to outweigh the effect of UV since the differentially abundant proteins between both groups decreased as dry-aging progressed. These proteins were associated with mRNA stabilization, the matrisome, energy pathways and heat shock proteins (HSPs). Further research is warranted to better understand the role of these proteins in the production of dry-aged beef and their relation to the UV pre-treatment.
Collapse
Affiliation(s)
- Sara Álvarez
- Dept. of Food Quality and Sensory Science, Teagasc Food Research Centre Ashtown, Dublin D15 DY05, Ireland; School of Food and Nutritional Sciences, University College, Cork, Western Road, Cork T12 YN60, Ireland
| | - Carlos Álvarez
- Dept. of Food Quality and Sensory Science, Teagasc Food Research Centre Ashtown, Dublin D15 DY05, Ireland.
| | - Anne Maria Mullen
- Dept. of Food Quality and Sensory Science, Teagasc Food Research Centre Ashtown, Dublin D15 DY05, Ireland
| | - Eileen O'Neill
- School of Food and Nutritional Sciences, University College, Cork, Western Road, Cork T12 YN60, Ireland
| | | |
Collapse
|
3
|
Alambarrio DA, Morris BK, Davis RB, Grabarczyk EB, Turner KK, Gonzalez JM. Development of an Alternative Protocol to Study Muscle Fatigue. Metabolites 2025; 15:54. [PMID: 39852396 PMCID: PMC11767845 DOI: 10.3390/metabo15010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/26/2025] Open
Abstract
When measuring real-time in vivo muscle fatigue with electromyography (EMG), data collection can be compromised by premature sensor removal or environmental noise; therefore, the objective of this study was to develop a postmortem in vivo methodology to induce muscle fatigue and measure it using EMG. Barrows (N = 20) were stratified by weight and randomly allocated into one of two treatments. The treatments consisted of barrows being subjected to a hog electric stunner super-contraction cycle (ES) or not (CON) postmortem. The right hind limb bicep femoris (BF) and semitendinosus (ST) were selected for ambulatory movement simulation using electronic muscle stimulation (EMS). Muscle workload during EMS was measured with EMG using median power frequency (MdPF) and root mean square (RMS) as indicators of action potential velocity and muscle fiber recruitment. Ambulatory movement was induced and recorded for 20 min with a 4:4 duty cycle at 70 Hz. Muscle biopsies were collected pre- and post-EMS for metabolite analyses to corroborate muscle fatigue onset. There was a TRT × Muscle interaction for normalized RMS percentage (p < 0.01), where BF from CON barrows had greater values (p < 0.01). There were no interactions or TRT main effects for the MdPF normalized value (p ≥ 0.25), but there were Period and muscle effects on MdPF (p < 0.01). Bicep femoris had smaller (p < 0.01) MdPF than ST. The percentage of MdPF decreased (p < 0.01) by Period 5 compared to the other Periods, which did not differ from each other (p ≥ 0.38). There were TRT × Muscle and Muscle × Period interactions for ATP muscle concentration (p ≤ 0.03). The concentration of CON BF ATP was greater (p < 0.01) than that of ES BF and CON and ES ST, which did not differ from each other (p ≥ 0.11), but the APT concentration tended to differ between ES BF and ES ST (p = 0.06). Semitendinosus ATP concentration decreased (p < 0.01) post-EMS compared to ST pre- and BF pre- and post-EMS (p ≥ 0.29), but BF and ST concentration tended to differ pre-EMS (p = 0.07). The data indicated that EMS is a valuable tool for replicating ambulatory movement or physical activity, but super-contraction is not a means to accelerate postmortem muscle fatigue onset. Therefore, further refinement, such as longer EMS stimulation time, should be considered.
Collapse
Affiliation(s)
- Daniela A. Alambarrio
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (D.A.A.); (E.B.G.); (K.K.T.)
| | - Benjamin K. Morris
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, Athens, GA 30602, USA (R.B.D.)
| | - R. Benjamin Davis
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, Athens, GA 30602, USA (R.B.D.)
| | - Emily B. Grabarczyk
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (D.A.A.); (E.B.G.); (K.K.T.)
| | - Kari K. Turner
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (D.A.A.); (E.B.G.); (K.K.T.)
| | - John M. Gonzalez
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (D.A.A.); (E.B.G.); (K.K.T.)
| |
Collapse
|
4
|
Denzer ML, Pfeiffer M, Mafi G, Ramanathan R. The importance of including metmyoglobin levels in reflectance-based oxygen consumption measurements. Meat Sci 2025; 219:109651. [PMID: 39276431 DOI: 10.1016/j.meatsci.2024.109651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/26/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Reflectance-based oxygen consumption measurement utilizes changes in oxymyoglobin levels between bloomed and vacuum-packaged meat, assuming that oxymyoglobin is converted to deoxymyoglobin. However, the interconversion of oxymyoglobin to deoxymyoglobin depends on the age of the meat and the length of display; hence, oxygen consumption calculations might yield inaccurate interpretations if deoxymyoglobin is not the final form. The objective was to evaluate the effectiveness of determining metmyoglobin levels during oxygen consumption analysis and its relationship to beef color stability. Seven psoas major (color labile) and longissimus (color stable) were displayed in retail for 6 d and evaluated for oxygen consumption on the retail (oxygen exposed) and interior (non‑oxygen exposed) surfaces. The retail surface had greater (P < 0.05) metmyoglobin formed during oxygen consumption than the interior surface on d 6 of the display. Furthermore, the psoas major muscle exhibited greater (P < 0.05) metmyoglobin content during oxygen consumption than the longissimus on the retail surface paralleling with the decline in color stability. Therefore, the study indicates that sampling location and including metmyoglobin content in oxygen consumption calculations, along with changes in oxymyoglobin, will better explain meat color stability.
Collapse
Affiliation(s)
- Morgan L Denzer
- Department of Animal Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Morgan Pfeiffer
- Department of Animal Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Gretchen Mafi
- Department of Animal Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ranjith Ramanathan
- Department of Animal Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
5
|
Krauskopf MM, Antonelo DS, de Araújo CDL, Lopes BG, Ribeiro GH, Colnago LA, de Carvalho Balieiro JC, Delgado EF, Ramanathan R, Castillo CJC. Influence of lipid and metabolite profiles of mitochondrial fraction on pH and color stability of longissimus lumborum muscle with different ultimate beef pH. Meat Sci 2025; 219:109682. [PMID: 39395211 DOI: 10.1016/j.meatsci.2024.109682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/29/2024] [Accepted: 09/30/2024] [Indexed: 10/14/2024]
Abstract
This study aimed to explore the differences in the lipidome and mitochondrial fraction metabolome of Nellore cattle meat in different ranges of ultimate pH (pHu) normal (≤5.79), intermediate (5.80 to 6.19) and high (≥ 6.20) after 3- and 21-d postmortem. Instrumental color, myoglobin redox state, oxygen consumption, and metmyoglobin-reducing activity were measured during storage. A total of 472 lipids and 22 mitochondrial fraction metabolites were identified. Beef with high pHu showed positive regulation of ceramides involved in apoptosis and negative regulation of lipid classes related to membrane permeability and stability. In addition, lower carnitine content was noted in high-pHu beef than in normal-pHu beef. Acylcarnitines, phosphatidylinositol, and IMP showed upregulation in beef with intermediate pHu, indicating changes mainly related to energy, purine and pyruvate metabolism. Aging time impacted on the lipid content and metabolites involved in different metabolic pathways. These results provided new insights into beef's mitochondrial fraction lipid and metabolic profile with different pHu. In addition, beef with intermediate pHu differs from beef with high pHu due to changes in energy metabolism.
Collapse
Affiliation(s)
- Monique Marcondes Krauskopf
- Department of Food Science and Technology, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP 13418-900, Brazil
| | | | - Chimenes Darlan Leal de Araújo
- Department of Food Science and Technology, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP 13418-900, Brazil
| | - Beatriz Garcia Lopes
- Department of Food Science and Technology, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP 13418-900, Brazil
| | | | | | | | - Eduardo Francisquine Delgado
- Department of Food Science and Technology, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP 13418-900, Brazil
| | - Rajith Ramanathan
- Oklahoma State University, Animal & Food Sciences, Stillwater, OK, United States
| | - Carmen Josefina Contreras Castillo
- Department of Food Science and Technology, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP 13418-900, Brazil.
| |
Collapse
|
6
|
Scheffler TL. Resilience in life and death: Metabolism and proteolysis in Bos indicus muscle and meat. Meat Sci 2024; 218:109622. [PMID: 39142974 DOI: 10.1016/j.meatsci.2024.109622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
Bos indicus cattle are important to beef production in hot, humid climates, but they have a reputation for producing tougher beef with more variability. Reduced and delayed degradation of muscle proteins postmortem is a major reason underlying these tenderness challenges. Inherent muscle metabolic characteristics and processing conditions shape the early dynamics of postmortem metabolism and protein degradation after harvest, which impacts subsequent tenderization. Skeletal muscles exhibit diverse metabolic and contractile properties, and metabolic pathways are coordinated to regulate flux under variable working conditions. Considering how living muscles respond and adapt to cellular stress may enhance our understanding of muscle death and quality development. The aim of this review is to examine how muscle properties influence metabolism and cellular response in the context of early postmortem muscle to meat conversion, and specifically, their potential contribution to variation in proteolysis in Bos indicus beef.
Collapse
Affiliation(s)
- Tracy L Scheffler
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, United States of America.
| |
Collapse
|
7
|
Rimmer LA, Zumbaugh MD. Skeletal muscle metabolic characteristics and fresh meat quality defects associated with wooden breast. Front Physiol 2024; 15:1501362. [PMID: 39539953 PMCID: PMC11557563 DOI: 10.3389/fphys.2024.1501362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Wooden breast (WB) is a myopathy that occurs in pectoralis major (PM) muscles, predominately affecting large, fast-growing broilers. Severe myodegeneration, increased hypoxia, reduced blood flow, and increased collagen deposition are hallmark characteristics of WB that culminate in unsatisfactory fresh meat quality attributes, such as poor water-holding capacity, tenderness, and processing characteristics. Therefore, WB meat is often downgraded resulting in economic losses for the United States poultry industry. Although WB has been well characterized, its etiology remains undefined. As the scientific community continues to resolve mechanisms responsible for WB onset, understanding biochemical changes associated with WB may facilitate solutions to negate its poor meat quality attributes. Given changes in metabolism of living muscle can alter biochemical processes during the conversion of muscle to meat, this review aims to summarize and discuss the current knowledge of WB muscle and meat biochemistry. For example, it appears metabolic pathways that support combating stress are upregulated in WB muscle at the expense of glycolytic flux, which presumably contributes to the high ultimate pH of WB meat. Further, perturbed function of WB mitochondria, such as altered calcium handling, impacts aspects of postmortem metabolism and proteolysis. Collectively, metabolic dysfunction of WB muscle alters the biochemical processes that occur during the conversion of muscle to meat, and thus contributes to the poor WB meat quality.
Collapse
Affiliation(s)
| | - Morgan D. Zumbaugh
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
8
|
Ramos PM, Wohlgemuth SE, Gingerich CA, Hawryluk B, Smith MT, Bell LC, Scheffler TL. Postmortem mitochondria function in longissimus lumborum of Angus and Brahman steers. Meat Sci 2024; 215:109538. [PMID: 38772311 DOI: 10.1016/j.meatsci.2024.109538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/09/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024]
Abstract
Mitochondria function and integrity may impact postmortem metabolism and meat quality development. Adaptations in heat tolerant Brahman may persist to limit cellular stress postmortem. Our objective was to evaluate glycolysis, pH decline, and mitochondria function in longissimus lumborum (LL) from Angus and Brahman steers (N = 28) early postmortem (1 to 6 h) and after rigor (24 h). We evaluated metabolites of anaerobic glycolysis, ATP, pH, and temperature, and determined mitochondria oxygen consumption rate (OCR) in permeabilized fibers. The main effects of breed (b) and time (t) and the interaction were tested. Brahman LL contained greater ATP during the first 6 h postmortem; Brahman also tended to exhibit a slower pH decline (b × t, P = 0.07) and more rapid temperature decline (b × t, P < 0.001), but metabolites of anaerobic glycolysis were not different. Mitochondria in Brahman and Angus LL were well-coupled and respired at 1 h postmortem. However, outer membrane integrity became increasingly compromised postmortem (t, P < 0.001). Brahman tended to exhibit greater electron transport system capacity (b, P < 0.1) and had greater capacity for oxidative phosphorylation (complex I and II substrates) at 6 h compared with Angus (P < 0.001). In totality, greater ATP, slower pH decline, and enhanced mitochondria capacity indicate that Brahman possess mitochondrial properties or cellular adaptations that help protect the cell during energy stress postmortem. Slower pH and more rapid temperature decline in LL from Brahman may also help preserve mitochondria function postmortem.
Collapse
Affiliation(s)
- Patricia M Ramos
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, United States of America
| | - Stephanie E Wohlgemuth
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32603, United States of America
| | - Chloe A Gingerich
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, United States of America
| | - Briana Hawryluk
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, United States of America
| | - Morgan T Smith
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, United States of America
| | - Lindsey C Bell
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, United States of America
| | - Tracy L Scheffler
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, United States of America.
| |
Collapse
|
9
|
Taylor MJ, Stafford CD, Buhler JF, Dang DS, Alruzzi MA, Najm TA, Gerrard SD, Thornton KJ, van Vliet S, El-Kadi SW, Gerrard DE, Matarneh SK. Inhibition of pyruvate dehydrogenase accelerates anaerobic glycolysis under postmortem simulating conditions. Meat Sci 2024; 213:109510. [PMID: 38598967 DOI: 10.1016/j.meatsci.2024.109510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/01/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
This research aimed to explore the potential influence of mitochondria on the rate of anaerobic glycolysis. We hypothesized that mitochondria could reduce the rate of anaerobic glycolysis and pH decline by metabolizing a portion of glycolytic pyruvate. We utilized an in vitro model and incorporated CPI-613 and Avidin to inhibit pyruvate dehydrogenase (PDH) and pyruvate carboxylase (PC), respectively. Four treatments were tested: 400 μM CPI-613, 1.5 U/ml Avidin, 400 μM CPI-613 + 1.5 U/ml Avidin, or control. Glycolytic metabolites and pH of the in vitro model were evaluated throughout a 1440-min incubation period. CPI-613-containing treatments, with or without Avidin, decreased pH levels and increased glycogen degradation and lactate accumulation compared to the control and Avidin treatments (P < 0.05), indicating increased glycolytic flux. In a different experiment, two treatments, 400 μM CPI-613 or control, were employed to track the fates of pyruvate using [13C6]glucose. CPI-613 reduced the contribution of glucose carbon to tricarboxylic acid cycle intermediates compared to control (P < 0.05). To test whether the acceleration of acidification in reactions containing CPI-613 was due to an increase in the activity of key enzymes of glycogenolysis and glycolysis, we evaluated the activities of glycogen phosphorylase, phosphofructokinase, and pyruvate kinase in the presence or absence of 400 μM CPI-613. The CPI-613 treatment did not elicit an alteration in the activity of these three enzymes. These findings indicate that inhibiting PDH increases the rate of anaerobic glycolysis and pH decline, suggesting that mitochondria are potential regulators of postmortem metabolism.
Collapse
Affiliation(s)
- Mackenzie J Taylor
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States
| | - Chandler D Stafford
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States
| | - Jared F Buhler
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States
| | - David S Dang
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States
| | - Mohammed A Alruzzi
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States
| | - Teif A Najm
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States
| | - Samuel D Gerrard
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | - Kara J Thornton
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, United States
| | - Stephan van Vliet
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States
| | - Samer W El-Kadi
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | - David E Gerrard
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | - Sulaiman K Matarneh
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States.
| |
Collapse
|
10
|
Liu Z, Liu Y, Xing T, Li J, Zhang L, Zhao L, Jiang Y, Gao F. Chronic heat stress inhibits glycogen synthesis through gga-miR-212-5p/GYS1 axis in the breast muscle of broilers. Poult Sci 2024; 103:103455. [PMID: 38295503 PMCID: PMC10846392 DOI: 10.1016/j.psj.2024.103455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/24/2023] [Accepted: 01/07/2024] [Indexed: 02/02/2024] Open
Abstract
Studies have demonstrated that chronic heat stress can accelerate glycolysis, decrease glycogen content in muscle, and affect muscle quality. However, the consequences of chronic heat stress on glycogen synthesis, miRNA expression in pectoralis major (PM) muscle, and its regulatory functions remain unknown. In this study, high-throughput sequencing and cell experiments were used to explore the effects of chronic heat stress on miRNA expression profiles and the regulatory mechanisms of miRNAs in glycogen synthesis under chronic heat stress. In total, 144 cocks were allocated into 3 groups: the normal control (NC) group, the heat stress (HS) group, and the pair-fed (PF) group. In total, 30 differently expressed (DE) miRNAs were screened after excluding the effect of feed intake, which were mainly related to metabolism, signal transduction, cell growth and death. Furthermore, the gga-miR-212-5p/GYS1 axis was predicted to participate in glycogen synthesis through the miRNA-mRNA analysis, and a dual-luciferase reporter test assay confirmed the target relationship. Mechanistically, chronic heat stress up-regulated gga-miR-212-5p, which could inhibit the expression of GYS1 in the PM muscle. Knocking down gga-miR-212-5p alleviates the reduction of glycogen content caused by chronic heat stress; overexpression of gga-miR-212-5p can reduce glycogen content. This study provided another important mechanism for the decreased glycogen contents within the PM muscle of broilers under heat stress, which might contribute to impaired meat quality.
Collapse
Affiliation(s)
- Zhen Liu
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, People's Republic of China
| | - Yingsen Liu
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Jiaolong Li
- Institute of Agro-Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, People's Republic of China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Liang Zhao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yun Jiang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
11
|
Stafford CD, Taylor MJ, Buhler JF, Dang DS, Thornton KJ, Gerrard DE, Matarneh SK. Muscle proteolysis is differentially influenced by mitochondrial intactness. Meat Sci 2024; 207:109368. [PMID: 37862836 DOI: 10.1016/j.meatsci.2023.109368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
This study examined the potential influence of mitochondrial calcium sequestering ability on calpain-1 autolysis and proteolysis in vitro. We first tested whether mitochondria can sequester calcium in an in vitro setting. Isolated bovine mitochondria (0, 0.5, or 2 mg/mL) were incubated in a buffer containing varying calcium levels (0, 50, or 100 μM). An inverse relationship between mitochondrial content and measured free calcium was observed (P < 0.05), confirming that mitochondria can sequester calcium within the concentration range tested. In the first in vitro experiment, intact mitochondria (0, 0.5, or 2 mg/mL) were incorporated into an in vitro model simulating postmortem muscle conditions, and calpain-1 autolysis and proteolysis were evaluated over a 168-h period. Adding intact mitochondria to the in vitro model decreased calpain-1 autolysis and proteolysis during the first 4 h of incubation (P < 0.05), likely through reducing calcium availability. However, accentuated calpain-1 autolysis and proteolysis were observed at 24 h. To further explore these effects, mitochondrial integrity was evaluated at varying pH and calcium levels. Mitochondrial integrity decreased as pH declined (P < 0.05), especially in the presence of calcium. Based on these results, we conducted a second in vitro experiment involving disrupted mitochondria. Unlike intact mitochondria, which exerted a suppressive effect on calpain-1 autolysis and proteolysis early on, disrupted mitochondria increased both parameters at most time points (P < 0.05). Overall, it appears that intact mitochondria initially cause a delay in calpain-1 autolysis and proteolysis, but as their integrity diminishes, both processes are enhanced.
Collapse
Affiliation(s)
- Chandler D Stafford
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States
| | - Mackenzie J Taylor
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States
| | - Jared F Buhler
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States
| | - David S Dang
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States
| | - Kara J Thornton
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, United States
| | - David E Gerrard
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | - Sulaiman K Matarneh
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States.
| |
Collapse
|
12
|
Zhao Y, Wang Z, Bruce HL, Roy BC, Yang W, Zhang D, Hou C. The effect of modified atmosphere packaging at an early postmortem stage on lamb meat quality during subsequent aging. J Food Sci 2024; 89:228-244. [PMID: 38126109 DOI: 10.1111/1750-3841.16881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/11/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
This study explores the influence of modified atmosphere packaging (MAP) on fresh lamb meat quality with respect to gas concentration, rigor state, and post-mortem aging time. A comparison was done for the quality characteristics of lamb Longissimus thoracis lumborum chops that had been packaged separately in air, 75%O2 + 25%CO2 MAP or 50%O2 + 50%CO2 MAP at 1, 6, and 24 h post-mortem and then stored for 6, 12, 24, 72, and 144 h post-mortem, and the quality of lamb chops had been evaluated at each post-mortem period separately. Chops packaged at 1 and 6 h post-mortem in MAP had reduced pH decline, less purge loss, and enhanced redness at early post-mortem storage times. Lamb color stability was evidently greater in 75%O2 + 25%CO2 MAP than in 50%O2 + 50%CO2 MAP during the early storage period when a* and R630/R580 were taken into account. Shear force values were lowest in lambs packaged at 1 h post-mortem with 75%O2 + 25%CO2 MAP at 12 h post-mortem and then increased until 72 h post-mortem, suggesting that rigor has been delayed by such a high O2 MAP. Thus, fresh lamb quality was maintained most effectively when packaged at 1 h post-mortem in 75%O2 + 25%CO2 MAP for consumption at 12 h post-mortem. The exact mechanisms and optimization of MAP based on Chinese retail conditions should be considered in future studies. PRACTICAL APPLICATION: In this study, three slaughter patterns in the meat industry involving boning immediately after dressing (hot-boning) and chilling for a short period (warm-boning) or overnight (cold-boning) are considered, as well as the behavior of non-immediate consumption after purchase. Modified atmosphere packaging provides an effective preservation of early post-mortem muscles with enhanced color stability, water holding capacity, and texture during refrigerated storage. This could provide new insights into how to process lamb muscles in the early post-mortem period to improve and stabilize lamb quality.
Collapse
Affiliation(s)
- Yingxin Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Zhenyu Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Heather L Bruce
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Bimol C Roy
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Wei Yang
- Sunrise Material Co., Ltd, Jiangsu, P. R. China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Chengli Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| |
Collapse
|
13
|
Ramos PM, Scheffler TL, Beline M, Bodmer J, Gerrard DE, Silva SL. Challenges and opportunities of using Bos indicus cattle to meet consumers' demand for quality beef. Meat Sci 2024; 207:109375. [PMID: 37924645 DOI: 10.1016/j.meatsci.2023.109375] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
Beef consumption is expected to increase worldwide, which necessitates the use of Bos indicus cattle that are well-adapted to harsher climates, like the tropics. Yet, beef from these cattle is considered inferior to that of Bos taurus breeds, primarily due to lowered tenderness values and reduced intramuscular fat content. However, the benefits of using Bos indicus genetics are numerous and undeniable. Herein, we explore how decreases in meat quality in these cattle may be offset by increases in livability. Further, we review the knowledge surrounding beef tenderness and explore the processes occurring during the early events of the transformation of muscle to meat that are different in this biological type and may be altered by stress. Growth rate, calpastatin activity and mitochondrial function will be discussed as they relate to tenderness. The opportunities of using Bos indicus cattle are of great interest to the beef industry worldwide, especially given the pressures for enhancing the overall sustainability and carbon footprint of this sector. Delivering a consistently high-quality product for consumers by exploiting Bos indicus genetics in a more sustainable manner will be proposed. Information on novel factors that influence the conversion of muscle to meat is explored to provide insights into opportunities for maximizing beef tenderization and maturation across all cattle. Exploring the use of Bos indicus cattle in modern production schemes, while addressing the mechanisms undergirding meat tenderness should provide the industry with a path forward for building greater demand through producing higher quality beef.
Collapse
Affiliation(s)
- Patricia M Ramos
- Animal Science Department, College of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, SP, Brazil
| | - Tracy L Scheffler
- Animal Science Department, University of Florida, Gainesville, FL, USA
| | - Mariane Beline
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Jocelyn Bodmer
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - David E Gerrard
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Saulo Luz Silva
- Animal Science Department, College of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, SP, Brazil.
| |
Collapse
|
14
|
Krauskopf MM, de Araújo CDL, Dos Santos-Donado PR, Dargelio MDB, Manzi JAS, Venturini AC, de Carvalho Balieiro JC, Delgado EF, Contreras Castillo CJ. The effect of succinate on color stability of Bos indicus bull meat: pH-dependent effects during the 14-day aging period. Food Res Int 2024; 175:113688. [PMID: 38129031 DOI: 10.1016/j.foodres.2023.113688] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
Bos taurus indicus bulls are very susceptible to pre-slaughter stress, which directly impacts the decline in muscle pH, leading to darker meat. The aim was to investigate the effect of succinate and atmosphere on the color stability of Nellore (Bos taurus indicus) Longissimus lumborum steaks classified by ultimate pH (pHu): normal pHu (5.40 ≤ pHu ≤ 5.79) and high pHu (pHu ≥ 5.80). The experimental treatment systems were: (i) vacuum packaging without succinate injection, (ii) HiOx-MAP (80 % O2 + 20 % CO2), and (iii) HiOx-MAP (80 % O2 + 20 % CO2) enhanced with sodium succinate injection (pH 5.4). Steaks from all treatment systems were stored at 4 °C for 14 days and tested for instrumental color, myoglobin content, oxygen consumption (OC), metmyoglobin-reducing activity (MRA), lipid oxidation, and microbiological analysis. High and normal pHu vacuum-packaged steaks exhibited greater color stability due to higher MRA. High and normal pHu steaks packaged with HiOx-MAP or HiOx-MAP enhanced with succinate showed improved color due to lower deoxymyoglobin content (%DMb) and OC up to the eighth day of storage. Still, succinate injection promoted increased (P < 0.05) lipid oxidation in normal pHu steaks and reduced MRA after 14 days. These findings emphasize the intricate interplay between pHu and packaging systems on Bos taurus indicus meat quality. Further research in this area could contribute to a better understanding of meat color abnormalities and provide insights into potential meat preservation and enhancement strategies.
Collapse
Affiliation(s)
- Monique Marcondes Krauskopf
- Department of Agroindustry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP 13418-900, Brazil
| | - Chimenes Darlan Leal de Araújo
- Department of Agroindustry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP 13418-900, Brazil
| | - Priscila R Dos Santos-Donado
- Department of Agroindustry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP 13418-900, Brazil
| | - Mariana Damiames Baccarin Dargelio
- Department of Agroindustry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP 13418-900, Brazil
| | - João Antônio Santos Manzi
- Department of Agroindustry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP 13418-900, Brazil
| | - Anna Cecilia Venturini
- Department of Pharmaceutical Sciences, Federal University of Sao Paulo, Diadema, SP 099013-030, Brazil
| | | | - Eduardo Francisquine Delgado
- Department of Agroindustry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP 13418-900, Brazil
| | - Carmen Josefina Contreras Castillo
- Department of Agroindustry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP 13418-900, Brazil.
| |
Collapse
|
15
|
Ma C, Zhang W, Zhang J, Du T. Modification-Specific Proteomic Analysis Reveals Cysteine S-Nitrosylation Mediated the Effect of Preslaughter Transport Stress on Pork Quality Development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20260-20273. [PMID: 38085829 DOI: 10.1021/acs.jafc.3c05254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
This study aimed to explore the effects of preslaughter transport stress on protein S-nitrosylation levels and S-nitrosylated proteome in post-mortem pork longissimus thoracis (LT) muscle. Pigs (N= 16) were randomly divided into 3 h transport (high-stress group, HS) and 3 h transport followed by 3 h resting treatments (low-stress control group, LS). Results demonstrated that high transport stress levels induced nitric oxide (NO) overproduction by promoting NO synthase (NOS) activity and neuronal NOS (nNOS) expression, which thereby notably increased protein S-nitrosylation levels in post-mortem muscle (p < 0.05). Proteomic analysis indicated that 133 S-nitrosylation-modified cysteines belonging to 85 proteins were significantly differential, of which 101 cysteines of 63 proteins were higher in the HS group (p < 0.05). Differential proteins including cytoskeletal and calcium-handling proteins, glycolytic enzymes, and oxidoreductase were mainly involved in the regulation of muscle contraction and energy metabolism that might together mediate meat quality development. Overall, this study provided direct evidence for changes in S-nitrosylation levels and proteome in post-mortem muscle in response to preslaughter transport stress and revealed the potential impact of S-nitrosylated proteins on meat quality.
Collapse
Affiliation(s)
- Chao Ma
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangang Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tongyao Du
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
16
|
Dong Y, Zhang H, Mei J, Xie J. Stunning methods before slaughter induce oxidation changes of large yellow croaker during cold storage: the role of mitochondria and underlying mechanisms. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7747-7756. [PMID: 37439124 DOI: 10.1002/jsfa.12859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Improper stunning methods before slaughter could cause fish to deteriorate more quickly during cold storage. However, it is unclear how stunning methods affect the mitochondrial structure and the role of mitochondria in oxidation in muscle-based food. RESULTS This study explored the potential mechanism of oxidation induced by different stunning methods (hit on the head, T1 ; gill cut, T2 ; immersion in ice/water slurry, T3 ; CO2 asphyxiated, T4 ; 40% CO2 + 30% N2 + 30% O2 , T5 ) in large yellow croaker during cold storage. The results showed that T4 samples had the minimum stress response and the mitochondrial membrane potential and permeability were less damaged. Besides, the mitochondrial functional structure and peroxisome of T4 samples were less damaged compared with other samples, which was reflected in higher total superoxide dismutase, catalase and glutathione peroxidase activities. In terms of oxidation indices, the T4 samples showed higher pH values and iron myoglobin contents and lower total volatile basic nitrogen and thiobarbituric acid reactive substances after 168 h cold storage, indicating that the T4 samples significantly maintained oxidative stability of large yellow croaker. CONCLUSION The CO2 asphyxiation had the least oxidative damage to large yellow croaker during cold storage, possibly because it had the least effect on mitochondrial structure, reactive oxygen species and antioxidant enzyme activity. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yixuan Dong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Hongzhi Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| |
Collapse
|
17
|
Waga M, Nodake K, Nakade K. The effect of pH and aging on mitochondrial reduction of bovine myoglobin's affinity for oxygen. Meat Sci 2023; 206:109345. [PMID: 37729860 DOI: 10.1016/j.meatsci.2023.109345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/04/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023]
Abstract
In skeletal muscles, mitochondria have been shown to decrease the oxygen affinity of myoglobin. In this study, we investigated whether the mitochondrial function of decreasing myoglobin affinity for oxygen persists and operates at the final pH of postmortem bovine skeletal muscle. The oxygen affinity and myoglobin consumption in the presence of mitochondria obtained from fresh and wet-aged beef were evaluated and compared at pH 5.1, 5.6, and 5.7. The results showed that mitochondria obtained from fresh beef preserved myoglobin oxygen consumption and affinity interference, whereas those obtained from wet-aged beef did not. Oxygen consumption and affinity interference were mostly absent at pH 5.1 and were higher at pH 5.7 than those at pH 5.6. Our findings suggest that mitochondria contribute both to an increase in the oxygen affinity of myoglobin in aged meat and a decrease in the oxygen affinity of myoglobin in high-pH meat, such as dark-cutting beef.
Collapse
Affiliation(s)
- Masahiro Waga
- Central Research Institute, Itoham Yonekyu Holdings Inc., Moriya, Japan.
| | - Kazumasa Nodake
- Central Research Institute, Itoham Yonekyu Holdings Inc., Moriya, Japan
| | - Koji Nakade
- Central Research Institute, Itoham Yonekyu Holdings Inc., Moriya, Japan
| |
Collapse
|
18
|
Coaguila Gonza MM, Cavalcante CL, Saldaña E, Sartori AGDO, Contreras Castillo CJ. Effect of ultimate pH on quality of aged Longissimus dorsi muscle of Zebu Nellore (Bos indicus) during long-term frozen storage. Food Res Int 2023; 174:113675. [PMID: 37981368 DOI: 10.1016/j.foodres.2023.113675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/21/2023]
Abstract
Despite the relatively high occurrence of bovine meat with intermediate to high ultimate pH (pHu), there is a lack of studies focused on the effects of long-term conventional air-blasting freezing storage on quality parameters of commercial beefs of Zebu Nellore (Bos indicus) with varying pHu ranges. The objective of this work was to evaluate the influence of pHu ranges [normal (≤5.79), intermediate (5.80 to 6.19), and high (≥6.20)] and long-term frozen storage on quality parameters of aged Longissimus dorsi beefs of Zebu Nellore (Bos indicus). The aging conditions were set at 2 °C for 14 days, while the freezing conditions were set at - 20 °C, and samples were collected after 3, 6, 9, and 12 months of storage. The results indicated that the pHu influenced meat quality parameters, as well as the chemical forms of myoglobin, which changed throughout the frozen storage, leading to a brighter red color, especially for the normal pHu beef samples, likely due to increased oxymyoglobin content. Frozen storage improved tenderness, with high pHu beef samples being the more tender after 12 months, potentially due to lower protein oxidation, as measured by the carbonyl content. Increased drip loss was observed over freezing time, with a concomitant decrease in protein solubility, especially for myofibrillar and sarcoplasmic proteins, which differed among the pHu ranges. These findings are valuable for determining freezing time as a preservation strategy to maintain beef quality within different pHu ranges.
Collapse
Affiliation(s)
- Milagros Maribel Coaguila Gonza
- Departamento de Agroindústria, Alimentos e Nutrição (LAN), Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo (USP), Avenida Pádua Dias, 11, Cx. Postal 9, CEP 13418-900, Piracicaba, SP, Brazil
| | - Cecylyana Leite Cavalcante
- Departamento de Agroindústria, Alimentos e Nutrição (LAN), Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo (USP), Avenida Pádua Dias, 11, Cx. Postal 9, CEP 13418-900, Piracicaba, SP, Brazil
| | - Erick Saldaña
- Sensory Analysis and Consumer Study Group, Escuela Profesional de Ingeniería Agroindustrial, Universidad Nacional de Moquegua, Prolongación Calle Ancash s/n, Moquegua 18001, Peru
| | - Alan Giovanini de Oliveira Sartori
- Departamento de Agroindústria, Alimentos e Nutrição (LAN), Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo (USP), Avenida Pádua Dias, 11, Cx. Postal 9, CEP 13418-900, Piracicaba, SP, Brazil
| | - Carmen Josefina Contreras Castillo
- Departamento de Agroindústria, Alimentos e Nutrição (LAN), Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo (USP), Avenida Pádua Dias, 11, Cx. Postal 9, CEP 13418-900, Piracicaba, SP, Brazil.
| |
Collapse
|
19
|
Huang F, Ding Z, Chen J, Guo B, Wang L, Liu C, Zhang C. Contribution of mitochondria to postmortem muscle tenderization: a review. Crit Rev Food Sci Nutr 2023; 65:30-46. [PMID: 37819615 DOI: 10.1080/10408398.2023.2266767] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Postmortem meat tenderization is a process mediated by a series of biochemical reactions related to muscle cell death. Cell death is considered a sign that muscle has started to transform into meat. Mitochondria play a significant role in regulating and executing cell death, as they are an aggregation point for many cell death signals and are also the primary target organelle damaged by tissue anoxia. Mitochondrial damage is likely to have an expanded role in postmortem meat tenderization. This review presents current findings on mitochondrial damage induced by the accumulation of reactive oxygen species during postmortem anaerobic metabolism and on the impact of mitochondrial damage on proteolysis and discusses how this leads to improved tenderness during aging. The underlying mechanisms of mitochondrial regulation of postmortem muscle tenderization likely focus on the mitochondria's role in postmortem cell death and energy metabolism. The death process of postmortem skeletal muscle cells may exhibit multiple types, possibly involving transformation from autophagy to apoptosis and, ultimately, necroptosis or necrosis. Mitochondrial characteristics, especially membrane integrity and ATP-related compound levels, are closely related to the transformation of multiple types of dead postmortem muscle cells. Finally, a possible biochemical regulatory network in postmortem muscle tenderization is proposed.
Collapse
Affiliation(s)
- Feng Huang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China
| | - Zhenjiang Ding
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic Diseases, China National Research Institute of Food and Fermentation Industries, Beijing, China
| | - Jinsong Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China
| | - Bing Guo
- Adisseo Asia Pacific Pte Ltd, Singapore, Singapore
| | - Linlin Wang
- College of Food Science and Technology, Southwest Minzu University, Chengdu, Sichuan, China
| | - Chunmei Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China
| | - Chunhui Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China
| |
Collapse
|
20
|
Zou B, Jia F, Ji L, Li X, Dai R. Effects of mitochondria on postmortem meat quality: characteristic, isolation, energy metabolism, apoptosis and oxygen consumption. Crit Rev Food Sci Nutr 2023; 64:11239-11262. [PMID: 37452658 DOI: 10.1080/10408398.2023.2235435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Meat quality holds significant importance for both consumers and meat producers. Various factors influence meat quality, and among them, mitochondria play a crucial role. Recent studies have indicated that mitochondria can sustain their functions and viability for a certain duration in postmortem muscles. Consequently, mitochondria have an impact on oxygen consumption, energy metabolism, and apoptotic processes, which in turn affect myoglobin levels, oxidative stress, meat tenderness, fat oxidation, and protein oxidation. Ultimately, these factors influence the color, tenderness, and flavor of meat. However, there is a dearth of comprehensive summaries addressing the effects of mitochondria on postmortem muscle physiology and meat quality. Therefore, this review aims to describe the characteristics of muscle mitochondria and their potential influence on muscle. Additionally, a suitable method for isolating mitochondria is presented. Lastly, the review emphasizes the regulation of oxygen consumption, energy metabolism, and apoptosis by postmortem muscle mitochondria, and provides an overview of relevant research and recent advancements. The ultimate objective of this review is to elucidate the underlying mechanisms through which mitochondria impact meat quality.
Collapse
Affiliation(s)
- Bo Zou
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Fei Jia
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Lin Ji
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Xingmin Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Ruitong Dai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| |
Collapse
|
21
|
Muroya S. - Invited Review - Postmortem skeletal muscle metabolism of farm animals approached with metabolomics. Anim Biosci 2023; 36:374-384. [PMID: 36397684 PMCID: PMC9899580 DOI: 10.5713/ab.22.0370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/07/2022] [Indexed: 11/15/2022] Open
Abstract
Skeletal muscle metabolism regulates homeostatic balance in animals. The metabolic impact persists even after farm animal skeletal muscle is converted to edible meat through postmortem rigor mortis and aging. Muscle metabolites resulting from animal growth and postmortem storage have a significant impact on meat quality, including flavor and color. Metabolomics studies of postmortem muscle aging have identified metabolisms that contain signatures inherent to muscle properties and the altered metabolites by physiological adaptation, with glycolysis as the pivotal metabolism in postmortem aging. Metabolomics has also played a role in mining relevant postmortem metabolisms and pathways, such as the citrate cycle and mitochondrial metabolism. This leads to a deeper understanding of the mechanisms underlying the generation of key compounds that are associated with meat quality. Genetic background, feeding strategy, and muscle type primarily determine skeletal muscle properties in live animals and affect post-mortem muscle metabolism. With comprehensive metabolite detection, metabolomics is also beneficial for exploring biomarker candidates that could be useful to monitor meat production and predict the quality traits. The present review focuses on advances in farm animal muscle metabolomics, especially postmortem muscle metabolism associated with genetic factors and muscle type.
Collapse
Affiliation(s)
- Susumu Muroya
- Animal Products Research Group, NARO Institute of Livestock and Grassland Science (NILGS), Tsukuba, Ibaraki 305-0901,
Japan,Corresponding Author: Susumu Muroya, E-mail: ;
| |
Collapse
|
22
|
Zou B, Shao L, Yu Q, Zhao Y, Li X, Dai R. Changes of mitochondrial lipid molecules, structure, cytochrome c and ROS of beef Longissimus lumborum and Psoas major during postmortem storage and their potential associations with beef quality. Meat Sci 2023; 195:109013. [DOI: 10.1016/j.meatsci.2022.109013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
|
23
|
Bouchendhomme T, Soret M, Grard T, Lencel P. Differentiating between fresh and frozen-thawed fish fillets by muscle fibre permeability measurement. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Muroya S. An insight into farm animal skeletal muscle metabolism based on a metabolomics approach. Meat Sci 2022; 195:108995. [DOI: 10.1016/j.meatsci.2022.108995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 01/10/2023]
|
25
|
Zhao Y, Chen L, Bruce HL, Wang Z, Roy BC, Li X, Zhang D, Yang W, Hou C. The Influence of Vacuum Packaging of Hot-Boned Lamb at Early
Postmortem Time on Meat Quality during Postmortem Chilled
Storage. Food Sci Anim Resour 2022; 42:816-832. [PMID: 36133632 PMCID: PMC9478973 DOI: 10.5851/kosfa.2022.e34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022] Open
Abstract
To evaluate the effects of early postmortem vacuum packaging (VP) on meat quality
during postmortem chilled storage, hot-boned lamb was vacuum-packaged at 1, 6,
12, 24, and 48 h postmortem and stored around 2°C until 168 h postmortem,
with lamb packaged in plastic wrap as the control (aerobic packaging).
Intramuscular pH decline was delayed when lamb was vacuum packaged at 1, 6, and
12 h postmortem (p<0.05). The lamb vacuum-packaged at 1 h postmortem
(VP-1h group) had significantly lower shear force values and purge losses
accompanied by lower free thiol group values than other treatments during
postmortem storage and was also higher in extractable calpain-1 activity by 6 h
postmortem (p<0.05). Free thiol group concentrations were significantly
higher after VP at 6 and 12 h postmortem (p<0.05). Packaging lamb under
vacuum very early postmortem produced the lowest shear force and purge loss,
likely by slowing heat loss and muscle temperature decline, implying that lamb
quality is improved by VP when applied very early postmortem. This was at the
expense of protein oxidation, which was unrelated to other meat quality
measurements, most likely because potential contracture during hot boning
confounded its impact. Further research is required to understand the
implications of the interaction between protein oxidation, VP, and hot boning on
the acceptability of lamb.
Collapse
Affiliation(s)
- Yingxin Zhao
- Institute of Food Science and Technology,
Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products
Quality and Safety Control in Storage and Transport Process, Ministry of
Agriculture and Rural Affairs, Beijing 100193, China
| | - Li Chen
- Institute of Food Science and Technology,
Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products
Quality and Safety Control in Storage and Transport Process, Ministry of
Agriculture and Rural Affairs, Beijing 100193, China
| | - Heather L. Bruce
- Department of Agricultural, Food and
Nutritional Science, University of Alberta, Edmonton, AB T6G
2P5, Canada
| | - Zhenyu Wang
- Institute of Food Science and Technology,
Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products
Quality and Safety Control in Storage and Transport Process, Ministry of
Agriculture and Rural Affairs, Beijing 100193, China
| | - Bimol C. Roy
- Department of Agricultural, Food and
Nutritional Science, University of Alberta, Edmonton, AB T6G
2P5, Canada
| | - Xin Li
- Institute of Food Science and Technology,
Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products
Quality and Safety Control in Storage and Transport Process, Ministry of
Agriculture and Rural Affairs, Beijing 100193, China
| | - Dequan Zhang
- Institute of Food Science and Technology,
Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products
Quality and Safety Control in Storage and Transport Process, Ministry of
Agriculture and Rural Affairs, Beijing 100193, China
| | - Wei Yang
- Sunrise Material Co., Ltd.,
Jiangyin 214411, China
| | - Chengli Hou
- Institute of Food Science and Technology,
Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products
Quality and Safety Control in Storage and Transport Process, Ministry of
Agriculture and Rural Affairs, Beijing 100193, China
- Corresponding author: Chengli
Hou, Institute of Food Science and Technology, Chinese Academy of Agricultural
Sciences, Key Laboratory of Agro-Products Quality and Safety Control in Storage
and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing
100193, China, Tel: +86-10-62819392, Fax: +86-10-62819392, E-mail:
| |
Collapse
|
26
|
Liu C, Wei Q, Li X, Han D, Liu J, Huang F, Zhang C. Proteomic analyses of mitochondrial damage in postmortem beef muscles. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4182-4191. [PMID: 35000191 DOI: 10.1002/jsfa.11767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The objective of the study was to examine the expression profiles of mitochondrial proteins in at-death and 24 h postmortem (PM) using tandem mass tag (TMT) approach to characterize the mitochondria possible mechanisms that are affiliated with tenderization. RESULTS Results showed that the tender meat at 24 h PM emerged with more serious mitochondrial damage. Altogether 456 mitochondrial proteins were identified, including 442 down-regulated and 14 up-regulated proteins. These differentially-expressed proteins were primarily involved in the progress of PM energy metabolism, apoptosis, and the morphological alterations of mitochondrial. Among them, 47 subunits (such as NDUFA2, COX4I1, and ATP5PB) were annotated into the oxidative phosphorylation pathway. VDAC1, VDAC2, and VDAC3 involving in the damage of MPTP, and IMMT, CHCHD3, APOL and APOO modulating the morphology of mitochondria, and DIABLO and AIFM1 released from mitochondria affect caspase's activation. HSPD1 and HSPE1 involved in apoptosis, mitochondrial physiological and morphological alterations. CONCLUSION The earlier-mentioned proteins were validated as potential indicators of tenderness regulated by mitochondrial damage. These results highlighted that mitochondrial damage possibly participate in PM tenderization of beef muscles by energy metabolism and cell apoptosis status. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chunmei Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China
| | - Qichao Wei
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China
| | - Xia Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China
| | - Dong Han
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China
| | - Jiqian Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China
| | - Feng Huang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China
| | - Chunhui Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China
| |
Collapse
|
27
|
Wang C, Matarneh SK, Gerrard D, Tan J. Contributions of energy pathways to ATP production and pH variations in postmortem muscles. Meat Sci 2022; 189:108828. [PMID: 35461106 DOI: 10.1016/j.meatsci.2022.108828] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
Abstract
The roles of energy pathways in postmortem muscles are still debated. In this study, the contributions of different pathways to ATP production and pH variations were analyzed by using a kinetic model based on data from beef longissimus lumborum. Phosphocreatine represents over 92% of the initial ATP production but, after 24 h, glycolysis, phosphocreatine, myokinase reaction, and aerobic respiration contribute, respectively, 89.44%, 5.26%, 4.44%, and 0.86% of the cumulative amount of ATP produced. ATP hydrolysis and glycolysis result in 0.52 and 0.6 units of pH decline, respectively, at 24 h with ATP hydrolysis accounting for most of the early decline. Phosphocreatine, myokinase reaction, and aerobic respiration lead to, respectively, 0.08, 0.07, and 0.004 units of pH increase after 24 h though phosphocreatine is depleted within the first 30 min. Furthermore, electrical stimulation affects pH primarily through ATP hydrolysis and glycolysis. The initial muscle oxygen saturation level and phosphocreatine content affect pH but the influences are small.
Collapse
Affiliation(s)
- Chengcheng Wang
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO, United States of America
| | - Sulaiman K Matarneh
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT, United States of America
| | - David Gerrard
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States of America
| | - Jinglu Tan
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO, United States of America.
| |
Collapse
|
28
|
Xin K, Hu B, Han L, Yu Q. Study on the HIF-1α regulated by glycolytic pathways and mitochondrial function in yaks of different altitudes during postmortem aging. J Food Biochem 2022; 46:e14205. [PMID: 35502450 DOI: 10.1111/jfbc.14205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/24/2022]
Abstract
The study investigated the glycolysis pathway mediated by hypoxia-inducible factor-1α (HIF-1α) and the mechanism of its regulation. The results indicated that HIF-1α expression initially increased before subsequently decreasing with aging time during postmortem (p < .01). Glucose transporter-1 (GLUT-1), lactate dehydrogenase (LDH), and hexokinase (HK) displayed a similar trend with aging time (p < .01) while pyruvate dehydrogenase kinase 1 (PDK-1) increased gradually within the first 12 hr before decreasing at 24-120 hr. However, after treatment with a HIF-1α inhibitor, no significant differences were observed in the mitochondrial morphology. Furthermore, lactate content decreased, along with LDH, HK, and F0F1-ATP activities as well as GLUT-1 and PDK-1 expression (p < .01). The shear force for all groups also increased during postmortem aging (p < .01), with that of the controls being significantly higher compared with the treatment groups (p < .01). These findings confirmed that, after slaughter, the hypoxic environment within the muscles provided essential conditions for HIF-1α expression, which, in turn, activated the glycolysis pathway by mediating changes in the activities of glycolytic enzymes and mitochondrial function. Moreover, in accelerating glycolysis rate, the expression of HIF-1α further played a negative role in meat tenderization during postmortem aging. This, it was concluded that HIF-1α expression plays a significant role in postmortem yak meat tenderization by regulating the glycolysis pathway. PRATICAL APPLICATIONS: While converting muscle into meat through hypoxic glycolysis during postmortem aging is undeniable, the biochemical mechanism of this process mediated remains quite obscure. However, the meat quality difference which impact muscle regulation mechanism during postmortem aging has not been reported. The study investigated the HIF-1α played a major role in both the glycolytic pathway and as well as meat tenderness during the postmortem aging of yak meat. The glycolysis pathway is mediated by hypoxia-inducible factor-1α (HIF-1α), the mechanism of its regulation, and meat tenderness during the postmortem aging of yak meat.
Collapse
Affiliation(s)
- Keqi Xin
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Bo Hu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Ling Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
29
|
Kondjoyan A, Sicard J, Badaroux M, Gatellier P. Kinetics analysis of the reactions responsible for myoglobin chemical state in meat using an advanced reaction–diffusion model. Meat Sci 2022; 191:108866. [DOI: 10.1016/j.meatsci.2022.108866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/31/2022] [Accepted: 05/23/2022] [Indexed: 11/26/2022]
|
30
|
Soret M, Bouchendhomme T, Cleach J, Jouy N, Crola Da Silva C, Devin A, Grard T, Lencel P. Measurement of fish freshness: Flow cytometry analysis of isolated muscle mitochondria. Food Chem 2022; 373:131690. [PMID: 34865931 DOI: 10.1016/j.foodchem.2021.131690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 01/26/2023]
Abstract
Mitochondria are real sensors of the physiological status of tissues. After the death of an animal, they maintain physiological activity for several days. This activity is highly dependent on the availability of nutrients in the tissue. In this study, flow cytometry was used to measure the membrane potential of mitochondria isolated from European seabass (Dicentrarchus labrax) red muscle stored in ice for seven days in order to characterize fish freshness. Two probes, TMRM and Rhodamine 123, were used to measure mitochondrial potential. During the first few days (D0 to D3), isolated mitochondria maintained high potential, and then lost their potential (from D3 to D5), but were always re-polarizable after addition of substrates (glutamate, malate and succinate). From D7, the mitochondria were more strongly depolarized and were difficult to repolarize by the substrates. Using flow cytometry, we demonstrated that mitochondria were an excellent marker to confirm seabass freshness.
Collapse
Affiliation(s)
- Méline Soret
- Univ. Littoral Côte d'Opale, UMR 1158 BioEcoAgro, Institut Charles Viollette, USC ANSES, INRAE, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, F-62200 Boulogne-sur-Mer, France.
| | - Tiffanie Bouchendhomme
- Univ. Littoral Côte d'Opale, UMR 1158 BioEcoAgro, Institut Charles Viollette, USC ANSES, INRAE, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, F-62200 Boulogne-sur-Mer, France.
| | - Jérôme Cleach
- Univ. Littoral Côte d'Opale, UMR 1158 BioEcoAgro, Institut Charles Viollette, USC ANSES, INRAE, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, F-62200 Boulogne-sur-Mer, France.
| | - Nathalie Jouy
- Univ. Lille, Bio Imaging Center Lille, Lille, F-59000, France.
| | - Claire Crola Da Silva
- Univ. Claude Bernard Lyon 1, CarMeN Laboratory, INSERM U1060, INRAe, INSA, F-69500 Bron, France.
| | - Anne Devin
- UMR CNRS 5095 Institut de biochimie et génétique cellulaires (IBGC), F-33077 Bordeaux, France.
| | - Thierry Grard
- Univ. Littoral Côte d'Opale, UMR 1158 BioEcoAgro, Institut Charles Viollette, USC ANSES, INRAE, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, F-62200 Boulogne-sur-Mer, France.
| | - Philippe Lencel
- Univ. Littoral Côte d'Opale, UMR 1158 BioEcoAgro, Institut Charles Viollette, USC ANSES, INRAE, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, F-62200 Boulogne-sur-Mer, France.
| |
Collapse
|
31
|
Ji C, Liu J, Luo R. Regulatory role of mitochondrial genes in the tenderisation of lamb meat during postmortem ageing. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chen Ji
- School of Agriculture Ningxia University Yinchuan Ningxia 750021 China
| | - Jijuan Liu
- School of Food and Wine Institute Ningxia University Yinchuan Ningxia 750021 China
| | - Ruiming Luo
- School of Agriculture Ningxia University Yinchuan Ningxia 750021 China
| |
Collapse
|
32
|
Davoli R, Vegni J, Cesarani A, Dimauro C, Zappaterra M, Zambonelli P. Identification of differentially expressed genes in early-postmortem Semimembranosus muscle of Italian Large White heavy pigs divergent for glycolytic potential. Meat Sci 2022; 187:108754. [DOI: 10.1016/j.meatsci.2022.108754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/18/2022] [Accepted: 02/01/2022] [Indexed: 10/19/2022]
|
33
|
Scheffler TL. Connecting Heat Tolerance and Tenderness in Bos indicus Influenced Cattle. Animals (Basel) 2022; 12:220. [PMID: 35158544 PMCID: PMC8833572 DOI: 10.3390/ani12030220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 12/04/2022] Open
Abstract
Bos indicus cattle are widely utilized in tropical and subtropical climates. Their heat tolerance and parasite resistance are integral for beef production in these regions; however, a reputation for excitable temperaments, slower growth, and variation in tenderness has limited their use in commercial beef production. This suggests that there is antagonism between heat tolerance and meat production traits. Meat quality characteristics are determined by the properties of skeletal muscle as well as conditions during slaughter and processing. Thus, it is possible that adaptations related to heat tolerance in the living animal affect tenderness and other meat quality attributes. Since muscle represents a large proportion of body mass, relatively small changes at the cellular level could impact overall heat production of the animal. Specifically, protein degradation and mitochondria function are aspects of organ and cellular metabolism that may help limit heat production and also have a connection to tenderness. Protein degradation postmortem is critical to structural changes that enhance tenderness whereas mitochondria may influence tenderness through their roles in energy metabolism, calcium regulation, cell death signaling, and oxidative stress. This review explores potential relationships between cellular metabolism in vivo and beef quality development in Bos indicus and Bos indicus influenced cattle.
Collapse
Affiliation(s)
- Tracy L Scheffler
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
34
|
Kirkpatrick LT, Elgin JM, Matarneh SK, Wicks JC, Daniels RP, Yen CN, Bodmer JS, Zumbaugh MD, El-Kadi SW, Silva SL, Shi TH, Gerrard DE. Inherent factors influence color variations in semimembranosus muscle of pigs. Meat Sci 2021; 185:108721. [PMID: 34923395 DOI: 10.1016/j.meatsci.2021.108721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 10/19/2022]
Abstract
Variations in color, though a quality frustration, are common across the face of fresh and processed hams. Herein, we measured objective color across the semimembranosus (SM) muscle early postmortem and at 1440 min, then compared these differences against biochemical and metabolic characteristics responsible for pork quality development. Color (L*, a*) differed (P < 0.001) by zone and time but no interaction was evident. Lactate content and pH were highly correlated (R2 = 0.92) at 30 min, but weakened (R2 = 0.161412) by 1440 min. Lactate anaplerosis was not responsible for this lack of relationship. Glycolytic potential also differed across zone (P < 0.001) and time (P < 0.005). Differences in myoglobin expression and abundance, as well as mitochondrial DNA were notable (P < 0.05) across zone. These data suggest inherent differences in SM muscle are key determinants of ham color variation, while postmortem metabolism may play a lesser role in driving this quality attribute.
Collapse
Affiliation(s)
- L T Kirkpatrick
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - J M Elgin
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - S K Matarneh
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - J C Wicks
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - R P Daniels
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - C-N Yen
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - J S Bodmer
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - M D Zumbaugh
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - S W El-Kadi
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - S L Silva
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - T H Shi
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - D E Gerrard
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
35
|
Warner RD, Wheeler TL, Ha M, Li X, Bekhit AED, Morton J, Vaskoska R, Dunshea FR, Liu R, Purslow P, Zhang W. Meat tenderness: advances in biology, biochemistry, molecular mechanisms and new technologies. Meat Sci 2021; 185:108657. [PMID: 34998162 DOI: 10.1016/j.meatsci.2021.108657] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
Meat tenderness is an important quality trait critical to consumer acceptance, and determines satisfaction, repeat purchase and willingness-to-pay premium prices. Recent advances in tenderness research from a variety of perspectives are presented. Our understanding of molecular factors influencing tenderization are discussed in relation to glycolysis, calcium release, protease activation, apoptosis and heat shock proteins, the use of proteomic analysis for monitoring changes, proteomic biomarkers and oxidative/nitrosative stress. Each of these structural, metabolic and molecular determinants of meat tenderness are then discussed in greater detail in relation to animal variation, postmortem influences, and changes during cooking, with a focus on recent advances. Innovations in postmortem technologies and enzymes for meat tenderization are discussed including their potential commercial application. Continued success of the meat industry relies on ongoing advances in our understanding, and in industry innovation. The recent advances in fundamental and applied research on meat tenderness in relation to the various sectors of the supply chain will enable such innovation.
Collapse
Affiliation(s)
- Robyn D Warner
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, Melbourne University, Parkville 3010, Australia.
| | - Tommy L Wheeler
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska 68933, USA
| | - Minh Ha
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, Melbourne University, Parkville 3010, Australia
| | - Xin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | | | - James Morton
- Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, Christchurch, New Zealand
| | - Rozita Vaskoska
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, Melbourne University, Parkville 3010, Australia
| | - Frank R Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, Melbourne University, Parkville 3010, Australia; Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Rui Liu
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Peter Purslow
- Tandil Centre for Veterinary Investigation (CIVETAN), National University of Central Buenos Aires Province, Tandil B7001BBO, Argentina
| | - Wangang Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
36
|
Dang DS, Stafford CD, Taylor MJ, Buhler JF, Thornton KJ, Matarneh SK. Ultrasonication of beef improves calpain-1 autolysis and caspase-3 activity by elevating cytosolic calcium and inducing mitochondrial dysfunction. Meat Sci 2021; 183:108646. [PMID: 34392092 DOI: 10.1016/j.meatsci.2021.108646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 02/05/2023]
Abstract
The objective of this study was to investigate if ultrasonication of bovine longissimus thoracis et lumborum (LTL) steaks increases calpain-1 and caspase-3 activities, and if so, to explore the underlying mechanisms that trigger their activation. Post-rigor bovine LTL steaks were subjected to ultrasonication at 40 kHz and 12 W/cm2 for 40 min and subsequently aged for 14 d at 4 °C. Ultrasonication improved beef tenderness (P < 0.05) without negatively impacting pH, color, or cook loss (P > 0.05). Improved tenderness in the ultrasonicated steaks was associated with greater degradation of titin, desmin, troponin-T, and calpastatin and increased calpain-1 autolysis and caspase-3 activity (P < 0.05). In addition, ultrasonicated steaks had greater levels of cytosolic calcium and reactive oxygen species and lower mitochondrial oxygen consumption rate (P < 0.05). These data indicate that improved beef tenderness following ultrasonication is, in part, a function of increased calpain-1 and caspase-3 activities, potentially by elevating cytosolic calcium and inducing mitochondrial dysfunction, respectively.
Collapse
Affiliation(s)
- David S Dang
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States
| | - Chandler D Stafford
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States
| | - Mackenzie J Taylor
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States
| | - Jared F Buhler
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States
| | - Kara J Thornton
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, United States
| | - Sulaiman K Matarneh
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States.
| |
Collapse
|
37
|
Lam S, Kommadath A, López-Campos Ó, Prieto N, Aalhus J, Juárez M, Dugan MER, Vahmani P. Evaluation of RNA quality and functional transcriptome of beef longissimus thoracis over time post-mortem. PLoS One 2021; 16:e0251868. [PMID: 34033656 PMCID: PMC8148330 DOI: 10.1371/journal.pone.0251868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 05/04/2021] [Indexed: 11/19/2022] Open
Abstract
Evaluating RNA quality and transcriptomic profile of beef muscle over time post-mortem may provide insight into RNA degradation and underlying biological and functional mechanisms that accompany biochemical changes occurring post-mortem during transformation of muscle to meat. RNA was extracted from longissimus thoracis (LT) sampled from British Continental crossbred heifer carcasses (n = 7) stored at 4°C in an abattoir drip cooler at 5 time points post-mortem, i.e., 45 min (0 h), 6 h, 24 h, 48 h, and 72 h. Following RNA-Sequencing, processed reads were aligned to the ARS-UCD1.2 bovine genome assembly. Subsequent differential expression (DE) analysis identified from 51 to 1434 upregulated and 27 to 2256 downregulated DE genes at individual time points compared to time 0 h, showing a trend for increasing counts of both upregulated and downregulated genes over time. Gene ontology and biological pathway term enrichment analyses on sets of DE genes revealed several processes and their timelines of activation/deactivation that accompanied or were involved with muscle transformation to meat. Although the quality of RNA in refrigerated LT remained high for several days post-mortem, the expression levels of several known biomarker genes for meat quality began to change from 24 h onwards. Therefore, to ensure accuracy of predictions on meat quality traits based on the expression levels of those biomarker genes in refrigerated beef muscle tissue, it is crucial that those expression measurements be made on RNA sampled within 24 h post-mortem. The present study also highlighted the need for more research on the roles of mitochondrial genes and non-coding genes in orchestrating muscle tissue processes after death, and how pre-mortem immune status might influence post-mortem meat quality.
Collapse
Affiliation(s)
- Stephanie Lam
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Arun Kommadath
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Óscar López-Campos
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Nuria Prieto
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Jennifer Aalhus
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Manuel Juárez
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Michael E. R. Dugan
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Payam Vahmani
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| |
Collapse
|
38
|
Liu C, Xu CC, Qu YH, Guo PT, Ma Y, Wang B, Zhang H, Luo HL. Effect of alfalfa (Medicago sativa L.) saponins on meat color and myoglobin reduction status in the longissimus thoracis muscle of growing lambs. Anim Sci J 2021; 92:e13556. [PMID: 33973682 DOI: 10.1111/asj.13556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 02/28/2019] [Accepted: 02/01/2021] [Indexed: 01/12/2023]
Abstract
The effect of alfalfa saponins (AS) supplementation on the meat quality especially the color for growing lamb was investigated. Fifty Hu male lambs with body weights (BW, 19.21 ± 0.45 kg) were divided into five groups and supplemented AS with 0, 500, 1,000, 2,000, and 4,000 mg/kg of dietary dry matter intake. After 90 days, all lambs were slaughtered. The longissimus thoracis muscle in lamb displayed significant changes in the content of intramuscular fat, especially n-3 polyunsaturated fatty acids, and drip loss within AS treatment (p < .05) between control and treatments groups. Redness (a*) significantly improved in both 0-day and 7-day storage with the AS supplementation coupled with the percentage of met-myoglobin reduction (p < .05). The redness (a*) change may result from improved met-myoglobin reducing activity, antioxidant enzymes, lactate dehydrogenase, and succinate dehydrogenase (p < .05) by AS supplementation in muscle. These enzymes may help to protect mitochondria function and reduce met-myoglobin, which bring a bright and red meat color.
Collapse
Affiliation(s)
- Ce Liu
- State Key Laboratory of Animal Nutrition, Collage of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chen-Chen Xu
- State Key Laboratory of Animal Nutrition, Collage of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yang-Hua Qu
- State Key Laboratory of Animal Nutrition, Collage of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ping-Ting Guo
- State Key Laboratory of Animal Nutrition, Collage of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yong Ma
- State Key Laboratory of Animal Nutrition, Collage of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Bo Wang
- State Key Laboratory of Animal Nutrition, Collage of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hao Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hai-Ling Luo
- State Key Laboratory of Animal Nutrition, Collage of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
39
|
Ramos PM, Bell LC, Wohlgemuth SE, Scheffler TL. Mitochondrial Function in Oxidative and Glycolytic Bovine Skeletal Muscle Postmortem. MEAT AND MUSCLE BIOLOGY 2021. [DOI: 10.22175/mmb.11698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Meat quality is traditionally associated with anaerobic metabolism due to cessation of the oxygen supply post-mortem. However, mitochondrial (mt) function early postmortem may affect the development of meat quality characteristics, such as adenosine triphosphate levels and pH decline. Therefore, the objective of this study was to evaluate mt function ex vivo during the first 24 h postmortem in muscles with differences in mt content. Samples from longissimus lumborum (LL) and diaphragm (Dia) were taken from steers (n = 6) at 1, 3, and 24 h postmortem and frozen to determine citrate synthase (CS) activity and mt protein expression (immunodetection) or were fresh-preserved for high-resolution respirometry. Integrative oxygen consumption rate (picomoles per second per milligram of tissue) was measured and normalized to CS activity as a proxy for mt content (intrinsic mt function, picomoles per second per unit CS). CS activity (P < 0.001) and mt protein expression (P < 0.001) were greater in Dia, which was reflected in mt respiration. Muscle type affected (P < 0.001) integrative leak respiration and was greater in mt from Dia; oxidative phosphorylation (OXPHOS) was also greater in Dia and influenced by time postmortem (muscle × time: P = 0.01). Intrinsic leak and OXPHOS were affected by muscle and time (muscle × time: P = 0.05 and P = 0.01, respectively), with the most pronounced differences at 24 h postmortem. Stimulation of OXPHOS by cytochrome c as an indicator of outer mt membrane integrity was influenced by muscle and time postmortem (muscle × time: P = 0.03); it was greater in mt from LL. Despite intrinsic differences in respiratory function at 24 h, mt from both muscles were intact and coupled at 1 h postmortem. Reduced content and respiratory function in mt from LL are associated with early fragmentation, which could impact protease activation and subsequently meat quality.
Collapse
|
40
|
Buhler JF, Dang DS, Stafford CD, Keele NE, Esco AN, Thornton KJ, Cornforth DP, Matarneh SK. Injection of iodoacetic acid into pre-rigor bovine muscle simulates dark cutting conditions. Meat Sci 2021; 176:108486. [PMID: 33711679 DOI: 10.1016/j.meatsci.2021.108486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/18/2021] [Accepted: 03/01/2021] [Indexed: 12/01/2022]
Abstract
The purpose of this study was to develop an in situ model for dark cutting beef. Iodoacetic acid (IAA) was injected at different concentrations (0, 0.625, 1.25, 2.5, 3.75, 5, or 10 μmol/g of muscle) into pre-rigor bovine longissimus thoracis et lumborum (LTL) muscle samples, and pH and color were evaluated over a 48 h period. Injection of IAA blunted muscle pH decline and lowered lightness (L*), redness (a*), and yellowness (b*) values (P ≤ 0.05) in a concentration dependent fashion. In a follow-up study, LTL muscle samples were injected with 5 μmol IAA/g of muscle to test whether IAA maintains its effect over a 336 h post-mortem storage period. In addition to inhibiting pH decline and decreasing color values, IAA increased LTL muscle water holding capacity (WHC) and firmness (P ≤ 0.05) throughout the 336 h post-mortem storage period. Collectively, these data suggest that pre-rigor injection of IAA generates beef with dark cutting-like characteristics.
Collapse
Affiliation(s)
- Jared F Buhler
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States
| | - David S Dang
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States
| | - Chandler D Stafford
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States
| | - Natalie E Keele
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States
| | - Abigail N Esco
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, United States
| | - Kara J Thornton
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, United States
| | - Daren P Cornforth
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States
| | - Sulaiman K Matarneh
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States.
| |
Collapse
|
41
|
Matarneh SK, Yen CN, Bodmer J, El-Kadi SW, Gerrard DE. Mitochondria influence glycolytic and tricarboxylic acid cycle metabolism under postmortem simulating conditions. Meat Sci 2021; 172:108316. [DOI: 10.1016/j.meatsci.2020.108316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022]
|
42
|
Purslow PP, Gagaoua M, Warner RD. Insights on meat quality from combining traditional studies and proteomics. Meat Sci 2020; 174:108423. [PMID: 33422773 DOI: 10.1016/j.meatsci.2020.108423] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022]
Abstract
Following a century of major discoveries on the mechanisms determining meat colour and tenderness using traditional scientific methods, further research into complex and interactive factors contributing to variations in meat quality is increasingly being based on data-driven "omics" approaches such as proteomics. Using two recent meta-analyses of proteomics studies on beef colour and tenderness, this review examines how knowledge of the mechanisms and factors underlying variations in these meat qualities can be both confirmed and extended by data-driven approaches. While proteomics seems to overlook some sources of variations in beef toughness, it highlights the role of post-mortem energy metabolism in setting the conditions for development of meat colour and tenderness, and also points to the complex interplay of energy metabolism, calcium regulation and mitochondrial metabolism. In using proteomics as a future tool for explaining variations in meat quality, the need for confirmation by further hypothesis-driven experimental studies of post-hoc explanations of why certain proteins are biomarkers of beef quality in data-driven studies is emphasised.
Collapse
Affiliation(s)
- Peter P Purslow
- Tandil Centre for Veterinary Investigation (CIVETAN), National University of Central Buenos Aires Province, Tandil B7001BBO, Argentina; School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, Melbourne University, Parkville 3010, Australia.
| | - Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Robyn D Warner
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, Melbourne University, Parkville 3010, Australia
| |
Collapse
|
43
|
Abstract
Fresh meat quality is greatly determined through biochemical changes occurring in the muscle during its conversion to meat. These changes are key to imparting a unique set of characteristics on fresh meat, including its appearance, ability to retain moisture, and texture. Skeletal muscle is an extremely heterogeneous tissue composed of different types of fibers that have distinct contractile and metabolic properties. Fiber type composition determines the overall biochemical and functional properties of the muscle tissue and, subsequently, its quality as fresh meat. Therefore, changing muscle fiber profile in living animals through genetic selection or environmental factors has the potential to modulate fresh meat quality. We provide an overview of the biochemical processes responsible for the development of meat quality attributes and an overall understanding of the strong relationship between muscle fiber profile and meat quality in different meat species.
Collapse
Affiliation(s)
| | - Saulo L Silva
- Animal Science Department, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil 13635-900;
| | - David E Gerrard
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA;
| |
Collapse
|
44
|
Assessment of fish freshness based on fluorescence measurement of mitochondrial membrane potential. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
45
|
Li X, Zhang D, Ijaz M, Tian G, Chen J, Du M. Colour characteristics of beef longissimus thoracis during early 72 h postmortem. Meat Sci 2020; 170:108245. [PMID: 32736288 DOI: 10.1016/j.meatsci.2020.108245] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022]
Abstract
This study aimed to investigate the characteristics of beef meat colour during the initial 72 h postmortem to assess the possible effects of mitochondria on meat colour development. Bovine longissimus thoracis muscles (n = 5) were collected from one side of carcasses at 0.5, 4, 8, 12, 24, and 72 h postmortem and displayed in air for 6 days to measure colour and detect mitochondrial morphology and function. The results showed that beef had higher L⁎, a⁎, and b⁎ at 24 and 72 h postmortem and less colour change during 6 days of display in comparison with meat from 0.5, 4, and 8 h postmortem. Changes in mitochondrial morphology were observed at 24 and 72 h postmortem. Mitochondria presented a metabolic pattern early postmortem in that the MRA and NADH content did not change. Both the increase in beef colour stability and tissue oxygen consumption were observed within 72 h postmortem.
Collapse
Affiliation(s)
- Xin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| | - Muawuz Ijaz
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Guangjing Tian
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Jing Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Manting Du
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| |
Collapse
|
46
|
Picard B, Gagaoua M. Muscle Fiber Properties in Cattle and Their Relationships with Meat Qualities: An Overview. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6021-6039. [PMID: 32374594 DOI: 10.1021/acs.jafc.0c02086] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The control of meat quality traits constitutes an important target for any farm animal production, including cattle. Therefore, better understanding of the biochemical properties that drive muscle development and final outcomes constitutes one of the main challenging topics of animal production and meat science. Accordingly, this review has focused on skeletal muscle fibers in cattle and their relationships with beef qualities. It aimed to describe the chemical and structural properties of muscle fibers as well as a comprehensive review of their contractile and metabolic characteristics during the life of the animal. The existing methods for the classification of muscle fibers were reviewed, compared, and discussed. Then, the different stages of myogenesis in cattle were defined. The main factors regulating fetal and postnatal growth and the plasticity of muscle fibers were evidenced, especially the role of myostatin growth factor and the impact of nutritional factors. This review highlights that the knowledge about muscle fibers is paramount for a better understanding of how to control the muscle properties throughout the life of the animal for better management of the final eating qualities of beef. Accordingly, the associations between bovine muscle fibers and different meat eating qualities such as tenderness, pH decline, and color traits were further presented.
Collapse
Affiliation(s)
- Brigitte Picard
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France
| | - Mohammed Gagaoua
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland
| |
Collapse
|
47
|
Ramos PM, Li C, Elzo MA, Wohlgemuth SE, Scheffler TL. Mitochondrial oxygen consumption in early postmortem permeabilized skeletal muscle fibers is influenced by cattle breed. J Anim Sci 2020; 98:skaa044. [PMID: 32171017 PMCID: PMC7071943 DOI: 10.1093/jas/skaa044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/05/2020] [Indexed: 12/17/2022] Open
Abstract
Functional properties and integrity of skeletal muscle mitochondria (mt) during the early postmortem period may influence energy metabolism and pH decline, thereby impacting meat quality development. Angus typically produce more tender beef than Brahman, a Bos indicus breed known for heat tolerance. Thus, our objectives were to compare mt respiratory function in muscle collected early postmortem (1 h) from Angus and Brahman steers (n = 26); and to evaluate the effect of normal and elevated temperature on mt function ex vivo. We measured mt oxygen consumption rate (OCR) in fresh-permeabilized muscle fibers from Longissimus lumborum (LL) at 2 temperatures (38.5 and 40.0 °C) and determined citrate synthase (CS) activity and expression of several mt proteins. The main effects of breed, temperature, and their interaction were tested for mt respiration, and breed effect was tested for CS activity and protein expression. Breed, but not temperature (P > 0.40), influenced mt OCR (per tissue weight), with Brahman exhibiting greater complex I+II-mediated oxidative phosphorylation capacity (P = 0.05). Complex I- and complex II-mediated OCR also tended to be greater in Brahman (P = 0.07 and P = 0.09, respectively). Activity of CS was higher in LL from Brahman compared to Angus (P = 0.05). Expression of specific mt proteins did not differ between breeds, except for higher expression of adenosine triphosphate (ATP) synthase subunit 5 alpha in Brahman muscle (P = 0.04). Coupling control ratio differed between breeds (P = 0.05), revealing greater coupling between oxygen consumption and phosphorylation in Brahman. Our data demonstrate that both Angus and Brahman mt retained functional capacity and integrity 1-h postmortem; greater oxidative phosphorylation capacity and coupling in Brahman mt could be related to heat tolerance and impact early postmortem metabolism.
Collapse
Affiliation(s)
- Patricia M Ramos
- Department of Animal Sciences, “Luiz de Queiroz” College of Agriculture, University of Sao Paulo, Piracicaba, SP, Brazil
- Department of Animal Sciences, University of Florida, Gainesville, FL
| | - Chengcheng Li
- Department of Animal Sciences, University of Florida, Gainesville, FL
| | - Mauricio A Elzo
- Department of Animal Sciences, University of Florida, Gainesville, FL
| | | | - Tracy L Scheffler
- Department of Animal Sciences, University of Florida, Gainesville, FL
| |
Collapse
|
48
|
Chong FS, O'Sullivan MG, Kerry JP, Moloney AP, Methven L, Gordon AW, Hagan TD, Farmer LJ. Understanding consumer liking of beef using hierarchical cluster analysis and external preference mapping. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:245-257. [PMID: 31512244 DOI: 10.1002/jsfa.10032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND This study was conducted to assess whether there are differences in consumer liking of beef. Samples were collected from different groups and analyses were conducted, including quantitative descriptive analysis, consumer panels and instrumental analyses. Palatability traits, such as aroma liking, tenderness, juiciness, flavour liking and overall liking (OL), were rated by consumers. RESULTS Warner-Bratzler shear force was negatively associated with tender mouthfeel and consumer tenderness score. Cluster analysis identified four groups of clusters, which were described as 'easily pleased', 'bull beef liker', 'tender beef liker' and 'fastidious' consumers. Cluster group 2 awarded a higher score for bulls and located in a separate region on the external preference map. CONCLUSION External preference mapping showed the association between consumer liking of beef and sensory attributes. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fui Shien Chong
- Food Research Branch, Agri-Food and Biosciences Institute, Food Science Branch and Biometrics and Information Systems, Belfast, UK
- School of Food and Nutritional Sciences, Food Science Building, University College Cork, Cork, Ireland
| | - Maurice G O'Sullivan
- School of Food and Nutritional Sciences, Food Science Building, University College Cork, Cork, Ireland
| | - Joe P Kerry
- School of Food and Nutritional Sciences, Food Science Building, University College Cork, Cork, Ireland
| | - Aidan P Moloney
- Ruminant growth and meat quality, Teagasc, Animal and Grassland Research and Innovation Centre, Co. Meath, Ireland
| | - Lisa Methven
- Sensory Science Centre, University of Reading, Reading, UK
| | - Alan W Gordon
- Food Research Branch, Agri-Food and Biosciences Institute, Food Science Branch and Biometrics and Information Systems, Belfast, UK
| | - Terence Dj Hagan
- Food Research Branch, Agri-Food and Biosciences Institute, Food Science Branch and Biometrics and Information Systems, Belfast, UK
| | - Linda J Farmer
- Food Research Branch, Agri-Food and Biosciences Institute, Food Science Branch and Biometrics and Information Systems, Belfast, UK
| |
Collapse
|
49
|
Krischek C, Popp J, Sharifi AR. Biochemical alterations in the Musculus triceps brachii and Musculus longissimus thoracis during early postmortem period in pigs. Meat Sci 2019; 152:121-126. [PMID: 30849688 DOI: 10.1016/j.meatsci.2019.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/14/2019] [Accepted: 02/28/2019] [Indexed: 10/27/2022]
Abstract
Muscle-to-meat-transition is influenced by alterations of the energy metabolism. Porcine Musculus triceps brachii (MT) consisted of more fast-twitch-glycolytic muscle fibers and samples, collected 0, 10 and 20 min after slaughter (p.m.), showed higher mitochondrial respiratory activities and ATP concentrations than Musculus longissimus thoracis (LT) samples. Enzyme activities in MT were higher at 0 min (glycogen phosphorylase (GP)), 10 min (GP, citrate synthase (CS)) and at 20 min p.m. (CS). However, LT results were higher at 0 min (lactate dehydrogenase (LDH)), 10 min (phosphofructokinase (PFK), LDH) and at 20 min p.m. (PFK, F0F1-ATPase (F0F1)). Between 0 min and 10 min p.m. CS activities decreased in LT and MT samples, PFK increased in LT and GP in MT samples. Between 10 min and 20 min p.m. PFK and LDH decreased in LT and GP in MT samples, whereas F0F1 increased in LT and CS in MT samples. The data indicate that muscles with different mitochondria contents show clearly different energy metabolism characteristics.
Collapse
Affiliation(s)
- C Krischek
- Foundation University of Veterinary Medicine, Institute of Food Quality and Food Safety, D-30173 Hannover, Germany.
| | - J Popp
- Foundation University of Veterinary Medicine, Institute of Food Quality and Food Safety, D-30173 Hannover, Germany
| | - A R Sharifi
- Department of Animal Sciences, Animal Breeding and Genetics, Georg-August-University Goettingen, Albrecht-Thaer-Weg 3, D-37075 Goettingen, Germany
| |
Collapse
|
50
|
Chauhan SS, England EM. Postmortem glycolysis and glycogenolysis: insights from species comparisons. Meat Sci 2018; 144:118-126. [DOI: 10.1016/j.meatsci.2018.06.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/18/2018] [Accepted: 06/18/2018] [Indexed: 01/17/2023]
|