1
|
Liu A, Wang Y, Zheng S, Bao Z, Zhu H, Yin L, Liu C, Zhao X, Zhao Z, Zhu D, Yu H. Endonuclear Circ-calm4 regulates ferroptosis via a circR-Loop of the COMP gene in pulmonary artery smooth muscle cells. Eur J Pharmacol 2024; 982:176944. [PMID: 39187041 DOI: 10.1016/j.ejphar.2024.176944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Pulmonary hypertension (PH) is a serious pulmonary vascular disease characterized by vascular remodeling. Circular RNAs (CircRNAs) play important roles in pulmonary hypertension, but the mechanism of PH is not fully understood, particularly the roles of circRNAs located in the nucleus. Circ-calmodulin 4 (circ-calm4) is expressed in both the cytoplasm and the nucleus of pulmonary arterial smooth muscle cells (PASMCs). This study aimed to investigate the role of endonuclear circ-calm4 in PH and elucidate its underlying signaling pathway in ferroptosis. Immunoblotting, quantitative real-time polymerase chain reaction (PCR), malondialdehyde (MDA) assay, immunofluorescence, iron assay, dot blot, and chromatin immunoprecipitation (ChIP) were performed to investigate the role of endonuclear circ-calm4 in PASMC ferroptosis. Increased endonuclear circ-calm4 facilitated ferroptosis in PASMCs under hypoxic conditions. We further identified the cartilage oligomeric matrix protein (COMP) as a downstream effector of circ-calm4 that contributed to the occurrence of hypoxia-induced ferroptosis in PASMCs. Importantly, we confirmed that endonuclear circ-calm4 formed circR-loops with the promoter region of the COMP gene and negatively regulated its expression. Inhibition of COMP restored the phenotypes related to ferroptosis under hypoxia stimulation combined with antisense oligonucleotide (ASO)-circ-calm4 treatment. We conclude that the circ-calm4/COMP axis contributed to hypoxia-induced ferroptosis in PASMCs and that circ-calm4 formed circR-loops with the COMP promoter in the nucleus and negatively regulated its expression. The circ-calm4/COMP axis may be useful for the design of therapeutic strategies for protecting cellular functionality against ferroptosis and pulmonary hypertension.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Cartilage Oligomeric Matrix Protein/genetics
- Cartilage Oligomeric Matrix Protein/metabolism
- Cell Hypoxia/genetics
- Cell Nucleus/metabolism
- Cells, Cultured
- Ferroptosis/genetics
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/metabolism
- Pulmonary Artery/cytology
- Pulmonary Artery/metabolism
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Aijing Liu
- Department of Basic Medicine, Harbin Medical University (Daqing), Heilongjiang Province, China
| | - Yingqi Wang
- Department of Basic Medicine, Harbin Medical University (Daqing), Heilongjiang Province, China
| | - Shuang Zheng
- Department of Basic Medicine, Harbin Medical University (Daqing), Heilongjiang Province, China
| | - Zhitu Bao
- Department of Chest Surgery, the Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang Province, China
| | - He Zhu
- Department of Oncology, the Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang Province, China
| | - Lulu Yin
- Department of Basic Medicine, Harbin Medical University (Daqing), Heilongjiang Province, China
| | - Chunmiao Liu
- Department of Basic Medicine, Harbin Medical University (Daqing), Heilongjiang Province, China
| | - Xiaoxu Zhao
- Department of Basic Medicine, Harbin Medical University (Daqing), Heilongjiang Province, China
| | - Ziru Zhao
- Department of Basic Medicine, Harbin Medical University (Daqing), Heilongjiang Province, China
| | - Daling Zhu
- Central Laboratory of Harbin Medical University (Daqing), China; College of Pharmacy, Harbin Medical University, China.
| | - Hang Yu
- Department of Basic Medicine, Harbin Medical University (Daqing), Heilongjiang Province, China.
| |
Collapse
|
2
|
Liang X, Zhou J, Wang H, Zhang Z, Yin M, Zhu Y, Li L, Chen C, Wei M, Hu M, Zhao C, Yao J, Li G, Dinh‐Xuan A, Xiao J, Bei Y. miR-30d Attenuates Pulmonary Arterial Hypertension via Targeting MTDH and PDE5A and Modulates the Beneficial Effect of Sildenafil. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407712. [PMID: 39206778 PMCID: PMC11516105 DOI: 10.1002/advs.202407712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Pulmonary arterial hypertension (PAH) is associated with aberrant pulmonary vascular smooth muscle cell (PASMC) function and vascular remodeling. MiR-30d plays an important role in the pathogenesis of several cardiovascular disorders. However, the function of miR-30d in PAH progression remained unknown. Our study shows that circulating miR-30d level is significantly reduced in the plasma from PAH patients. In miR-30d transgenic (TG) rats, overexpressing miR-30d attenuates monocrotaline (MCT)-induced pulmonary hypertension (PH) and pulmonary vascular remodeling. Increasing miR-30d also inhibits platelet-derived growth factor-bb (PDGF-bb)-induced proliferation and migration of human PASMC. Metadherin (MTDH) and phosphodiesterase 5A (PDE5A) are identified as direct target genes of miR-30d. Meanwhile, nuclear respiratory factor 1 (NRF1) acts as a positive upstream regulator of miR-30d. Using miR-30d knockout (KO) rats treated with sildenafil, a PDE5A inhibitor that is used in clinical PAH therapies, it is further found that suppressing miR-30d partially attenuates the beneficial effect of sildenafil against MCT-induced PH and vascular remodeling. The present study shows a protective effect of miR-30d against PAH and pulmonary vascular remodeling through targeting MTDH and PDE5A and reveals that miR-30d modulates the beneficial effect of sildenafil in treating PAH. MiR-30d should be a prospective target to treat PAH and pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Xuchun Liang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life ScienceShanghai UniversityNantong226011China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education)Shanghai UniversityShanghai200444China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Jingwen Zhou
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life ScienceShanghai UniversityNantong226011China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education)Shanghai UniversityShanghai200444China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Hongyun Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life ScienceShanghai UniversityNantong226011China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education)Shanghai UniversityShanghai200444China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Ziyi Zhang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life ScienceShanghai UniversityNantong226011China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education)Shanghai UniversityShanghai200444China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Mingming Yin
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life ScienceShanghai UniversityNantong226011China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education)Shanghai UniversityShanghai200444China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Yujiao Zhu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life ScienceShanghai UniversityNantong226011China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education)Shanghai UniversityShanghai200444China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Lin Li
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life ScienceShanghai UniversityNantong226011China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education)Shanghai UniversityShanghai200444China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Chen Chen
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life ScienceShanghai UniversityNantong226011China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education)Shanghai UniversityShanghai200444China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Meng Wei
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life ScienceShanghai UniversityNantong226011China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education)Shanghai UniversityShanghai200444China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Meiyu Hu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life ScienceShanghai UniversityNantong226011China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education)Shanghai UniversityShanghai200444China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Cuimei Zhao
- Department of CardiologyShanghai Tongji HospitalTongji University School of MedicineShanghai200065China
| | - Jianhua Yao
- Department of CardiologyTenth People's HospitalSchool of MedicineTongji UniversityShanghai200090China
- Department of CardiologyShigatse People's HospitalTibet857000China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Anh‐Tuan Dinh‐Xuan
- Lung Function & Respiratory Physiology UnitsDepartment of Respiratory Physiology and Sleep MedicineCochin & George Pompidou HospitalsAssistance Publique‐Hôpitaux de Paris (APHP) CentreUniversity Paris CitéParis75014France
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life ScienceShanghai UniversityNantong226011China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education)Shanghai UniversityShanghai200444China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Yihua Bei
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life ScienceShanghai UniversityNantong226011China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education)Shanghai UniversityShanghai200444China
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesShanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| |
Collapse
|
3
|
Korkmaz Y, Çınar T, Şaylık F, Akbulut T, Selçuk M, Oğuz M, Hayıroğlu MI, Tanboğa İH. Evaluation of pulmonary arterial stiffness in post mild COVID-19 patients: a pilot prospective study. J Cardiovasc Imaging 2024; 32:25. [PMID: 39198895 PMCID: PMC11351102 DOI: 10.1186/s44348-024-00032-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 07/14/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Our primary goal was to utilize pulmonary arterial stiffness (PAS) to demonstrate the early alterations in the pulmonary vascular area in individuals with prior COVID-19 illness who had not undergone hospitalization. METHODS In total, 201 patients with prior COVID-19 infection without hospitalization and 195 healthy, age- and sex-matched individuals without a history of COVID-19 disease were included in this prospective analysis. The PAS value for each patient was calculated by dividing the mean peak pulmonary flow velocity by the pulmonary flow acceleration time. RESULTS The measured PAS was 10.2 ± 4.11 Hz/msec in post-COVID-19 participants and 8.56 ± 1.47 Hz/msec in healthy subjects (P < 0.001). Moreover, pulmonary artery acceleration time was significantly lower in patients with a prior history of COVID-19. Multivariable logistic regression analysis revealed that PAS was significantly connected to a prior COVID-19 illness (odds ratio, 1.267; 95% confidence interval, 1.142-1.434; P < 0.001). The optimal cutoff point for detecting a prior COVID-19 disease for PAS was 10.1 (sensitivity, 70.2%; specificity, 87.7%). CONCLUSIONS This might be the first investigation to reveal that patients with a history of COVID-19 had higher PAS values compared to those without COVID-19. The results of the investigation may indicate the need of regular follow up of COVID-19 patients for the development of pulmonary arterial hypertension, especially during the post-COVID-19 interval.
Collapse
Affiliation(s)
- Yetkin Korkmaz
- Department of Cardiology, Sultan II. Abdulhamid Han Training and Research Hospital, Istanbul, Türkiye
| | - Tufan Çınar
- Department of Cardiology, Sultan II. Abdulhamid Han Training and Research Hospital, Istanbul, Türkiye
| | - Faysal Şaylık
- Department of Cardiology, Van Training and Research Hospital, Van, Türkiye.
| | - Tayyar Akbulut
- Department of Cardiology, Van Training and Research Hospital, Van, Türkiye
| | - Murat Selçuk
- Department of Cardiology, Sultan II. Abdulhamid Han Training and Research Hospital, Istanbul, Türkiye
| | - Mustafa Oğuz
- Department of Cardiology, Sultan II. Abdulhamid Han Training and Research Hospital, Istanbul, Türkiye
| | - Mert Ilker Hayıroğlu
- Department of Cardiology, Dr. Siyami Ersek Training and Research Hospital, Istanbul, Türkiye
| | - İbrahim Halil Tanboğa
- Department of Cardiology and Biostatistics, Nisantasi University Medical School, Istanbul, Türkiye
| |
Collapse
|
4
|
Ding S, Cui J, Yan L, Ru C, He F, Chen A. Safflower Alleviates Pulmonary Arterial Hypertension by Inactivating NLRP3: A Combined Approach of Network Pharmacology and Experimental Verification. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e13826. [PMID: 39155275 PMCID: PMC11330698 DOI: 10.1111/crj.13826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/30/2024] [Accepted: 07/28/2024] [Indexed: 08/20/2024]
Abstract
INTRODUCTION Traditional Chinese medicinal plant, safflower, shows effective for treating pulmonary arterial hypertension (PAH), yet the underlying mechanisms remain largely unexplored. This study is aimed at exploring the potential molecular mechanisms of safflower in the treatment of PAH. METHODS Network pharmacology approach and molecular docking were applied to identify the core active compounds, therapeutic targets, and potential signaling pathways of safflower against PAH. Meanwhile, high-performance liquid chromatography (HPLC) assay was performed to determine the core compounds from safflower. Further, the mechanism of action of safflower on PAH was verified by in vivo and in vitro experiments. RESULTS A total of 15 active compounds and 177 targets were screened from safflower against PAH. Enrichment analysis indicated that these therapeutic targets were mainly involved in multiple key pathways, such as TNF signaling pathway and Th17 cell differentiation. Notably, molecular docking revealed that quercetin (core compound in safflower) displayed highest binding capacity with NLRP3. In vivo, safflower exerted therapeutic effects on PAH by inhibiting right ventricular hypertrophy, inflammatory factor release, and pulmonary vascular remodeling. Mechanistically, it significantly reduced the expression of proangiogenesis-related factors (MMP-2, MMP-9, Collagen 1, and Collagen 3) and NLRP3 inflammasome components (NLRP3, ASC, and Caspase-1) in PAH model. Similarly, these results were observed in vitro. Besides, we further confirmed that NLRP3 inhibitor had the same therapeutic effect as safflower in vitro. CONCLUSION Our findings suggest that safflower mitigates PAH primarily by inhibiting NLRP3 inflammasome activation. This provides novel insights into the potential use of safflower as an alternative therapeutic approach for PAH.
Collapse
Affiliation(s)
- Shibiao Ding
- Department of Clinical LaboratoryZhejiang Hospital of Integrated Traditional Chinese and Western MedicineHangzhouZhejiangChina
| | - Jinyu Cui
- Department of Respiratory and Critical Care MedicineZhejiang Hospital of Integrated Traditional Chinese and Western MedicineHangzhouZhejiangChina
| | - Luning Yan
- Department of Respiratory and Critical Care MedicineZhejiang Hospital of Integrated Traditional Chinese and Western MedicineHangzhouZhejiangChina
| | - Chuhui Ru
- Department of Respiratory and Critical Care MedicineZhejiang Hospital of Integrated Traditional Chinese and Western MedicineHangzhouZhejiangChina
| | - Fei He
- Department of Respiratory and Critical Care MedicineZhejiang Hospital of Integrated Traditional Chinese and Western MedicineHangzhouZhejiangChina
| | - Aifeng Chen
- Department of Respiratory and Critical Care MedicineZhejiang Hospital of Integrated Traditional Chinese and Western MedicineHangzhouZhejiangChina
| |
Collapse
|
5
|
Sun M, Lu F, Yu D, Wang Y, Chen P, Liu S. Respiratory diseases and gut microbiota: relevance, pathogenesis, and treatment. Front Microbiol 2024; 15:1358597. [PMID: 39081882 PMCID: PMC11286581 DOI: 10.3389/fmicb.2024.1358597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
Preclinical evidence has firmly established a bidirectional interaction among the lung, gut, and gut microbiome. There are many complex communication pathways between the lung and intestine, which affect each other's balance. Some metabolites produced by intestinal microorganisms, intestinal immune cells, and immune factors enter lung tissue through blood circulation and participate in lung immune function. Altered gut-lung-microbiome interactions have been identified in rodent models and humans of several lung diseases such as pulmonary fibrosis, chronic obstructive pulmonary disease, lung cancer, asthma, etc. Emerging evidence suggests that microbial therapies can prevent and treat respiratory diseases, but it is unclear whether this association is a simple correlation with the pathological mechanisms of the disease or the result of causation. In this review, we summarize the complex and critical link between the gut microbiota and the lung, as well as the influence and mechanism of the gut microbiota on respiratory diseases, and discuss the role of interventions such as prebiotics and fecal bacteria transplantation on respiratory diseases. To provide a reference for the rational design of large-scale clinical studies, the direct application of microbial therapy to respiratory-related diseases can reduce the incidence and severity of diseases and accompanying complications.
Collapse
Affiliation(s)
- Mengdi Sun
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fang Lu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Donghua Yu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yu Wang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Pingping Chen
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shumin Liu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
6
|
Wang G, Wang Z. Investigation into the role of H2-Ab1 in vascular remodeling in pulmonary arterial hypertension via Bioinformatics. BMC Pulm Med 2024; 24:342. [PMID: 39010027 PMCID: PMC11251127 DOI: 10.1186/s12890-024-03156-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 07/09/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a progressive disease of vascular remodeling characterized by persistent pulmonary arterial pressure elevation, which can lead to right heart failure and premature death. Given the complex pathogenesis and poor prognosis of PAH, the identification and investigation of biomarkers become increasingly critical for advancing further understanding of the disease. METHODS PAH-related datasets, GSE49114, GSE180169 and GSE154959, were downloaded from the publicly available GEO database. By performing WGCNA on the GSE49114 dataset, a total of 906 PAH-related key module genes were screened out. By carrying out differential analysis on the GSE180169 dataset, a total of 576 differentially expressed genes were identified. Additionally, the GSE154959 single-cell sequencing dataset was also subjected to differential analysis, leading to the identification of 34 DEGs within endothelial cells. By taking intersection of the above three groups of DEGs, five PAH-related hub genes were screened out, namely Plvap, Cyp4b1, Foxf1, H2-Ab1, and H2-Eb1, among which H2-Ab1 was selected for subsequent experiments. RESULTS A SuHx mouse model was prepared using the SU5416/hypoxia method, and the successful construction of the model was evaluated through Hematoxylin-Eosin staining, hemodynamic detection, fulton index, and Western Blot (WB). The results of WB and qRT-PCR demonstrated a significant upregulation of H2-Ab1 expression in SuHx mice. Consistent with the results of bioinformatics analysis, a time-dependent increase was observed in H2-Ab1 expression in hypoxia-treated mouse pulmonary artery endothelial cells (PAECs). To investigate whether H2-Ab1 affects the development and progression of PAH, we knocked down H2-Ab1 expression in PAECs, and found that its knockdown inhibited the viability, adhesion, migration, and angiogenesis, while concurrently promoted the apoptosis of PAECs. CONCLUSION H2-Ab1 could regulate the proliferation, apoptosis, adhesion, migration, and angiogenesis of PAECs.
Collapse
Affiliation(s)
- Guowen Wang
- Department of Respiratory Medicine, Affiliated Hospital of Shaoxing University, No. 999 South Zhongxing Road, Shaoxing, Zhejiang, 312000, China
| | - Zhuoyan Wang
- Center for General Practice Medicine, General Practice and Health Management Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
7
|
Liu Y, Tang B, Wang H, Lu M. Otud6b induces pulmonary arterial hypertension by mediating the Calpain-1/HIF-1α signaling pathway. Cell Mol Life Sci 2024; 81:258. [PMID: 38878112 PMCID: PMC11335297 DOI: 10.1007/s00018-024-05291-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024]
Abstract
Pulmonary hypertension (PAH) is a cardiopulmonary disease in which pulmonary artery pressure continues to rise, leading to right heart failure and death. Otud6b is a member of the ubiquitin family and is involved in cell proliferation, apoptosis and inflammation. The aim of this study was to understand the role and mechanism of Otud6b in PAH. C57BL/6 and Calpain-1 knockout (KO) mice were exposed to a PAH model induced by 10% oxygen. Human pulmonary artery endothelial cells (HPACEs) and human pulmonary artery smooth muscle cells (HPASMCs) were exposed to 3% oxygen to establish an in vitro model. Proteomics was used to determine the role of Otud6b and its relationship to Calpain-1/HIF-1α signaling. The increased expression of Otud6b is associated with the progression of PAH. ROtud6b activates Otud6b, induces HIF-1α activation, increases the production of ET-1 and VEGF, and further aggravates endothelial injury. Reducing Otud6b expression by tracheal infusion of siOtud6b has the opposite effect, improving hemodynamic and cardiac response to PAH, reducing the release of Calpain-1 and HIF-1α, and eliminating the pro-inflammatory and apoptotic effects of Otud6b. At the same time, we also found that blocking Calpain-1 reduced the effect of Otud6b on HIF-1α, and inhibiting HIF-1α reduced the expression of Calpain-1 and Otud6b. Our study shows that increased Otud6b expression during hypoxia promotes the development of PAH models through a positive feedback loop between HIF-1α and Calpain-1. Therefore, we use Otud6b as a biomarker of PAH severity, and regulating Otud6b expression may be an effective target for the treatment of PAH.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Calpain/metabolism
- Calpain/genetics
- Disease Models, Animal
- Endopeptidases/metabolism
- Endopeptidases/genetics
- Endothelial Cells/metabolism
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Mice, Inbred C57BL
- Mice, Knockout
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Pulmonary Arterial Hypertension/metabolism
- Pulmonary Arterial Hypertension/pathology
- Pulmonary Arterial Hypertension/genetics
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Signal Transduction
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China
- School of Pharmacy, Harbin Medical University, Harbin, China
| | - Bailin Tang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China
- Tongji Medical College of Basic Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Hongxin Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Meili Lu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
8
|
Sun L, Zhao X, Guo Y, Hou X, Li J, Ren X, Dong L, Liang R, Nie J, Shi Y, Qin X. Predictive Value of Smoking Index Combined with NT-proBNP for Patients with Pulmonary Hypertension Due to Chronic Lung Disease: A Retrospective Study. Int J Chron Obstruct Pulmon Dis 2024; 19:1233-1245. [PMID: 38854590 PMCID: PMC11162191 DOI: 10.2147/copd.s448496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/07/2024] [Indexed: 06/11/2024] Open
Abstract
Purpose Smoking is a major risk factor for the group 3 PH. NT-proBNP is a biomarker for risk stratification in PH. This study aims to investigate the effects of smoking status and smoking index (SI) on group 3 PH and to evaluate the value of SI and SI combined with NT-proBNP in early diagnosis and prediction of disease severity. Patients and Methods Four hundred patients with group 3 PH at the First Hospital of Shanxi Medical University between January 2020 and December 2021 were enrolled and divided into two groups: mild (30 mmHg ≤ pulmonary artery systolic pressure (PASP)≤50 mmHg) and non-mild (PASP >50 mmHg). The effect of smoking on group 3 PH was analyzed using univariate analysis, and logistic analysis was conducted to evaluate the risk of group 3 PH according to smoking status and SI. Spearman correlation coefficient was used to test the correlation between SI and the index of group 3 PH severity. The predictive value of SI was evaluated using a receiver operating characteristic (ROC) curve. Results Correlation and logistic analyses showed that SI was associated with PH severity. Smoking status (P=0.009) and SI (P=0.039) were independent risk factors for non-mild group 3 PH, and ROC showed that the predictive value of SI (AUC:0.596) for non-mild PH was better than that of the recognized pro-brain natriuretic peptide (NT-proBNP) (AUC:0.586). SI can be used as a single predictive marker. SI and NT-proBNP can be formulated as prediction models for screening non-mild clinical cases (AUC:0.628). Conclusion SI is a potentially ideal non-invasive predictive marker for group 3 PH. SI and NT-proBNP could be used to develop a prediction model for screening non-mild PH cases. This can greatly improve the predictive specificity of the established PH marker, NT-proBNP.
Collapse
Affiliation(s)
- Lin Sun
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Xu Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Yunting Guo
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Xiaomin Hou
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
- China Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
- Environmental Exposures Vascular Disease Institute, Taiyuan, Shanxi, People’s Republic of China
| | - Jieru Li
- Department of Foreign Languages, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Xiaoxia Ren
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Lin Dong
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Ruifeng Liang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Jisheng Nie
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Yiwei Shi
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Xiaojiang Qin
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
- China Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
- Environmental Exposures Vascular Disease Institute, Taiyuan, Shanxi, People’s Republic of China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| |
Collapse
|
9
|
Wang B, Xu Y, Huang Y, Shao S, Xu D, Zhang Y, Pang L, Nan Z, Ye Q, Wang Y, Wang W, Jin K, Yuan L. miR-210-5p Promotes Pulmonary Hypertension by Blocking ATP2A2. Cardiovasc Drugs Ther 2024:10.1007/s10557-024-07568-y. [PMID: 38656637 DOI: 10.1007/s10557-024-07568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 04/26/2024]
Abstract
AIM Aberrant expression of ATPase sarcoplasmic/endoplasmic retic Ca2+ transporting 2 (ATP2A2) has attracted attention for its pathophysiologic role in pulmonary hypertension (PH). Several miRNAs, including miR-210-5p, have also been reported to be pathogenic factors in PH, but their exact mechanisms remain unknown. This study aimed to elucidate the potential mechanisms of miR-210-5p and ATP2A2 in MCT-induced PH. METHODS Eighteen Sprague-Dawley rats were randomly divided into two groups-monoclonal (MCT) group and control group-and then administered MCT (60 mg/kg) and saline, respectively. mPAP, PVR, RVHI, WT%, and WA% were significantly increased in PH rats after 3 weeks, confirming that the modeling of PH rats was successful. Subsequently, we determined the expression of ATP2A2 and miR-210-5p in lung tissues using WB and qRT-PCR methods. We established an in vitro model using BMP4 and TGF-β1 treatment of pulmonary artery smooth muscle cells (PASMCs) and examined the expression of ATP2A2 and miR-210-5p using the same method. To further elucidate the regulatory relationship between ATP2A2 and miR-210-5p, we altered the expression level of miR-210-5p and detected the corresponding changes in ATP2A2 levels. In addition, we demonstrated the relationship by dual luciferase experiments. Finally, the effect of silencing ATP2A2 could be confirmed by the level of cell membrane Ca2+ in PAMSCs. RESULTS Up-regulation of miR-210-5p and down-regulation of ATP2A2 were observed in the MCT group compared with the control group, which was confirmed in the in vitro model. In addition, elevated miR-210-5p expression decreased the level of ATP2A2 while increasing the proliferation of PASMCs, and the results of the dual luciferase assay further confirmed that ATP2A2 is a downstream target of miR-210-5p. Additionally, silencing ATP2A2 resulted in increased cytoplasmic Ca2+ levels in PAMSCs. CONCLUSION In MCT-induced PH, miR-210-5p promotes pulmonary vascular remodeling by inhibiting ATP2A2.
Collapse
Affiliation(s)
- Boxiang Wang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yidin Xu
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yilun Huang
- Alberta Institute, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Siming Shao
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Dongshan Xu
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yiying Zhang
- Alberta Institute, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Lingxia Pang
- Functionality Experimental Teaching Center, Basic Medical School, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Zhuofan Nan
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, People's Republic of China
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Qianxi Ye
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, People's Republic of China
- Department of Cardiovascular Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, People's Republic of China
| | - Yang Wang
- Department of Pathophysiology, Basic Medical School, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Wantie Wang
- Department of Pathophysiology, Basic Medical School, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Keke Jin
- Department of Pathophysiology, Basic Medical School, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Linbo Yuan
- Department of Physiology, Basic Medical School, Wenzhou Medical University, Wenzhou, People's Republic of China.
| |
Collapse
|
10
|
Ji XY, Lei CJ, Kong S, Li HF, Pan SY, Chen YJ, Zhao FR, Zhu TT. Hydroxy-Safflower Yellow A Mitigates Vascular Remodeling in Rat Pulmonary Arterial Hypertension. Drug Des Devel Ther 2024; 18:475-491. [PMID: 38405578 PMCID: PMC10893878 DOI: 10.2147/dddt.s439686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/13/2024] [Indexed: 02/27/2024] Open
Abstract
Purpose The underlying causes of pulmonary arterial hypertension (PAH) often remain obscure. Addressing PAH with effective treatments presents a formidable challenge. Studies have shown that Hydroxysafflor yellow A (HSYA) has a potential role in PAH, While the mechanism underlies its protective role is still unclear. The study was conducted to investigate the potential mechanisms of the protective effects of HSYA. Methods Using databases such as PharmMapper and GeneCards, we identified active components of HSYA and associated PAH targets, pinpointed intersecting genes, and constructed a protein-protein interaction (PPI) network. Core targets were singled out using Cytoscape for the development of a model illustrating drug-component-target-disease interactions. Intersection targets underwent analysis for Gene Ontology (GO) functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Selected components were then modeled for target interaction using Autodock and Pymol. In vivo validation in a monocrotaline-induced PAH (MCT-PAH) animal model was utilized to substantiate the predictions made by network pharmacology. Results We associated HSYA with 113 targets, and PAH with 1737 targets, identifying 34 mutual targets for treatment by HSYA. HSYA predominantly affects 9 core targets. Molecular docking unveiled hydrogen bond interactions between HSYA and several PAH-related proteins such as ANXA5, EGFR, SRC, PPARG, PGR, and ESR1. Conclusion Utilizing network pharmacology and molecular docking approaches, we investigated potential targets and relevant human disease pathways implicating HSYA in PAH therapy, such as the chemical carcinogenesis receptor activation pathway and the cancer pathway. Our findings were corroborated by the efficacious use of HSYA in an MCT-induced rat PAH model, confirming its therapeutic potential.
Collapse
Affiliation(s)
- Xiang-Yu Ji
- Department of Pharmacy, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, Henan, People’s Republic of China
| | - Cheng-Jing Lei
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, Henan, People’s Republic of China
| | - Shuang Kong
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, Henan, People’s Republic of China
| | - Han-Fei Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, Henan, People’s Republic of China
| | - Si-Yu Pan
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, Henan, People’s Republic of China
| | - Yu-Jing Chen
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, Henan, People’s Republic of China
| | - Fan-Rong Zhao
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, Henan, People’s Republic of China
| | - Tian-Tian Zhu
- Department of Pharmacy, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, Henan, People’s Republic of China
| |
Collapse
|
11
|
A X, Huayu M, Li Z, Su S. In vivo pharmacokinetic study of vanillic acid in monocrotaline-induced pulmonary arterial hypertension rats and its tissue distribution. Biomed Chromatogr 2024; 38:e5793. [PMID: 38037526 DOI: 10.1002/bmc.5793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023]
Abstract
Vanillic acid (VA) is a bioactive chemical present in many food plants and fruits. It has been shown to have a protective effect on pulmonary tissues in monocrotaline-induced pulmonary arterial hypertension, as well as an intervention effect on right ventricular remodeling. The purpose of this study was to develop and test a reliable method for assessing VA utilizing ultra-performance liquid chromatography-high resolution mass spectrometry using caffeic acid as the internal standard. Across diverse substrates, the correlation coefficient for VA ranged from 0.9992 to 0.9995. The method's intraday precision was <13.53% (RSD), and its accuracy (RE) ranged from -9.88 to 4.35%. The precision across days was <13.69% (RSD), while the accuracy ranged from 2.16 to 10.94% (RE). The extraction recoveries ranged from 80.30 to 118.81%, with a lower limit of quantification of 20 ng/mL. The approach was successfully applied to pharmacokinetic and tissue distribution studies of VA in rat plasma after gavage administration, and the pharmacokinetic parameters of VA in the plasma of the monocrotaline-induced pulmonary arterial hypertension were significantly different from those of the control group.
Collapse
Affiliation(s)
- Xuxia A
- Medical College of Qinghai University, Xining, China
- Xining Customs Technical Center, Key Laboratory of Food Safety Research in Qinghai Province, Xining, Qinghai, China
| | - Meiduo Huayu
- Research Center for High Altitude Medicine, Key Laboratory for High Altitude Medicine (Ministry of Education), Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, Qinghai, China
| | - Zhanqiang Li
- Medical College of Qinghai University, Xining, China
- Research Center for High Altitude Medicine, Key Laboratory for High Altitude Medicine (Ministry of Education), Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, Qinghai, China
| | - Shanshan Su
- Xining Customs Technical Center, Key Laboratory of Food Safety Research in Qinghai Province, Xining, Qinghai, China
| |
Collapse
|
12
|
Tang L, Zhou X, Guo A, Han L, Pan S. Blockade of ZFX Alleviates Hypoxia-Induced Pulmonary Vascular Remodeling by Regulating the YAP Signaling. Cardiovasc Toxicol 2024; 24:158-170. [PMID: 38310188 DOI: 10.1007/s12012-023-09822-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/19/2023] [Indexed: 02/05/2024]
Abstract
High expression of the zinc finger X-chromosomal protein (ZFX) correlates with proliferation, aggressiveness, and development in many types of cancers. In the current report, we investigated the efficacy of ZFX in mouse pulmonary artery smooth muscle cells (PASMCs) proliferation during pulmonary arterial hypertension (PAH). PASMCs were cultured in hypoxic conditions. Real-time PCR and western blotting were conducted to detect the expression of ZFX. Cell proliferation, apoptosis, migration, and invasion were, respectively, measured by CCK-8, flow cytometry, wound scratchy, and transwell assays. Glycolytic ability was validated by the extracellular acidification rate and oxygen consumption rate. Transcriptome sequencing technology was used to explore the genes affected by ZFX knockdown. Luciferase and chromatin immunoprecipitation assays were utilized to verify the possible binding site of ZFX and YAP1. Mice were subjected to hypoxia for 21 days to induce PAH. The right ventricular systolic pressure (RVSP) was measured and ratio of RV/LV + S was calculated. The results show that ZFX was increased in hypoxia-induced PASMCs and mice. ZFX knockdown inhibited the proliferation, migration, and invasion of PASMC. Using RNA sequencing, we identify glycolysis and YAP as a key signaling of ZFX. ZFX knockdown inhibited Glycolytic ability. ZFX strengthened the transcription activity of YAP1, thereby regulating the YAP signaling. YAP1 overexpression reversed the effect of ZFX knockdown on hypoxia-treated PASMCs. In conclusion, ZFX knockdown protected mice from hypoxia-induced PAH injury. ZFX knockdown dramatically reduced RVSP and RV/(LV + S) in hypoxia-treated mice.
Collapse
Affiliation(s)
- Ling Tang
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, 250013, Shandong, People's Republic of China
- Department of Pediatrics, Central Hosptial Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Xiao Zhou
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, 250013, Shandong, People's Republic of China
- Department of Pediatrics, Central Hosptial Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Aili Guo
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, 250013, Shandong, People's Republic of China
- Department of Pediatrics, Central Hosptial Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Lizhang Han
- Department of Neurosurgery, Qilu Hospital of Shandong University, No.107 West Wenhua Road, Jinan, 250012, Shandong, People's Republic of China.
| | - Silin Pan
- Heart Center, Qingdao Women and Children's Hospital, Shandong University, No.217 West Liaoyang Road, Qingdao, 266034, Shandong, People's Republic of China.
| |
Collapse
|
13
|
Almalki WH. Unraveling the role of Xist RNA in cardiovascular pathogenesis. Pathol Res Pract 2024; 253:154944. [PMID: 38006839 DOI: 10.1016/j.prp.2023.154944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/27/2023]
Abstract
Understanding the molecular pathways behind cardiovascular illnesses is crucial due to the enormous worldwide health burden they impose. New insights into the role played by Xist (X-inactive specific transcript) RNA in the onset and progression of cardiovascular diseases have emerged from recent studies. Since its discovery, Xist RNA has been known for its role in X chromosome inactivation during embryogenesis; however, new data suggest that its function extends well beyond the control of sex chromosomes. The regulatory roles of Xist RNA are extensive, encompassing epigenetic changes, gene expression, cellular identity, and sex chromosomal inactivation. There is potential for the involvement of this complex regulatory web in a wide range of illnesses, including cardiovascular problems. Atherosclerosis, hypertrophy, and cardiac fibrosis are all conditions linked to dysregulation of Xist RNA expression. Alterations in DNA methylation and histones are two examples of epigenetic changes that Xist RNA orchestrates, leading to modifications in gene expression patterns in different cardiovascular cells. Additionally, Xist RNA has been shown to contribute to the development of cardiovascular illnesses by modulating endothelial dysfunction, inflammation, and oxidative stress responses. New treatment approaches may become feasible with a thorough understanding of the complex function of Xist RNA in cardiovascular diseases. By focusing on Xist RNA and the regulatory network with which it interacts, we may be able to slow the progression of atherosclerosis, cardiac hypertrophy, and fibrosis, thereby opening novel therapeutic options for cardiovascular diseases amenable to precision medicine. This review summarizes the current state of knowledge concerning the impact of Xist RNA in cardiovascular disorders.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| |
Collapse
|
14
|
Santos RT, de Sá Freire Onofre ME, de Assis Fernandes Caldeira D, Klein AB, Rocco PRM, Cruz FF, Silva PL. Pharmacological Agents and Potential New Therapies in Pulmonary Arterial Hypertension. Curr Vasc Pharmacol 2024; 22:155-170. [PMID: 38115617 DOI: 10.2174/0115701611266576231211045731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/09/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by an imbalance between vasoactive mediators, which causes vascular remodeling, increased pulmonary vascular resistance, and right ventricular overload, ultimately leading to heart failure and death. A metabolic theory has been suggested to explain the pathophysiology of PAH whereby abnormalities in mitochondrial biogenesis can trigger a hyperproliferative and apoptosis-resistant phenotype in cardiopulmonary and malignant cells, leading to mitochondrial dysfunction, which in turn causes the Warburg effect. This can culminate in the mitophagy of pulmonary vessels and cardiomyocytes. The present narrative review focuses on the pathophysiology of PAH, the pharmacological agents currently available for its treatment, and promising and challenging areas of therapeutic investigation.
Collapse
Affiliation(s)
- Renata Trabach Santos
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Eduarda de Sá Freire Onofre
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dayene de Assis Fernandes Caldeira
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriane Bello Klein
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Ferreira Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Zhang Y, Zhou M, Liang Y, Li R, Zhang L, Chen S, Yang K, Ding H, Tan X, Zhang Q, Qiao Z. Study of Transcriptomic Analysis of Yak ( Bos grunniens) and Cattle ( Bos taurus) Pulmonary Artery Smooth Muscle Cells under Oxygen Concentration Gradients and Differences in Their Lung Histology and Expression of Pyruvate Dehydrogenase Kinase 1-Related Factors. Animals (Basel) 2023; 13:3450. [PMID: 38003068 PMCID: PMC10668684 DOI: 10.3390/ani13223450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/27/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The aim of this study was to investigate the molecular mechanisms by which hypoxia affects the biological behavior of yak PASMCs, the changes in the histological structure of yak and cattle lungs, and the relationships and regulatory roles that exist regarding the differences in the distribution and expression of PDK1 and its hypoxia-associated factors screened for their role in the adaptation of yak lungs to the plateau hypoxic environment. The results showed that, at the level of transcriptome sequencing, the molecular regulatory mechanisms of the HIF-1 signaling pathway, glucose metabolism pathway, and related factors (HK2/PGK1/ENO1/ENO3/ALDOC/ALDOA) may be closely related to the adaptation of yaks to the hypoxic environment of the plateau; at the tissue level, the presence of filled alveoli and semi-filled alveoli, thicker alveolar septa and basement membranes, a large number of erythrocytes, capillary distribution, and collagen fibers accounted for all levels of fine bronchioles in the lungs of yaks as compared to cattle. A higher percentage of goblet cells was found in the fine bronchioles of yaks, and PDK1, HIF-1α, and VEGF were predominantly distributed and expressed in the monolayers of ciliated columnar epithelium in the branches of the terminal fine bronchioles of yak and cattle lungs, with a small amount of it distributed in the alveolar septa; at the molecular level, the differences in PDK1 mRNA relative expression in the lungs of adult yaks and cattle were not significant (p > 0.05), the differences in HIF-1α and VEGF mRNA relative expression were significant (p < 0.05), and the expression of PDK1 and HIF-1α proteins in adult yaks was stronger than that in adult cattle. PDK1 and HIF-1α proteins were more strongly expressed in adult yaks than in adult cattle, and the difference was highly significant (p < 0.01); the relative expression of VEGF proteins was not significantly different between adult yaks and cattle (p > 0.05). The possible regulatory relationship between the above results and the adaptation of yak lungs to the plateau hypoxic environment paves the way for the regulatory mechanisms of PDK1, HIF-1α, and VEGF, and provides basic information for studying the mechanism of hypoxic adaptation of yaks in the plateau. At the same time, it provides a reference for human hypoxia adaptation and a target for the prevention and treatment of plateau diseases in humans and plateau animals.
Collapse
Affiliation(s)
- Yiyang Zhang
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (Y.Z.); (M.Z.); (R.L.); (S.C.); (Z.Q.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (L.Z.); (H.D.); (X.T.)
| | - Manlin Zhou
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (Y.Z.); (M.Z.); (R.L.); (S.C.); (Z.Q.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (L.Z.); (H.D.); (X.T.)
| | - Yuxin Liang
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (L.Z.); (H.D.); (X.T.)
| | - Rui Li
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (Y.Z.); (M.Z.); (R.L.); (S.C.); (Z.Q.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (L.Z.); (H.D.); (X.T.)
| | - Lan Zhang
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (L.Z.); (H.D.); (X.T.)
| | - Shuwu Chen
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (Y.Z.); (M.Z.); (R.L.); (S.C.); (Z.Q.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (L.Z.); (H.D.); (X.T.)
| | - Kun Yang
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (Y.Z.); (M.Z.); (R.L.); (S.C.); (Z.Q.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (L.Z.); (H.D.); (X.T.)
| | - Haie Ding
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (L.Z.); (H.D.); (X.T.)
| | - Xiao Tan
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (L.Z.); (H.D.); (X.T.)
| | - Qian Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
| | - Zilin Qiao
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (Y.Z.); (M.Z.); (R.L.); (S.C.); (Z.Q.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (L.Z.); (H.D.); (X.T.)
| |
Collapse
|
16
|
Li Q, Zhang H. Bioinformatics analysis to identify potential biomarkers for the pulmonary artery hypertension associated with the basement membrane. Open Life Sci 2023; 18:20220730. [PMID: 37772261 PMCID: PMC10523280 DOI: 10.1515/biol-2022-0730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/07/2023] [Accepted: 08/26/2023] [Indexed: 09/30/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rapidly progressing cardiopulmonary disease. It is characterized by increased pulmonary artery pressure and vascular resistance. The most notable histopathological characteristic is vascular remodeling. The changes in the basement membrane (BM) are believed to be related to vascular remodeling. It is crucial to identify potential biomarkers associated with the BM in PAH, to guide its treatment. The microarray datasets GSE117261 and GSE113439 were downloaded from the Gene Expression Omnibus. Two data sets were examined to identify genes associated with the BM by analyzing gene expression changes. Next, we analyzed the relevant genes in the Kyoto Encyclopedia of Genes and Genomes using Gene Ontology and Disease Ontology annotationand conducted pathway enrichment analysis. We conducted a protein-protein interaction network analysis on the genes related to BMs and used the cell cytoHubba plug-in to identify the hub genes. Furthermore, we conducted an immune infiltration analysis and implemented a histogram model. Finally, we predicted and analyzed potential therapeutic drugs for PAH and set up a miRNA network of genetic markers. Six candidate genes related to BMs, namely Integrin Subunit Alpha V, Integrin Subunit Alpha 4, ITGA2, ITGA9, Thrombospondin 1, and Collagen Type IV Alpha 3 Chain, were identified as potential modulators of the immune process in PAH. Furthermore, ginsenoside Rh1 was found to significantly impact drug targeting based on its interactions with the six BM-related genes identified earlier. A novel biomarker related to the BM, which plays a crucial role in the development of PAH, has been identified.
Collapse
Affiliation(s)
- Qian Li
- Department of Cardiac Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming650000, China
| | - Hu Zhang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming650000, China
| |
Collapse
|
17
|
Alissa I, Nair AB, Aldhubiab B, Shah H, Shah J, Mewada V, Almuqbil RM, Jacob S. Design, Development, and Evaluation of Treprostinil Embedded Adhesive Transdermal Patch. Pharmaceutics 2023; 15:pharmaceutics15041226. [PMID: 37111710 PMCID: PMC10146406 DOI: 10.3390/pharmaceutics15041226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Clinical application of treprostinil in pulmonary arterial hypertension is hampered by adverse effects caused by its high dosing frequency. The objective of this investigation was to Formulate an adhesive-type transdermal patch of treprostinil and evaluate it both in vitro and in vivo. A 32-factorial design was utilized to optimize the selected independent variables (X1: drug amount, X2: enhancer concentration) on the response variables (Y1: drug release, Y2: transdermal flux). The optimized patch was evaluated for various pharmaceutical properties, skin irritation, and pharmacokinetics in rats. Optimization results signify considerable influence (p < 0.0001) of X1 on both Y1 and Y2, as compared to X2. The optimized patch possesses higher drug content (>95%), suitable surface morphology, and an absence of drug crystallization. FTIR analysis revealed compatibility of the drug with excipients, whereas DSC thermograms indicate that the drug exists as amorphous in the patch. The adhesive properties of the prepared patch confirm adequate adhesion and painless removal, while the skin irritation study confirms its safety. A steady drug release via Fickian diffusion and greater transdermal delivery (~23.26 µg/cm2/h) substantiate the potential of the optimized patch. Transdermal therapy resulted in higher treprostinil absorption (p < 0.0001) and relative bioavailability (237%) when compared to oral administration. Overall, the results indicate that the developed drug in the adhesive patch can effectively deliver treprostinil through the skin and could be a promising treatment option for pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Ibrahim Alissa
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Bandar Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Hiral Shah
- Department of Pharmaceutics, Arihant School of Pharmacy & BRI, Adalaj, Gandhinagar 382421, India
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India
| | - Vivek Mewada
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India
| | - Rashed M Almuqbil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman P.O. Box 4184, United Arab Emirates
| |
Collapse
|
18
|
Abstract
The mammalian respiratory system or lung is a tree-like branching structure, and the main site of gas exchange with the external environment. Structurally, the lung is broadly classified into the proximal (or conducting) airways and the distal alveolar region, where the gas exchange occurs. In parallel with the respiratory tree, the pulmonary vasculature starts with large pulmonary arteries that subdivide rapidly ending in capillaries adjacent to alveolar structures to enable gas exchange. The NOTCH signalling pathway plays an important role in lung development, differentiation and regeneration post-injury. Signalling via the NOTCH pathway is mediated through activation of four NOTCH receptors (NOTCH1-4), with each receptor capable of regulating unique biological processes. Dysregulation of the NOTCH pathway has been associated with development and pathophysiology of multiple adult acute and chronic lung diseases. This includes accumulating evidence that alteration of NOTCH3 signalling plays an important role in the development and pathogenesis of chronic obstructive pulmonary disease, lung cancer, asthma, idiopathic pulmonary fibrosis and pulmonary arterial hypertension. Herein, we provide a comprehensive summary of the role of NOTCH3 signalling in regulating repair/regeneration of the adult lung, its association with development of lung disease and potential therapeutic strategies to target its signalling activity.
Collapse
|