1
|
Nguyen AH, Kania S, Oztekin A, Webb EB. Predicting reaction behavior of tethered polymers in shear flow. J Chem Phys 2023; 159:174907. [PMID: 37929865 DOI: 10.1063/5.0168440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023] Open
Abstract
Kinetics of force-mediated chemical reactions of end-tethered polymers with varying chain length N in varying shear rate flow γ̇ are explored via coarse-grained Brownian dynamics simulations. At fixed γ̇, force F along a polymer increases linearly with N as previously predicted; however, contrary to existing theory, the F(N) slope increases for N above a transition length that exhibits minimal dependence on γ̇. Force profiles are used in a stochastic model of a force-mediated reaction to compute the time for x percent of a polymer population to experience a reaction, tx. Observations are insensitive to the selected value of x in that tx data for varying N and γ̇ can be consistently collapsed onto a single curve via appropriate scaling, with one master curve for systems below the transition N (small N) and another for those above (large N). Different force scaling for small and large N results in orders of magnitude difference in force-mediated reaction kinetics as represented by the population response time. Data presented illustrate the possibility of designing mechano-reactive polymer populations with highly controlled response to flow across a range in γ̇.
Collapse
Affiliation(s)
- Anh Hung Nguyen
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Sagar Kania
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Alparslan Oztekin
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Edmund B Webb
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| |
Collapse
|
2
|
Amaya-Espinosa H, Alexander-Katz A, Aponte-Santamaría C. The interplay between adsorption and aggregation of von Willebrand factor chains in shear flows. Biophys J 2023; 122:3831-3842. [PMID: 37537863 PMCID: PMC10560680 DOI: 10.1016/j.bpj.2023.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/18/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Von Willebrand factor (VWF) is a giant extracellular glycoprotein that carries out a key adhesive function during primary hemostasis. Upon vascular injury and triggered by the shear of flowing blood, VWF establishes specific interactions with several molecular partners in order to anchor platelets to collagen on the exposed subendothelial surface. VWF also interacts with itself to form aggregates that, adsorbed on the surface, provide more anchor sites for the platelets. However, the interplay between elongation and subsequent exposure of cryptic binding sites, self-association, and adsorption on the surface remained unclear for VWF. In particular, the role of shear flow in these three processes is not well understood. In this study, we address these questions by using Brownian dynamics simulations at a coarse-grained level of resolution. We considered a system consisting of multiple VWF-like self-interacting chains that also interact with a surface under a shear flow. By a systematic analysis, we reveal that chain-chain and chain-surface interactions coexist nontrivially to modulate the spontaneous adsorption of VWF and the posterior immobilization of secondary tethered chains. Accordingly, these interactions tune VWF's extension and its propensity to form shear-assisted functional adsorbed aggregates. Our data highlight the collective behavior VWF self-interacting chains have when bound to the surface, distinct from that of isolated or flowing chains. Furthermore, we show that the extension and the exposure to solvent have a similar dependence on shear flow, at a VWF-monomer level of resolution. Overall, our results highlight the complex interplay that exists between adsorption, cohesion, and shear forces and their relevance for the adhesive hemostatic function of VWF.
Collapse
Affiliation(s)
- Helman Amaya-Espinosa
- Max Planck Tandem Group in Computational Biophysics, Universidad de los Andes, Bogotá, Colombia; Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Camilo Aponte-Santamaría
- Max Planck Tandem Group in Computational Biophysics, Universidad de los Andes, Bogotá, Colombia; Molecular Biomechanics Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany.
| |
Collapse
|
3
|
Conformation of von Willebrand factor in shear flow revealed with stroboscopic single-molecule imaging. Blood 2022; 140:2490-2499. [PMID: 36040485 PMCID: PMC9837445 DOI: 10.1182/blood.2022016969] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/02/2022] [Accepted: 08/16/2022] [Indexed: 01/21/2023] Open
Abstract
von Willebrand factor (VWF) is a multimeric blood protein that acts as a mechanical probe, responding to changes in flow to initiate platelet plug formation. Previously, our laboratory tests had shown that using single-molecule imaging that shear stress can extend surface-tethered VWF, but paradoxically, we found that the required shear stress was higher than reported for free-in-flow VWF, an observation inconsistent with basic physical principles. To resolve this inconsistency critical to VWF's molecular mechanism, we measured free-VWF extension in shear flow using pulsed laser stroboscopic imaging of single molecules. Here, laser pulses of different durations are used to capture multiple images of the same molecule within each frame, enabling accurate length measurements in the presence of motion blur. At high shear stresses, we observed a mean shift in VWF extension of <200 nm, much shorter than the multiple-micron extensions previously reported with no evidence for the predicted sharp globule-stretch conformational transition. Modeling VWF with a Brownian dynamics simulation, our results were consistent with VWF behaving as an uncollapsed polymer rather than the theorized compact ball. The muted response of free VWF to high shear rates implies that the tension experienced by free VWF in physiological shear flow is lower than indicated by previous reports and that tethering to platelets or the vessel wall is required to mechanically activate VWF adhesive function for primary hemostasis.
Collapse
|
4
|
Endothelial dysfunction markers and immune response indices in cosmonauts' blood after long-duration space flights. NPJ Microgravity 2022; 8:46. [PMID: 36323692 PMCID: PMC9630277 DOI: 10.1038/s41526-022-00237-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 10/12/2022] [Indexed: 12/01/2022] Open
Abstract
Space flight factors are known to cause a malfunction in the human immune system and lead to damage to blood vessels. The hemostatic function of endothelium during space missions and its interaction with human immunity has not been determined so far. In this work, we investigated the markers of endothelial activation and damage (plasma concentrations of soluble thrombomodulin fraction (sTM), von Willebrand factor (vWF), highly sensitive C-reactive protein (hs-CRP)), as well as the level of D-dimer and compared them to the immunological parameters characterizing the state of human humoral and cellular immunity. The immune status of long-duration ISS crewmembers was assessed by whole-blood testing, and comprehensive postflight immune assessment included the analysis of leukocyte distribution. Flow cytometry was applied to determine the absolute counts and the percentage of lymphocyte subsets: B cells (CD19+), T cells (CD3+, CD3+CD4+, CD3+CD8+), NK cells (CD3-CD16+CD56+, CD11b+CD56+), and activated subsets (CD3+CD25+ and CD3+HLA-DR+). The in vitro basal cytokine production was investigated in whole blood cell culture. The cytokines IFN-gamma, IL-1-beta, IL-4, IL-6, IL-10, IL-18, and TNF-alpha were measured in plasma and the 24-h supernatants by a sensitive enzyme-linked immunosorbent assay. A significant increase in the plasma levels of vWF and hs-CRP and a decrease in the concentration of sTM after spaceflights were detected. Divergent changes in the parameters characterizing the state of the immune system were observed. We propose that the changes revealed may lead to an increase in the procoagulant activity of blood plasma, suppression of protein C activation and thrombin inhibition, as well as to an increase in the adhesive-aggregate potential of platelets, especially in case of changes in the rheological characteristics of blood flow during re-adaptation to ground conditions. We also speculate that the immune system might play an important role in vessel damage during long-duration missions.
Collapse
|
5
|
Gorog DA, Storey RF, Gurbel PA, Tantry US, Berger JS, Chan MY, Duerschmied D, Smyth SS, Parker WAE, Ajjan RA, Vilahur G, Badimon L, Berg JMT, Cate HT, Peyvandi F, Wang TT, Becker RC. Current and novel biomarkers of thrombotic risk in COVID-19: a Consensus Statement from the International COVID-19 Thrombosis Biomarkers Colloquium. Nat Rev Cardiol 2022; 19:475-495. [PMID: 35027697 PMCID: PMC8757397 DOI: 10.1038/s41569-021-00665-7] [Citation(s) in RCA: 174] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/16/2021] [Indexed: 02/06/2023]
Abstract
Coronavirus disease 2019 (COVID-19) predisposes patients to thrombotic and thromboembolic events, owing to excessive inflammation, endothelial cell activation and injury, platelet activation and hypercoagulability. Patients with COVID-19 have a prothrombotic or thrombophilic state, with elevations in the levels of several biomarkers of thrombosis, which are associated with disease severity and prognosis. Although some biomarkers of COVID-19-associated coagulopathy, including high levels of fibrinogen and D-dimer, were recognized early during the pandemic, many new biomarkers of thrombotic risk in COVID-19 have emerged. In this Consensus Statement, we delineate the thrombotic signature of COVID-19 and present the latest biomarkers and platforms to assess the risk of thrombosis in these patients, including markers of platelet activation, platelet aggregation, endothelial cell activation or injury, coagulation and fibrinolysis as well as biomarkers of the newly recognized post-vaccine thrombosis with thrombocytopenia syndrome. We then make consensus recommendations for the clinical use of these biomarkers to inform prognosis, assess disease acuity, and predict thrombotic risk and in-hospital mortality. A thorough understanding of these biomarkers might aid risk stratification and prognostication, guide interventions and provide a platform for future research.
Collapse
Affiliation(s)
- Diana A Gorog
- National Heart and Lung Institute, Imperial College, London, UK.
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK.
| | - Robert F Storey
- Cardiovascular Research Unit, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Paul A Gurbel
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, Baltimore, MD, USA
| | - Udaya S Tantry
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, Baltimore, MD, USA
| | - Jeffrey S Berger
- New York University Grossman School of Medicine, New York, NY, USA
| | - Mark Y Chan
- Yong Loo-Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National University Heart Centre, Singapore, Singapore
| | - Daniel Duerschmied
- Cardiology and Angiology I and Medical Intensive Care, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Cardiology, Medical Intensive Care, Angiology and Haemostaseology, University Medical Centre Mannheim, Mannheim, Germany
| | - Susan S Smyth
- UAMS College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - William A E Parker
- Cardiovascular Research Unit, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Ramzi A Ajjan
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Gemma Vilahur
- Cardiovascular Research Center-ICCC, Research Institute - Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
- CiberCV, Institute Carlos III, Madrid, Spain
| | - Lina Badimon
- Cardiovascular Research Center-ICCC, Research Institute - Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
- CiberCV, Institute Carlos III, Madrid, Spain
- Universitat Autonoma de Barcelona, Barcelona, Spain
| | | | - Hugo Ten Cate
- Cardiovascular Research Institute Maastricht (CARIM) and Thrombosis Expertise Center, Maastricht University Medical Center, Maastricht, Netherlands
- Center for Thrombosis and Haemostasis, University Medical Center of Gutenberg University, Mainz, Germany
| | - Flora Peyvandi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
- Università degli Studi di Milano, Department of Pathophysiology and Transplantation, Milan, Italy
| | - Taia T Wang
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Richard C Becker
- Heart, Lung and Vascular Institute, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
6
|
Becker RC, Sexton T, Smyth S. COVID-19 and biomarkers of thrombosis: focus on von Willebrand factor and extracellular vesicles. J Thromb Thrombolysis 2021; 52:1010-1019. [PMID: 34350541 PMCID: PMC8336902 DOI: 10.1007/s11239-021-02544-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/15/2021] [Indexed: 12/19/2022]
Abstract
COVID-19, caused by the SARS-CoV-2 virus, is responsible for a pandemic of unparalleled portion over the past century. While the acute phase of infection causes significant morbidity and mortality, post-acute sequelae that can affect essentially any organ system is rapidly taking on an equally large part of the overall impact on human health, quality of life, attempts to return to normalcy and the global economy. Herein, we summarize the potential role of von Willebrand Factor and extracellular vesicles toward understanding the pathophysiology, clinical presentation, duration of illness, diagnostic approach and management of COVID-19 and its sequelae.
Collapse
Affiliation(s)
- Richard C Becker
- Heart, Lung and Vascular Institute, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267, USA.
| | - Travis Sexton
- The Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY, USA
| | - Susan Smyth
- University of Arkansas for Medical Sciences, Little Rock, AK, USA
| |
Collapse
|
7
|
Kania S, Oztekin A, Cheng X, Zhang XF, Webb E. Predicting pathological von Willebrand factor unraveling in elongational flow. Biophys J 2021; 120:1903-1915. [PMID: 33737157 DOI: 10.1016/j.bpj.2021.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022] Open
Abstract
The globular-to-unraveled conformation transition of von Willebrand factor (vWF), a large polymeric glycoprotein in human blood plasma, is a crucial step in the process of clotting at sites of vascular injury. However, unraveling of vWF multimers in uninjured vasculature can lead to pathology (i.e., thrombus formation or degradation of vWF proteins by enzyme ADAMTS13, making them nonfunctional). To identify blood flow conditions that might induce pathological unraveling of vWF multimers, here we have computed the globular-to-unraveled transition rate of vWF multimers subjected to varying strain rate elongational flow by employing an enhanced sampling technique, the weighted ensemble method. Weighted ensemble sampling was employed instead of standard brute-force simulations because pathological blood flow conditions can induce undesired vWF unraveling on timescales potentially inaccessible to standard simulation methods. Results here indicate that brief but periodic exposure of vWF to the elongational flow of strain rate greater than or equal to 2500 s-1 represents a source of possible pathology caused by the undesired unraveling of vWF multimers.
Collapse
Affiliation(s)
- Sagar Kania
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania
| | - Alparslan Oztekin
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania
| | - Xuanhong Cheng
- Department of Material Science and Engineering, Lehigh University, Bethlehem, Pennsylvania; Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania
| | - X Frank Zhang
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania; Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania
| | - Edmund Webb
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania.
| |
Collapse
|
8
|
Becker RC, Phillip Owens A, Sadayappan S. The potential roles of Von Willebrand factor and neutrophil extracellular traps in the natural history of hypertrophic and hypertensive cardiomyopathy. Thromb Res 2020; 192:78-87. [PMID: 32460175 DOI: 10.1016/j.thromres.2020.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 02/09/2023]
Abstract
Inflammation is often applied broadly to human disease. Despite its general familiarity, inflammation is highly complex. There are numerous injurious, immune and infectious determinants, functional elements and signaling pathways, ranging from genetic to epigenetic, environmental, racial, molecular and cellular that participate in disease onset and progression, phenotypic heterogeneity, and treatment selection and response. In addition, inflammation can be tissue and organ specific, adding a layer of complexity to achieving a detailed and translatable understanding of its role in health and disease. The following review takes a close look at inflammation in the context of two common heart diseases, hypertrophic cardiomyopathy and hypertensive cardiomyopathy.
Collapse
Affiliation(s)
- Richard C Becker
- Division of Cardiovascular Health and Disease, Heart, Lung and Blood Institute, University of Cincinnati College of Medicine, United States of America.
| | - A Phillip Owens
- Division of Cardiovascular Health and Disease, Heart, Lung and Blood Institute, University of Cincinnati College of Medicine, United States of America
| | - Sakthivel Sadayappan
- Division of Cardiovascular Health and Disease, Heart, Lung and Blood Institute, University of Cincinnati College of Medicine, United States of America
| |
Collapse
|
9
|
Mehta R, Athar M, Girgis S, Hassan A, Becker RC. Acquired Von Willebrand Syndrome (AVWS) in cardiovascular disease: a state of the art review for clinicians. J Thromb Thrombolysis 2019; 48:14-26. [PMID: 31004311 DOI: 10.1007/s11239-019-01849-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Von Willebrand Factor (vWF) is a large glycoprotein with a broad range of physiological and pathological functions in health and disease. While vWF is critical for normal hemostasis, vascular integrity and repair, quantitative and qualitative abnormalities in the molecule can predispose to serious bleeding and thrombosis. The heritable form of von Willebrand Disease was first described nearly a century ago, but more recently, recognition of an acquired condition known as acquired von Willebrand Syndrome (AVWF) has emerged in persons with hematological, endocrine and cardiovascular diseases, disorders and conditions. An in-depth understanding of the causes, diagnostic approach and management of AVWS is important for practicing clinicians.
Collapse
Affiliation(s)
- Radha Mehta
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Muhammad Athar
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Sameh Girgis
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Atif Hassan
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Richard C Becker
- Stonehill Professor of Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way, CVC 4th Floor, Room 4936, Cincinnati, 45267, OH, USA.
| |
Collapse
|
10
|
Morabito M, Dong C, Wei W, Cheng X, Zhang XF, Oztekin A, Webb E. Internal Tensile Force and A2 Domain Unfolding of von Willebrand Factor Multimers in Shear Flow. Biophys J 2018; 115:1860-1871. [PMID: 30287111 DOI: 10.1016/j.bpj.2018.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/22/2018] [Accepted: 09/04/2018] [Indexed: 10/28/2022] Open
Abstract
Using Brownian molecular dynamics simulations, we examine the internal dynamics and biomechanical response of von Willebrand factor (vWF) multimers subject to shear flow. The coarse grain multimer description employed here is based on a monomer model in which the A2 domain of vWF is explicitly represented by a nonlinear elastic spring whose mechanical response was fit to experimental force/extension data from vWF monomers. This permits examination of the dynamic behavior of hydrodynamic forces acting on A2 domains as a function of shear rate and multimer length, as well as position of an A2 domain along the multimer contour. Force/position data reveal that collapsed multimers exhibit a force distribution with two peaks, one near each end of the chain; unraveled multimers, however, show a single peak in A2 domain force near the center of multimers. Guided further by experimental data, significant excursions of force acting on a domain are associated with an increasing probability for A2 domain unfolding. Our results suggest that the threshold shear rate required to induce A2 domain unfolding is inversely proportional to multimer length. By examining data for the duration and location of significant force excursions, convincing evidence is advanced that unfolding of A2 domains, and therefore scission of vWF multimers by the size-regulating blood enzyme ADAMTS13, happen preferentially near the center of unraveled multimers.
Collapse
Affiliation(s)
- Michael Morabito
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania
| | - Chuqiao Dong
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania
| | - Wei Wei
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania
| | - Xuanhong Cheng
- Department of Material Science and Engineering, Lehigh University, Bethlehem, Pennsylvania
| | - Xiaohui F Zhang
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania
| | - Alparslan Oztekin
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania
| | - Edmund Webb
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania.
| |
Collapse
|
11
|
Hoore M, Rack K, Fedosov DA, Gompper G. Flow-induced adhesion of shear-activated polymers to a substrate. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:064001. [PMID: 29297854 DOI: 10.1088/1361-648x/aaa4d5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Adhesion of polymers and proteins to substrates plays a crucial role in many technological applications and biological processes. A prominent example is the von Willebrand factor (VWF) protein, which is essential in blood clotting as it mediates adhesion of blood platelets to the site of injury at high shear rates. VWF is activated by flow and is able to bind efficiently to damaged vessel walls even under extreme flow-stress conditions; however, its adhesion is reversible when the flow strength is significantly reduced or the flow is ceased. Motivated by the properties and behavior of VWF in flow, we investigate adhesion of shear-activated polymers to a planar wall in flow and whether the adhesion is reversible under flow stasis. The main ingredients of the polymer model are cohesive inter-monomer interactions, a catch bond with the adhesive surface, and the shear activation/deactivation of polymer adhesion correlated with its stretching in flow. The cohesive interactions within the polymer maintain a globular conformation under low shear stresses and allow polymer stretching if a critical shear rate is exceeded, which is directly associated with its activation for adhesion. Our results show that polymer adhesion at high shear rates is significantly stabilized by catch bonds, while at the same time they also permit polymer dissociation from a surface at low or no flow stresses. In addition, the activation/deactivation mechanism for adhesion plays a crucial role in the reversibility of its adhesion. These observations help us better understand the adhesive behavior of VWF in flow and interpret its adhesion malfunctioning in VWF-related diseases.
Collapse
Affiliation(s)
- Masoud Hoore
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | | | | | | |
Collapse
|