1
|
Girardin L, Lind N, von Tengg-Kobligk H, Balabani S, Díaz-Zuccarini V. Patient-specific compliant simulation framework informed by 4DMRI-extracted pulse wave Velocity: Application post-TEVAR. J Biomech 2024; 175:112266. [PMID: 39232449 DOI: 10.1016/j.jbiomech.2024.112266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/11/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024]
Abstract
We introduce a new computational framework that utilises Pulse Wave Velocity (PWV) extracted directly from 4D flow MRI (4DMRI) to inform patient-specific compliant computational fluid dynamics (CFD) simulations of a Type-B aortic dissection (TBAD), post-thoracic endovascular aortic repair (TEVAR). The thoracic aortic geometry, a 3D inlet velocity profile (IVP) and dynamic outlet boundary conditions are derived from 4DMRI and brachial pressure patient data. A moving boundary method (MBM) is applied to simulate aortic wall displacement. The aortic wall stiffness is estimated through two methods: one relying on area-based distensibility and the other utilising regional pulse wave velocity (RPWV) distensibility, further fine-tuned to align with in vivo values. Predicted pressures and outlet flow rates were within 2.3 % of target values. RPWV-based simulations were more accurate in replicating in vivo hemodynamics than the area-based ones. RPWVs were closely predicted in most regions, except the endograft. Systolic flow reversal ratios (SFRR) were accurately captured, while differences above 60 % in in-plane rotational flow (IRF) between the simulations were observed. Significant disparities in predicted wall shear stress (WSS)-based indices were observed between the two approaches, especially the endothelial cell activation potential (ECAP). At the isthmus, the RPWV-driven simulation indicated a mean ECAP>1.4 Pa-1 (critical threshold), indicating areas potentially prone to thrombosis, not captured by the area-based simulation. RPWV-driven simulation results agree well with 4DMRI measurements, validating the proposed pipeline and facilitating a comprehensive assessment of surgical decision-making scenarios and potential complications, such as thrombosis and aortic growth.
Collapse
Affiliation(s)
- Louis Girardin
- University College London, Department of Mechanical Engineering, Torrington Place, London WC1E7JE, UK; Welcome/ESPRC Centre for Interventional and Surgical Sciences (WEISS), 43-45 Foley Street, London W1W7TS, UK.
| | - Niklas Lind
- Department of Diagnostic of Interventional and Pediatric Radiology, Inselspital, Bern 3010, Switzerland.
| | - Hendrik von Tengg-Kobligk
- Department of Diagnostic of Interventional and Pediatric Radiology, Inselspital, Bern 3010, Switzerland.
| | - Stavroula Balabani
- University College London, Department of Mechanical Engineering, Torrington Place, London WC1E7JE, UK; Welcome/ESPRC Centre for Interventional and Surgical Sciences (WEISS), 43-45 Foley Street, London W1W7TS, UK.
| | - Vanessa Díaz-Zuccarini
- University College London, Department of Mechanical Engineering, Torrington Place, London WC1E7JE, UK; Welcome/ESPRC Centre for Interventional and Surgical Sciences (WEISS), 43-45 Foley Street, London W1W7TS, UK.
| |
Collapse
|
2
|
Perinajová R, van de Ven T, Roelse E, Xu F, Juffermans J, Westenberg J, Lamb H, Kenjereš S. A comprehensive MRI-based computational model of blood flow in compliant aorta using radial basis function interpolation. Biomed Eng Online 2024; 23:69. [PMID: 39039565 PMCID: PMC11265469 DOI: 10.1186/s12938-024-01251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/03/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Properly understanding the origin and progression of the thoracic aortic aneurysm (TAA) can help prevent its growth and rupture. For a better understanding of this pathogenesis, the aortic blood flow has to be studied and interpreted in great detail. We can obtain detailed aortic blood flow information using magnetic resonance imaging (MRI) based computational fluid dynamics (CFD) with a prescribed motion of the aortic wall. METHODS We performed two different types of simulations-static (rigid wall) and dynamic (moving wall) for healthy control and a patient with a TAA. For the latter, we have developed a novel morphing approach based on the radial basis function (RBF) interpolation of the segmented 4D-flow MRI geometries at different time instants. Additionally, we have applied reconstructed 4D-flow MRI velocity profiles at the inlet with an automatic registration protocol. RESULTS The simulated RBF-based movement of the aorta matched well with the original 4D-flow MRI geometries. The wall movement was most dominant in the ascending aorta, accompanied by the highest variation of the blood flow patterns. The resulting data indicated significant differences between the dynamic and static simulations, with a relative difference for the patient of 7.47±14.18% in time-averaged wall shear stress and 15.97±43.32% in the oscillatory shear index (for the whole domain). CONCLUSIONS In conclusion, the RBF-based morphing approach proved to be numerically accurate and computationally efficient in capturing complex kinematics of the aorta, as validated by 4D-flow MRI. We recommend this approach for future use in MRI-based CFD simulations in broad population studies. Performing these would bring a better understanding of the onset and growth of TAA.
Collapse
Affiliation(s)
- Romana Perinajová
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands.
- J.M. Burgerscentrum Research School for Fluid Mechanics, Delft, The Netherlands.
| | - Thijn van de Ven
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Elise Roelse
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Fei Xu
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
- J.M. Burgerscentrum Research School for Fluid Mechanics, Delft, The Netherlands
| | - Joe Juffermans
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jos Westenberg
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hildo Lamb
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Saša Kenjereš
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands.
- J.M. Burgerscentrum Research School for Fluid Mechanics, Delft, The Netherlands.
| |
Collapse
|
3
|
Girardin L, Stokes C, Thet MS, Oo AY, Balabani S, Díaz-Zuccarini V. Patient-Specific Haemodynamic Analysis of Virtual Grafting Strategies in Type-B Aortic Dissection: Impact of Compliance Mismatch. Cardiovasc Eng Technol 2024; 15:290-304. [PMID: 38438692 PMCID: PMC11239731 DOI: 10.1007/s13239-024-00713-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 01/02/2024] [Indexed: 03/06/2024]
Abstract
INTRODUCTION Compliance mismatch between the aortic wall and Dacron Grafts is a clinical problem concerning aortic haemodynamics and morphological degeneration. The aortic stiffness introduced by grafts can lead to an increased left ventricular (LV) afterload. This study quantifies the impact of compliance mismatch by virtually testing different Type-B aortic dissection (TBAD) surgical grafting strategies in patient-specific, compliant computational fluid dynamics (CFD) simulations. MATERIALS AND METHODS A post-operative case of TBAD was segmented from computed tomography angiography data. Three virtual surgeries were generated using different grafts; two additional cases with compliant grafts were assessed. Compliant CFD simulations were performed using a patient-specific inlet flow rate and three-element Windkessel outlet boundary conditions informed by 2D-Flow MRI data. The wall compliance was calibrated using Cine-MRI images. Pressure, wall shear stress (WSS) indices and energy loss (EL) were computed. RESULTS Increased aortic stiffness and longer grafts increased aortic pressure and EL. Implementing a compliant graft matching the aortic compliance of the patient reduced the pulse pressure by 11% and EL by 4%. The endothelial cell activation potential (ECAP) differed the most within the aneurysm, where the maximum percentage difference between the reference case and the mid (MDA) and complete (CDA) descending aorta replacements increased by 16% and 20%, respectively. CONCLUSION This study suggests that by minimising graft length and matching its compliance to the native aorta whilst aligning with surgical requirements, the risk of LV hypertrophy may be reduced. This provides evidence that compliance-matching grafts may enhance patient outcomes.
Collapse
Affiliation(s)
- Louis Girardin
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, 43-45 Foley Street, London, W1W 7TS, UK
| | - Catriona Stokes
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, 43-45 Foley Street, London, W1W 7TS, UK
| | - Myat Soe Thet
- Department of Cardiothoracic Surgery, St Bartholomew's Hospital, West Smithfield, London, EC1A 7BE, UK
| | - Aung Ye Oo
- Department of Cardiothoracic Surgery, St Bartholomew's Hospital, West Smithfield, London, EC1A 7BE, UK
| | - Stavroula Balabani
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, 43-45 Foley Street, London, W1W 7TS, UK
| | - Vanessa Díaz-Zuccarini
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, 43-45 Foley Street, London, W1W 7TS, UK.
| |
Collapse
|
4
|
Keramati H, Birgersson E, Kim S, Leo HL. A Monte Carlo Sensitivity Analysis for a Dimensionally Reduced-Order Model of the Aortic Dissection. Cardiovasc Eng Technol 2024; 15:333-345. [PMID: 38381368 DOI: 10.1007/s13239-024-00718-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024]
Abstract
PURPOSE Aortic dissection is associated with a high mortality rate. Although computational approaches have shed light on many aspects of the disease, a sensitivity analysis is required to determine the significance of different factors. Because of its complex geometry and high computational expense, the three-dimensional (3D) fluid-structure interaction (FSI) simulation is not a suitable approach for sensitivity analysis. METHODS We performed a Monte Carlo simulation (MCS) to investigate the sensitivity of hemodynamic quantities to the lumped parameters of our zero-dimensional (0D) model with numerically calculated lumped parameters. We performed local and global analyses on the effect of the model parameters on important hemodynamic quantities. RESULTS The MCS showed that a larger lumped resistance value for the false lumen and the tears result in a higher retrograde flow rate in the false lumen (the coefficient of variation,c v , i = 0.0183 , the sensitivityS X i σ = 0.54 , Spearman's coefficient,ρ s = 0.464 ). For the intraluminal pressure, our results show a significant role in the resistance and inertance of the true lumen (the coefficient of variation,c v , i = 0.0640 , the sensitivityS X i σ = 0.85 , and Spearman's coefficient,ρ s = 0.855 for the inertance of the true lumen). CONCLUSION This study highlights the necessity of comparing the results of the local and global sensitivity analyses to understand the significance of multiple lumped parameters. Because of the efficiency of the method, our approach is potentially useful to investigate and analyze medical planning.
Collapse
Affiliation(s)
- Hamed Keramati
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Erik Birgersson
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Sangho Kim
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Hwa Liang Leo
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore.
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore.
| |
Collapse
|
5
|
Cherkaoui I, Bettaibi S, Barkaoui A, Kuznik F. Toward a Mesoscopic Modeling Approach of Magnetohydrodynamic Blood Flow in Pathological Vessels: A Comprehensive Review. Ann Biomed Eng 2023; 51:2415-2440. [PMID: 37639179 DOI: 10.1007/s10439-023-03350-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023]
Abstract
The investigation of magnetohydrodynamic (MHD) blood flow within configurations that are pertinent to the human anatomy holds significant importance in the realm of scientific inquiry because of its practical implications within the medical field. This article presents an exhaustive appraisal of the diverse applications of magnetohydrodynamics and their computational modeling in biological contexts. These applications are classified into two categories: simple flow and pulsatile flow. An alternative approach of traditional CFD methods called Lattice Boltzmann Method (LBM), a mesoscopic method based on kinetic theory, is introduced to solve complex problems, such as hemodynamics. The results show that the flow velocity reduces considerably by increasing the magnetic field intensity, and the flow separation area is minimized by the increase of magnetic field strength. The LBM with BGK collision model has shown good results in terms of precision. Finally, this literature review has revealed a number of potential avenues for further research. Suggestions for future works are proposed accordingly.
Collapse
Affiliation(s)
- Ikram Cherkaoui
- Laboratoire des Energies Renouvelable et Matériaux Avancés, Université Internationale de Rabat (UIR), Rocade Rabat-Salé, 11100, Rabat, Morocco
| | - Soufiene Bettaibi
- Laboratoire des Energies Renouvelable et Matériaux Avancés, Université Internationale de Rabat (UIR), Rocade Rabat-Salé, 11100, Rabat, Morocco.
| | - Abdelwahed Barkaoui
- Laboratoire des Energies Renouvelable et Matériaux Avancés, Université Internationale de Rabat (UIR), Rocade Rabat-Salé, 11100, Rabat, Morocco
| | | |
Collapse
|
6
|
Chatpattanasiri C, Franzetti G, Bonfanti M, Diaz-Zuccarini V, Balabani S. Towards Reduced Order Models via Robust Proper Orthogonal Decomposition to capture personalised aortic haemodynamics. J Biomech 2023; 158:111759. [PMID: 37657234 PMCID: PMC7615718 DOI: 10.1016/j.jbiomech.2023.111759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/19/2023] [Accepted: 08/07/2023] [Indexed: 09/03/2023]
Abstract
Data driven, reduced order modelling has shown promise in tackling the challenges associated with computational and experimental haemodynamic models. In this work, we focus on the use of Reduced Order Models (ROMs) to reconstruct velocity fields in a patient-specific dissected aorta, with the objective being to compare the ROMs obtained from Robust Proper Orthogonal Decomposition (RPOD) to those obtained from the traditional Proper Orthogonal Decomposition (POD). POD and RPOD are applied to in vitro, haemodynamic data acquired by Particle Image Velocimetry and compare the decomposed flows to those derived from Computational Fluid Dynamics (CFD) data for the same geometry and flow conditions. In this work, PIV and CFD results act as surrogates for clinical haemodynamic data e.g. MR, helping to demonstrate the potential use of ROMS in real clinical scenarios. The flow is reconstructed using different numbers of POD modes and the flow features obtained throughout the cardiac cycle are compared to the original Full Order Models (FOMs). Robust Principal Component Analysis (RPCA), the first step of RPOD, has been found to enhance the quality of PIV data, allowing POD to capture most of the kinetic energy of the flow in just two modes similar to the numerical data that are free from measurement noise. The reconstruction errors differ along the cardiac cycle with diastolic flows requiring more modes for accurate reconstruction. In general, modes 1-10 are found sufficient to represent the flow field. The results demonstrate that the coherent structures that characterise this aortic dissection flow are described by the first few POD modes suggesting that it is possible to represent the macroscale behaviour of aortic flow in a low-dimensional space; thus significantly simplifying the problem, and allowing for more computationally efficient flow simulations or machine learning based flow predictions that can pave the way for translation of such models to the clinic.
Collapse
Affiliation(s)
| | - Gaia Franzetti
- Department of Mechanical Engineering, University College London, London, UK
| | - Mirko Bonfanti
- Department of Mechanical Engineering, University College London, London, UK
| | - Vanessa Diaz-Zuccarini
- Department of Mechanical Engineering, University College London, London, UK; Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Stavroula Balabani
- Department of Mechanical Engineering, University College London, London, UK.
| |
Collapse
|
7
|
Wang X, Ghayesh MH, Kotousov A, Zander AC, Dawson JA, Psaltis PJ. Fluid-structure interaction study for biomechanics and risk factors in Stanford type A aortic dissection. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023:e3736. [PMID: 37258411 DOI: 10.1002/cnm.3736] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 04/04/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023]
Abstract
Aortic dissection is a life-threatening condition with a rising prevalence in the elderly population, possibly as a consequence of the increasing population life expectancy. Untreated aortic dissection can lead to myocardial infarction, aortic branch malperfusion or occlusion, rupture, aneurysm formation and death. This study aims to assess the potential of a biomechanical model in predicting the risks of a non-dilated thoracic aorta with Stanford type A dissection. To achieve this, a fully coupled fluid-structure interaction model was developed under realistic blood flow conditions. This model of the aorta was developed by considering three-dimensional artery geometry, multiple artery layers, hyperelastic artery wall, in vivo-based physiological time-varying blood velocity profiles, and non-Newtonian blood behaviours. The results demonstrate that in a thoracic aorta with Stanford type A dissection, the wall shear stress (WSS) is significantly low in the ascending aorta and false lumen, leading to potential aortic dilation and thrombus formation. The results also reveal that the WSS is highly related to blood flow patterns. The aortic arch region near the brachiocephalic and left common carotid artery is prone to rupture, showing a good agreement with the clinical reports. The results have been translated into their potential clinical relevance by revealing the role of the stress state, WSS and flow characteristics as the main parameters affecting lesion progression, including rupture and aneurysm. The developed model can be tailored for patient-specific studies and utilised as a predictive tool to estimate aneurysm growth and initiation of wall rupture inside the human thoracic aorta.
Collapse
Affiliation(s)
- Xiaochen Wang
- School of Mechanical Engineering, University of Adelaide, Adelaide, Australia
| | - Mergen H Ghayesh
- School of Mechanical Engineering, University of Adelaide, Adelaide, Australia
| | - Andrei Kotousov
- School of Mechanical Engineering, University of Adelaide, Adelaide, Australia
| | - Anthony C Zander
- School of Mechanical Engineering, University of Adelaide, Adelaide, Australia
| | - Joseph A Dawson
- Department of Vascular & Endovascular Surgery, Royal Adelaide Hospital, Adelaide, Australia
- Trauma Surgery Unit, Royal Adelaide Hospital, Adelaide, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Peter J Psaltis
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Vascular Research Centre, Lifelong Health Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, Australia
- Department of Cardiology, Central Adelaide Local Health Network, Adelaide, Australia
| |
Collapse
|
8
|
Calò K, Capellini K, De Nisco G, Mazzi V, Gasparotti E, Gallo D, Celi S, Morbiducci U. Impact of wall displacements on the large-scale flow coherence in ascending aorta. J Biomech 2023; 154:111620. [PMID: 37178494 DOI: 10.1016/j.jbiomech.2023.111620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
In the context of aortic hemodynamics, uncertainties affecting blood flow simulations hamper their translational potential as supportive technology in clinics. Computational fluid dynamics (CFD) simulations under rigid-walls assumption are largely adopted, even though the aorta contributes markedly to the systemic compliance and is characterized by a complex motion. To account for personalized wall displacements in aortic hemodynamics simulations, the moving-boundary method (MBM) has been recently proposed as a computationally convenient strategy, although its implementation requires dynamic imaging acquisitions not always available in clinics. In this study we aim to clarify the real need for introducing aortic wall displacements in CFD simulations to accurately capture the large-scale flow structures in the healthy human ascending aorta (AAo). To do that, the impact of wall displacements is analyzed using subject-specific models where two CFD simulations are performed imposing (1) rigid walls, and (2) personalized wall displacements adopting a MBM, integrating dynamic CT imaging and a mesh morphing technique based on radial basis functions. The impact of wall displacements on AAo hemodynamics is analyzed in terms of large-scale flow patterns of physiological significance, namely axial blood flow coherence (quantified applying the Complex Networks theory), secondary flows, helical flow and wall shear stress (WSS). From the comparison with rigid-wall simulations, it emerges that wall displacements have a minor impact on the AAo large-scale axial flow, but they can affect secondary flows and WSS directional changes. Overall, helical flow topology is moderately affected by aortic wall displacements, whereas helicity intensity remains almost unchanged. We conclude that CFD simulations with rigid-wall assumption can be a valid approach to study large-scale aortic flows of physiological significance.
Collapse
Affiliation(s)
- Karol Calò
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy; PoliTo(BIO)Med Lab, Politecnico di Torino, Turin, Italy
| | - Katia Capellini
- BioCardioLab, Bioengineering Unit - Heart Hospital, Fondazione Toscana "G. Monasterio", Massa, Italy
| | - Giuseppe De Nisco
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy; PoliTo(BIO)Med Lab, Politecnico di Torino, Turin, Italy
| | - Valentina Mazzi
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy; PoliTo(BIO)Med Lab, Politecnico di Torino, Turin, Italy
| | - Emanuele Gasparotti
- BioCardioLab, Bioengineering Unit - Heart Hospital, Fondazione Toscana "G. Monasterio", Massa, Italy
| | - Diego Gallo
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy; PoliTo(BIO)Med Lab, Politecnico di Torino, Turin, Italy
| | - Simona Celi
- BioCardioLab, Bioengineering Unit - Heart Hospital, Fondazione Toscana "G. Monasterio", Massa, Italy
| | - Umberto Morbiducci
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy; PoliTo(BIO)Med Lab, Politecnico di Torino, Turin, Italy.
| |
Collapse
|
9
|
Kim T, van Bakel PAJ, Nama N, Burris N, Patel HJ, Williams DM, Figueroa CA. A Computational Study of Dynamic Obstruction in Type B Aortic Dissection. J Biomech Eng 2023; 145:031008. [PMID: 36459144 PMCID: PMC10854260 DOI: 10.1115/1.4056355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022]
Abstract
A serious complication in aortic dissection is dynamic obstruction of the true lumen (TL). Dynamic obstruction results in malperfusion, a blockage of blood flow to a vital organ. Clinical data reveal that increases in central blood pressure promote dynamic obstruction. However, the mechanisms by which high pressures result in TL collapse are underexplored and poorly understood. Here, we developed a computational model to investigate biomechanical and hemodynamical factors involved in Dynamic obstruction. We hypothesize that relatively small pressure gradient between TL and false lumen (FL) are sufficient to displace the flap and induce obstruction. An idealized fluid-structure interaction model of type B aortic dissection was created. Simulations were performed under mean cardiac output while inducing dynamic changes in blood pressure by altering FL outflow resistance. As FL resistance increased, central aortic pressure increased from 95.7 to 115.3 mmHg. Concurrent with blood pressure increase, flap motion was observed, resulting in TL collapse, consistent with clinical findings. The maximum pressure gradient between TL and FL over the course of the dynamic obstruction was 4.5 mmHg, consistent with our hypothesis. Furthermore, the final stage of dynamic obstruction was very sudden in nature, occurring over a short time (<1 s) in our simulation, consistent with the clinical understanding of this dramatic event. Simulations also revealed sudden drops in flow and pressure in the TL in response to the flap motion, consistent with first stages of malperfusion. To our knowledge, this study represents the first computational analysis of potential mechanisms driving dynamic obstruction in aortic dissection.
Collapse
Affiliation(s)
- T Kim
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105
| | - P A J van Bakel
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48105
| | - N Nama
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - N Burris
- Department of Radiology, University of Michigan, Ann Arbor, MI 48105
| | - H J Patel
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48105
| | - D M Williams
- Department of Radiology, University of Michigan, Ann Arbor, MI 48105
| | - C A Figueroa
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105; Department of Surgery, University of Michigan, Ann Arbor, MI 48105
| |
Collapse
|
10
|
Chen H, Wang W, Liu D, Cao Z, Yang Y, He Y, Chi Q. The effect of terminal impedance on aortic morphology and hemodynamics: an in vitro phantom study using flow field visualization. Front Bioeng Biotechnol 2023; 11:1175916. [PMID: 37168613 PMCID: PMC10165012 DOI: 10.3389/fbioe.2023.1175916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/12/2023] [Indexed: 05/13/2023] Open
Abstract
To investigate the risk factors for aortic dissection tearing, we fabricated a simplified patient-specific aortic silicone phantom using the brush-spin-coating method. The aortic phantom only includes the aorta from the ascending aorta to the descending aorta, without other branches. We designed two experiments to investigate the alteration of aortic morphology and intravascular hemodynamics using the particle image velocimetry method. The results revealed dilation and elongation of the aortic phantom, especially the ascending aorta, after the phantom's terminal resistance was increased. Additionally, the particle image velocimetry results demonstrated an increased vortex region, which caused the inner side of the aortic wall to become scoured by blood. This study suggests that the deformation of the inner side aortic wall and the change in hemodynamics in response to the increased terminal resistance may be a risk factor for aortic tearing and should be monitored.
Collapse
Affiliation(s)
- Huimin Chen
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian, China
| | - Wenjun Wang
- Department of Cardiovascular Surgery, Dalian Municipal Central Hospital, Dalian, China
| | - Dengji Liu
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian, China
| | - Zhen Cao
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian, China
| | - Yi Yang
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying He
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian, China
| | - Qingzhuo Chi
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian, China
- *Correspondence: Qingzhuo Chi,
| |
Collapse
|
11
|
Keramati H, Birgersson E, Kim S, Ho JP, Leo HL. Using a reduced-order model to investigate the effect of the heart rate on the aortic dissection. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3596. [PMID: 35338602 DOI: 10.1002/cnm.3596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/20/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The computational cost of a three-dimensional (3D) fluid-structure interaction (FSI) simulation of a dissected aorta has prevented researchers from investigating the effect of a wide range of the heart rate on the hemodynamic quantities in the disease. We have presented a systematic procedure to develop a zero-dimensional (0D) model for a dissected aorta. A series of numerical experiments were used to calculate the values for the resistance, inertance, and compliance of each lumen with irregular geometries. Having validated the results from the 0D model against those from the 3D model for one heart rate, we used the 0D model to investigate the effect of the heart rate of 50-150 bpm on the flow rates and the pressures in an idealized geometry of an aortic dissection. The 0D model showed acceptable accuracy when compared with the 3D FSI simulation. For instance, at peak systole, 7.18% relative error in the flow rate in the true lumen was observed for 0D and 3D simulations. The flow rate in the true lumen showed a stronger dependency on the heart rate, that is, 300% for the true lumen and 1.5% for the false lumen. The pressure difference between the lumina increased non-monotonically as the heart beats faster. Because of its efficiency, the reported procedure can be used for uncertainty and sensitivity analysis of the hemodynamic quantities in a diseased aorta with complex geometries such as that of the aortic dissection.
Collapse
Affiliation(s)
- Hamed Keramati
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Erik Birgersson
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Sangho Kim
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Jackie P Ho
- Department of Cardiac, Thoracic and Vascular Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hwa Liang Leo
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
12
|
Franzetti G, Bonfanti M, Homer-Vanniasinkam S, Diaz-Zuccarini V, Balabani S. Experimental evaluation of the patient-specific haemodynamics of an aortic dissection model using particle image velocimetry. J Biomech 2022; 134:110963. [PMID: 35151036 PMCID: PMC9617468 DOI: 10.1016/j.jbiomech.2022.110963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 12/05/2021] [Accepted: 01/14/2022] [Indexed: 11/15/2022]
Abstract
Aortic Dissection (AD) is a complex pathology that affects the aorta. Diagnosis, management and treatment remain a challenge as it is a highly patient-specific pathology and there is still a limited understanding of the fluid-mechanics phenomena underlying clinical outcomes. Although in vitro models can allow the accurate study of AD flow fields in physical phantoms, they are currently scarce and almost exclusively rely on over simplifying assumptions. In this work, we present the first experimental study of a patient-specific case of AD. An anatomically correct phantom was produced and combined with a state-of-the-art in vitro platform, informed by clinical data, employed to accurately reproduce personalised conditions. The complex AD haemodynamics reproduced by the platform was characterised by flow rate and pressure acquisitions as well as Particle Image Velocimetry (PIV) derived velocity fields. Clinically relevant haemodynamic indices, that can be correlated with AD prognosis - such as velocity, shear rate, turbulent kinetic energy distributions - were extracted in two regions of interest in the aortic domain. The acquired data highlighted the complex nature of the flow (e.g. recirculation regions, low shear rate in the false lumen) and was in very good agreement with the available clinical data and the CFD results of a study conducted alongside, demonstrating the accuracy of the findings. These results demonstrate that the described platform constitutes a powerful, unique tool to reproduce in vitro personalised haemodynamic conditions, which can be used to support the evaluation of surgical procedures, medical devices testing and to validate state-of-the-art numerical models.
Collapse
Affiliation(s)
- Gaia Franzetti
- Department of Mechanical Engineering, University College London, London, UK
| | - Mirko Bonfanti
- Department of Mechanical Engineering, University College London, London, UK; Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Shervanthi Homer-Vanniasinkam
- Department of Mechanical Engineering, University College London, London, UK; Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), Department of Medical Physics and Biomedical Engineering, University College London, London, UK; Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Vanessa Diaz-Zuccarini
- Department of Mechanical Engineering, University College London, London, UK; Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Stavroula Balabani
- Department of Mechanical Engineering, University College London, London, UK; Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
| |
Collapse
|
13
|
WANG J, XIE J, MENG X, GONG X. Comparison of CT and MRI in imaging diagnosis of aortic dissection. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.23621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Junmin XIE
- Affiliated Hospital of Hebei University, China
| | | | | |
Collapse
|
14
|
Stokes C, Bonfanti M, Li Z, Xiong J, Chen D, Balabani S, Díaz-Zuccarini V. A novel MRI-based data fusion methodology for efficient, personalised, compliant simulations of aortic haemodynamics. J Biomech 2021; 129:110793. [PMID: 34715606 PMCID: PMC8907869 DOI: 10.1016/j.jbiomech.2021.110793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/24/2021] [Accepted: 09/30/2021] [Indexed: 01/24/2023]
Abstract
We present a novel, cost-efficient methodology to simulate aortic haemodynamics in a patient-specific, compliant aorta using an MRI data fusion process. Based on a previously-developed Moving Boundary Method, this technique circumvents the high computational cost and numerous structural modelling assumptions required by traditional Fluid-Structure Interaction techniques. Without the need for Computed Tomography (CT) data, the MRI images required to construct the simulation can be obtained during a single imaging session. Black Blood MR Angiography and 2D Cine-MRI data were used to reconstruct the luminal geometry and calibrate wall movement specifically to each region of the aorta. 4D-Flow MRI and non-invasive pressure measurements informed patient-specific inlet and outlet boundary conditions. Luminal area closely matched 2D Cine-MRI measurements with a mean error of less than 4.6% across the cardiac cycle, while physiological pressure and flow distributions were simulated to within 3.3% of patient-specific targets. Moderate agreement with 4D-Flow MRI velocity data was observed. Despite lower peak velocity, an equivalent rigid-wall simulation predicted a mean Time-Averaged Wall Shear Stress (TAWSS) 13% higher than the compliant simulation. The agreement observed between compliant simulation results and MRI data is testament to the accuracy and efficiency of this MRI-based simulation technique.
Collapse
Affiliation(s)
- Catriona Stokes
- Mechanical Engineering Department, Roberts Engineering Building, University College London, Torrington Place, London, WC1E 7JE, United Kingdom; Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), Charles Bell House, London, W1W 7TY, United Kingdom.
| | - Mirko Bonfanti
- Mechanical Engineering Department, Roberts Engineering Building, University College London, Torrington Place, London, WC1E 7JE, United Kingdom; Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), Charles Bell House, London, W1W 7TY, United Kingdom.
| | - Zeyan Li
- School of Life Science, Beijing Institute of Technology, Beijing, China.
| | - Jiang Xiong
- Department of Vascular and Endovascular Surgery, Chinese PLA General Hospital, Beijing, China.
| | - Duanduan Chen
- School of Life Science, Beijing Institute of Technology, Beijing, China.
| | - Stavroula Balabani
- Mechanical Engineering Department, Roberts Engineering Building, University College London, Torrington Place, London, WC1E 7JE, United Kingdom; Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), Charles Bell House, London, W1W 7TY, United Kingdom.
| | - Vanessa Díaz-Zuccarini
- Mechanical Engineering Department, Roberts Engineering Building, University College London, Torrington Place, London, WC1E 7JE, United Kingdom; Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), Charles Bell House, London, W1W 7TY, United Kingdom.
| |
Collapse
|
15
|
Shi Y, Peng C, Liu J, Lan H, Li C, Qin W, Yuan T, Kan Y, Wang S, Fu W. A modified method of computed fluid dynamics simulation in abdominal aorta and visceral arteries. Comput Methods Biomech Biomed Engin 2021; 24:1718-1729. [PMID: 34569360 DOI: 10.1080/10255842.2021.1912742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE The flow velocity of visceral arteries was measured by 2D PCMRI to produce the patient-specific flow BC imposed on the outlets of visceral arteries in CFD simulation. This modified method aimed to improve the CFD accuracy in the abdominal aorta and visceral arteries. METHODS A volunteer underwent non-contrast-enhanced MRA to scan the abdominal aorta and visceral arteries, and 2D PCMRI to obtain the flow velocity of the aforementioned vessels. The three-dimensional geometric model was reconstructed using the MRI scan data of the abdominal aorta and visceral arteries. The flow waveforms measured by 2D PCMRI were processed and then imposed on the aortic inlet and the outlets of all visceral arteries as the flow BC. The RCR parameters of the three elements Windkessel model were modulated and imposed on the aortic outlet. CFD simulation was run in the open-source software: svSolver. The same volunteer underwent 4D flow MRI to compare the flow field with those extracted from CFD results. RESULTS Four specific time points in a cardiac cycle and three cross-sectional planes of aorta were selected to analyze the flow field, pressure and wall shear stress (WSS) from CFD. The flow waveforms and streamlines of CFD agreed with those of 4D flow MRI. The pressure waveforms, pressure distribution and WSS distribution from CFD conformed with the physiological condition of human body. CONCLUSION These results suggest this modified CFD method may yield reasonable flow field, pressure and WSS in the abdominal aorta and visceral arteries.
Collapse
Affiliation(s)
- Yun Shi
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Peng
- Department of aeronautics and astronautics, Fudan University, Shanghai, China
| | - Junzhen Liu
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongzhi Lan
- Shenzhen Raysight Intelligent Medical Technology Corporation, Shenzhen, China
| | - Chong Li
- Department of MR Enhance Application, GE Healthcare, Shanghai, China
| | - Wang Qin
- Department of aeronautics and astronautics, Fudan University, Shanghai, China
| | - Tong Yuan
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuanqing Kan
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shengzhang Wang
- Department of aeronautics and astronautics, Fudan University, Shanghai, China
| | - Weiguo Fu
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Abazari MA, Rafiei D, Soltani M, Alimohammadi M. The effect of beta-blockers on hemodynamic parameters in patient-specific blood flow simulations of type-B aortic dissection: a virtual study. Sci Rep 2021; 11:16058. [PMID: 34362955 PMCID: PMC8346572 DOI: 10.1038/s41598-021-95315-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/20/2021] [Indexed: 12/23/2022] Open
Abstract
Aortic dissection (AD) is one of the fatal and complex conditions. Since there is a lack of a specific treatment guideline for type-B AD, a better understanding of patient-specific hemodynamics and therapy outcomes can potentially control the progression of the disease and aid in the clinical decision-making process. In this work, a patient-specific geometry of type-B AD is reconstructed from computed tomography images, and a numerical simulation using personalised computational fluid dynamics (CFD) with three-element Windkessel model boundary condition at each outlet is implemented. According to the physiological response of beta-blockers to the reduction of left ventricular contractions, three case studies with different heart rates are created. Several hemodynamic features, including time-averaged wall shear stress (TAWSS), highly oscillatory, low magnitude shear (HOLMES), and flow pattern are investigated and compared between each case. Results show that decreasing TAWSS, which is caused by the reduction of the velocity gradient, prevents vessel wall at entry tear from rupture. Additionally, with the increase in HOLMES value at distal false lumen, calcification and plaque formation in the moderate and regular-heart rate cases are successfully controlled. This work demonstrates how CFD methods with non-invasive hemodynamic metrics can be developed to predict the hemodynamic changes before medication or other invasive operations. These consequences can be a powerful framework for clinicians and surgical communities to improve their diagnostic and pre-procedural planning.
Collapse
Affiliation(s)
- Mohammad Amin Abazari
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Deniz Rafiei
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
- Department of Electrical and Computer Engineering, Faculty of Engineering, School of Optometry and Vision Science, Faculty of Science, University of Waterloo, Waterloo, Canada.
- Advanced Bio Initiative Center, Multidisciplinary International Complex, K. N. Toosi University of Technology, Tehran, Iran.
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada.
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mona Alimohammadi
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
| |
Collapse
|
17
|
Manchester EL, Pirola S, Salmasi MY, O'Regan DP, Athanasiou T, Xu XY. Analysis of Turbulence Effects in a Patient-Specific Aorta with Aortic Valve Stenosis. Cardiovasc Eng Technol 2021; 12:438-453. [PMID: 33829405 PMCID: PMC8354935 DOI: 10.1007/s13239-021-00536-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/18/2021] [Indexed: 10/26/2022]
Abstract
Blood flow in the aorta is often assumed laminar, however aortic valve pathologies may induce transition to turbulence and our understanding of turbulence effects is incomplete. The aim of the study was to provide a detailed analysis of turbulence effects in aortic valve stenosis (AVS). METHODS Large-eddy simulation (LES) of flow through a patient-specific aorta with AVS was conducted. Magnetic resonance imaging (MRI) was performed and used for geometric reconstruction and patient-specific boundary conditions. Computed velocity field was compared with 4D flow MRI to check qualitative and quantitative consistency. The effect of turbulence was evaluated in terms of fluctuating kinetic energy, turbulence-related wall shear stress (WSS) and energy loss. RESULTS Our analysis suggested that turbulence was induced by a combination of a high velocity jet impinging on the arterial wall and a dilated ascending aorta which provided sufficient space for turbulence to develop. Turbulent WSS contributed to 40% of the total WSS in the ascending aorta and 38% in the entire aorta. Viscous and turbulent irreversible energy losses accounted for 3.9 and 2.7% of the total stroke work, respectively. CONCLUSIONS This study demonstrates the importance of turbulence in assessing aortic haemodynamics in a patient with AVS. Neglecting the turbulent contribution to WSS could potentially result in a significant underestimation of the total WSS. Further work is warranted to extend the analysis to more AVS cases and patients with other aortic valve diseases.
Collapse
Affiliation(s)
- Emily L Manchester
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Selene Pirola
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Mohammad Yousuf Salmasi
- Department of Surgery and Cancer, St Mary's Hospital, Imperial College London, London, W2 1NY, UK
| | - Declan P O'Regan
- Hammersmith Hospital, MRC London Institute of Medical Sciences Imperial College London, London, W12 0HS, UK
| | - Thanos Athanasiou
- Department of Surgery and Cancer, St Mary's Hospital, Imperial College London, London, W2 1NY, UK
| | - Xiao Yun Xu
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
18
|
Bonfanti M, Franzetti G, Homer-Vanniasinkam S, Díaz-Zuccarini V, Balabani S. A Combined In Vivo, In Vitro, In Silico Approach for Patient-Specific Haemodynamic Studies of Aortic Dissection. Ann Biomed Eng 2020; 48:2950-2964. [PMID: 32929558 PMCID: PMC7723947 DOI: 10.1007/s10439-020-02603-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/02/2020] [Indexed: 12/30/2022]
Abstract
The optimal treatment of Type-B aortic dissection (AD) is still a subject of debate, with up to 50% of the cases developing late-term complications requiring invasive intervention. A better understanding of the patient-specific haemodynamic features of AD can provide useful insights on disease progression and support clinical management. In this work, a novel in vitro and in silico framework to perform personalised studies of AD, informed by non-invasive clinical data, is presented. A Type-B AD was investigated in silico using computational fluid dynamics (CFD) and in vitro by means of a state-of-the-art mock circulatory loop and particle image velocimetry (PIV). Both models not only reproduced the anatomical features of the patient, but also imposed physiologically-accurate and personalised boundary conditions. Experimental flow rate and pressure waveforms, as well as detailed velocity fields acquired via PIV, are extensively compared against numerical predictions at different locations in the aorta, showing excellent agreement. This work demonstrates how experimental and numerical tools can be developed in synergy to accurately reproduce patient-specific AD blood flow. The combined platform presented herein constitutes a powerful tool for advanced haemodynamic studies for a range of vascular conditions, allowing not only the validation of CFD models, but also clinical decision support, surgical planning as well as medical device innovation.
Collapse
Affiliation(s)
- Mirko Bonfanti
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), Department of Medical Physics and Biomedical Engineering, University College London, 43-45 Foley Street, London, W1W 7TS UK
| | - Gaia Franzetti
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE UK
| | - Shervanthi Homer-Vanniasinkam
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), Department of Medical Physics and Biomedical Engineering, University College London, 43-45 Foley Street, London, W1W 7TS UK
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE UK
- Leeds Teaching Hospitals NHS Trust, Great George Street, Leeds, LS1 3EX UK
| | - Vanessa Díaz-Zuccarini
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), Department of Medical Physics and Biomedical Engineering, University College London, 43-45 Foley Street, London, W1W 7TS UK
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE UK
| | - Stavroula Balabani
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE UK
| |
Collapse
|
19
|
Khannous F, Guivier-Curien C, Gaudry M, Piquet P, Deplano V. Residual type B aortic dissection FSI modeling. Comput Methods Biomech Biomed Engin 2020. [DOI: 10.1080/10255842.2020.1812165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- F. Khannous
- Aix-Marseille Univ, CNRS, Ecole Centrale, IRPHE, Marseille, France
| | | | - M. Gaudry
- Aix-Marseille Univ, CNRS, Ecole Centrale, IRPHE, Marseille, France
- Aix-Marseille Univ, AP-HM, Service de chirurgie vasculaire de l’hôpital de la Timone, Marseille, France
| | - P. Piquet
- Aix-Marseille Univ, AP-HM, Service de chirurgie vasculaire de l’hôpital de la Timone, Marseille, France
| | - V. Deplano
- Aix-Marseille Univ, CNRS, Ecole Centrale, IRPHE, Marseille, France
| |
Collapse
|
20
|
Bäumler K, Vedula V, Sailer AM, Seo J, Chiu P, Mistelbauer G, Chan FP, Fischbein MP, Marsden AL, Fleischmann D. Fluid-structure interaction simulations of patient-specific aortic dissection. Biomech Model Mechanobiol 2020; 19:1607-1628. [PMID: 31993829 DOI: 10.1007/s10237-020-01294-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/14/2020] [Indexed: 12/01/2022]
Abstract
Credible computational fluid dynamic (CFD) simulations of aortic dissection are challenging, because the defining parallel flow channels-the true and the false lumen-are separated from each other by a more or less mobile dissection membrane, which is made up of a delaminated portion of the elastic aortic wall. We present a comprehensive numerical framework for CFD simulations of aortic dissection, which captures the complex interplay between physiologic deformation, flow, pressures, and time-averaged wall shear stress (TAWSS) in a patient-specific model. Our numerical model includes (1) two-way fluid-structure interaction (FSI) to describe the dynamic deformation of the vessel wall and dissection flap; (2) prestress and (3) external tissue support of the structural domain to avoid unphysiologic dilation of the aortic wall and stretching of the dissection flap; (4) tethering of the aorta by intercostal and lumbar arteries to restrict translatory motion of the aorta; and a (5) independently defined elastic modulus for the dissection flap and the outer vessel wall to account for their different material properties. The patient-specific aortic geometry is derived from computed tomography angiography (CTA). Three-dimensional phase contrast magnetic resonance imaging (4D flow MRI) and the patient's blood pressure are used to inform physiologically realistic, patient-specific boundary conditions. Our simulations closely capture the cyclical deformation of the dissection membrane, with flow simulations in good agreement with 4D flow MRI. We demonstrate that decreasing flap stiffness from [Formula: see text] to [Formula: see text] kPa (a) increases the displacement of the dissection flap from 1.4 to 13.4 mm, (b) decreases the surface area of TAWSS by a factor of 2.3, (c) decreases the mean pressure difference between true lumen and false lumen by a factor of 0.63, and (d) decreases the true lumen flow rate by up to 20% in the abdominal aorta. We conclude that the mobility of the dissection flap substantially influences local hemodynamics and therefore needs to be accounted for in patient-specific simulations of aortic dissection. Further research to accurately measure flap stiffness and its local variations could help advance future CFD applications.
Collapse
Affiliation(s)
- Kathrin Bäumler
- 3D and Quantitative Imaging Laboratory, Department of Radiology, Stanford University, Stanford, CA, 94305, USA.
| | - Vijay Vedula
- Department of Pediatrics (Cardiology), Stanford University, Stanford, CA, 94305, USA
| | - Anna M Sailer
- 3D and Quantitative Imaging Laboratory, Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Jongmin Seo
- Department of Pediatrics (Cardiology), Stanford University, Stanford, CA, 94305, USA
| | - Peter Chiu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, 94305, USA
| | - Gabriel Mistelbauer
- Department of Simulation and Graphics, University of Magdeburg, Magdeburg, Germany
| | - Frandics P Chan
- 3D and Quantitative Imaging Laboratory, Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Michael P Fischbein
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, 94305, USA
| | - Alison L Marsden
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Dominik Fleischmann
- 3D and Quantitative Imaging Laboratory, Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
21
|
Sadipour M, Hanafizadeh P, Sadeghy K, Sattari A. Effect of Aortic Wall Deformation with Healthy and Calcified Annulus on Hemodynamic Performance of Implanted On-X Valve. Cardiovasc Eng Technol 2020; 11:141-161. [PMID: 31912432 DOI: 10.1007/s13239-019-00453-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/24/2019] [Indexed: 11/27/2022]
Abstract
INTRODUCTION In this research, the hemodynamic performance of a 23-mm On-X bileaflet mechanical heart valve (BMHV) was investigated with the realistic geometry model of the valve and the deformable aorta in accelerating systole. In addition, the effect of ascending aorta flexibility and aortic annulus calcification on the complex blood flow characteristics were investigated. METHODS The geometry of the aorta is derived from the medical images, and the Ogden model has been utilized for the mechanical behavior of the ascending aorta. The 3D numerical simulation by a two-way Fluid-Structure Interaction (FSI) analysis using the Arbitrary Lagrangian-Eulerian (ALE) method was performed throughout the accelerating systolic phase. RESULTS The dynamics of the leaflets are investigated, and blood flow characteristics such as velocities, vorticities as well as viscous and turbulent shear stress were precisely captured in the flow domain specifically in the hinge region. Streamline results are in accordance with the previously reported data, which show that the flared On-X valves inlet yields a more uniform flow in accelerating systole. Simulations show that aorta flexibility or valve annulus calcification causes variations up to 7% in maximum fluid velocity and 20% in Turbulence Kinetic Energy (TKE). CONCLUSIONS In this study, the complex flow field characteristics in the new generation of BMHVs considering aorta flexibility with healthy and calcified annulus were investigated. It was found that the blood flow around the hinges region is in the danger of hemolysis and platelet activation and subsequently thromboembolism. Furthermore, the results show that similar to vessel wall deformation, considering the probable annulus calcification after valve replacement is also essential.
Collapse
Affiliation(s)
- Masod Sadipour
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Pedram Hanafizadeh
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Keyvan Sadeghy
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Amirmohammad Sattari
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
22
|
Vardakis JC, Bonfanti M, Franzetti G, Guo L, Lassila T, Mitolo M, Hoz de Vila M, Greenwood JP, Maritati G, Chou D, Taylor ZA, Venneri A, Homer-Vanniasinkam S, Balabani S, Frangi AF, Ventikos Y, Diaz-Zuccarini V. Highly integrated workflows for exploring cardiovascular conditions: Exemplars of precision medicine in Alzheimer's disease and aortic dissection. Morphologie 2019; 103:148-160. [PMID: 31786098 DOI: 10.1016/j.morpho.2019.10.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 12/31/2022]
Abstract
For precision medicine to be implemented through the lens of in silico technology, it is imperative that biophysical research workflows offer insight into treatments that are specific to a particular illness and to a particular subject. The boundaries of precision medicine can be extended using multiscale, biophysics-centred workflows that consider the fundamental underpinnings of the constituents of cells and tissues and their dynamic environments. Utilising numerical techniques that can capture the broad spectrum of biological flows within complex, deformable and permeable organs and tissues is of paramount importance when considering the core prerequisites of any state-of-the-art precision medicine pipeline. In this work, a succinct breakdown of two precision medicine pipelines developed within two Virtual Physiological Human (VPH) projects are given. The first workflow is targeted on the trajectory of Alzheimer's Disease, and caters for novel hypothesis testing through a multicompartmental poroelastic model which is integrated with a high throughput imaging workflow and subject-specific blood flow variability model. The second workflow gives rise to the patient specific exploration of Aortic Dissections via a multi-scale and compliant model, harnessing imaging, computational fluid-dynamics (CFD) and dynamic boundary conditions. Results relating to the first workflow include some core outputs of the multiporoelastic modelling framework, and the representation of peri-arterial swelling and peri-venous drainage solution fields. The latter solution fields were statistically analysed for a cohort of thirty-five subjects (stratified with respect to disease status, gender and activity level). The second workflow allowed for a better understanding of complex aortic dissection cases utilising both a rigid-wall model informed by minimal and clinically common datasets as well as a moving-wall model informed by rich datasets.
Collapse
Affiliation(s)
- J C Vardakis
- Centre for Computational Imaging & Simulation Technologies in Biomedicine (CISTIB), School of Computing, University of Leeds, UK.
| | - M Bonfanti
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK; Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), Department of Medical Physics and Biomedical Engineering, University College London, UK
| | - G Franzetti
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - L Guo
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - T Lassila
- Centre for Computational Imaging & Simulation Technologies in Biomedicine (CISTIB), School of Computing, University of Leeds, UK
| | - M Mitolo
- Functional MR Unit, Policlinico S. Orsola e Malpighi, Department of Biomedical and NeuroMotor Sciences (DiBiNeM), Bologna, Italy
| | - M Hoz de Vila
- Centre for Computational Imaging & Simulation Technologies in Biomedicine (CISTIB), School of Computing, University of Leeds, UK
| | - J P Greenwood
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, UK; Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - G Maritati
- Ospedale A. Perrino, Brindisi, Italy; Azienda Ospedaliera San Camillo-Forlanini, Rome, Italy
| | - D Chou
- Department of Mechanical Engineering, National Central University, Taoyuan County, Taiwan
| | - Z A Taylor
- Centre for Computational Imaging & Simulation Technologies in Biomedicine (CISTIB), School of Mechanical Engineering, University of Leeds, UK
| | - A Venneri
- Department of Neuroscience, Medical School, University of Sheffield, UK
| | - S Homer-Vanniasinkam
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK; Leeds Teaching Hospitals NHS Trust, Leeds, UK; University of Warwick Medical School & University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - S Balabani
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - A F Frangi
- Centre for Computational Imaging & Simulation Technologies in Biomedicine (CISTIB), School of Computing, University of Leeds, UK
| | - Y Ventikos
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - V Diaz-Zuccarini
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK; Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), Department of Medical Physics and Biomedical Engineering, University College London, UK.
| |
Collapse
|
23
|
Donadoni F, Bonfanti M, Pichardo-Almarza C, Homer-Vanniasinkam S, Dardik A, Díaz-Zuccarini V. An in silico study of the influence of vessel wall deformation on neointimal hyperplasia progression in peripheral bypass grafts. Med Eng Phys 2019; 74:137-145. [PMID: 31540730 DOI: 10.1016/j.medengphy.2019.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/08/2019] [Accepted: 09/08/2019] [Indexed: 10/26/2022]
Abstract
Neointimal hyperplasia (NIH) is a major obstacle to graft patency in the peripheral arteries. A complex interaction of biomechanical factors contribute to NIH development and progression, and although haemodynamic markers such as wall shear stress have been linked to the disease, these have so far been insufficient to fully capture its behaviour. Using a computational model linking computational fluid dynamics (CFD) simulations of blood flow with a biochemical model representing NIH growth mechanisms, we analyse the effect of compliance mismatch, due to the presence of surgical stitches and/or to the change in distensibility between artery and vein graft, on the haemodynamics in the lumen and, subsequently, on NIH progression. The model enabled to simulate NIH at proximal and distal anastomoses of three patient-specific end-to-side saphenous vein grafts under two compliance-mismatch configurations, and a rigid wall case for comparison, obtaining values of stenosis similar to those observed in the computed tomography (CT) scans. The maximum difference in time-averaged wall shear stress between the rigid and compliant models was 3.4 Pa, and differences in estimation of NIH progression were only observed in one patient. The impact of compliance on the haemodynamic-driven development of NIH was small in the patient-specific cases considered.
Collapse
Affiliation(s)
- Francesca Donadoni
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Mirko Bonfanti
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK; Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), Department of Medical Physics and Biomedical Engineering, University College London, W1W 7TS, UK
| | - Cesar Pichardo-Almarza
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Shervanthi Homer-Vanniasinkam
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK; Leeds Teaching Hospitals NHS Trust, LS1 3EX, UK; Division of Surgery, University of Warwick, Warwick, UK
| | - Alan Dardik
- The Department of Surgery, Yale University School of Medicine, New Haven, CT, USA; Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Vanessa Díaz-Zuccarini
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK; Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), Department of Medical Physics and Biomedical Engineering, University College London, W1W 7TS, UK.
| |
Collapse
|
24
|
Patient-specific haemodynamic simulations of complex aortic dissections informed by commonly available clinical datasets. Med Eng Phys 2019; 71:45-55. [DOI: 10.1016/j.medengphy.2019.06.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/22/2019] [Accepted: 06/09/2019] [Indexed: 12/26/2022]
|
25
|
Diaz-Zuccarini V, Bonfanti M, Franzetti G, Balabani S. Virtual TEVAR: Overcoming the Roadblocks of In-Silico Tools for Aortic Dissection Treatment. Theranostics 2019; 8:6384-6385. [PMID: 30613306 PMCID: PMC6299687 DOI: 10.7150/thno.30753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 10/30/2018] [Indexed: 11/29/2022] Open
Abstract
The use of in silico tools for the interventional planning of complex vascular conditions, such as Aortic Dissections has been often limited by high computational cost, involving long timescales for accurate results to be produced and low numbers of patients, precluding the use of statistical analyses to inform individual-level models. In the paper [Theranostics 2018; 8(20):5758-5771. doi:10.7150/thno.28944], Chen et al. proposed a novel algorithm to compute patient-specific 'virtual TEVAR' that will help clinicians to approach individual treatment and decision-making based on objective and quantifiable metrics and validated on a cohort of 66 patients in real time. This research will significantly impact the field and has the potential to transform the way clinical interventions will be approached in the future.
Collapse
|