1
|
Duan T, Chen W, Ruan M, Zhang X, Shen S, Gu W. Unsupervised deep learning-based medical image registration: a survey. Phys Med Biol 2025; 70:02TR01. [PMID: 39667278 DOI: 10.1088/1361-6560/ad9e69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/12/2024] [Indexed: 12/14/2024]
Abstract
In recent decades, medical image registration technology has undergone significant development, becoming one of the core technologies in medical image analysis. With the rise of deep learning, deep learning-based medical image registration methods have achieved revolutionary improvements in processing speed and automation, showing great potential, especially in unsupervised learning. This paper briefly introduces the core concepts of deep learning-based unsupervised image registration, followed by an in-depth discussion of innovative network architectures and a detailed review of these studies, highlighting their unique contributions. Additionally, this paper explores commonly used loss functions, datasets, and evaluation metrics. Finally, we discuss the main challenges faced by various categories and propose potential future research topics. This paper surveys the latest advancements in unsupervised deep neural network-based medical image registration methods, aiming to help active readers interested in this field gain a deep understanding of this exciting area.
Collapse
Affiliation(s)
- Taisen Duan
- School of Computer, Electronics and Information, Guangxi University, Nanning 530004, People's Republic of China
- Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning 530004, People's Republic of China
| | - Wenkang Chen
- School of Computer, Electronics and Information, Guangxi University, Nanning 530004, People's Republic of China
- Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning 530004, People's Republic of China
| | - Meilin Ruan
- School of Computer, Electronics and Information, Guangxi University, Nanning 530004, People's Republic of China
| | - Xuejun Zhang
- School of Computer, Electronics and Information, Guangxi University, Nanning 530004, People's Republic of China
- Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning 530004, People's Republic of China
| | - Shaofei Shen
- School of Computer, Electronics and Information, Guangxi University, Nanning 530004, People's Republic of China
- Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning 530004, People's Republic of China
| | - Weiyu Gu
- School of Computer, Electronics and Information, Guangxi University, Nanning 530004, People's Republic of China
- Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning 530004, People's Republic of China
| |
Collapse
|
2
|
Liu H, McKenzie E, Xu D, Xu Q, Chin RK, Ruan D, Sheng K. MUsculo-Skeleton-Aware (MUSA) deep learning for anatomically guided head-and-neck CT deformable registration. Med Image Anal 2025; 99:103351. [PMID: 39388843 DOI: 10.1016/j.media.2024.103351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 06/05/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024]
Abstract
Deep-learning-based deformable image registration (DL-DIR) has demonstrated improved accuracy compared to time-consuming non-DL methods across various anatomical sites. However, DL-DIR is still challenging in heterogeneous tissue regions with large deformation. In fact, several state-of-the-art DL-DIR methods fail to capture the large, anatomically plausible deformation when tested on head-and-neck computed tomography (CT) images. These results allude to the possibility that such complex head-and-neck deformation may be beyond the capacity of a single network structure or a homogeneous smoothness regularization. To address the challenge of combined multi-scale musculoskeletal motion and soft tissue deformation in the head-and-neck region, we propose a MUsculo-Skeleton-Aware (MUSA) framework to anatomically guide DL-DIR by leveraging the explicit multiresolution strategy and the inhomogeneous deformation constraints between the bony structures and soft tissue. The proposed method decomposes the complex deformation into a bulk posture change and residual fine deformation. It can accommodate both inter- and intra- subject registration. Our results show that the MUSA framework can consistently improve registration accuracy and, more importantly, the plausibility of deformation for various network architectures. The code will be publicly available at https://github.com/HengjieLiu/DIR-MUSA.
Collapse
Affiliation(s)
- Hengjie Liu
- Physics and Biology in Medicine Graduate Program, University of California Los Angeles, Los Angeles, CA, USA; Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - Elizabeth McKenzie
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Di Xu
- UCSF/UC Berkeley Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA; Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Qifan Xu
- UCSF/UC Berkeley Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA; Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Robert K Chin
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - Dan Ruan
- Physics and Biology in Medicine Graduate Program, University of California Los Angeles, Los Angeles, CA, USA; Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - Ke Sheng
- UCSF/UC Berkeley Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA; Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Cao YH, Bourbonne V, Lucia F, Schick U, Bert J, Jaouen V, Visvikis D. CT respiratory motion synthesis using joint supervised and adversarial learning. Phys Med Biol 2024; 69:095001. [PMID: 38537289 DOI: 10.1088/1361-6560/ad388a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/27/2024] [Indexed: 04/16/2024]
Abstract
Objective.Four-dimensional computed tomography (4DCT) imaging consists in reconstructing a CT acquisition into multiple phases to track internal organ and tumor motion. It is commonly used in radiotherapy treatment planning to establish planning target volumes. However, 4DCT increases protocol complexity, may not align with patient breathing during treatment, and lead to higher radiation delivery.Approach.In this study, we propose a deep synthesis method to generate pseudo respiratory CT phases from static images for motion-aware treatment planning. The model produces patient-specific deformation vector fields (DVFs) by conditioning synthesis on external patient surface-based estimation, mimicking respiratory monitoring devices. A key methodological contribution is to encourage DVF realism through supervised DVF training while using an adversarial term jointly not only on the warped image but also on the magnitude of the DVF itself. This way, we avoid excessive smoothness typically obtained through deep unsupervised learning, and encourage correlations with the respiratory amplitude.Main results.Performance is evaluated using real 4DCT acquisitions with smaller tumor volumes than previously reported. Results demonstrate for the first time that the generated pseudo-respiratory CT phases can capture organ and tumor motion with similar accuracy to repeated 4DCT scans of the same patient. Mean inter-scans tumor center-of-mass distances and Dice similarity coefficients were 1.97 mm and 0.63, respectively, for real 4DCT phases and 2.35 mm and 0.71 for synthetic phases, and compares favorably to a state-of-the-art technique (RMSim).Significance.This study presents a deep image synthesis method that addresses the limitations of conventional 4DCT by generating pseudo-respiratory CT phases from static images. Although further studies are needed to assess the dosimetric impact of the proposed method, this approach has the potential to reduce radiation exposure in radiotherapy treatment planning while maintaining accurate motion representation. Our training and testing code can be found athttps://github.com/cyiheng/Dynagan.
Collapse
Affiliation(s)
- Y-H Cao
- LaTIM, UMR Inserm 1101, Université de Bretagne Occidentale, IMT Atlantique, Brest, France
| | - V Bourbonne
- LaTIM, UMR Inserm 1101, Université de Bretagne Occidentale, IMT Atlantique, Brest, France
- CHRU Brest University Hospital, Brest, France
| | - F Lucia
- LaTIM, UMR Inserm 1101, Université de Bretagne Occidentale, IMT Atlantique, Brest, France
- CHRU Brest University Hospital, Brest, France
| | - U Schick
- LaTIM, UMR Inserm 1101, Université de Bretagne Occidentale, IMT Atlantique, Brest, France
- CHRU Brest University Hospital, Brest, France
| | - J Bert
- LaTIM, UMR Inserm 1101, Université de Bretagne Occidentale, IMT Atlantique, Brest, France
- CHRU Brest University Hospital, Brest, France
| | - V Jaouen
- LaTIM, UMR Inserm 1101, Université de Bretagne Occidentale, IMT Atlantique, Brest, France
- IMT Atlantique, Brest, France
| | - D Visvikis
- LaTIM, UMR Inserm 1101, Université de Bretagne Occidentale, IMT Atlantique, Brest, France
| |
Collapse
|
4
|
La Barbera G, Rouet L, Boussaid H, Lubet A, Kassir R, Sarnacki S, Gori P, Bloch I. Tubular structures segmentation of pediatric abdominal-visceral ceCT images with renal tumors: Assessment, comparison and improvement. Med Image Anal 2023; 90:102986. [PMID: 37820418 DOI: 10.1016/j.media.2023.102986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/23/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
Renal tubular structures, such as ureters, arteries and veins, are very important for building a complete digital 3D anatomical model of a patient. However, they can be challenging to segment from ceCT images due to their elongated shape, diameter variation and intra- and inter-patient contrast heterogeneity. This task is even more difficult in pediatric and pathological subjects, due to high inter-subject anatomical variations, potential presence of tumors, small volume of these structures compared to the surrounding, and small available labeled datasets. Given the limited literature on methods dedicated to children, and in order to find inspirational approaches, a complete assessment of state-of-the-art methods for the segmentation of renal tubular structures on ceCT images on adults is presented. Then, these methods are tested and compared on a private pediatric and pathological dataset of 79 abdominal-visceral ceCT images with arteriovenous phase acquisitions. To the best of our knowledge, both assessment and comparison in this specific case are novel. Eventually, we also propose a new loss function which leverages for the first time the use of vesselness functions on the predicted segmentation. We show that the combination of this loss function with state-of-the-art methods improves the topological coherence of the segmented tubular structures.2.
Collapse
Affiliation(s)
- Giammarco La Barbera
- LTCI, Télécom Paris, Institut Polytechnique de Paris, France; IMAG2, Institut Imagine, Université Paris Cité, France.
| | | | - Haithem Boussaid
- Philips Research Paris, Suresnes, France; Technology Innovation Institute, Abu Dhabi, United Arab Emirates
| | - Alexis Lubet
- IMAG2, Institut Imagine, Université Paris Cité, France
| | - Rani Kassir
- IMAG2, Institut Imagine, Université Paris Cité, France; Université Paris Cité, Department of Pediatric Surgery, Hôpital Necker Enfants-Malades, APHP, France
| | - Sabine Sarnacki
- IMAG2, Institut Imagine, Université Paris Cité, France; Université Paris Cité, Department of Pediatric Surgery, Hôpital Necker Enfants-Malades, APHP, France
| | - Pietro Gori
- LTCI, Télécom Paris, Institut Polytechnique de Paris, France
| | - Isabelle Bloch
- LTCI, Télécom Paris, Institut Polytechnique de Paris, France; IMAG2, Institut Imagine, Université Paris Cité, France; Sorbonne Université, CNRS, LIP6, Paris, France
| |
Collapse
|
5
|
Tian L, Greer H, Vialard FX, Kwitt R, Estépar RSJ, Rushmore RJ, Makris N, Bouix S, Niethammer M. GradICON: Approximate Diffeomorphisms via Gradient Inverse Consistency. PROCEEDINGS. IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION 2023; 2023:18084-18094. [PMID: 39247628 PMCID: PMC11378329 DOI: 10.1109/cvpr52729.2023.01734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
We present an approach to learning regular spatial transformations between image pairs in the context of medical image registration. Contrary to optimization-based registration techniques and many modern learning-based methods, we do not directly penalize transformation irregularities but instead promote transformation regularity via an inverse consistency penalty. We use a neural network to predict a map between a source and a target image as well as the map when swapping the source and target images. Different from existing approaches, we compose these two resulting maps and regularize deviations of the Jacobian of this composition from the identity matrix. This regularizer - GradICON - results in much better convergence when training registration models compared to promoting inverse consistency of the composition of maps directly while retaining the desirable implicit regularization effects of the latter. We achieve state-of-the-art registration performance on a variety of real-world medical image datasets using a single set of hyperparameters and a single non-dataset-specific training protocol. Code is available at https://github.com/uncbiag/ICON.
Collapse
|
6
|
Ho TT, Kim WJ, Lee CH, Jin GY, Chae KJ, Choi S. An unsupervised image registration method employing chest computed tomography images and deep neural networks. Comput Biol Med 2023; 154:106612. [PMID: 36738711 DOI: 10.1016/j.compbiomed.2023.106612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/11/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Deformable image registration is crucial for multiple radiation therapy applications. Fast registration of computed tomography (CT) lung images is challenging because of the large and nonlinear deformation between inspiration and expiration. With advancements in deep learning techniques, learning-based registration methods are considered efficient alternatives to traditional methods in terms of accuracy and computational cost. METHOD In this study, an unsupervised lung registration network (LRN) with cycle-consistent training is proposed to align two acquired CT-derived lung datasets during breath-holds at inspiratory and expiratory levels without utilizing any ground-truth registration results. Generally, the LRN model uses three loss functions: image similarity, regularization, and Jacobian determinant. Here, LRN was trained on the CT datasets of 705 subjects and tested using 10 pairs of public CT DIR-Lab datasets. Furthermore, to evaluate the effectiveness of the registration technique, target registration errors (TREs) of the LRN model were compared with those of the conventional algorithm (sum of squared tissue volume difference; SSTVD) and a state-of-the-art unsupervised registration method (VoxelMorph). RESULTS The results showed that the LRN with an average TRE of 1.78 ± 1.56 mm outperformed VoxelMorph with an average TRE of 2.43 ± 2.43 mm, which is comparable to that of SSTVD with an average TRE of 1.66 ± 1.49 mm. In addition, estimating the displacement vector field without any folding voxel consumed less than 2 s, demonstrating the superiority of the learning-based method with respect to fiducial marker tracking and the overall soft tissue alignment with a nearly real-time speed. CONCLUSIONS Therefore, this proposed method shows significant potential for use in time-sensitive pulmonary studies, such as lung motion tracking and image-guided surgery.
Collapse
Affiliation(s)
- Thao Thi Ho
- School of Mechanical Engineering, Kyungpook National University, Daegu, South Korea
| | - Woo Jin Kim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Chang Hyun Lee
- Department of Radiology, Seoul National University, College of Medicine, Seoul National University Hospital, Seoul, South Korea; Department of Radiology, College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Gong Yong Jin
- Department of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - Kum Ju Chae
- Department of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - Sanghun Choi
- School of Mechanical Engineering, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
7
|
Pan Y, Wang D, Chaudhary MFA, Shao W, Gerard SE, Durumeric OC, Bhatt SP, Barr RG, Hoffman EA, Reinhardt JM, Christensen GE. Robust Measures of Image-Registration-Derived Lung Biomechanics in SPIROMICS. J Imaging 2022; 8:309. [PMID: 36422058 PMCID: PMC9693030 DOI: 10.3390/jimaging8110309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is an umbrella term used to define a collection of inflammatory lung diseases that cause airflow obstruction and severe damage to the lung parenchyma. This study investigated the robustness of image-registration-based local biomechanical properties of the lung in individuals with COPD as a function of Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage. Image registration was used to estimate the pointwise correspondences between the inspiration (total lung capacity) and expiration (residual volume) computed tomography (CT) images of the lung for each subject. In total, three biomechanical measures were computed from the correspondence map: the Jacobian determinant; the anisotropic deformation index (ADI); and the slab-rod index (SRI). CT scans from 245 subjects with varying GOLD stages were analyzed from the SubPopulations and InteRmediate Outcome Measures In COPD Study (SPIROMICS). Results show monotonic increasing or decreasing trends in the three biomechanical measures as a function of GOLD stage for the entire lung and on a lobe-by-lobe basis. Furthermore, these trends held across all five image registration algorithms. The consistency of the five image registration algorithms on a per individual basis is shown using Bland-Altman plots.
Collapse
Affiliation(s)
- Yue Pan
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Di Wang
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Muhammad F. A. Chaudhary
- The Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Wei Shao
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Sarah E. Gerard
- The Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Oguz C. Durumeric
- Department of Mathematics, University of Iowa, Iowa City, IA 52242, USA
| | - Surya P. Bhatt
- UAB Lung Imaging Core, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - R. Graham Barr
- Departments of Medicine and Epidemiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Eric A. Hoffman
- The Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
- Department of Radiology, University of Iowa, Iowa City, IA 52242, USA
| | - Joseph M. Reinhardt
- The Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
- Department of Radiology, University of Iowa, Iowa City, IA 52242, USA
| | - Gary E. Christensen
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA 52242, USA
- Department of Radiology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|