1
|
Valentin JDP, Kadakia P, Varidel LJ, Stuart MCA, Salentinig S. Colloidal Structure Dictates Antimicrobial Efficacy in LL-37 Self-Assemblies With Glycerol Monooleate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405131. [PMID: 39407429 DOI: 10.1002/smll.202405131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/03/2024] [Indexed: 12/20/2024]
Abstract
The antimicrobial peptide LL-37 is a promising alternative to conventional antibiotics to combat bacteria in suspension and biofilms. Its self-assembly with polar lipids is suggested to improve its potential for therapeutic applications with higher stability against degradation and bioavailability. This study investigates the self-assembly of LL-37 with glyceryl monooleate (GMO), establishing the link between colloidal structure and antimicrobial activity. Small-angle X-ray scattering, dynamic light scattering and cryogenic transmission electron microscopy show structural transformation from dispersions of inverse bicontinuous structure (cubosomes) to multilamellar vesicles and direct rod-like mixed-micelles upon increasing the content of LL-37 in GMO. In vitro assays against planktonic and biofilm cells demonstrate that 128 µg mL-1 of GMO cubosomes have no impact on Pseudomonas aeruginosa. Still, the cubosomes reduce the Staphylococcus aureus planktonic population by ≈ 1-log after 24 h. Cylindrical micelles formed at LL-37/GMO 9/1 and 8/2 with 128 µg mL-1 LL-37 decrease the Pseudomonas aeruginosa population by 6-log. This activity is gradually abolished when LL-37 is encapsulated in vesicles or cubosomes. They also demonstrate low antibiofilm efficacy and promote the biomass of Staphylococcus aureus biofilms. These results highlight the importance of colloidal structure for therapeutic outcomes, providing insights for advanced lipid nanocarrier designs.
Collapse
Affiliation(s)
- Jules D P Valentin
- Department of Chemistry and National Center of Competence in Research Bio-inspired Materials, University of Fribourg, Chemin du Musée 9, Fribourg, 1700, Switzerland
| | - Parth Kadakia
- Department of Chemistry and National Center of Competence in Research Bio-inspired Materials, University of Fribourg, Chemin du Musée 9, Fribourg, 1700, Switzerland
| | - Lucie J Varidel
- Department of Chemistry and National Center of Competence in Research Bio-inspired Materials, University of Fribourg, Chemin du Musée 9, Fribourg, 1700, Switzerland
| | - Marc C A Stuart
- Centre for System Chemistry, Stratingh Institute for Chemistry and Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen, 9747AG, The Netherlands
| | - Stefan Salentinig
- Department of Chemistry and National Center of Competence in Research Bio-inspired Materials, University of Fribourg, Chemin du Musée 9, Fribourg, 1700, Switzerland
| |
Collapse
|
2
|
Ansari M, Moradi S, Hosseinzadeh S, Shahlaei M. Computational assessment of lipid facilitated membrane permeation of vancomycin using force-probe molecular dynamic simulation. J Biomol Struct Dyn 2024; 42:8854-8864. [PMID: 37608542 DOI: 10.1080/07391102.2023.2248513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023]
Abstract
In this study the efficacy of different edible lipids for drug permeation enhancement of vancomycin through biological membrane was investigated using molecular dynamic simulation. In this regard, at first the ability of the lipids for complex formation with the drug was evaluated for number of most common edible lipids including tripalmitin (TPA), trimyristin (TMY), labrafil (LAB), glycerol monostearate (GMS), glycerol monooleate (GMO), Distearoylphosphorylethanolamine (DSPE), dipalmitoylphosphatidylethanolamine (DPPE), Dipalmitoylphosphatidylcholine (DPPC), cholesterol (CL), stearic acid (SA), palmitic acid (PA) and oleic acid (OA). Then the complexes were pulled thorough a bilayer membrane while the changes in force were probed. The results showed that besides the SA, PA and OA the other examined lipids were able to perform a perfect molecular complex with the drug. Also the results of pulling simulation revealed that the least of force was needed for drug transmittance through the membrane when it was covered by LAB, TMY and DSPE. These results indicated that these lipids can be the excellent materials of choice as permeation enhancer for preparing a proper oral formulation of vancomycin.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohabbat Ansari
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Moradi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Simzar Hosseinzadeh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Shahlaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
3
|
Dalbanjan NP, Praveen Kumar SK. A Chronicle Review of In-Silico Approaches for Discovering Novel Antimicrobial Agents to Combat Antimicrobial Resistance. Indian J Microbiol 2024; 64:879-893. [PMID: 39282180 PMCID: PMC11399514 DOI: 10.1007/s12088-024-01355-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/11/2024] [Indexed: 09/18/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a foremost threat to global health, necessitating innovative strategies for discovering antimicrobial agents. This review explores the role and recent advances of in-silico techniques in identifying novel antimicrobial agents and combating AMR giving few briefings of recent case studies of AMR. In-silico techniques, such as homology modeling, virtual screening, molecular docking, pharmacophore modeling, molecular dynamics simulation, density functional theory, integrated machine learning, and artificial intelligence, are systematically reviewed for their utility in discovering antimicrobial agents. These computational methods enable the rapid screening of large compound libraries, prediction of drug-target interactions, and optimization of drug candidates. The review discusses integrating in-silico approaches with traditional experimental methods and highlights their potential to accelerate the discovery of new antimicrobial agents. Furthermore, it emphasizes the significance of interdisciplinary collaboration and data-sharing initiatives in advancing antimicrobial research. Through a comprehensive discussion of the latest developments in in-silico techniques, this review provides valuable insights into the future of antimicrobial research and the fight against AMR. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01355-x.
Collapse
Affiliation(s)
| | - S K Praveen Kumar
- Protein Biology Lab, Department of Biochemistry, Karnatak University, Dharwad, Karnataka 580003 India
| |
Collapse
|
4
|
Anurag Anand A, Amod A, Anwar S, Sahoo AK, Sethi G, Samanta SK. A comprehensive guide on screening and selection of a suitable AMP against biofilm-forming bacteria. Crit Rev Microbiol 2024; 50:859-878. [PMID: 38102871 DOI: 10.1080/1040841x.2023.2293019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Lately, antimicrobial resistance (AMR) is increasing at an exponential rate making it important to search alternatives to antibiotics in order to combat multi-drug resistant (MDR) bacterial infections. Out of the several antibacterial and antibiofilm strategies being tested, antimicrobial peptides (AMPs) have shown to give better hopes in terms of a long-lasting solution to the problem. To select a desired AMP, it is important to make right use of available tools and databases that aid in identification, classification, and analysis of the physiochemical properties of AMPs. To identify the targets of these AMPs, it becomes crucial to understand their mode-of-action. AMPs can also be used in combination with other antibacterial and antibiofilm agents so as to achieve enhanced efficacy against bacteria and their biofilms. Due to concerns regarding toxicity, stability, and bioavailability, strategizing drug formulation at an early-stage becomes crucial. Although there are few concerns regarding development of bacterial resistance to AMPs, the evolution of resistance to AMPs occurs extremely slowly. This comprehensive review gives a deep insight into the selection of the right AMP, deciding the right target and combination strategy along with the type of formulation needed, and the possible resistance that bacteria can develop to these AMPs.
Collapse
Affiliation(s)
- Ananya Anurag Anand
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, India
| | - Ayush Amod
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, India
| | - Sarfraz Anwar
- Department of Bioinformatics, University of Allahabad, Prayagraj, India
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sintu Kumar Samanta
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, India
| |
Collapse
|
5
|
Park H, Jin H, Kim D, Lee J. Cell-Free Systems: Ideal Platforms for Accelerating the Discovery and Production of Peptide-Based Antibiotics. Int J Mol Sci 2024; 25:9109. [PMID: 39201795 PMCID: PMC11354240 DOI: 10.3390/ijms25169109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Peptide-based antibiotics (PBAs), including antimicrobial peptides (AMPs) and their synthetic mimics, have received significant interest due to their diverse and unique bioactivities. The integration of high-throughput sequencing and bioinformatics tools has dramatically enhanced the discovery of enzymes, allowing researchers to identify specific genes and metabolic pathways responsible for producing novel PBAs more precisely. Cell-free systems (CFSs) that allow precise control over transcription and translation in vitro are being adapted, which accelerate the identification, characterization, selection, and production of novel PBAs. Furthermore, these platforms offer an ideal solution for overcoming the limitations of small-molecule antibiotics, which often lack efficacy against a broad spectrum of pathogens and contribute to the development of antibiotic resistance. In this review, we highlight recent examples of how CFSs streamline these processes while expanding our ability to access new antimicrobial agents that are effective against antibiotic-resistant infections.
Collapse
Affiliation(s)
- Hyeongwoo Park
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology, Pohang 37673, Republic of Korea;
| | - Haneul Jin
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (H.J.); (D.K.)
| | - Dayeong Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (H.J.); (D.K.)
| | - Joongoo Lee
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology, Pohang 37673, Republic of Korea;
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (H.J.); (D.K.)
| |
Collapse
|
6
|
Dan MO, Tǎlǎpan D. Friends or foes? Novel antimicrobials tackling MDR/XDR Gram-negative bacteria: a systematic review. Front Microbiol 2024; 15:1385475. [PMID: 38800756 PMCID: PMC11116650 DOI: 10.3389/fmicb.2024.1385475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/17/2024] [Indexed: 05/29/2024] Open
Abstract
Gram-negative bacteria have been one of the most studied classes in the field of microbiology, especially in the context of globally alarming antimicrobial resistance levels to these pathogens over the course of the past decades. With high numbers of these microorganisms being described as multidrug-resistant (MDR), or even extended-drug-resistant (XDR) bacteria, specialists in the field have been struggling to keep up with higher prevalence of difficult-to-treat infections caused by such superbugs. The FDA approval of novel antimicrobials, such as cefiderocol (FDC), ceftolozane/tazobactam (C/T), ceftazidime/avibactam (CZA), imipenem/relebactam (IMR), sulbactam/durlobactam (SUL-DUR) and phase 3 clinical trials' results of aztreonam/avibactam (ATM-AVI) has proven that, while all these substances provide encouraging efficacy rates, antibiotic resistance keeps up with the pace of drug development. Microorganisms have developed more extensive mechanisms of resistance in order to target the threat posed by these novel antimicrobials, thus equiring researchers to be on a constant lookout for other potential drug candidates and molecule development. However, these strategies require a proper understanding of bacterial resistance mechanisms to gain a comprehensive outlook on the issue. The present review aims to highlight these six antibiotic agents, which have brought hope to clinicians during the past decade, discussing general properties of these substances, as well as mechanisms and patterns of resistance, while also providing a short overview on further directions in the field. Systematic review registration https://www.crd.york.ac.uk/prospero/#searchadvanced, Identifier CRD42024505832.
Collapse
Affiliation(s)
- Mihai Octavian Dan
- Department of Microbiology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Daniela Tǎlǎpan
- Department of Microbiology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Microbiology Laboratory, “Matei Bals” National Institute of Infectious Diseases, Bucharest, Romania
| |
Collapse
|
7
|
Xu T, Song J, Liu J, Huang L, Li Z, Zhou K. First report of multidrug-resistant carbapenemase-producing Aeromonas caviae co-harboring mcr-3.43 and mcr-7.2. Microbiol Spectr 2024; 12:e0368523. [PMID: 38511954 PMCID: PMC11064524 DOI: 10.1128/spectrum.03685-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024] Open
Abstract
Hospital sewage serves as a crucial reservoir for antibiotic resistance genes. As colistin and carbapenems are the last-resort antibiotics, the emergence of their resistance genes has become a significant concern in clinical settings. In this study, we found that two novel mcr alleles (mcr-3.43 and mcr-7.2) with two carbapenemase genes (blaNDM-1 and blaKPC-2) were encoded in a single Aeromonas caviae strain isolated from hospital sewage. Our phylogenetic analysis revealed that the mcr-3.43 gene clustered with mcr-3.17 (with 95.55% amino acid identity), while the mcr-7.2 gene clustered with mcr-7.1 (with 68.68% amino acid identity). BLAST search against GenBank showed that mcr-7.2 was exclusively detected in Aeromonas spp. Mobile genetic elements were not found in the genetic context of mcr-7.2, suggesting that the dissemination of mcr-7.2 in Aeromonas spp. may be dependent on vertical transfer or recombination. The blaNDM-1 was adjacent to a recombinase gene and flanked by two IS91 elements, indicating a potential mobilization mechanism mediated by recombination and/or ISs. The blaKPC-2 gene was located on an IncU plasmid and adjacent to an ISKpn6. In summary, our study provides evidence for Aeromonas spp. as one of the potential reservoirs of colistin and carbapenem resistance genes.IMPORTANCEThe study discovered two novel mcr genes (mcr-3.43 and mcr-7.2) and two carbapenemase genes (blaNDM-1 and blaKPC-2) in a single Aeromonas caviae strain retrieved from hospital sewage. Using phylogenetic analysis and comparative data evaluation, the study revealed the genetic relatedness and dissemination potential of the detected resistance genes. With the exclusive discovery that mcr-7.2 is only present in Aeromonas spp. and the lack of mobile genetic elements in its genetic context, there is a strong indication of limited dissemination. The identification of these four resistance genes in a single strain of Aeromonas provided valuable insights into their potential presence in this genus. This study revealed that hospital sewage functions as a significant reservoir for antibiotic resistance genes, including colistin and carbapenem resistance genes.
Collapse
Affiliation(s)
- Tingting Xu
- Shenzhen Institute of Respiratory Diseases, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Jingjie Song
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jialong Liu
- Shenzhen Institute of Respiratory Diseases, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Lili Huang
- School of Basic Medicine Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhao Li
- School of Basic Medicine Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Kai Zhou
- Shenzhen Institute of Respiratory Diseases, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| |
Collapse
|
8
|
García-Gros J, Cajal Y, Marqués AM, Rabanal F. Synthesis of the Antimicrobial Peptide Murepavadin Using Novel Coupling Agents. Biomolecules 2024; 14:526. [PMID: 38785933 PMCID: PMC11117477 DOI: 10.3390/biom14050526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
The problem of antimicrobial resistance is becoming a daunting challenge for human society and healthcare systems around the world. Hence, there is a constant need to develop new antibiotics to fight resistant bacteria, among other important social and economic measures. In this regard, murepavadin is a cyclic antibacterial peptide in development. The synthesis of murepavadin was undertaken in order to optimize the preparative protocol and scale-up, in particular, the use of new activation reagents. In our hands, classical approaches using carbodiimide/hydroxybenzotriazole rendered low yields. The use of novel carbodiimide and reagents based on OxymaPure® and Oxy-B is discussed together with the proper use of chromatographic conditions for the adequate characterization of peptide crudes. Higher yields and purities were obtained. Finally, the antimicrobial activity of different synthetic batches was tested in three Pseudomonas aeruginosa strains, including highly resistant ones. All murepavadin batches yielded the same highly active MIC values and proved that the chiral integrity of the molecule was preserved throughout the whole synthetic procedure.
Collapse
Affiliation(s)
- Júlia García-Gros
- Section of Organic Chemistry, Department of Inorganic and Organic Chemistry, Faculty of Chemistry, Universitat de Barcelona, 08028 Barcelona, Spain;
| | - Yolanda Cajal
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain;
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Ana Maria Marqués
- Laboratory of Microbiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, 08007 Barcelona, Spain;
| | - Francesc Rabanal
- Section of Organic Chemistry, Department of Inorganic and Organic Chemistry, Faculty of Chemistry, Universitat de Barcelona, 08028 Barcelona, Spain;
| |
Collapse
|
9
|
Yoon Y, Song S. Structural Insights into the Lipopolysaccharide Transport (Lpt) System as a Novel Antibiotic Target. J Microbiol 2024; 62:261-275. [PMID: 38816673 DOI: 10.1007/s12275-024-00137-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 06/01/2024]
Abstract
Lipopolysaccharide (LPS) is a critical component of the extracellular leaflet within the bacterial outer membrane, forming an effective physical barrier against environmental threats in Gram-negative bacteria. After LPS is synthesized and matured in the bacterial cytoplasm and the inner membrane (IM), LPS is inserted into the outer membrane (OM) through the ATP-driven LPS transport (Lpt) pathway, which is an energy-intensive process. A trans-envelope complex that contains seven Lpt proteins (LptA-LptG) is crucial for extracting LPS from the IM and transporting it across the periplasm to the OM. The last step in LPS transport involves the mediation of the LptDE complex, facilitating the insertion of LPS into the outer leaflet of the OM. As the Lpt system plays an essential role in maintaining the impermeability of the OM via LPS decoration, the interactions between these interconnected subunits, which are meticulously regulated, may be potential targets for the development of new antibiotics to combat multidrug-resistant Gram-negative bacteria. In this review, we aimed to provide an overview of current research concerning the structural interactions within the Lpt system and their implications to clarify the function and regulation of LPS transport in the overall process of OM biogenesis. Additionally, we explored studies on the development of therapeutic inhibitors of LPS transport, the factors that limit success, and future prospects.
Collapse
Affiliation(s)
- Yurim Yoon
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Saemee Song
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea.
| |
Collapse
|
10
|
Yang S, Zhang W, Yang B, Feng X, Li Y, Li X, Liu Q. Metagenomic evidence for antibiotic-associated actinomycetes in the Karamay Gobi region. Front Microbiol 2024; 15:1330880. [PMID: 38505550 PMCID: PMC10949947 DOI: 10.3389/fmicb.2024.1330880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/07/2024] [Indexed: 03/21/2024] Open
Abstract
Due to the misuse of antibiotics, there is an increasing emergence and spread of multidrug-resistant (MDR) bacteria, leading to a human health crisis. To address clinical antibiotic resistance and prevent/control pathogenic microorganisms, the development of novel antibiotics is essential. This also offers a new approach to discovering valuable actinobacterial flora capable of producing natural bioactive products. In this study, we employed bioinformatics and macro-genome sequencing to collect 15 soil samples from three different locations in the Karamay Gobi region. First, we assessed the diversity of microorganisms in soil samples from different locations, analyzing the content of bacteria, archaea, actinomycetes, and fungi. The biodiversity of soil samples from outside the Gobi was found to be higher than that of soil samples from within and in the center of the Gobi. Second, through microbial interaction network analysis, we identified actinomycetes as the dominant group in the system. We have identified the top four antibiotic genes, such as Ecol_fabG_TRC, Efac_liaR_DAP, tetA (58), and macB, by CARD. These genes are associated with peptide antibiotics, disinfecting agents and antiseptics, tetracycline antibiotics, and macrolide antibiotics. In addition, we also obtained 40 other antibiotic-related genes through CARD alignment. Through in-depth analysis of desert soil samples, we identified several unstudied microbial species belonging to different families, including Erythrobacteriaceae, Solirubrobacterales, Thermoleophilaceae, Gaiellaceae, Nocardioidaceae, Actinomycetia, Egibacteraceae, and Acidimicrobiales. These species have the capability to produce peptide antibiotics, macrolide antibiotics, and tetracycline antibiotics, as well as disinfectants and preservatives. This study provides valuable theoretical support for future in-depth research.
Collapse
Affiliation(s)
- Shuai Yang
- Xinjiang Second Medical College, Xinjiang, China
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin Co-funded by Xinjiang Production & Construction Corps and The Ministry of Science & Technology, Tarim University, Alar, China
| | - Wei Zhang
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin Co-funded by Xinjiang Production & Construction Corps and The Ministry of Science & Technology, Tarim University, Alar, China
| | - Bo Yang
- Xinjiang Second Medical College, Xinjiang, China
| | - Xin Feng
- Xinjiang Second Medical College, Xinjiang, China
| | - Yiyang Li
- Xinjiang Second Medical College, Xinjiang, China
| | - Xiaolin Li
- Xinjiang Second Medical College, Xinjiang, China
| | - Qin Liu
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin Co-funded by Xinjiang Production & Construction Corps and The Ministry of Science & Technology, Tarim University, Alar, China
| |
Collapse
|
11
|
Abdullah SJ, Yan BTS, Palanivelu N, Dhanabal VB, Bifani JP, Bhattacharjya S. Outer-Membrane Permeabilization, LPS Transport Inhibition: Activity, Interactions, and Structures of Thanatin Derived Antimicrobial Peptides. Int J Mol Sci 2024; 25:2122. [PMID: 38396798 PMCID: PMC10888688 DOI: 10.3390/ijms25042122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Currently, viable antibiotics available to mitigate infections caused by drug-resistant Gram-negative bacteria are highly limited. Thanatin, a 21-residue-long insect-derived antimicrobial peptide (AMP), is a promising lead molecule for the potential development of novel antibiotics. Thanatin is extremely potent, particularly against the Enterobacter group of Gram-negative pathogens, e.g., E. coli and K. pneumoniae. As a mode of action, cationic thanatin efficiently permeabilizes the LPS-outer membrane and binds to the periplasmic protein LptAm to inhibit outer membrane biogenesis. Here, we have utilized N-terminal truncated 16- and 14-residue peptide fragments of thanatin and investigated structure, activity, and selectivity with correlating modes of action. A designed 16-residue peptide containing D-Lys (dk) named VF16 (V1PIIYCNRRT-dk-KCQRF16) demonstrated killing activity in Gram-negative bacteria. The VF16 peptide did not show any detectable toxicity to the HEK 293T cell line and kidney cell line Hep G2. As a mode of action, VF16 interacted with LPS, permeabilizing the outer membrane and binding to LptAm with high affinity. Atomic-resolution structures of VF16 in complex with LPS revealed cationic and aromatic surfaces involved in outer membrane interactions and permeabilization. Further, analyses of an inactive 14-residue native thanatin peptide (IM14: IIYCNRRTGKCQRM) delineated the requirement of the β-sheet structure in activity and target interactions. Taken together, this work would pave the way for the designing of short analogs of thanatin-based antimicrobials.
Collapse
Affiliation(s)
- Swaleeha Jaan Abdullah
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (S.J.A.); (N.P.)
| | - Bernice Tan Siu Yan
- A*Star Infectious Diseases Labs, 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Nithya Palanivelu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (S.J.A.); (N.P.)
| | - Vidhya Bharathi Dhanabal
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (S.J.A.); (N.P.)
| | - Juan Pablo Bifani
- A*Star Infectious Diseases Labs, 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Surajit Bhattacharjya
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (S.J.A.); (N.P.)
| |
Collapse
|
12
|
Kulshrestha M, Tiwari M, Tiwari V. Bacteriophage therapy against ESKAPE bacterial pathogens: Current status, strategies, challenges, and future scope. Microb Pathog 2024; 186:106467. [PMID: 38036110 DOI: 10.1016/j.micpath.2023.106467] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/19/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
The ESKAPE pathogens are the primary threat due to their constant spread of drug resistance worldwide. These pathogens are also regarded as opportunistic pathogens and could potentially cause nosocomial infections. Most of the ESKAPE pathogens have developed resistance to almost all the antibiotics that are used against them. Therefore, to deal with antimicrobial resistance, there is an urgent requirement for alternative non-antibiotic strategies to combat this rising issue of drug-resistant organisms. One of the promising alternatives to this scenario is implementing bacteriophage therapy. This under-explored mode of treatment in modern medicine has posed several concerns, such as preferable phages for the treatment, impact on the microbiome (or gut microflora), dose optimisation, safety, etc. The review will cover a rationale for phage therapy, clinical challenges, and propose phage therapy as an effective therapeutic against bacterial coinfections during pandemics. This review also addresses the expected uncertainties for administering the phage as a treatment against the ESKAPE pathogens and the advantages of using lytic phage over temperate, the immune response to phages, and phages in combinational therapies. The interaction between bacteria and bacteriophages in humans and countless animal models can also be used to design novel and futuristic therapeutics like personalised medicine or bacteriophages as anti-biofilm agents. Hence, this review explores different aspects of phage therapy and its potential to emerge as a frontline therapy against the ESKAPE bacterial pathogen.
Collapse
Affiliation(s)
- Mukta Kulshrestha
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, India.
| |
Collapse
|
13
|
Yang L, Luo M, Liu Z, Li Y, Lin Z, Geng S, Wang Y. BamA-targeted antimicrobial peptide design for enhanced efficacy and reduced toxicity. Amino Acids 2023; 55:1317-1331. [PMID: 37670010 DOI: 10.1007/s00726-023-03307-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/18/2023] [Indexed: 09/07/2023]
Abstract
The emergence of drug-resistant superbugs has necessitated a pressing need for innovative antibiotics. Antimicrobial peptides (AMPs) have demonstrated broad-spectrum antibacterial activity, reduced susceptibility to resistance, and immunomodulatory effects, rendering them promising for combating drug-resistant microorganisms. This study employed computational simulation methods to screen and design AMPs specifically targeting ESKAPE pathogens. Particularly, AMPs were rationally designed to target the BamA and obtain novel antimicrobial peptide sequences. The designed AMPs were assessed for their antibacterial activities, mechanisms, and stability. Molecular docking and dynamics simulations demonstrated the interaction of both designed AMPs, 11pep and D-11pep, with the β1, β9, β15, and β16 chains of BamA, resulting in misfolding of outer membrane proteins and antibacterial effects. Subsequent antibacterial investigations confirmed the broad-spectrum activity of both 11pep and D-11pep, with D-11pep demonstrating higher potency against resistant Gram-negative bacteria. D-11pep exhibited MICs of 16, 8, and 32 μg/mL against carbapenem-resistant Escherichia coli, carbapenem-resistant Pseudomonas aeruginosa, and multi-drug-resistant Acinetobacter baumannii, respectively, with a concomitant lower resistance induction. Mechanism of action studies confirmed that peptides could disrupt the bacterial outer membrane, aligning with the findings of molecular dynamics simulations. Additionally, D-11pep demonstrated superior stability and reduced toxicity in comparison to 11pep. The findings of this study underscore the efficacy of rational AMP design that targets BamA, along with the utilization of D-amino acid replacements as a strategy for developing AMPs against drug-resistant bacteria.
Collapse
Affiliation(s)
- Li Yang
- Pharmacy and Bioengineering of Technology, Chongqing University of Technology, Chongqing, 400054, China
| | - Minghe Luo
- Pharmacy and Bioengineering of Technology, Chongqing University of Technology, Chongqing, 400054, China
- Chongqing Municipal Key Laboratory of Institutions of Higher Education of Target Based Drug Screening and Activity Evaluation, Chongqing, 400054, China
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing, 400054, China
| | - Zhou Liu
- Pharmacy and Bioengineering of Technology, Chongqing University of Technology, Chongqing, 400054, China
| | - Yuepeng Li
- Pharmacy and Bioengineering of Technology, Chongqing University of Technology, Chongqing, 400054, China
| | - Zhihua Lin
- Pharmacy and Bioengineering of Technology, Chongqing University of Technology, Chongqing, 400054, China
- Chongqing Municipal Key Laboratory of Institutions of Higher Education of Target Based Drug Screening and Activity Evaluation, Chongqing, 400054, China
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing, 400054, China
| | - Shan Geng
- The People's Hospital of Dazu, Chongqing, 402360, China
| | - Yuanqiang Wang
- Pharmacy and Bioengineering of Technology, Chongqing University of Technology, Chongqing, 400054, China.
- Chongqing Municipal Key Laboratory of Institutions of Higher Education of Target Based Drug Screening and Activity Evaluation, Chongqing, 400054, China.
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing, 400054, China.
| |
Collapse
|
14
|
Sabnis A, Edwards AM. Lipopolysaccharide as an antibiotic target. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119507. [PMID: 37268022 DOI: 10.1016/j.bbamcr.2023.119507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/18/2023] [Accepted: 05/14/2023] [Indexed: 06/04/2023]
Abstract
Gram-negative bacteria, including Escherichia coli, Pseudomonas aeruginosa and Acinetobacter baumannii are amongst the highest priority drug-resistant pathogens, for which new antibiotics are urgently needed. Whilst antibiotic drug development is inherently challenging, this is particularly true for Gram-negative bacteria due to the presence of the outer membrane, a highly selective permeability barrier that prevents the ingress of several classes of antibiotic. This selectivity is largely due to an outer leaflet composed of the glycolipid lipopolysaccharide (LPS), which is essential for the viability of almost all Gram-negative bacteria. This essentiality, coupled with the conservation of the synthetic pathway across species and recent breakthroughs in our understanding of transport and membrane homeostasis has made LPS an attractive target for novel antibiotic drug development. Several different targets have been explored and small molecules developed that show promising activity in vitro. However, these endeavours have met limited success in clinical testing and the polymyxins, discovered more than 70 years ago, remain the only LPS-targeting drugs to enter the clinic thus far. In this review, we will discuss efforts to develop therapeutic inhibitors of LPS synthesis and transport and the reasons for limited success, and explore new developments in understanding polymyxin mode of action and the identification of new analogues with reduced toxicity and enhanced activity.
Collapse
Affiliation(s)
- Akshay Sabnis
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Rd, London SW7 2AZ, UK
| | - Andrew M Edwards
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Rd, London SW7 2AZ, UK.
| |
Collapse
|
15
|
Randall JR, Wang X, Groover KE, O'Donnell AC, Davies BW. Using display technologies to identify macrocyclic peptide antibiotics. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119473. [PMID: 37011732 PMCID: PMC10198949 DOI: 10.1016/j.bbamcr.2023.119473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 02/09/2023] [Accepted: 02/19/2023] [Indexed: 04/03/2023]
Abstract
Antibiotic resistant bacterial infections are now a leading cause of global mortality. While drug resistance continues to spread, the clinical antibiotic pipeline has become bare. This discord has focused attention on developing new strategies for antimicrobial discovery. Natural macrocyclic peptide-based products have provided novel antibiotics and antibiotic scaffolds targeting several essential bacterial cell envelope processes, but discovery of such natural products remains a slow and inefficient process. Synthetic strategies employing peptide display technologies can quickly screen large libraries of macrocyclic sequences for specific target binding and general antibacterial potential providing alternative approaches for new antibiotic discovery. Here we review cell envelope processes that can be targeted with macrocyclic peptide therapeutics, outline important macrocyclic peptide display technologies, and discuss future strategies for both library design and screening.
Collapse
Affiliation(s)
- Justin R Randall
- University of Texas at Austin, Department of Molecular Biosciences, Austin, TX, USA.
| | - Xun Wang
- University of Texas at Austin, Department of Molecular Biosciences, Austin, TX, USA
| | - Kyra E Groover
- University of Texas at Austin, Department of Molecular Biosciences, Austin, TX, USA
| | - Angela C O'Donnell
- University of Texas at Austin, Department of Molecular Biosciences, Austin, TX, USA
| | - Bryan W Davies
- University of Texas at Austin, Department of Molecular Biosciences, Austin, TX, USA.
| |
Collapse
|
16
|
Cho JL, Liu S, Wang P, Park JW, Choi D, Evans RE. Silver nanoparticles induced with aqueous black carpenter ant extract selectively inhibit the growth of Pseudomonas aeruginosa. Biotechnol Lett 2023:10.1007/s10529-023-03386-8. [PMID: 37166605 DOI: 10.1007/s10529-023-03386-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/12/2023]
Abstract
Aqueous black carpenter ant extract (ABCAE) was used to synthesize silver nanoparticles (AgNPs). The ABCAE was rich in water-soluble compounds such as hydrophilic polypeptides that behaved as both reducing and stabilizing agents for generating AgNPs from Ag+ ion precursors. The diameter of the observed AgNPs was mostly in the range of 20-60 nm. The AgNPs were tested as an antibacterial agent for the growth inhibition of two pathogenic bacteria (Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 27661) and one common bacteria (Escherichia coli K12 ATCC 10798). Disk diffusion test showed that the AgNPs selectively inhibited the growth of P. aeruginosa but not for the other two species, suggesting the potential application of the green-chemically synthesized AgNPs as a selective antibacterial agent without harming other beneficial bacteria.
Collapse
Affiliation(s)
- James Lee Cho
- Department of Chemistry and Physics, Southeastern Louisiana University, Hammond, LA, 70402, USA.
| | - Shaoyang Liu
- Department of Chemistry and Physics, Center for Materials and Manufacturing Sciences, Troy University, Troy, AL, 36082, USA
| | - Pixiang Wang
- Center for Materials and Manufacturing Sciences, Troy University, Troy, AL, 36082, USA
| | - Joong-Wook Park
- Department of Biological and Environmental Science, Troy University, Troy, AL, 36082, USA
| | - Doosung Choi
- Department of Mathematics, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Riley Ethan Evans
- Department of Biological and Environmental Science, Troy University, Troy, AL, 36082, USA
| |
Collapse
|
17
|
Mousa WK, Ghemrawi R, Abu-Izneid T, Ramadan A, Al-Marzooq F. Discovery of Lactomodulin, a Unique Microbiome-Derived Peptide That Exhibits Dual Anti-Inflammatory and Antimicrobial Activity against Multidrug-Resistant Pathogens. Int J Mol Sci 2023; 24:6901. [PMID: 37108065 PMCID: PMC10138793 DOI: 10.3390/ijms24086901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The human body is a superorganism that harbors trillions of microbes, most of which inhabit the gut. To colonize our bodies, these microbes have evolved strategies to regulate the immune system and maintain intestinal immune homeostasis by secreting chemical mediators. There is much interest in deciphering these chemicals and furthering their development as novel therapeutics. In this work, we present a combined experimental and computational approach to identifying functional immunomodulatory molecules from the gut microbiome. Based on this approach, we report the discovery of lactomodulin, a unique peptide from Lactobacillus rhamnosus that exhibits dual anti-inflammatory and antibiotic activities and minimal cytotoxicity in human cell lines. Lactomodulin reduces several secreted proinflammatory cytokines, including IL-8, IL-6, IL-1β, and TNF-α. As an antibiotic, lactomodulin is effective against a range of human pathogens, and is most potent against antibiotic-resistant strains such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE). The multifunctional activity of lactomodulin affirms that the microbiome encodes evolved functional molecules with promising therapeutic potential.
Collapse
Affiliation(s)
- Walaa K. Mousa
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- College of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Rose Ghemrawi
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Tareq Abu-Izneid
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Azza Ramadan
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Farah Al-Marzooq
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, UAE University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
18
|
Javed A, Slingerland CJ, Wood TM, Martin NI, Broere F, Weingarth MH, Veldhuizen EJA. Chimeric Peptidomimetic Antibiotic Efficiently Neutralizes Lipopolysaccharides (LPS) and Bacteria-Induced Activation of RAW Macrophages. ACS Infect Dis 2023; 9:518-526. [PMID: 36790385 PMCID: PMC10012172 DOI: 10.1021/acsinfecdis.2c00518] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Peptide antibiotics have gathered attention given the urgent need to discover antimicrobials with new mechanisms of action. Their extended role as immunomodulators makes them interesting candidates for the development of compounds with dual mode of action. The objective of this study was to test the anti-inflammatory capacity of a recently reported chimeric peptidomimetic antibiotic (CPA) composed of polymyxin B nonapeptide (PMBN) and a macrocyclic β-hairpin motif (MHM). We investigated the potential of CPA to inhibit lipopolysaccharide (LPS)-induced activation of RAW264.7 macrophages. In addition, we elucidated which structural motif was responsible for this activity by testing CPA, its building blocks, and their parent compounds separately. CPA showed excellent LPS neutralizing activity for both smooth and rough LPSs. At nanomolar concentrations, CPA completely inhibited LPS-induced nitric oxide, TNF-α, and IL-10 secretion. Murepavadin, MHM, and PMBN were incapable of neutralizing LPS in this assay, while PMB was less active compared to CPA. Isothermal titration calorimetry showed strong binding between the CPA and LPS with similar binding characteristics also found for the other compounds, indicating that binding does not necessarily correlate with neutralization of LPS. Finally, we showed that CPA-killed bacteria caused significantly less macrophage activation than bacteria killed with gentamicin, heat, or any of the other compounds. This indicates that the combined killing activity and LPS neutralization of CPA can prevent unwanted inflammation, which could be a major advantage over conventional antibiotics. Our data suggests that immunomodulatory activity can further strengthen the therapeutic potential of peptide antibiotics and should be included in the characterization of novel compounds.
Collapse
Affiliation(s)
- Ali Javed
- Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Section Immunology, Utrecht University, 3584 CL Utrecht, The Netherlands.,NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Cornelis J Slingerland
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Thomas M Wood
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Femke Broere
- Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Section Immunology, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Markus H Weingarth
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Edwin J A Veldhuizen
- Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Section Immunology, Utrecht University, 3584 CL Utrecht, The Netherlands
| |
Collapse
|
19
|
Dvoretckaia A, Egorova T, Dzhuzha A, Levit M, Sivtsov E, Demyanova E, Korzhikova-Vlakh E. Polymyxin B Conjugates with Bio-Inspired Synthetic Polymers of Different Nature. Int J Mol Sci 2023; 24:ijms24031832. [PMID: 36768160 PMCID: PMC9915011 DOI: 10.3390/ijms24031832] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
The emergence and growth of bacterial resistance to antibiotics poses an enormous threat to humanity in the future. In this regard, the discovery of new antibiotics and the improvement of existing ones is a priority task. In this study, we proposed the synthesis of new polymeric conjugates of polymyxin B, which is a clinically approved but limited-use peptide antibiotic. In particular, three carboxylate-bearing polymers and one synthetic glycopolymer were selected for conjugation with polymyxin B (PMX B), namely, poly(α,L-glutamic acid) (PGlu), copolymer of L-glutamic acid and L-phenylalanine (P(Glu-co-Phe)), copolymer of N-vinyl succinamic acid and N-vinylsuccinimide (P(VSAA-co-VSI)), and poly(2-deoxy-2-methacrylamido-D-glucose) (PMAG). Unlike PGlu and PMAG, P(Glu-co-Phe) and P(VSAA-co-VSI) are amphiphilic and form nanoparticles in aqueous media. A number of conjugates with different polymyxin B loading were synthesized and characterized. In addition, the complex conjugates of PGLu or PMAG with polymyxin B and deferoxamine (siderophore) were obtained. A release of PMX B from Schiff base and amide-linked polymer conjugates was studied in model buffer media with pH 7.4 and 5.8. In both cases, a more pronounced release was observed under slightly acidic conditions. The cytotoxicity of free polymers and PMX B as well as their conjugates was examined in human embryonic kidney cells (HEK 293T cell line). All conjugates demonstrated reduced cytotoxicity compared to the free antibiotic. Finally, the antimicrobial efficacy of the conjugates against Pseudomonas aeruginosa was determined and compared. The lowest values of minimum inhibitory concentrations (MIC) were observed for polymyxin B and polymyxin B/deferoxamine conjugated with PMAG. Among the polymers tested, PMAG appears to be the most promising carrier for delivery of PMX B in conjugated form due to the good preservation of the antimicrobial properties of PMX B and the ability of controlled drug release.
Collapse
Affiliation(s)
- Anna Dvoretckaia
- Institute of Chemistry, Saint-Petersburg State University, 198504 St. Petersburg, Russia
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Tatiana Egorova
- State Research Institute of Highly Pure Biopreparations FMBA of Russia, 197110 St. Petersburg, Russia
| | - Apollinariia Dzhuzha
- Institute of Chemistry, Saint-Petersburg State University, 198504 St. Petersburg, Russia
| | - Mariia Levit
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Eugene Sivtsov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia
- Department of Physical Chemistry, Saint-Petersburg State Institute of Technology (Technical University), 190013 St. Petersburg, Russia
| | - Elena Demyanova
- State Research Institute of Highly Pure Biopreparations FMBA of Russia, 197110 St. Petersburg, Russia
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
20
|
Almeida MC, da Costa PM, Sousa E, Resende DISP. Emerging Target-Directed Approaches for the Treatment and Diagnosis of Microbial Infections. J Med Chem 2023; 66:32-70. [PMID: 36586133 DOI: 10.1021/acs.jmedchem.2c01212] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
With the rising levels of drug resistance, developing efficient antimicrobial therapies has become a priority. A promising strategy is the conjugation of antibiotics with relevant moieties that can potentiate their activity by target-directing. The conjugation of siderophores with antibiotics allows them to act as Trojan horses by hijacking the microorganisms' highly developed iron transport systems and using them to carry the antibiotic into the cell. Through the analysis of relevant examples of the past decade, this Perspective aims to reveal the potential of siderophore-antibiotic Trojan horses for the treatment of infections and the role of siderophores in diagnostic techniques. Other conjugated molecules will be the subject of discussion, namely those involving vitamin B12, carbohydrates, and amino acids, as well as conjugated compounds targeting protein degradation and β-lactamase activated prodrugs.
Collapse
Affiliation(s)
- Mariana C Almeida
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, FFUP - Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.,CIIMAR- Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Paulo M da Costa
- CIIMAR- Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Emília Sousa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, FFUP - Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.,CIIMAR- Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Diana I S P Resende
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, FFUP - Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.,CIIMAR- Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| |
Collapse
|
21
|
Sinha S, Dhanabal VB, Manivannen VL, Cappiello F, Tan SM, Bhattacharjya S. Ultra-Short Cyclized β-Boomerang Peptides: Structures, Interactions with Lipopolysaccharide, Antibiotic Potentiator and Wound Healing. Int J Mol Sci 2022; 24:ijms24010263. [PMID: 36613707 PMCID: PMC9820106 DOI: 10.3390/ijms24010263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Many antibiotics are ineffective in killing Gram-negative bacteria due to the permeability barrier of the outer-membrane LPS. Infections caused by multi-drug-resistant Gram-negative pathogens require new antibiotics, which are often difficult to develop. Antibiotic potentiators disrupt outer-membrane LPS and can assist the entry of large-scaffold antibiotics to the bacterial targets. In this work, we designed a backbone-cyclized ultra-short, six-amino-acid-long (WKRKRY) peptide, termed cWY6 from LPS binding motif of β-boomerang bactericidal peptides. The cWY6 peptide does not exhibit any antimicrobial activity; however, it is able to permeabilize the LPS outer membrane. Our results demonstrate the antibiotic potentiator activity in the designed cWY6 peptide for several conventional antibiotics (vancomycin, rifampicin, erythromycin, novobiocin and azithromycin). Remarkably, the short cWY6 peptide exhibits wound-healing activity in in vitro assays. NMR, computational docking and biophysical studies describe the atomic-resolution structure of the peptide in complex with LPS and mode of action in disrupting the outer membrane. The dual activities of cWY6 peptide hold high promise for further translation to therapeutics.
Collapse
Affiliation(s)
- Sheetal Sinha
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
- Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Vidhya Bharathi Dhanabal
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Veronica Lavanya Manivannen
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Floriana Cappiello
- Department of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy
| | - Suet-Mien Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Surajit Bhattacharjya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Correspondence:
| |
Collapse
|
22
|
Sharma K, Aaghaz S, Kumar Maurya I, Sharma KK, Singh S, Rudramurthy SM, Kumar V, Tikoo K, Jain R. Synthetic Amino Acids-Derived Peptides Targets Cryptococcus neoformans by Inducing Cell Membrane Disruption. Bioorg Chem 2022; 130:106252. [DOI: 10.1016/j.bioorg.2022.106252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/13/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
|
23
|
Doolan JA, Williams GT, Hilton KLF, Chaudhari R, Fossey JS, Goult BT, Hiscock JR. Advancements in antimicrobial nanoscale materials and self-assembling systems. Chem Soc Rev 2022; 51:8696-8755. [PMID: 36190355 PMCID: PMC9575517 DOI: 10.1039/d1cs00915j] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 11/21/2022]
Abstract
Antimicrobial resistance is directly responsible for more deaths per year than either HIV/AIDS or malaria and is predicted to incur a cumulative societal financial burden of at least $100 trillion between 2014 and 2050. Already heralded as one of the greatest threats to human health, the onset of the coronavirus pandemic has accelerated the prevalence of antimicrobial resistant bacterial infections due to factors including increased global antibiotic/antimicrobial use. Thus an urgent need for novel therapeutics to combat what some have termed the 'silent pandemic' is evident. This review acts as a repository of research and an overview of the novel therapeutic strategies being developed to overcome antimicrobial resistance, with a focus on self-assembling systems and nanoscale materials. The fundamental mechanisms of action, as well as the key advantages and disadvantages of each system are discussed, and attention is drawn to key examples within each field. As a result, this review provides a guide to the further design and development of antimicrobial systems, and outlines the interdisciplinary techniques required to translate this fundamental research towards the clinic.
Collapse
Affiliation(s)
- Jack A Doolan
- School of Chemistry and Forensic Science, University of Kent, Canterbury, Kent CT2 7NH, UK.
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - George T Williams
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Kira L F Hilton
- School of Chemistry and Forensic Science, University of Kent, Canterbury, Kent CT2 7NH, UK.
| | - Rajas Chaudhari
- School of Chemistry and Forensic Science, University of Kent, Canterbury, Kent CT2 7NH, UK.
| | - John S Fossey
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - Jennifer R Hiscock
- School of Chemistry and Forensic Science, University of Kent, Canterbury, Kent CT2 7NH, UK.
| |
Collapse
|
24
|
Talapko J, Meštrović T, Juzbašić M, Tomas M, Erić S, Horvat Aleksijević L, Bekić S, Schwarz D, Matić S, Neuberg M, Škrlec I. Antimicrobial Peptides-Mechanisms of Action, Antimicrobial Effects and Clinical Applications. Antibiotics (Basel) 2022; 11:antibiotics11101417. [PMID: 36290075 PMCID: PMC9598582 DOI: 10.3390/antibiotics11101417] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
The growing emergence of antimicrobial resistance represents a global problem that not only influences healthcare systems but also has grave implications for political and economic processes. As the discovery of novel antimicrobial agents is lagging, one of the solutions is innovative therapeutic options that would expand our armamentarium against this hazard. Compounds of interest in many such studies are antimicrobial peptides (AMPs), which actually represent the host's first line of defense against pathogens and are involved in innate immunity. They have a broad range of antimicrobial activity against Gram-negative and Gram-positive bacteria, fungi, and viruses, with specific mechanisms of action utilized by different AMPs. Coupled with a lower propensity for resistance development, it is becoming clear that AMPs can be seen as emerging and very promising candidates for more pervasive usage in the treatment of infectious diseases. However, their use in quotidian clinical practice is not without challenges. In this review, we aimed to summarize state-of-the-art evidence on the structure and mechanisms of action of AMPs, as well as to provide detailed information on their antimicrobial activity. We also aimed to present contemporary evidence of clinical trials and application of AMPs and highlight their use beyond infectious diseases and potential challenges that may arise with their increasing availability.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Correspondence: (J.T.); (I.Š.)
| | - Tomislav Meštrović
- University Centre Varaždin, University North, 42000 Varaždin, Croatia
- Institute for Health Metrics and Evaluation, University of Washington, 3980 15th Ave. NE, Seattle, WA 98195, USA
| | - Martina Juzbašić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Matej Tomas
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Suzana Erić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Lorena Horvat Aleksijević
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Sanja Bekić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
- Family Medicine Practice, 31000 Osijek, Croatia
| | - Dragan Schwarz
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Suzana Matić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Marijana Neuberg
- University Centre Varaždin, University North, 42000 Varaždin, Croatia
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Correspondence: (J.T.); (I.Š.)
| |
Collapse
|
25
|
Zhou L, Lian K, Wang M, Jing X, Zhang Y, Cao J. The antimicrobial effect of a novel peptide LL-1 on Escherichia coli by increasing membrane permeability. BMC Microbiol 2022; 22:220. [PMID: 36117157 PMCID: PMC9484052 DOI: 10.1186/s12866-022-02621-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Background The widespread use of antibiotics has led to the emergence of many drug-resistant strains; thus, the development of new antibacterial drugs is essential with antimicrobial peptides becoming the focus of research. This study assessed the antibacterial effect of a novel antimicrobial peptide, named LL-1 on Escherichia coli (E.coli) by determining the minimum inhibitory concentration (MIC) and the antibacterial curve. The interaction between LL-1 and E. coli DNA was then detected by nucleic acid gel electrophoresis. The effect of LL-1 on the E. coli cell membrane was assessed by detecting the leakage of β-galactosidase, nucleic acid and protein. The influence of LL-1 on the intracellular ATP of E. coli was analysed by determining the concentration of intracellular ATP. Finally, the bacteria and colonies of E. coli treated with LL-1 were observed using scanning and transmission electron microscopy. Results The results suggested that the MIC value was 3.125 µg/ml, and the antibacterial effect was dose-dependent. LL-1 dose-dependently combined with E. coli DNA. LL-1 resulted in the leakage of intracellular β-galactosidase, nucleic acid and protein, and decreased intracellular ATP concentrations of E. coli. Two MIC of LL-1 caused E. coli to shrink, resulting in a rough surface, plasmolysis, and bacterial adhesion. Conclusion This study indicated that LL-1 had a good bactericidal effect on E. coli by mainly increasing the permeability of the cell membrane, leading to leakage of the intracellular content. This will lay the foundation for an in-depth study on the antibacterial mechanism of LL-1 against E. coli and its clinical application. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02621-y.
Collapse
Affiliation(s)
- Lingling Zhou
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China.,College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, People's Republic of China
| | - Kaiqi Lian
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, People's Republic of China.,Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang, 455000, Henan, People's Republic of China
| | - Mengting Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, People's Republic of China
| | - Xueyi Jing
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, People's Republic of China
| | - Yuanchen Zhang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, People's Republic of China.,Taihang Mountain Forest Pests Observation and Research Station of Henan Province, Linzhou, 456550, Henan, People's Republic of China
| | - Jinling Cao
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China.
| |
Collapse
|
26
|
Fodor A, Méhi O, Brivio M. Editorial: Antimicrobial peptides and mRNA therapy: Clinical, Veterinary, and plant pathology perspectives with special attention to combatting MDR pathogens. Front Microbiol 2022; 13:1030874. [PMID: 36187984 PMCID: PMC9524150 DOI: 10.3389/fmicb.2022.1030874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- András Fodor
- Department of Genetics, Institute of Biology, Faculty of Natural Sciences, Eötvös University, Budapest, Hungary
- Department of Genetics, University of Szeged, Szeged, Hungary
- *Correspondence: András Fodor ;
| | - Orsolya Méhi
- Post-Doctoral Researcher Biological Research Centre, Hungarian Academy of Sciences (MTA), Szeged, Hungary
| | - Maurizio Brivio
- Laboratory of Comparative Immunology and Parasitology, Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
27
|
Juretić D. Designed Multifunctional Peptides for Intracellular Targets. Antibiotics (Basel) 2022; 11:antibiotics11091196. [PMID: 36139975 PMCID: PMC9495127 DOI: 10.3390/antibiotics11091196] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
Nature’s way for bioactive peptides is to provide them with several related functions and the ability to cooperate in performing their job. Natural cell-penetrating peptides (CPP), such as penetratins, inspired the design of multifunctional constructs with CPP ability. This review focuses on known and novel peptides that can easily reach intracellular targets with little or no toxicity to mammalian cells. All peptide candidates were evaluated and ranked according to the predictions of low toxicity to mammalian cells and broad-spectrum activity. The final set of the 20 best peptide candidates contains the peptides optimized for cell-penetrating, antimicrobial, anticancer, antiviral, antifungal, and anti-inflammatory activity. Their predicted features are intrinsic disorder and the ability to acquire an amphipathic structure upon contact with membranes or nucleic acids. In conclusion, the review argues for exploring wide-spectrum multifunctionality for novel nontoxic hybrids with cell-penetrating peptides.
Collapse
Affiliation(s)
- Davor Juretić
- Mediterranean Institute for Life Sciences, 21000 Split, Croatia;
- Faculty of Science, University of Split, 21000 Split, Croatia;
| |
Collapse
|
28
|
Kaushik S, He H, Dalbey RE. Bacterial Signal Peptides- Navigating the Journey of Proteins. Front Physiol 2022; 13:933153. [PMID: 35957980 PMCID: PMC9360617 DOI: 10.3389/fphys.2022.933153] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
In 1971, Blobel proposed the first statement of the Signal Hypothesis which suggested that proteins have amino-terminal sequences that dictate their export and localization in the cell. A cytosolic binding factor was predicted, and later the protein conducting channel was discovered that was proposed in 1975 to align with the large ribosomal tunnel. The 1975 Signal Hypothesis also predicted that proteins targeted to different intracellular membranes would possess distinct signals and integral membrane proteins contained uncleaved signal sequences which initiate translocation of the polypeptide chain. This review summarizes the central role that the signal peptides play as address codes for proteins, their decisive role as targeting factors for delivery to the membrane and their function to activate the translocation machinery for export and membrane protein insertion. After shedding light on the navigation of proteins, the importance of removal of signal peptide and their degradation are addressed. Furthermore, the emerging work on signal peptidases as novel targets for antibiotic development is described.
Collapse
|
29
|
Monteiro ML, Lima DB, Freire KA, Nicolaski Pedron C, Magalhães EP, Silva BP, García-Jareño AB, Silva Oliveira C, Nunes JVS, Marinho MM, Menezes RRPPBD, Orzaéz M, Oliveira Junior VX, Martins AMC. Rational design of a trypanocidal peptide derived from Dinoponera quadriceps venom. Eur J Med Chem 2022; 241:114624. [DOI: 10.1016/j.ejmech.2022.114624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/06/2022] [Accepted: 07/21/2022] [Indexed: 11/27/2022]
|
30
|
Sharma K, Aaghaz S, Maurya IK, Rudramurthy SM, Singh S, Kumar V, Tikoo K, Jain R. Antifungal evaluation and mechanistic investigations of membrane active short synthetic peptides-based amphiphiles. Bioorg Chem 2022; 127:106002. [DOI: 10.1016/j.bioorg.2022.106002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 12/26/2022]
|
31
|
Savinov A, Fernandez A, Fields S. Mapping functional regions of essential bacterial proteins with dominant-negative protein fragments. Proc Natl Acad Sci U S A 2022; 119:e2200124119. [PMID: 35749361 PMCID: PMC9245647 DOI: 10.1073/pnas.2200124119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/08/2022] [Indexed: 12/26/2022] Open
Abstract
Massively parallel measurements of dominant-negative inhibition by protein fragments have been used to map protein interaction sites and discover peptide inhibitors. However, the underlying principles governing fragment-based inhibition have thus far remained unclear. Here, we adapted a high-throughput inhibitory fragment assay for use in Escherichia coli, applying it to a set of 10 essential proteins. This approach yielded single amino acid resolution maps of inhibitory activity, with peaks localized to functionally important interaction sites, including oligomerization interfaces and folding contacts. Leveraging these data, we performed a systematic analysis to uncover principles of fragment-based inhibition. We determined a robust negative correlation between susceptibility to inhibition and cellular protein concentration, demonstrating that inhibitory fragments likely act primarily by titrating native protein interactions. We also characterized a series of trade-offs related to fragment length, showing that shorter peptides allow higher-resolution mapping but suffer from lower inhibitory activity. We employed an unsupervised statistical analysis to show that the inhibitory activities of protein fragments are largely driven not by generic properties such as charge, hydrophobicity, and secondary structure, but by the more specific characteristics of their bespoke macromolecular interactions. Overall, this work demonstrates fundamental characteristics of inhibitory protein fragment function and provides a foundation for understanding and controlling protein interactions in vivo.
Collapse
Affiliation(s)
- Andrew Savinov
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
| | - Andres Fernandez
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
| | - Stanley Fields
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
- Department of Medicine, University of Washington, Seattle, WA 98195
| |
Collapse
|
32
|
Deciphering the conformational landscape of few selected aromatic noncoded amino acids (NCAAs) for applications in rational design of peptide therapeutics. Amino Acids 2022; 54:1183-1202. [PMID: 35723743 PMCID: PMC9207436 DOI: 10.1007/s00726-022-03175-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/23/2022] [Indexed: 11/01/2022]
Abstract
Amino acids are the essential building blocks of both synthetic and natural peptides, which are crucial for biological functions and also important as biological probes for mapping the complex protein-protein interactions (PPIs) in both prokaryotic and eukaryotic systems. Mapping the PPIs through the chemical biology approach provides pharmacologically relevant peptides, which can have agonistic or antagonistic effects on the targeted biological systems. It is evidenced that ≥ 60 peptide-based drugs have been approved by the US-FDA so far, and the number will improve further in the foreseeable future, as ≥ 140 peptides are currently in clinical trials. However, natural peptides often require fine-tuning of their pharmacological properties by strategically replacing the αL-amino acids of the peptides with non-coded amino acids (NCAA), for which codons are absent in the genetic code for biosynthesis of proteins, prior to their applications as therapeutics. Considering the diverse repertoire of the NCAAs, the conformational space of many NCAAs is yet to be explored systematically in the context of the rational design of therapeutic peptides. The current study deciphers the conformational landscape of a few such Cα-substituted aromatic NCAAs (Ing: 2-indanyl-L-Glycine; Bpa: 4-benzoyl-L-phenylalanine; Aic: 2-aminoindane-2-carboxylic acid) both in the context of tripeptides and model synthetic peptide sequences, using alanine (Ala) and proline (Pro) as the reference. The combined data obtained from the computational and biophysical studies indicate the general success of this approach, which can be exploited further to rationally design optimized peptide sequences of unusual architecture with potent antimicrobial, antiviral, gluco-regulatory, immunomodulatory, and anti-inflammatory activities.
Collapse
|
33
|
Chiș AA, Rus LL, Morgovan C, Arseniu AM, Frum A, Vonica-Țincu AL, Gligor FG, Mureșan ML, Dobrea CM. Microbial Resistance to Antibiotics and Effective Antibiotherapy. Biomedicines 2022; 10:biomedicines10051121. [PMID: 35625857 PMCID: PMC9138529 DOI: 10.3390/biomedicines10051121] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 12/24/2022] Open
Abstract
Currently, the efficacy of antibiotics is severely affected by the emergence of the antimicrobial resistance phenomenon, leading to increased morbidity and mortality worldwide. Multidrug-resistant pathogens are found not only in hospital settings, but also in the community, and are considered one of the biggest public health concerns. The main mechanisms by which bacteria develop resistance to antibiotics include changes in the drug target, prevention of entering the cell, elimination through efflux pumps or inactivation of drugs. A better understanding and prediction of resistance patterns of a pathogen will lead to a better selection of active antibiotics for the treatment of multidrug-resistant infections.
Collapse
|
34
|
Comprehensive degradation study of lipoglycodepsipeptide antibiotic ramoplanin by liquid chromatography and mass spectrometry. TALANTA OPEN 2022. [DOI: 10.1016/j.talo.2022.100118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
35
|
Li X, Zuo S, Wang B, Zhang K, Wang Y. Antimicrobial Mechanisms and Clinical Application Prospects of Antimicrobial Peptides. Molecules 2022; 27:2675. [PMID: 35566025 PMCID: PMC9104849 DOI: 10.3390/molecules27092675] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Abstract
Antimicrobial peptides are a type of small-molecule peptide that widely exist in nature and are components of the innate immunity of almost all living things. They play an important role in resisting foreign invading microorganisms. Antimicrobial peptides have a wide range of antibacterial activities against bacteria, fungi, viruses and other microorganisms. They are active against traditional antibiotic-resistant strains and do not easily induce the development of drug resistance. Therefore, they have become a hot spot of medical research and are expected to become a new substitute for fighting microbial infection and represent a new method for treating drug-resistant bacteria. This review briefly introduces the source and structural characteristics of antimicrobial peptides and describes those that have been used against common clinical microorganisms (bacteria, fungi, viruses, and especially coronaviruses), focusing on their antimicrobial mechanism of action and clinical application prospects.
Collapse
Affiliation(s)
- Xin Li
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun 130021, China; (X.L.); (B.W.)
| | - Siyao Zuo
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun 130021, China;
| | - Bin Wang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun 130021, China; (X.L.); (B.W.)
| | - Kaiyu Zhang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun 130021, China; (X.L.); (B.W.)
| | - Yang Wang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun 130021, China; (X.L.); (B.W.)
| |
Collapse
|
36
|
Atomic-Resolution Structures and Mode of Action of Clinically Relevant Antimicrobial Peptides. Int J Mol Sci 2022; 23:ijms23094558. [PMID: 35562950 PMCID: PMC9100274 DOI: 10.3390/ijms23094558] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
Global rise of infections and deaths caused by drug-resistant bacterial pathogens are among the unmet medical needs. In an age of drying pipeline of novel antibiotics to treat bacterial infections, antimicrobial peptides (AMPs) are proven to be valid therapeutics modalities. Direct in vivo applications of many AMPs could be challenging; however, works are demonstrating encouraging results for some of them. In this review article, we discussed 3-D structures of potent AMPs e.g., polymyxin, thanatin, MSI, protegrin, OMPTA in complex with bacterial targets and their mode of actions. Studies on human peptide LL37 and de novo-designed peptides are also discussed. We have focused on AMPs which are effective against drug-resistant Gram-negative bacteria. Since treatment options for the infections caused by super bugs of Gram-negative bacteria are now extremely limited. We also summarize some of the pertinent challenges in the field of clinical trials of AMPs.
Collapse
|
37
|
Polymeric Coatings and Antimicrobial Peptides as Efficient Systems for Treating Implantable Medical Devices Associated-Infections. Polymers (Basel) 2022; 14:polym14081611. [PMID: 35458361 PMCID: PMC9024559 DOI: 10.3390/polym14081611] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023] Open
Abstract
Many infections are associated with the use of implantable medical devices. The excessive utilization of antibiotic treatment has resulted in the development of antimicrobial resistance. Consequently, scientists have recently focused on conceiving new ways for treating infections with a longer duration of action and minimum environmental toxicity. One approach in infection control is based on the development of antimicrobial coatings based on polymers and antimicrobial peptides, also termed as “natural antibiotics”.
Collapse
|
38
|
Wang B, Wei PW, Yao Y, Song CR, Wang X, Yang YX, Long YH, Yang SW, Hu Y, Gai ZC, Wu JW, Liu HM. Functional and expression characteristics identification of Phormicins, novel AMPs from Musca domestica with anti-MRSA biofilm activity, in response to different stimuli. Int J Biol Macromol 2022; 209:299-314. [PMID: 35381282 DOI: 10.1016/j.ijbiomac.2022.03.204] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/26/2022]
Abstract
Antibiotic-resistant bacteria (including MRSA) in the clinic pose a growing threat to public health, and antimicrobial peptides (AMPs) have great potential as efficient treatment alternatives. Houseflies have evolved over long periods in complex, dirty environments, developing a special immune system to overcome challenges in harmful environments. AMPs are key innate immune molecules. Herein, two differentially expressed AMPs, Phormicins A and B, were identified by screening transcriptomic changes in response to microbial stimulation. Structural mimic assays indicated that these AMPs exhibited functional divergence due to their C-terminal features. Expression analysis showed that they had different expression patterns. Phormicin B had higher constitutive expression than Phormicin A. However, Phormicin B was sharply downregulated, whereas Phormicin A was highly upregulated, after microbial stimulation. The MIC, MBC and time-growth curves showed the antibacterial spectrum of these peptides. Crystal violet staining and SEM showed that Phormicin D inhibited MRSA biofilm formation. TEM suggested that Phormicin D disrupted the MRSA cell membrane. Furthermore, Phormicin D inhibited biofilm formation by downregulating the expression of biofilm-related genes, including altE and embp. Therefore, housefly Phormicins were functionally characterized as having differential expression patterns and antibacterial & antibiofilm activities. This study provides a new potential peptide for clinical MRSA therapy.
Collapse
Affiliation(s)
- Bing Wang
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Immune Cells and Antibody Engineering Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550025, Guizhou, China; School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, China; Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang 550025, Guizhou, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (Guizhou Medical University), Guiyang 550025, Guizhou, China.
| | - Peng-Wei Wei
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Immune Cells and Antibody Engineering Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Yang Yao
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Immune Cells and Antibody Engineering Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Chao-Rong Song
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Immune Cells and Antibody Engineering Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550025, Guizhou, China; School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Xu Wang
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Immune Cells and Antibody Engineering Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550025, Guizhou, China; School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Yong-Xin Yang
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Immune Cells and Antibody Engineering Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550025, Guizhou, China; School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Yao-Hang Long
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Immune Cells and Antibody Engineering Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550025, Guizhou, China; School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Su-Wen Yang
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Immune Cells and Antibody Engineering Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Yong Hu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (Guizhou Medical University), Guiyang 550025, Guizhou, China
| | - Zhong-Chao Gai
- Shaanxi University of Science and Technology, Xiaan, Shaanxi 710021, China.
| | - Jian-Wei Wu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou, China.
| | - Hong-Mei Liu
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Immune Cells and Antibody Engineering Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550025, Guizhou, China; School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, China; School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou, China.
| |
Collapse
|
39
|
Fodor A, Gualtieri M, Zeller M, Tarasco E, Klein MG, Fodor AM, Haynes L, Lengyel K, Forst SA, Furgani GM, Karaffa L, Vellai T. Type Strains of Entomopathogenic Nematode-Symbiotic Bacterium Species, Xenorhabdus szentirmaii (EMC) and X. budapestensis (EMA), Are Exceptional Sources of Non-Ribosomal Templated, Large-Target-Spectral, Thermotolerant-Antimicrobial Peptides (by Both), and Iodinin (by EMC). Pathogens 2022; 11:pathogens11030342. [PMID: 35335666 PMCID: PMC8950435 DOI: 10.3390/pathogens11030342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 01/26/2023] Open
Abstract
Antimicrobial multidrug resistance (MDR) is a global challenge, not only for public health, but also for sustainable agriculture. Antibiotics used in humans should be ruled out for use in veterinary or agricultural settings. Applying antimicrobial peptide (AMP) molecules, produced by soil-born organisms for protecting (soil-born) plants, seems a preferable alternative. The natural role of peptide-antimicrobials, produced by the prokaryotic partner of entomopathogenic-nematode/bacterium (EPN/EPB) symbiotic associations, is to sustain monoxenic conditions for the EPB in the gut of the semi-anabiotic infective dauer juvenile (IJ) EPN. They keep pathobiome conditions balanced for the EPN/EPB complex in polyxenic (soil, vanquished insect cadaver) niches. Xenorhabdus szentirmaii DSM16338(T) (EMC), and X. budapestensis DSM16342(T) (EMA), are the respective natural symbionts of EPN species Steinernema rarum and S. bicornutum. We identified and characterized both of these 15 years ago. The functional annotation of the draft genome of EMC revealed 71 genes encoding non-ribosomal peptide synthases, and polyketide synthases. The large spatial Xenorhabdus AMP (fabclavine), was discovered in EMA, and its biosynthetic pathway in EMC. The AMPs produced by EMA and EMC are promising candidates for controlling MDR prokaryotic and eukaryotic pathogens (bacteria, oomycetes, fungi, protozoa). EMC releases large quantity of iodinin (1,6-dihydroxyphenazine 5,10-dioxide) in a water-soluble form into the media, where it condenses to form spectacular water-insoluble, macroscopic crystals. This review evaluates the scientific impact of international research on EMA and EMC.
Collapse
Affiliation(s)
- András Fodor
- Department of Genetics, Eötvös University, Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary; (A.M.F.); (K.L.); or (G.M.F.); or (T.V.)
- Department of Genetics, University of Szeged, Középfasor 52, H-6726 Szeged, Hungary
- Correspondence: ; Tel.: +36-(30)-490-9294
| | - Maxime Gualtieri
- Nosopharm, 110 Allée Charles Babbage, Espace Innovation 2, 30000 Nîmes, France;
| | - Matthias Zeller
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47906, USA;
| | - Eustachio Tarasco
- Department of Soil, Plant and Food Sciences, University of Bari “Aldo Moro”, Via Amendola 165/A, 70126 Bari, Italy;
- Institute for Sustainable Plant Protection of CNR, Via Amendola 122/D, 70126 Bari, Italy
| | - Michael G. Klein
- USDA-ARS & Department of Entomology, The Ohio State University, 13416 Claremont Ave, Cleveland, OH 44130, USA;
| | - Andrea M. Fodor
- Department of Genetics, Eötvös University, Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary; (A.M.F.); (K.L.); or (G.M.F.); or (T.V.)
| | - Leroy Haynes
- Department of Chemistry, The College of Wooster, Wooster, OH 44691, USA;
| | - Katalin Lengyel
- Department of Genetics, Eötvös University, Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary; (A.M.F.); (K.L.); or (G.M.F.); or (T.V.)
- National Institute of Pharmacy and Nutrition (NIPN), Zrinyi utca 3, H-1051 Budapest, Hungary
| | - Steven A. Forst
- Department of Biological Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201, USA;
| | - Ghazala M. Furgani
- Department of Genetics, Eötvös University, Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary; (A.M.F.); (K.L.); or (G.M.F.); or (T.V.)
- Department of Plant Protection, Faculty of Agriculture, University of Tripoli, Tripoli P.O. Box 13793, Libya
| | - Levente Karaffa
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary;
- Institute of Metagenomics, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Tibor Vellai
- Department of Genetics, Eötvös University, Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary; (A.M.F.); (K.L.); or (G.M.F.); or (T.V.)
- MTA-ELTE Genetics Research Group, Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary
| |
Collapse
|
40
|
Sinha S, Bhattacharjya S. NMR Structure and Localization of the Host Defense Peptide ThanatinM21F in Zwitterionic Dodecylphosphocholine Micelle: Implications in Antimicrobial and Hemolytic Activity. J Membr Biol 2022; 255:151-160. [PMID: 35257227 DOI: 10.1007/s00232-022-00223-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/19/2022] [Indexed: 11/25/2022]
Abstract
Non-hemolytic antimicrobial peptides (AMPs) are vital lead molecules for the designing and development of peptide-based antibiotics. Thanatin a 21-amino acid long single disulfide bonded AMP is known to be highly non-hemolytic with a limited toxicity to human cells and model animals. Thanatin demonstrates a potent antibacterial activity against multidrug-resistant Gram-negative pathogens. A single mutated variant of thanatin replaced last residue Met21 to Phe or thanatin M21F has recently been found to be more active compared to the native peptide. In order to gain mechanistic insights toward bacterial cell lysis versus non-hemolysis, here, we report atomic resolution structure and mode insertion of thanatinM21F reconstituted into zwitterionic detergent micelle by use of solution NMR spectroscopy. The 3D structure of thanatinM21F in DPC micelle is defined by an anti-parallel β-sheet between residues I9-F21 with a central cationic loop, residues N12-R14. PRE NMR studies revealed hydrophobic core residues of thanatinM21F are deeply inserted in the DPC micelle, while residues at the extended N-terminal half of the peptide are appeared to be mostly surface localized. Marked structural differences of thanatin and thanatinM21F in negatively charged LPS and DPC micelle could be correlated with non-hemolytic and antibacterial activity.
Collapse
Affiliation(s)
- Sheetal Sinha
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Surajit Bhattacharjya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
41
|
Newman DJ. Old and modern antibiotic structures with potential for today's infections. ADMET AND DMPK 2022; 10:131-146. [PMID: 35350115 PMCID: PMC8957243 DOI: 10.5599/admet.1272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/13/2022] [Indexed: 11/21/2022] Open
Abstract
Due to the lack of new antibiotics with efficacy against the ESKAPE and other resistant microbes, coupled to the demise of major pharmaceutical company antibiotic discovery programs, due to a number of factors but mainly ROI calculations and the lack of efficacy of combinatorial chemistry as a substitute, the search for novel antibiotics may well have moved to the utilization of older structures with significant synthetic chemistry input. This short review demonstrates how modern synthetic chemistry, when applied to either modification of current resistant antibiotics such as glycopeptides, or production of novel peptidic agents based on natural product sourced antimicrobial peptides (AMPs) and other potential initial peptide-based agents from genomic searches and baiting techniques, have produced active agents of significant utility. In addition, synthetic chemistry practitioners have now shown that they can produce bioactive molecules of greater than 800 Daltons in kilogram quantities under cGMP conditions.
Collapse
|
42
|
Identification of antimicrobial peptides from the human gut microbiome using deep learning. Nat Biotechnol 2022; 40:921-931. [PMID: 35241840 DOI: 10.1038/s41587-022-01226-0] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/19/2022] [Indexed: 02/07/2023]
Abstract
The human gut microbiome encodes a large variety of antimicrobial peptides (AMPs), but the short lengths of AMPs pose a challenge for computational prediction. Here we combined multiple natural language processing neural network models, including LSTM, Attention and BERT, to form a unified pipeline for candidate AMP identification from human gut microbiome data. Of 2,349 sequences identified as candidate AMPs, 216 were chemically synthesized, with 181 showing antimicrobial activity (a positive rate of >83%). Most of these peptides have less than 40% sequence homology to AMPs in the training set. Further characterization of the 11 most potent AMPs showed high efficacy against antibiotic-resistant, Gram-negative pathogens and demonstrated significant efficacy in lowering bacterial load by more than tenfold against a mouse model of bacterial lung infection. Our study showcases the potential of machine learning approaches for mining functional peptides from metagenome data and accelerating the discovery of promising AMP candidate molecules for in-depth investigations.
Collapse
|
43
|
Landon C, Zhu Y, Mustafi M, Madinier JB, Lelièvre D, Aucagne V, Delmas AF, Weisshaar JC. Real-Time Fluorescence Microscopy on Living E. coli Sheds New Light on the Antibacterial Effects of the King Penguin β-Defensin AvBD103b. Int J Mol Sci 2022; 23:ijms23042057. [PMID: 35216173 PMCID: PMC8880245 DOI: 10.3390/ijms23042057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/31/2022] [Accepted: 02/09/2022] [Indexed: 12/17/2022] Open
Abstract
(1) Antimicrobial peptides (AMPs) are a promising alternative to conventional antibiotics. Among AMPs, the disulfide-rich β-defensin AvBD103b, whose antibacterial activities are not inhibited by salts contrary to most other β-defensins, is particularly appealing. Information about the mechanisms of action is mandatory for the development and approval of new drugs. However, data for non-membrane-disruptive AMPs such as β-defensins are scarce, thus they still remain poorly understood. (2) We used single-cell fluorescence imaging to monitor the effects of a β-defensin (namely AvBD103b) in real time, on living E. coli, and at the physiological concentration of salts. (3) We obtained key parameters to dissect the mechanism of action. The cascade of events, inferred from our precise timing of membrane permeabilization effects, associated with the timing of bacterial growth arrest, differs significantly from the other antimicrobial compounds that we previously studied in the same physiological conditions. Moreover, the AvBD103b mechanism does not involve significant stereo-selective interaction with any chiral partner, at any step of the process. (4) The results are consistent with the suggestion that after penetrating the outer membrane and the cytoplasmic membrane, AvBD103b interacts non-specifically with a variety of polyanionic targets, leading indirectly to cell death.
Collapse
Affiliation(s)
- Céline Landon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (Y.Z.); (M.M.); (J.C.W.)
- Center for Molecular Biophysics, CNRS, 45071 Orléans, France; (J.-B.M.); (D.L.); (V.A.); (A.F.D.)
- Correspondence:
| | - Yanyu Zhu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (Y.Z.); (M.M.); (J.C.W.)
| | - Mainak Mustafi
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (Y.Z.); (M.M.); (J.C.W.)
| | - Jean-Baptiste Madinier
- Center for Molecular Biophysics, CNRS, 45071 Orléans, France; (J.-B.M.); (D.L.); (V.A.); (A.F.D.)
| | - Dominique Lelièvre
- Center for Molecular Biophysics, CNRS, 45071 Orléans, France; (J.-B.M.); (D.L.); (V.A.); (A.F.D.)
| | - Vincent Aucagne
- Center for Molecular Biophysics, CNRS, 45071 Orléans, France; (J.-B.M.); (D.L.); (V.A.); (A.F.D.)
| | - Agnes F. Delmas
- Center for Molecular Biophysics, CNRS, 45071 Orléans, France; (J.-B.M.); (D.L.); (V.A.); (A.F.D.)
| | - James C. Weisshaar
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (Y.Z.); (M.M.); (J.C.W.)
| |
Collapse
|
44
|
Binding of cationic analogues of α-MSH to lipopolysaccharide and disruption of the cytoplasmic membranes caused bactericidal action against Escherichia coli. Sci Rep 2022; 12:1987. [PMID: 35132082 PMCID: PMC8821551 DOI: 10.1038/s41598-022-05684-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/05/2022] [Indexed: 01/14/2023] Open
Abstract
In earlier reports, we have shown the antimicrobial activity of a host neuropeptide, alpha-melanocyte stimulating hormone (α-MSH) and its cationic analogues against Staphylococcus aureus. These analogues of α-MSH showed enhanced staphylocidal activity without any significant mammalian cell toxicity. Therefore, here, we explored the antimicrobial activity of α-MSH and its cationic analogues against Escherichia coli. Though the presence of lipopolysaccharide (LPS) in Gram-negative bacteria enables them to resist most conventional antibiotics, encouragingly α-MSH and its four analogues showed killing of both logarithmic and stationary phase E. coli cells in a time, dose and cationicity-dependent manner. In fact, the most cationic analogue, KKK-MSH with a + 5 charge, demonstrated successful eradication of 105 CFU/mL of E. coli cells within 15 min at a concentration as low as 1 µM. BC displacement experiment revealed that cationicity of the peptides was directly related to the killing efficacy of these α-MSH analogues against E. coli cells via initial LPS-binding, leading to rapid disruption of the LPS-outer membrane complex followed by inner bacterial membrane damage and eventual cell death. Here, we propose α-MSH based cationic peptides as promising future agents with broad-spectrum antibacterial efficacy against both Gram-negative and Gram-positive pathogens.
Collapse
|
45
|
Costa A, Corallo B, Amarelle V, Stewart S, Pan D, Tiscornia S, Fabiano E. Paenibacillus sp. Strain UY79, Isolated from a Root Nodule of Arachis villosa, Displays a Broad Spectrum of Antifungal Activity. Appl Environ Microbiol 2022; 88:e0164521. [PMID: 34757818 PMCID: PMC8788682 DOI: 10.1128/aem.01645-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/02/2021] [Indexed: 11/20/2022] Open
Abstract
A nodule-inhabiting Paenibacillus sp. strain (UY79) isolated from wild peanut (Arachis villosa) was screened for its antagonistic activity against diverse fungi and oomycetes (Botrytis cinerea, Fusarium verticillioides, Fusarium oxysporum, Fusarium graminearum, Fusarium semitectum, Macrophomina phaseolina, Phomopsis longicolla, Pythium ultimum, Phytophthora sojae, Rhizoctonia solani, Sclerotium rolfsii, and Trichoderma atroviride). The results obtained show that Paenibacillus sp. UY79 was able to antagonize these fungi/oomycetes and that agar-diffusible compounds and volatile compounds (different from HCN) participate in the antagonism exerted. Acetoin, 2,3-butanediol, and 2-methyl-1-butanol were identified among the volatile compounds produced by strain UY79 with possible antagonistic activity against fungi/oomycetes. Paenibacillus sp. strain UY79 did not affect symbiotic association or growth promotion of alfalfa plants when coinoculated with rhizobia. By whole-genome sequence analysis, we determined that strain UY79 is a new species of Paenibacillus within the Paenibacillus polymyxa complex. Diverse genes putatively involved in biocontrol activity were identified in the UY79 genome. Furthermore, according to genome mining and antibiosis assays, strain UY79 would have the capability to modulate the growth of bacteria commonly found in soil/plant communities. IMPORTANCE Phytopathogenic fungi and oomycetes are responsible for causing devastating losses in agricultural crops. Therefore, there is enormous interest in the development of effective and complementary strategies that allow the control of the phytopathogens, reducing the input of agrochemicals in croplands. The discovery of new strains with expanded antifungal activities and with a broad spectrum of action is challenging and of great future impact. Diverse strains belonging to the P. polymyxa complex have been reported to be effective biocontrol agents. Results presented here show that the novel discovered strain of Paenibacillus sp. presents diverse traits involved in antagonistic activity against a broad spectrum of pathogens and is a potential and valuable strain to be further assessed for the development of biofungicides.
Collapse
Affiliation(s)
- Andrés Costa
- Biochemistry and Microbial Genomics Department, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - Belén Corallo
- Sección Micología, Facultad de Ciencias-Universidad de la República, Montevideo, Uruguay
| | - Vanesa Amarelle
- Biochemistry and Microbial Genomics Department, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - Silvina Stewart
- Instituto Nacional de Investigación Agropecuaria (INIA), Programa Cultivos de Secano. Estación Experimental La Estanzuela, Colonia, Uruguay
| | - Dinorah Pan
- Sección Micología, Facultad de Ciencias-Universidad de la República, Montevideo, Uruguay
| | - Susana Tiscornia
- Sección Micología, Facultad de Ciencias-Universidad de la República, Montevideo, Uruguay
| | - Elena Fabiano
- Biochemistry and Microbial Genomics Department, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay
| |
Collapse
|
46
|
Escobar‐Salom M, Torrens G, Jordana‐Lluch E, Oliver A, Juan C. Mammals' humoral immune proteins and peptides targeting the bacterial envelope: from natural protection to therapeutic applications against multidrug‐resistant
Gram
‐negatives. Biol Rev Camb Philos Soc 2022; 97:1005-1037. [PMID: 35043558 PMCID: PMC9304279 DOI: 10.1111/brv.12830] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
Abstract
Mammalian innate immunity employs several humoral ‘weapons’ that target the bacterial envelope. The threats posed by the multidrug‐resistant ‘ESKAPE’ Gram‐negative pathogens (Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) are forcing researchers to explore new therapeutic options, including the use of these immune elements. Here we review bacterial envelope‐targeting (peptidoglycan and/or membrane‐targeting) proteins/peptides of the mammalian immune system that are most likely to have therapeutic applications. Firstly we discuss their general features and protective activity against ESKAPE Gram‐negatives in the host. We then gather, integrate, and discuss recent research on experimental therapeutics harnessing their bactericidal power, based on their exogenous administration and also on the discovery of bacterial and/or host targets that improve the performance of this endogenous immunity, as a novel therapeutic concept. We identify weak points and knowledge gaps in current research in this field and suggest areas for future work to obtain successful envelope‐targeting therapeutic options to tackle the challenge of antimicrobial resistance.
Collapse
Affiliation(s)
- María Escobar‐Salom
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Gabriel Torrens
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Elena Jordana‐Lluch
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Antonio Oliver
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Carlos Juan
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| |
Collapse
|
47
|
Wang H, Niu M, Xue T, Ma L, Gu X, Wei G, li F, wang C. Development of Antibacterial Peptides with Efficient Antibacterial Activity, Low Toxicity, High Membrane Disruptive Activity and the Synergistic Antibacterial Effect. J Mater Chem B 2022; 10:1858-1874. [DOI: 10.1039/d1tb02852a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is urgent to develop new antimicrobial drugs to overcome bacterial resistance which is a serious threat to human health. Antimicrobial peptides (AMPs) which are ideal substitutes for traditional antibiotics...
Collapse
|
48
|
Zec N, Mangiapia G, Hendry AC, Barker R, Koutsioubas A, Frielinghaus H, Campana M, Ortega-Roldan JL, Busch S, Moulin JF. Mutually Beneficial Combination of Molecular Dynamics Computer Simulations and Scattering Experiments. MEMBRANES 2021; 11:507. [PMID: 34357157 PMCID: PMC8304056 DOI: 10.3390/membranes11070507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022]
Abstract
We showcase the combination of experimental neutron scattering data and molecular dynamics (MD) simulations for exemplary phospholipid membrane systems. Neutron and X-ray reflectometry and small-angle scattering measurements are determined by the scattering length density profile in real space, but it is not usually possible to retrieve this profile unambiguously from the data alone. MD simulations predict these density profiles, but they require experimental control. Both issues can be addressed simultaneously by cross-validating scattering data and MD results. The strengths and weaknesses of each technique are discussed in detail with the aim of optimizing the opportunities provided by this combination.
Collapse
Affiliation(s)
- Nebojša Zec
- German Engineering Materials Science Centre (GEMS) at Heinz Maier-Leibnitz Zentrum (MLZ), Helmholtz-Zentrum Hereon, Lichtenbergstr. 1, 85748 Garching bei München, Germany; (N.Z.); (G.M.)
| | - Gaetano Mangiapia
- German Engineering Materials Science Centre (GEMS) at Heinz Maier-Leibnitz Zentrum (MLZ), Helmholtz-Zentrum Hereon, Lichtenbergstr. 1, 85748 Garching bei München, Germany; (N.Z.); (G.M.)
| | - Alex C. Hendry
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (A.C.H.); (J.L.O.-R.)
| | - Robert Barker
- School of Physical Sciences, University of Kent, Canterbury CT2 7NH, UK;
| | - Alexandros Koutsioubas
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich, Lichtenbergstr. 1, 85748 Garching bei München, Germany; (A.K.); (H.F.)
| | - Henrich Frielinghaus
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich, Lichtenbergstr. 1, 85748 Garching bei München, Germany; (A.K.); (H.F.)
| | - Mario Campana
- ISIS Neutron and Muon Facility, Rutherford Appleton Laboratory, Science & Technology Facilities Council, Didcot OX11 0QX, UK;
| | | | - Sebastian Busch
- German Engineering Materials Science Centre (GEMS) at Heinz Maier-Leibnitz Zentrum (MLZ), Helmholtz-Zentrum Hereon, Lichtenbergstr. 1, 85748 Garching bei München, Germany; (N.Z.); (G.M.)
| | - Jean-François Moulin
- German Engineering Materials Science Centre (GEMS) at Heinz Maier-Leibnitz Zentrum (MLZ), Helmholtz-Zentrum Hereon, Lichtenbergstr. 1, 85748 Garching bei München, Germany; (N.Z.); (G.M.)
| |
Collapse
|
49
|
Chen SP, Chen EHL, Yang SY, Kuo PS, Jan HM, Yang TC, Hsieh MY, Lee KT, Lin CH, Chen RPY. A Systematic Study of the Stability, Safety, and Efficacy of the de novo Designed Antimicrobial Peptide PepD2 and Its Modified Derivatives Against Acinetobacter baumannii. Front Microbiol 2021; 12:678330. [PMID: 34220763 PMCID: PMC8250858 DOI: 10.3389/fmicb.2021.678330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Searching for new antimicrobials is a pressing issue to conquer the emergence of multidrug-resistant (MDR) bacteria and fungi. Antimicrobial peptides (AMPs) usually have antimicrobial mechanisms different from those of traditional antibiotics and bring new hope in the discovery of new antimicrobials. In addition to antimicrobial activity, stability and target selectivity are important concerns to decide whether an antimicrobial peptide can be applied in vivo. Here, we used a simple de novo designed peptide, pepD2, which contains only three kinds of amino acid residues (W, K, L), as an example to evaluate how the residues and modifications affect the antimicrobial activity against Acinetobacter baumannii, stability in plasma, and toxicity to human HEK293 cells. We found that pepI2 with a Leu→Ile substitution can decrease the minimum bactericidal concentrations (MBC) against A. baumannii by one half (4 μg/mL). A D-form peptide, pepdD2, in which the D-enantiomers replaced the L-enantiomers of the Lys(K) and Leu(L) residues, extended the peptide half-life in plasma by more than 12-fold. PepD3 is 3-residue shorter than pepD2. Decreasing peptide length did not affect antimicrobial activity but increased the IC50 to HEK293 cells, thus increased the selectivity index (SI) between A. baumannii and HEK293 cells from 4.7 to 8.5. The chain length increase of the N-terminal acyl group and the Lys→Arg substitution greatly enhanced the hemolytic activity, hence those modifications are not good for clinical application. Unlike colistin, the action mechanism of our peptides relies on negatively charged lipids rather than lipopolysaccharides. Therefore, not only gram-negative bacteria but also gram-positive bacteria can be killed by our peptides.
Collapse
Affiliation(s)
- Sung-Pang Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Eric H-L Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Sheng-Yung Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Pin-Shin Kuo
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Hau-Ming Jan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Tsai-Chen Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ming-Yen Hsieh
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Kung-Ta Lee
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Rita P-Y Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
50
|
Colistin Resistance in Aeromonas spp. Int J Mol Sci 2021; 22:ijms22115974. [PMID: 34205867 PMCID: PMC8199210 DOI: 10.3390/ijms22115974] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/22/2022] Open
Abstract
The increase in the use of antimicrobials such as colistin for the treatment of infectious diseases has led to the appearance of Aeromonas strains resistant to this drug. However, resistance to colistin not only occurs in the clinical area but has also been determined in Aeromonas isolates from the environment or animals, which has been determined by the detection of mcr genes that confer a resistance mechanism to colistin. The variants mcr-1, mcr-3, and mcr-5 have been detected in the genus Aeromonas in animal, environmental, and human fluids samples. In this article, an overview of the resistance to colistin in Aeromonas is shown, as well as the generalities of this molecule and the recommended methods to determine colistin resistance to be used in some of the genus Aeromonas.
Collapse
|