1
|
Zhang H, Li L, Luo Y, Zheng F, Zhang Y, Xie R, Ou R, Chen Y, Lin Y, Wang Y, Jin Y, Xu J, Tao Y, Qu R, Zhou W, Bai Y, Cheng F, Jin X. Fragmentomics of plasma mitochondrial and nuclear DNA inform prognosis in COVID-19 patients with critical symptoms. BMC Med Genomics 2024; 17:243. [PMID: 39363185 PMCID: PMC11451003 DOI: 10.1186/s12920-024-02022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND The mortality rate of COVID-19 patients with critical symptoms is reported to be 40.5%. Early identification of patients with poor progression in the critical cohort is essential to timely clinical intervention and reduction of mortality. Although older age, chronic diseases, have been recognized as risk factors for COVID-19 mortality, we still lack an accurate prediction method for every patient. This study aimed to delve into the cell-free DNA fragmentomics of critically ill patients, and develop new promising biomarkers for identifying the patients with high mortality risk. METHODS We utilized whole genome sequencing on the plasma cell-free DNA (cfDNA) from 33 COVID-19 patients with critical symptoms, whose outcomes were classified as survival (n = 16) and death (n = 17). Mitochondrial DNA (mtDNA) abundance and fragmentomic properties of cfDNA, including size profiles, ends motif and promoter coverages were interrogated and compared between survival and death groups. RESULTS Significantly decreased abundance (~ 76% reduction) and dramatically shorter fragment size of cell-free mtDNA were observed in deceased patients. Likewise, the deceased patients exhibited distinct end-motif patterns of cfDNA with an enhanced preference for "CC" started motifs, which are related to the activity of nuclease DNASE1L3. Several dysregulated genes involved in the COVID-19 progression-related pathways were further inferred from promoter coverages. These informative cfDNA features enabled a high PPV of 83.3% in predicting deceased patients in the critical cohort. CONCLUSION The dysregulated biological processes observed in COVID-19 patients with fatal outcomes may contribute to abnormal release and modifications of plasma cfDNA. Our findings provided the feasibility of plasma cfDNA as a promising biomarker in the prognosis prediction in critically ill COVID-19 patients in clinical practice.
Collapse
Affiliation(s)
| | - Lingguo Li
- BGI Research, Shenzhen , Guangdong, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Yuxue Luo
- BGI Research, Shenzhen , Guangdong, 518083, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Fang Zheng
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan , Hubei, 430022, China
| | - Yan Zhang
- BGI Research, Shenzhen , Guangdong, 518083, China
| | - Rong Xie
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Rijing Ou
- BGI Research, Shenzhen , Guangdong, 518083, China
| | - Yilin Chen
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yu Lin
- BGI Research, Shenzhen , Guangdong, 518083, China
| | - Yeqin Wang
- BGI Research, Shenzhen , Guangdong, 518083, China
| | - Yan Jin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan , Hubei, 430022, China
| | - Jinjin Xu
- BGI Research, Shenzhen , Guangdong, 518083, China
| | - Ye Tao
- BGI Research, Shenzhen , Guangdong, 518083, China
| | - Ruokai Qu
- BGI Research, Shenzhen , Guangdong, 518083, China
| | - Wenwen Zhou
- BGI Research, Shenzhen , Guangdong, 518083, China
| | - Yong Bai
- BGI Research, Shenzhen , Guangdong, 518083, China
| | - Fanjun Cheng
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| | - Xin Jin
- BGI Research, Shenzhen , Guangdong, 518083, China.
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China.
- Shenzhen Key Laboratory of Transomics Biotechnologies, BGI Research, Shenzhen, Guangdong, 518083, China.
| |
Collapse
|
2
|
Loy CJ, Servellita V, Sotomayor-Gonzalez A, Bliss A, Lenz JS, Belcher E, Suslovic W, Nguyen J, Williams ME, Oseguera M, Gardiner MA, Choi JH, Hsiao HM, Wang H, Kim J, Shimizu C, Tremoulet AH, Delaney M, DeBiasi RL, Rostad CA, Burns JC, Chiu CY, De Vlaminck I. Plasma cell-free RNA signatures of inflammatory syndromes in children. Proc Natl Acad Sci U S A 2024; 121:e2403897121. [PMID: 39240972 PMCID: PMC11406294 DOI: 10.1073/pnas.2403897121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/25/2024] [Indexed: 09/08/2024] Open
Abstract
Inflammatory syndromes, including those caused by infection, are a major cause of hospital admissions among children and are often misdiagnosed because of a lack of advanced molecular diagnostic tools. In this study, we explored the utility of circulating cell-free RNA (cfRNA) in plasma as an analyte for the differential diagnosis and characterization of pediatric inflammatory syndromes. We profiled cfRNA in 370 plasma samples from pediatric patients with a range of inflammatory conditions, including Kawasaki disease (KD), multisystem inflammatory syndrome in children (MIS-C), viral infections, and bacterial infections. We developed machine learning models based on these cfRNA profiles, which effectively differentiated KD from MIS-C-two conditions presenting with overlapping symptoms-with high performance [test area under the curve = 0.98]. We further extended this methodology into a multiclass machine learning framework that achieved 80% accuracy in distinguishing among KD, MIS-C, viral, and bacterial infections. We further demonstrated that cfRNA profiles can be used to quantify injury to specific tissues and organs, including the liver, heart, endothelium, nervous system, and the upper respiratory tract. Overall, this study identified cfRNA as a versatile analyte for the differential diagnosis and characterization of a wide range of pediatric inflammatory syndromes.
Collapse
Affiliation(s)
- Conor J Loy
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850
| | - Venice Servellita
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143
| | | | - Andrew Bliss
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850
| | - Joan S Lenz
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850
| | - Emma Belcher
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850
| | - Will Suslovic
- Division of Pediatric Infectious Disease, Children's National Hospital, Washington, DC 20010
| | - Jenny Nguyen
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143
| | - Meagan E Williams
- Division of Pediatric Infectious Disease, Children's National Hospital, Washington, DC 20010
| | - Miriam Oseguera
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143
| | - Michael A Gardiner
- Department of Pediatrics, Rady Children's Hospital-San Diego, San Diego, CA 92123
- Department of Pediatrics, Kawasaki Disease Research Center, University of California San Diego, La Jolla, CA 92093
| | - Jong-Ha Choi
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30307
- Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Atlanta, GA 30322
| | - Hui-Mien Hsiao
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30307
- Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Atlanta, GA 30322
| | - Hao Wang
- Department of Pediatrics, Kawasaki Disease Research Center, University of California San Diego, La Jolla, CA 92093
| | - Jihoon Kim
- Department of Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, CT 06510
| | - Chisato Shimizu
- Department of Pediatrics, Kawasaki Disease Research Center, University of California San Diego, La Jolla, CA 92093
| | - Adriana H Tremoulet
- Department of Pediatrics, Rady Children's Hospital-San Diego, San Diego, CA 92123
- Department of Pediatrics, Kawasaki Disease Research Center, University of California San Diego, La Jolla, CA 92093
| | - Meghan Delaney
- Division of Pediatric Infectious Disease, Children's National Hospital, Washington, DC 20010
- Department of Pediatrics, George Washington University, School of Medicine & Health Sciences, Washington, DC 20052
| | - Roberta L DeBiasi
- Division of Pediatric Infectious Disease, Children's National Hospital, Washington, DC 20010
- Department of Pediatrics, George Washington University, School of Medicine & Health Sciences, Washington, DC 20052
| | - Christina A Rostad
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30307
- Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Atlanta, GA 30322
| | - Jane C Burns
- Department of Pediatrics, Rady Children's Hospital-San Diego, San Diego, CA 92123
- Department of Pediatrics, Kawasaki Disease Research Center, University of California San Diego, La Jolla, CA 92093
| | - Charles Y Chiu
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143
- Department of Medicine, Division of Infectious Diseases, University of California, San Francisco, CA 94158
- Chan-Zuckerberg Biohub, San Francisco, CA 94158
| | - Iwijn De Vlaminck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850
| |
Collapse
|
3
|
Roznik K, Andargie TE, Johnston TS, Gordon O, Wang Y, Akindele NP, Persaud D, Antar AAR, Manabe YC, Zhou W, Ji H, Agbor-Enoh S, Karaba AH, Thompson EA, Cox AL. Emergency Myelopoiesis Distinguishes Multisystem Inflammatory Syndrome in Children From Pediatric Severe Coronavirus Disease 2019. J Infect Dis 2024; 230:e305-e317. [PMID: 38299308 PMCID: PMC11326850 DOI: 10.1093/infdis/jiae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/18/2023] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Multisystem inflammatory syndrome in children (MIS-C) is a hyperinflammatory condition caused by recent infection with severe acute respiratory syndrome coronavirus 2, but the underlying immunological mechanisms driving this distinct syndrome are unknown. METHODS We utilized high-dimensional flow cytometry, cell-free (cf) DNA, and cytokine and chemokine profiling to identify mechanisms of critical illness distinguishing MIS-C from severe acute coronavirus disease 2019 (SAC). RESULTS Compared to SAC, MIS-C patients demonstrated profound innate immune cell death and features of emergency myelopoiesis (EM), an understudied phenomenon observed in severe inflammation. EM signatures were characterized by fewer mature myeloid cells in the periphery and decreased expression of HLA-DR and CD86 on antigen-presenting cells. Interleukin 27 (IL-27), a cytokine known to drive hematopoietic stem cells toward EM, was increased in MIS-C, and correlated with immature cell signatures in MIS-C. Upon recovery, EM signatures decreased and IL-27 plasma levels returned to normal levels. Despite profound lymphopenia, we report a lack of cfDNA released by adaptive immune cells and increased CCR7 expression on T cells indicative of egress out of peripheral blood. CONCLUSIONS Immune cell signatures of EM combined with elevated innate immune cell-derived cfDNA levels distinguish MIS-C from SAC in children and provide mechanistic insight into dysregulated immunity contributing toward MIS-C, offering potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Katerina Roznik
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore
| | - Temesgen E Andargie
- Genomic Research Alliance for Transplantation and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
- Department of Biology, Howard University, Washington, District of Columbia
| | - T Scott Johnston
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore
| | - Oren Gordon
- Infectious Diseases Unit, Department of Pediatrics, Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Israel
- Department of Pediatrics, Johns Hopkins University School of Medicine
| | - Yi Wang
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore
| | - Nadine Peart Akindele
- Department of Pediatrics, Johns Hopkins University School of Medicine
- Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland
| | - Deborah Persaud
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health
- Department of Pediatrics, Johns Hopkins University School of Medicine
| | - Annukka A R Antar
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore
| | - Yukari C Manabe
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore
| | - Weiqiang Zhou
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore
| | - Sean Agbor-Enoh
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore
- Genomic Research Alliance for Transplantation and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Andrew H Karaba
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore
| | - Elizabeth A Thompson
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore
| | - Andrea L Cox
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore
| |
Collapse
|
4
|
Yang L, Zhang C, Liu Y, Bao H, Wang Z. The Therapeutic Potential of Neutrophil Extracellular Traps and NLRP3 Inflammasomes in Mycoplasma pneumoniae Pneumonia. Immunol Invest 2024; 53:975-988. [PMID: 38874911 DOI: 10.1080/08820139.2024.2364796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
INTRODUCTION Mycoplasma pneumoniae (MP) is the most common pathogen of community-acquired pneumonia in children. However, the role of neutrophil extracellular traps (NETs) in the pathogenesis of MP is unclear. METHODS Both the level of NETs were detected between the 60 MP pneumonia patients and 20 healthy controls, whose the clinical characteristics were compared. Additionally, NETs formation induced by community-acquired respiratory distress syndrome (CARDS) toxin was also analyzed through transcriptome sequencing. RESULTS The levels of cell-free DNA, Cit-H3, and MPO-DNA complexes were significantly increased in the patients with MP pneumonia. Importantly, both cell-free DNA and LDH were higher in hospitalized patients with severity than those without severity. In addition, CARDS toxin induced the NETs formation in vitro and in vivo. Transcriptomics GO and KEGG pathway analysis indicate that NOD like receptor signaling pathway and Toll-like receptor signaling pathway are significantly enriched. Finally, we found that DNase I significantly attenuated the higher levels of Cit-H3, and up-regulation of interleukin-1β (IL-1β) and interleukin-18 (IL-18) by down-regulating the expression of NLRP3 and Caspase1(p20) in the lung tissues. DISCUSSION These results indicate that inhibiting excessive activation of NLRP3 inflammasomes, and NETs formation may alleviate MP pneumonia.
Collapse
Affiliation(s)
- Lei Yang
- Institute of Acute Abdominal Diseases, Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Tianjin, China
| | - Cen Zhang
- Department of Respiratory Critical Care, Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Tianjin, China
| | - Yan Liu
- Department of Pediatrics, Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Tianjin, China
| | - Huijing Bao
- Integrative Medical Diagnosis Laboratory, Tianjin Nankai Hospital, Tianjin, China
| | - Zhihua Wang
- Department of Pediatrics, Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Tianjin, China
- Nankai Clinical School, Tianjin Medical University, Tianjin, China
| |
Collapse
|
5
|
Cecchini S, Di Rosa M, Fantechi L, Mecozzi S, Matacchione G, Giuliani A, Monsurrò V, Zoppi L, Cardelli M, Galeazzi R, Recchioni R, Marchegiani F, Marra M, Sabbatinelli J, Corsonello A, Sarzani R, Cherubini A, Bonfigli AR, Fornarelli D, Paci E, Procopio AD, Olivieri F, Bronte G. Relationship between imaging-derived parameters and circulating microRNAs to study the degree of lung involvement in hospitalized geriatric patients with COVID-19 pneumonia. Geriatr Gerontol Int 2024. [PMID: 39037206 DOI: 10.1111/ggi.14940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 07/23/2024]
Abstract
AIM Chest computed tomography (CT) scan is useful to evaluate the type and extent of lung lesions in coronavirus disease 2019 (COVID-19) pneumonia. This study explored the association between radiological parameters and various circulating serum-derived markers, including microRNAs, in older patients with COVID-19 pneumonia. METHODS A retrospective analysis was designed to study geriatric patients (≥75 years) with COVID-19 pneumonia, who underwent chest CT scan on admission, and for whom clinical data and serum samples were obtained. To quantify the extent of lung involvement, CT-score, the percentage of healthy lung (HL%), the percentage of ground glass opacity (GGO%), and the percentage of lung consolidation were assessed using computer-aided tools. The association of these parameters with two circulating microRNAs, miR-483-5p and miR-320b, previously identified as biomarkers of mortality risk in COVID-19 geriatric patients, was tested. RESULTS A total of 73 patients with COVID-19 pneumonia were evaluable (median age 85 years; interquartile range 82-90 years). Among chest CT-derived parameters, the percentage of lung consolidation (HR 1.08, 95% CI 1.02-1.14), CT-score (HR 1.14, 95% CI 1.03-1.25), and HL% (HR 0.97, 95% CI 0.95-0.99) emerged as significant predictors of mortality, whereas non-significant trends toward increased mortality were observed in patients with higher GGO%. We also found a significant positive association between serum miR-483-5p and GGO% (correlation coefficient 0.28; P = 0.018) and a negative association with HL% (correlation coefficient -0.27; P = 0.023). CONCLUSIONS Overall, the extent of lung consolidation can be confirmed as a prognostic parameter of COVID-19 pneumonia in older patients. Among various serum-derived markers, miR-483-5p can help in exploring the degree of lung involvement, due to its association with higher GGO% and lower HL%. Geriatr Gerontol Int 2024; ••: ••-••.
Collapse
Affiliation(s)
| | - Mirko Di Rosa
- Center for Biostatistics and Applied Geriatric Clinical Epidemiology, IRCCS INRCA, Ancona, Italy
| | | | - Sara Mecozzi
- Department of Radiology, IRCCS INRCA, Ancona, Italy
| | | | | | | | | | - Maurizio Cardelli
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy
| | - Roberta Galeazzi
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | - Rina Recchioni
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | | | - Massimo Marra
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Jacopo Sabbatinelli
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | | | - Riccardo Sarzani
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
- Internal Medicine and Geriatrics, IRCCS INRCA, Ancona, Italy
| | - Antonio Cherubini
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
- Acute Geriatric Unit, Geriatric Emergency Room and Aging Research Centre, IRCCS INRCA, Ancona, Italy
| | | | | | - Enrico Paci
- Department of Radiology, IRCCS INRCA, Ancona, Italy
| | - Antonio Domenico Procopio
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Fabiola Olivieri
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Giuseppe Bronte
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
6
|
Abstract
This review delves into the rapidly evolving landscape of liquid biopsy technologies based on cell-free DNA (cfDNA) and cell-free RNA (cfRNA) and their increasingly prominent role in precision medicine. With the advent of high-throughput DNA sequencing, the use of cfDNA and cfRNA has revolutionized noninvasive clinical testing. Here, we explore the physical characteristics of cfDNA and cfRNA, present an overview of the essential engineering tools used by the field, and highlight clinical applications, including noninvasive prenatal testing, cancer testing, organ transplantation surveillance, and infectious disease testing. Finally, we discuss emerging technologies and the broadening scope of liquid biopsies to new areas of diagnostic medicine.
Collapse
Affiliation(s)
- Conor Loy
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA;
| | - Lauren Ahmann
- Department of Pathology, Stanford University, Stanford, California, USA;
| | - Iwijn De Vlaminck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA;
| | - Wei Gu
- Department of Pathology, Stanford University, Stanford, California, USA;
| |
Collapse
|
7
|
Cardelli M, Marchegiani F, Stripoli P, Piacenza F, Recchioni R, Di Rosa M, Giacconi R, Malavolta M, Galeazzi R, Arosio B, Cafarelli F, Spannella F, Cherubini A, Lattanzio F, Olivieri F. Plasma cfDNA abundance as a prognostic biomarker for higher risk of death in geriatric cardiovascular patients. Mech Ageing Dev 2024; 219:111934. [PMID: 38604436 DOI: 10.1016/j.mad.2024.111934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/07/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
The management of geriatric cardiovascular disease (CVD) patients with multimorbidity remains challenging and could potentially be improved by integrating clinical data with innovative prognostic biomarkers. In this context, the analysis of circulating analytes, including cell-free DNA (cfDNA), appears particularly promising. Here, we investigated circulating cfDNA (measured through the quantification of 247 bp and 115 bp Alu genomic fragments) in a cohort of 244 geriatric CVD patients with multimorbidity hospitalised for acute CVD or non-CVD events. Survival analysis showed a direct association between Alu 247 cfDNA abundance and risk of death, particularly evident in the first six months after admission for acute CVD events. Higher plasma cfDNA concentration was associated with mortality in the same period of time. The cfDNA integrity (Alu 247/115), although not associated with outcome, appeared to be useful in discriminating patients in whom Alu 247 cfDNA abundance is most effective as a prognostic biomarker. The cfDNA parameters were associated with several biochemical markers of inflammation and myocardial damage. In conclusion, an increase in plasma cfDNA abundance at hospital admission is indicative of a higher risk of death in geriatric CVD patients, especially after acute CVD events, and its analysis may be potentially useful for risk stratification.
Collapse
Affiliation(s)
- Maurizio Cardelli
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona 60121, Italy
| | | | - Pierpaolo Stripoli
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona 60121, Italy
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona 60121, Italy
| | - Rina Recchioni
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona 60121, Italy
| | - Mirko Di Rosa
- Centre for Biostatistics and Applied Geriatric Clinical Epidemiology, IRCCS INRCA, Ancona 60124, Italy
| | - Robertina Giacconi
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona 60121, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona 60121, Italy
| | - Roberta Galeazzi
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona 60121, Italy
| | - Beatrice Arosio
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | | | - Francesco Spannella
- Internal Medicine and Geriatrics, IRCCS INRCA, Via della Montagnola 81, Ancona 60127, Italy; Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona 60126, Italy
| | - Antonio Cherubini
- Geriatria, Accettazione Geriatrica e Centro di Ricerca per L'invecchiamento, IRCCS INRCA, Ancona 60127, Italy
| | | | - Fabiola Olivieri
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona 60121, Italy; Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona 60126, Italy; Scientific Direction, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
8
|
Li YY, Yuan MM, Li YY, Li S, Wang JD, Wang YF, Li Q, Li J, Chen RR, Peng JM, Du B. Cell-free DNA methylation reveals cell-specific tissue injury and correlates with disease severity and patient outcomes in COVID-19. Clin Epigenetics 2024; 16:37. [PMID: 38429730 PMCID: PMC10908074 DOI: 10.1186/s13148-024-01645-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/16/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND The recently identified methylation patterns specific to cell type allows the tracing of cell death dynamics at the cellular level in health and diseases. This study used COVID-19 as a disease model to investigate the efficacy of cell-specific cell-free DNA (cfDNA) methylation markers in reflecting or predicting disease severity or outcome. METHODS Whole genome methylation sequencing of cfDNA was performed for 20 healthy individuals, 20 cases with non-hospitalized COVID-19 and 12 cases with severe COVID-19 admitted to intensive care unit (ICU). Differentially methylated regions (DMRs) and gene ontology pathway enrichment analyses were performed to explore the locus-specific methylation difference between cohorts. The proportion of cfDNA derived from lung and immune cells to a given sample (i.e. tissue fraction) at cell-type resolution was estimated using a novel algorithm, which reflects lung injuries and immune response in COVID-19 patients and was further used to evaluate clinical severity and patient outcome. RESULTS COVID‑19 patients had globally reduced cfDNA methylation level compared with healthy controls. Compared with non-hospitalized COVID-19 patients, the cfDNA methylation pattern was significantly altered in severe patients with the identification of 11,156 DMRs, which were mainly enriched in pathways related to immune response. Markedly elevated levels of cfDNA derived from lung and more specifically alveolar epithelial cells, bronchial epithelial cells, and lung endothelial cells were observed in COVID-19 patients compared with healthy controls. Compared with non-hospitalized patients or healthy controls, severe COVID-19 had significantly higher cfDNA derived from B cells, T cells and granulocytes and lower cfDNA from natural killer cells. Moreover, cfDNA derived from alveolar epithelial cells had the optimal performance to differentiate COVID-19 with different severities, lung injury levels, SOFA scores and in-hospital deaths, with the area under the receiver operating characteristic curve of 0.958, 0.941, 0.919 and 0.955, respectively. CONCLUSION Severe COVID-19 has a distinct cfDNA methylation signature compared with non-hospitalized COVID-19 and healthy controls. Cell type-specific cfDNA methylation signature enables the tracing of COVID-19 related cell deaths in lung and immune cells at cell-type resolution, which is correlated with clinical severities and outcomes, and has extensive application prospects to evaluate tissue injuries in diseases with multi-organ dysfunction.
Collapse
Affiliation(s)
- Yuan-Yuan Li
- Medical ICU, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing, 100730, China
| | - Ming-Ming Yuan
- Geneplus-Beijing, Floor 9, Building 6, Medical Park Road, Zhongguancun Life Science Park, Changping District, Beijing, 102206, China
| | - Yuan-Yuan Li
- Medical ICU, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing, 100730, China
| | - Shan Li
- Medical ICU, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing, 100730, China
| | - Jing-Dong Wang
- Geneplus-Shenzhen, Building B, First Branch, Zhongcheng Life Science Park, Zhongxing Road, Kengzi Street, Pingshan District, Shenzhen, 518000, China
| | - Yu-Fei Wang
- Geneplus-Shenzhen, Building B, First Branch, Zhongcheng Life Science Park, Zhongxing Road, Kengzi Street, Pingshan District, Shenzhen, 518000, China
| | - Qian Li
- Geneplus-Beijing, Floor 9, Building 6, Medical Park Road, Zhongguancun Life Science Park, Changping District, Beijing, 102206, China
| | - Jun Li
- Geneplus-Shenzhen, Building B, First Branch, Zhongcheng Life Science Park, Zhongxing Road, Kengzi Street, Pingshan District, Shenzhen, 518000, China
| | - Rong-Rong Chen
- Geneplus-Beijing, Floor 9, Building 6, Medical Park Road, Zhongguancun Life Science Park, Changping District, Beijing, 102206, China
| | - Jin-Min Peng
- Medical ICU, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing, 100730, China.
| | - Bin Du
- Medical ICU, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing, 100730, China.
| |
Collapse
|
9
|
Heil M. Self-DNA driven inflammation in COVID-19 and after mRNA-based vaccination: lessons for non-COVID-19 pathologies. Front Immunol 2024; 14:1259879. [PMID: 38439942 PMCID: PMC10910434 DOI: 10.3389/fimmu.2023.1259879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/26/2023] [Indexed: 03/06/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic triggered an unprecedented concentration of economic and research efforts to generate knowledge at unequalled speed on deregulated interferon type I signalling and nuclear factor kappa light chain enhancer in B-cells (NF-κB)-driven interleukin (IL)-1β, IL-6, IL-18 secretion causing cytokine storms. The translation of the knowledge on how the resulting systemic inflammation can lead to life-threatening complications into novel treatments and vaccine technologies is underway. Nevertheless, previously existing knowledge on the role of cytoplasmatic or circulating self-DNA as a pro-inflammatory damage-associated molecular pattern (DAMP) was largely ignored. Pathologies reported 'de novo' for patients infected with Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)-2 to be outcomes of self-DNA-driven inflammation in fact had been linked earlier to self-DNA in different contexts, e.g., the infection with Human Immunodeficiency Virus (HIV)-1, sterile inflammation, and autoimmune diseases. I highlight particularly how synergies with other DAMPs can render immunogenic properties to normally non-immunogenic extracellular self-DNA, and I discuss the shared features of the gp41 unit of the HIV-1 envelope protein and the SARS-CoV 2 Spike protein that enable HIV-1 and SARS-CoV-2 to interact with cell or nuclear membranes, trigger syncytia formation, inflict damage to their host's DNA, and trigger inflammation - likely for their own benefit. These similarities motivate speculations that similar mechanisms to those driven by gp41 can explain how inflammatory self-DNA contributes to some of most frequent adverse events after vaccination with the BNT162b2 mRNA (Pfizer/BioNTech) or the mRNA-1273 (Moderna) vaccine, i.e., myocarditis, herpes zoster, rheumatoid arthritis, autoimmune nephritis or hepatitis, new-onset systemic lupus erythematosus, and flare-ups of psoriasis or lupus. The hope is to motivate a wider application of the lessons learned from the experiences with COVID-19 and the new mRNA vaccines to combat future non-COVID-19 diseases.
Collapse
Affiliation(s)
- Martin Heil
- Departamento de Ingeniería Genética, Laboratorio de Ecología de Plantas, Centro de Investigación y de Estudios Avanzados (CINVESTAV)-Unidad Irapuato, Irapuato, Mexico
| |
Collapse
|
10
|
Martini L, Mandoli GE, Pastore MC, Pagliaro A, Bernazzali S, Maccherini M, Henein M, Cameli M. Heart transplantation and biomarkers: a review about their usefulness in clinical practice. Front Cardiovasc Med 2024; 11:1336011. [PMID: 38327491 PMCID: PMC10847311 DOI: 10.3389/fcvm.2024.1336011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
Advanced heart failure (AdvHF) can only be treated definitively by heart transplantation (HTx), yet problems such right ventricle dysfunction (RVD), rejection, cardiac allograft vasculopathy (CAV), and primary graft dysfunction (PGD) are linked to a poor prognosis. As a result, numerous biomarkers have been investigated in an effort to identify and prevent certain diseases sooner. We looked at both established biomarkers, such as NT-proBNP, hs-troponins, and pro-inflammatory cytokines, and newer ones, such as extracellular vesicles (EVs), donor specific antibodies (DSA), gene expression profile (GEP), donor-derived cell free DNA (dd-cfDNA), microRNA (miRNA), and soluble suppression of tumorigenicity 2 (sST2). These biomarkers are typically linked to complications from HTX. We also highlight the relationships between each biomarker and one or more problems, as well as their applicability in routine clinical practice.
Collapse
Affiliation(s)
- L. Martini
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - G. E. Mandoli
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - M. C. Pastore
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - A. Pagliaro
- Cardio-Thoracic-Vascular Department, Siena University Hospital, Siena, Italy
| | - S. Bernazzali
- Cardio-Thoracic-Vascular Department, Siena University Hospital, Siena, Italy
| | - M. Maccherini
- Cardio-Thoracic-Vascular Department, Siena University Hospital, Siena, Italy
| | - M. Henein
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - M. Cameli
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| |
Collapse
|
11
|
Luo Y, Zhang H, Li L, Lin Y, Wang X, Chen W, Tao Y, Ou R, Zhou W, Zheng F, Jin Y, Cheng F, Zhu H, Zhang Y, Jin X. Heat inactivation does not alter host plasma cell-free DNA characteristics in infectious disease research. Clin Chim Acta 2024; 553:117751. [PMID: 38163539 DOI: 10.1016/j.cca.2023.117751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/28/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Cell-free DNA (cfDNA) is a promising analyte for non-invasive liquid biopsy, carrying abundant signatures for disease diagnosis and monitoring. In infectious disease researches, blood plasma samples are routinely heat-inactivated before proceeding with downstream analyses. However, the effects of heat inactivation on cfDNA fragmentomic analysis remain largely unclear, potentially introducing biases or altering the characteristics of cfDNA. METHODS We performed a comprehensive investigation of cfDNA concentrations and fragmentomics in 21 plasma samples from 7 healthy individuals, by comparing the sample group without the heat inactivation to those exposed to once or twice heat-inactivation at 56 °C for 30 min and following freeze-thaw. RESULTS Plasma samples with once and twice heat inactivation displayed no significant deviations in primary characteristics, including cfDNA concentrations, size profiles, end motif features, and genome-wide distributions, compared to samples without heat treatment. CONCLUSIONS Heat-inactivated cfDNA can be utilized for liquid biopsy in infectious disease researches, without substantial impact on cfDNA concentrations and fragmentomic properties. This study provides essential insights into the effects of heat inactivation on cfDNA properties and will contribute to the development of reliable non-invasive biomarkers for infectious disease.
Collapse
Affiliation(s)
- Yuxue Luo
- School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China
| | | | - Lingguo Li
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yu Lin
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Xinxin Wang
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Wei Chen
- School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China; BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Ye Tao
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Rijing Ou
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Wenwen Zhou
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Fang Zheng
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Yan Jin
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Fanjun Cheng
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | | | - Yan Zhang
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China.
| | - Xin Jin
- School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China; BGI-Shenzhen, Shenzhen 518083, Guangdong, China; Shenzhen Key Laboratory of Transomics Biotechnologies, BGI-Shenzhen, Shenzhen 518083, China.
| |
Collapse
|
12
|
Ruggeri T, De Wit Y, Schärz N, van Mierlo G, Angelillo-Scherrer A, Brodard J, Schefold JC, Hirzel C, Jongerius I, Zeerleder S. Immunothrombosis and Complement Activation Contribute to Disease Severity and Adverse Outcome in COVID-19. J Innate Immun 2023; 15:850-864. [PMID: 37939687 PMCID: PMC10699833 DOI: 10.1159/000533339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/24/2023] [Indexed: 11/10/2023] Open
Abstract
Severe COVID-19 is characterized by systemic inflammation and multiple organ dysfunction syndrome (MODS). Arterial and venous thrombosis are involved in the pathogenesis of MODS and fatality in COVID-19. There is evidence that complement and neutrophil activation in the form of neutrophil extracellular traps are main drivers for development of microvascular complications in COVID-19. Plasma and serum samples were collected from 83 patients infected by SARS-CoV-2 during the two first waves of COVID-19, before the availability of SARS-CoV-2 vaccination. Samples were collected at enrollment, day 11, and day 28; and patients had differing severity of disease. In this comprehensive study, we measured cell-free DNA, neutrophil activation, deoxyribonuclease I activity, complement activation, and D-dimers in longitudinal samples of COVID-19 patients. We show that all the above markers, except deoxyribonuclease I activity, increased with disease severity. Moreover, we provide evidence that in severe disease there is continued neutrophil and complement activation, as well as D-dimer formation and nucleosome release, whereas in mild and moderate disease all these markers decrease over time. These findings suggest that neutrophil and complement activation are important drivers of microvascular complications and that they reflect immunothrombosis in these patients. Neutrophil activation, complement activation, cell-free DNA, and D-dimer levels have the potential to serve as reliable biomarkers for disease severity and fatality in COVID-19. They might also serve as suitable markers with which to monitor the efficacy of therapeutic interventions in COVID-19.
Collapse
Affiliation(s)
- Tiphaine Ruggeri
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Yasmin De Wit
- Department of Immunopathology, Sanquin Research, Amsterdam, The Netherlands
| | - Noëlia Schärz
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Gerard van Mierlo
- Department of Immunopathology, Sanquin Research, Amsterdam, The Netherlands
| | - Anne Angelillo-Scherrer
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Justine Brodard
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Joerg C Schefold
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Cédric Hirzel
- Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland,
| | - Ilse Jongerius
- Department of Immunopathology, Sanquin Research, Amsterdam, The Netherlands
| | - Sacha Zeerleder
- Department of Hematology, Kantonsspital Luzern, Lucerne and University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Andargie TE, Roznik K, Redekar N, Hill T, Zhou W, Apalara Z, Kong H, Gordon O, Meda R, Park W, Johnston TS, Wang Y, Brady S, Ji H, Yanovski JA, Jang MK, Lee CM, Karaba AH, Cox AL, Agbor-Enoh S. Cell-free DNA reveals distinct pathology of multisystem inflammatory syndrome in children. J Clin Invest 2023; 133:e171729. [PMID: 37651206 PMCID: PMC10617770 DOI: 10.1172/jci171729] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023] Open
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a rare but life-threatening hyperinflammatory condition induced by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes pediatric COVID-19 (pCOVID-19). The relationship of the systemic tissue injury to the pathophysiology of MIS-C is poorly defined. We leveraged the high sensitivity of epigenomics analyses of plasma cell-free DNA (cfDNA) and plasma cytokine measurements to identify the spectrum of tissue injury and glean mechanistic insights. Compared with pediatric healthy controls (pHCs) and patients with pCOVID-19, patients with MIS-C had higher levels of cfDNA primarily derived from innate immune cells, megakaryocyte-erythroid precursor cells, and nonhematopoietic tissues such as hepatocytes, cardiac myocytes, and kidney cells. Nonhematopoietic tissue cfDNA levels demonstrated significant interindividual variability, consistent with the heterogenous clinical presentation of MIS-C. In contrast, adaptive immune cell-derived cfDNA levels were comparable in MIS-C and pCOVID-19 patients. Indeed, the cfDNA of innate immune cells in patients with MIS-C correlated with the levels of innate immune inflammatory cytokines and nonhematopoietic tissue-derived cfDNA, suggesting a primarily innate immunity-mediated response to account for the multisystem pathology. These data provide insight into the pathogenesis of MIS-C and support the value of cfDNA as a sensitive biomarker to map tissue injury in MIS-C and likely other multiorgan inflammatory conditions.
Collapse
Affiliation(s)
- Temesgen E. Andargie
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA. GFAfT is detailed in Supplemental Acknowledgments
- Department of Biology, Howard University, Washington DC, USA
| | - Katerina Roznik
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Neelam Redekar
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Tom Hill
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Weiqiang Zhou
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Zainab Apalara
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA. GFAfT is detailed in Supplemental Acknowledgments
| | - Hyesik Kong
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA. GFAfT is detailed in Supplemental Acknowledgments
| | - Oren Gordon
- Infectious Diseases Unit, Department of Pediatrics, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rohan Meda
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA. GFAfT is detailed in Supplemental Acknowledgments
| | - Woojin Park
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA. GFAfT is detailed in Supplemental Acknowledgments
| | - Trevor S. Johnston
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Yi Wang
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sheila Brady
- Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland, USA
| | - Hongkai Ji
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jack A. Yanovski
- Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland, USA
| | - Moon K. Jang
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA. GFAfT is detailed in Supplemental Acknowledgments
| | - Clarence M. Lee
- Department of Biology, Howard University, Washington DC, USA
| | - Andrew H. Karaba
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Andrea L. Cox
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Sean Agbor-Enoh
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA. GFAfT is detailed in Supplemental Acknowledgments
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Hoeter K, Neuberger E, Fischer S, Herbst M, Juškevičiūtė E, Enders K, Rossmann H, Sprinzl MF, Simon P, Bodenstein M, Schaefer M. Evidence for the utility of cfDNA plasma concentrations to predict disease severity in COVID-19: a retrospective pilot study. PeerJ 2023; 11:e16072. [PMID: 37744227 PMCID: PMC10512938 DOI: 10.7717/peerj.16072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 08/20/2023] [Indexed: 09/26/2023] Open
Abstract
Background COVID-19 is a worldwide pandemic caused by the highly infective SARS-CoV-2. There is a need for biomarkers not only for overall prognosis but also for predicting the response to treatments and thus for improvements in the clinical management of patients with COVID-19. Circulating cell-free DNA (cfDNA) has emerged as a promising biomarker in the assessment of various pathological conditions. The aim of this retrospective and observational pilot study was to investigate the range of cfDNA plasma concentrations in hospitalized COVID-19 patients during the first wave of SARS-CoV-2 infection, to relate them to established inflammatory parameters as a correlative biomarker for disease severity, and to compare them with plasma levels in a healthy control group. Methods Lithium-Heparin plasma samples were obtained from COVID-19 patients (n = 21) during hospitalization in the University Medical Centre of Mainz, Germany between March and June 2020, and the cfDNA concentrations were determined by quantitative PCR yielding amplicons of long interspersed nuclear elements (LINE-1). The cfDNA levels were compared with those of an uninfected control group (n = 19). Results Plasma cfDNA levels in COVID-19 patients ranged from 247.5 to 6,346.25 ng/ml and the mean concentration was 1,831 ± 1,388 ng/ml (± standard deviation), which was significantly different from the levels of the uninfected control group (p < 0.001). Regarding clinical complications, the highest correlation was found between cfDNA levels and the myositis (p = 0.049). In addition, cfDNA levels correlated with the "WHO clinical progression scale". D-Dimer and C-reactive protein (CRP) were the clinical laboratory parameters with the highest correlations with cfDNA levels. Conclusion The results of this observational pilot study show a wide range in cfDNA plasma concentrations in patients with COVID-19 during the first wave of infection and confirm that cfDNA plasma concentrations serve as a predictive biomarker of disease severity in COVID-19.
Collapse
Affiliation(s)
- Katharina Hoeter
- Department of Anaesthesiology, University Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Elmo Neuberger
- Department of Sports Medicine, Disease Prevention and Rehabilitation, Johannes-Gutenberg Universität Mainz, Mainz, Germany
| | - Susanne Fischer
- Department of Anaesthesiology, University Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Manuel Herbst
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Ema Juškevičiūtė
- Department of Sports Medicine, Disease Prevention and Rehabilitation, Johannes-Gutenberg Universität Mainz, Mainz, Germany
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Kira Enders
- Department of Sports Medicine, Disease Prevention and Rehabilitation, Johannes-Gutenberg Universität Mainz, Mainz, Germany
| | - Heidi Rossmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Martin F. Sprinzl
- Department of Internal Medicine I, University Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Perikles Simon
- Department of Sports Medicine, Disease Prevention and Rehabilitation, Johannes-Gutenberg Universität Mainz, Mainz, Germany
| | - Marc Bodenstein
- Department of Anaesthesiology, University Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Michael Schaefer
- Department of Anaesthesiology, University Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
- Focus Program Translational Neurosciences (FTN), Johannes Gutenberg-University, Mainz, Germany
- Research Center for Immunotherapy, University Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
15
|
Hovhannisyan G, Harutyunyan T, Aroutiounian R, Liehr T. The Diagnostic, Prognostic, and Therapeutic Potential of Cell-Free DNA with a Special Focus on COVID-19 and Other Viral Infections. Int J Mol Sci 2023; 24:14163. [PMID: 37762464 PMCID: PMC10532175 DOI: 10.3390/ijms241814163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Cell-free DNA (cfDNA) in human blood serum, urine, and other body fluids recently became a commonly used diagnostic marker associated with various pathologies. This is because cfDNA enables a much higher sensitivity than standard biochemical parameters. The presence of and/or increased level of cfDNA has been reported for various diseases, including viral infections, including COVID-19. Here, we review cfDNA in general, how it has been identified, where it can derive from, its molecular features, and mechanisms of release and clearance. General suitability of cfDNA for diagnostic questions, possible shortcomings and future directions are discussed, with a special focus on coronavirus infection.
Collapse
Affiliation(s)
- Galina Hovhannisyan
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (G.H.); (T.H.); (R.A.)
| | - Tigran Harutyunyan
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (G.H.); (T.H.); (R.A.)
| | - Rouben Aroutiounian
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (G.H.); (T.H.); (R.A.)
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
16
|
Loy CJ, Sotomayor-Gonzalez A, Servellita V, Nguyen J, Lenz J, Bhattacharya S, Williams ME, Cheng AP, Bliss A, Saldhi P, Brazer N, Streithorst J, Suslovic W, Hsieh CJ, Bahar B, Wood N, Foresythe A, Gliwa A, Bhakta K, Perez MA, Hussaini L, Anderson EJ, Chahroudi A, Delaney M, Butte AJ, DeBiasi RL, Rostad CA, De Vlaminck I, Chiu CY. Nucleic acid biomarkers of immune response and cell and tissue damage in children with COVID-19 and MIS-C. Cell Rep Med 2023; 4:101034. [PMID: 37279751 PMCID: PMC10121104 DOI: 10.1016/j.xcrm.2023.101034] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/28/2022] [Accepted: 04/11/2023] [Indexed: 06/08/2023]
Abstract
Differential host responses in coronavirus disease 2019 (COVID-19) and multisystem inflammatory syndrome in children (MIS-C) remain poorly characterized. Here, we use next-generation sequencing to longitudinally analyze blood samples from pediatric patients with COVID-19 or MIS-C across three hospitals. Profiling of plasma cell-free nucleic acids uncovers distinct signatures of cell injury and death between COVID-19 and MIS-C, with increased multiorgan involvement in MIS-C encompassing diverse cell types, including endothelial and neuronal cells, and an enrichment of pyroptosis-related genes. Whole-blood RNA profiling reveals upregulation of similar pro-inflammatory pathways in COVID-19 and MIS-C but also MIS-C-specific downregulation of T cell-associated pathways. Profiling of plasma cell-free RNA and whole-blood RNA in paired samples yields different but complementary signatures for each disease state. Our work provides a systems-level view of immune responses and tissue damage in COVID-19 and MIS-C and informs future development of new disease biomarkers.
Collapse
Affiliation(s)
- Conor J Loy
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Alicia Sotomayor-Gonzalez
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Venice Servellita
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jenny Nguyen
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joan Lenz
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Sanchita Bhattacharya
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Alexandre P Cheng
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Andrew Bliss
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Prachi Saldhi
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Noah Brazer
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jessica Streithorst
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Charlotte J Hsieh
- Division of Pediatric Infectious Diseases and Global Health, Department of Pediatrics, University of California San Francisco, Oakland, CA 94609
| | - Burak Bahar
- Children's National Hospital, Washington, DC 20010, USA
| | - Nathan Wood
- UCSF Benioff Children's Hospital, Oakland, CA 94609, USA
| | - Abiodun Foresythe
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Amelia Gliwa
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kushmita Bhakta
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Maria A Perez
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Laila Hussaini
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Evan J Anderson
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA; Department of Medicine, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Meghan Delaney
- Children's National Hospital, Washington, DC 20010, USA; The George Washington University School of Medicine, Washington, DC 20052, USA
| | - Atul J Butte
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Roberta L DeBiasi
- Children's National Hospital, Washington, DC 20010, USA; The George Washington University School of Medicine, Washington, DC 20052, USA
| | - Christina A Rostad
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Iwijn De Vlaminck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA.
| | - Charles Y Chiu
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
17
|
Sun M, Chen P, Xiao K, Zhu X, Zhao Z, Guo C, He X, Shi T, Zhong Q, Jia Y, Tao Y, Li M, Leong KW, Shao D. Circulating Cell-Free DNAs as a Biomarker and Therapeutic Target for Acetaminophen-Induced Liver Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206789. [PMID: 37035952 PMCID: PMC10238175 DOI: 10.1002/advs.202206789] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/08/2023] [Indexed: 06/04/2023]
Abstract
Acetaminophen (APAP) overdose is a leading cause of drug-induced liver injury and acute liver failure, while the detection, prognosis prediction, and therapy for APAP-induced liver injury (AILI) remain improved. Here, it is determined that the temporal pattern of circulating cell-free DNA (cfDNA) is strongly associated with damage and inflammation parameters in AILI. CfDNA is comparable to alanine aminotransferase (ALT) in predicting mortality and outperformed ALT when combined with ALT in AILI. The depletion of cfDNA or neutrophils alleviates liver damage, while the addition of cfDNA or adoptive transfer of neutrophils exacerbates the damage. The combination of DNase I and N-acetylcysteine attenuates AILI significantly. This study establishes that cfDNA is a mechanistic biomarker to predict mortality in AILI mice. The combination of scavenging cfDNA and reducing oxidative damage provides a promising treatment for AILI.
Collapse
Affiliation(s)
- Madi Sun
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510630China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510630China
| | - Peiyu Chen
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510630China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510630China
| | - Kai Xiao
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510630China
- School of MedicineSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510006China
| | - Xiang Zhu
- Laboratory of Biomaterials and Translational MedicineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Zhibin Zhao
- School of MedicineSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510006China
| | - Chenyang Guo
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510630China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510630China
| | - Xuan He
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510630China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510630China
| | - Tongfei Shi
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510630China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510630China
| | - Qingguo Zhong
- Laboratory of Biomaterials and Translational MedicineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Yong Jia
- School of NursingJilin UniversityChangchunJilin130021China
| | - Yu Tao
- Laboratory of Biomaterials and Translational MedicineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational MedicineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Kam W. Leong
- Department of Systems BiologyColumbia UniversityNew YorkNY10032USA
| | - Dan Shao
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510630China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510630China
- Guangdong Provincial Key Laboratory of Biomedical EngineeringKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationSouth China University of TechnologyGuangzhouGuangdong510006China
| |
Collapse
|
18
|
Wong D, Luo P, Znassi N, Arteaga DP, Gray D, Danesh A, Han M, Zhao EY, Pedersen S, Prokopec S, Sundaravadanam Y, Torti D, Marsh K, Keshavarzi S, Xu W, Krema H, Joshua AM, Butler MO, Pugh TJ. Integrated, Longitudinal Analysis of Cell-free DNA in Uveal Melanoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:267-280. [PMID: 36860651 PMCID: PMC9973415 DOI: 10.1158/2767-9764.crc-22-0456] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
Uveal melanomas are rare tumors arising from melanocytes that reside in the eye. Despite surgical or radiation treatment, approximately 50% of patients with uveal melanoma will progress to metastatic disease, most often to the liver. Cell-free DNA (cfDNA) sequencing is a promising technology due to the minimally invasive sample collection and ability to infer multiple aspects of tumor response. We analyzed 46 serial cfDNA samples from 11 patients with uveal melanoma over a 1-year period following enucleation or brachytherapy (n = ∼4/patient) using targeted panel, shallow whole genome, and cell-free methylated DNA immunoprecipitation sequencing. We found detection of relapse was highly variable using independent analyses (P = 0.06-0.46), whereas a logistic regression model integrating all cfDNA profiles significantly improved relapse detection (P = 0.02), with greatest power derived from fragmentomic profiles. This work provides support for the use of integrated analyses to improve the sensitivity of circulating tumor DNA detection using multi-modal cfDNA sequencing. Significance Here, we demonstrate integrated, longitudinal cfDNA sequencing using multi-omic approaches is more effective than unimodal analysis. This approach supports the use of frequent blood testing using comprehensive genomic, fragmentomic, and epigenomic techniques.
Collapse
Affiliation(s)
- Derek Wong
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Ping Luo
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Nadia Znassi
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Diana P. Arteaga
- Department of Medicine, Division of Medical Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Diana Gray
- Department of Medicine, Division of Medical Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Arnavaz Danesh
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Ming Han
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Eric Y. Zhao
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Stephanie Pedersen
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Stephenie Prokopec
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | - Dax Torti
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Kayla Marsh
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Sareh Keshavarzi
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Wei Xu
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Hatem Krema
- Department of Ocular Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Canada
| | - Anthony M. Joshua
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada and Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Oncology, Kinghorn Cancer Centre, St. Vincent's Hospital and Garvan Institute of Medical Research, Sydney, Australia.,Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Marcus O. Butler
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada and Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine, Division of Medical Oncology, University of Toronto, Toronto, Ontario, Canada.,Corresponding Authors: Trevor J. Pugh, Princess Margaret Cancer Centre, University Health Network, MaRS Centre, 101 College Street, Princess Margaret Cancer Research Tower, Room 9-305, Toronto, Ontario M5G 1L7, Canada. Phone: 416-581-7689; E-mail: ; and Marcus Butler, Princess Margaret Cancer Centre, 610 University Avenue, OPG 7-815, Toronto, Ontario M5G 2M9. Phone: 416-946-4501 x5485;
| | - Trevor J. Pugh
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada and Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Corresponding Authors: Trevor J. Pugh, Princess Margaret Cancer Centre, University Health Network, MaRS Centre, 101 College Street, Princess Margaret Cancer Research Tower, Room 9-305, Toronto, Ontario M5G 1L7, Canada. Phone: 416-581-7689; E-mail: ; and Marcus Butler, Princess Margaret Cancer Centre, 610 University Avenue, OPG 7-815, Toronto, Ontario M5G 2M9. Phone: 416-946-4501 x5485;
| |
Collapse
|
19
|
Cardelli M, Pierpaoli E, Marchegiani F, Marcheselli F, Piacenza F, Giacconi R, Recchioni R, Casoli T, Stripoli P, Provinciali M, Matacchione G, Giuliani A, Ramini D, Sabbatinelli J, Bonafè M, Di Rosa M, Cherubini A, Di Pentima C, Spannella F, Antonicelli R, Bonfigli AR, Olivieri F, Lattanzio F. Biomarkers of cell damage, neutrophil and macrophage activation associated with in-hospital mortality in geriatric COVID-19 patients. Immun Ageing 2022; 19:65. [PMID: 36522763 PMCID: PMC9751505 DOI: 10.1186/s12979-022-00315-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/10/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND The risk for symptomatic COVID-19 requiring hospitalization is higher in the older population. The course of the disease in hospitalised older patients may show significant variation, from mild to severe illness, ultimately leading to death in the most critical cases. The analysis of circulating biomolecules involved in mechanisms of inflammation, cell damage and innate immunity could lead to identify new biomarkers of COVID-19 severity, aimed to improve the clinical management of subjects at higher risk of severe outcomes. In a cohort of COVID-19 geriatric patients (n= 156) who required hospitalization we analysed, on-admission, a series of circulating biomarkers related to neutrophil activation (neutrophil elastase, LL-37), macrophage activation (sCD163) and cell damage (nuclear cfDNA, mithocondrial cfDNA and nuclear cfDNA integrity). The above reported biomarkers were tested for their association with in-hospital mortality and with clinical, inflammatory and routine hematological parameters. Aim of the study was to unravel prognostic parameters for risk stratification of COVID-19 patients. RESULTS Lower n-cfDNA integrity, higher neutrophil elastase and higher sCD163 levels were significantly associated with an increased risk of in-hospital decease. Median (IQR) values observed in discharged vs. deceased patients were: 0.50 (0.30-0.72) vs. 0.33 (0.22-0.62) for n-cfDNA integrity; 94.0 (47.7-154.0) ng/ml vs. 115.7 (84.2-212.7) ng/ml for neutrophil elastase; 614.0 (370.0-821.0) ng/ml vs. 787.0 (560.0-1304.0) ng/ml for sCD163. The analysis of survival curves in patients stratified for tertiles of each biomarker showed that patients with n-cfDNA integrity < 0.32 or sCD163 in the range 492-811 ng/ml had higher risk of in-hospital decease than, respectively, patients with higher n-cfDNA integrity or lower sCD163. These associations were further confirmed in multivariate models adjusted for age, sex and outcome-related clinical variables. In these models also high levels of neutrophil elastase (>150 ng/ml) appeared to be independent predictor of in-hospital death. An additional analysis of neutrophil elastase in patients stratified for n-cfDNA integrity levels was conducted to better describe the association of the studied parameters with the outcome. CONCLUSIONS On the whole, biomarkers of cell-free DNA integrity, neutrophil and macrophage activation might provide a valuable contribution to identify geriatric patients with high risk of COVID-19 in-hospital mortality.
Collapse
Affiliation(s)
- M. Cardelli
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Ancona, Italy
| | - E. Pierpaoli
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Ancona, Italy
| | - F. Marchegiani
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - F. Marcheselli
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - F. Piacenza
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Ancona, Italy
| | - R. Giacconi
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Ancona, Italy
| | - R. Recchioni
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - T. Casoli
- Center for Neurobiology of Aging, Scientific Technological Area, IRCCS INRCA, Via Birarelli 8, 60121 Ancona, Italy
| | - P. Stripoli
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - M. Provinciali
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Ancona, Italy
| | - G. Matacchione
- grid.7010.60000 0001 1017 3210Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/a, 60126 Ancona, Italy
| | - A. Giuliani
- grid.7010.60000 0001 1017 3210Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/a, 60126 Ancona, Italy
| | - D. Ramini
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - J. Sabbatinelli
- grid.411490.90000 0004 1759 6306SOD Medicina di Laboratorio, Azienda Ospedaliero Universitaria Ospedali Riuniti, Ancona, Italy
| | - M. Bonafè
- grid.6292.f0000 0004 1757 1758Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - M. Di Rosa
- Unit of Geriatric Pharmacoepidemiology and Biostatistics, IRCCS INRCA, Cosenza, Italy
| | - A. Cherubini
- Geriatria, Accettazione geriatrica e Centro di Ricerca per l’invecchiamento, IRCCS INRCA, Ancona, Italy
| | - C. Di Pentima
- Internal Medicine and Geriatrics, IRCCS INRCA, Via della Montagnola 81, 60127 Ancona, Italy
| | - F. Spannella
- Internal Medicine and Geriatrics, IRCCS INRCA, Via della Montagnola 81, 60127 Ancona, Italy
| | | | - A. R. Bonfigli
- Scientific Direction and Geriatric Unit, IRCCS INRCA, Ancona, Italy
| | - F. Olivieri
- grid.7010.60000 0001 1017 3210Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/a, 60126 Ancona, Italy
| | - F. Lattanzio
- Scientific Direction and Geriatric Unit, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
20
|
Abstract
Cell-free DNA (cfDNA) is nonrandomly fragmented and contains a wealth of molecular information useful for noninvasive prenatal testing and cancer detection. cfDNA fragmentomics contains information beyond genetics, such as gene expression inference. However, the feasibility of using cfDNA fragmentomics for deducing cfDNA methylomics remains unexplored. This study demonstrated the possibility of using cfDNA fragmentation patterns to deduce the methylation patterns of cfDNA molecules, breaking free from the limitation of bisulfite sequencing. By using cfDNA cleavage profiles surrounding a cytosine-phosphate-guanine (CpG) site, we determined the methylation status ranging from a particular region down to a single CpG assisted by a deep learning algorithm. Both genetic and epigenetic information of cfDNA can therefore be obtained in a single nondestructive assay. Cell-free DNA (cfDNA) fragmentation patterns contain important molecular information linked to tissues of origin. We explored the possibility of using fragmentation patterns to predict cytosine-phosphate-guanine (CpG) methylation of cfDNA, obviating the use of bisulfite treatment and associated risks of DNA degradation. This study investigated the cfDNA cleavage profile surrounding a CpG (i.e., within an 11-nucleotide [nt] window) to analyze cfDNA methylation. The cfDNA cleavage proportion across positions within the window appeared nonrandom and exhibited correlation with methylation status. The mean cleavage proportion was ∼twofold higher at the cytosine of methylated CpGs than unmethylated ones in healthy controls. In contrast, the mean cleavage proportion rapidly decreased at the 1-nt position immediately preceding methylated CpGs. Such differential cleavages resulted in a characteristic change in relative presentations of CGN and NCG motifs at 5′ ends, where N represented any nucleotide. CGN/NCG motif ratios were correlated with methylation levels at tissue-specific methylated CpGs (e.g., placenta or liver) (Pearson’s absolute r > 0.86). cfDNA cleavage profiles were thus informative for cfDNA methylation and tissue-of-origin analyses. Using CG-containing end motifs, we achieved an area under a receiver operating characteristic curve (AUC) of 0.98 in differentiating patients with and without hepatocellular carcinoma and enhanced the positive predictive value of nasopharyngeal carcinoma screening (from 19.6 to 26.8%). Furthermore, we elucidated the feasibility of using cfDNA cleavage patterns to deduce CpG methylation at single CpG resolution using a deep learning algorithm and achieved an AUC of 0.93. FRAGmentomics-based Methylation Analysis (FRAGMA) presents many possibilities for noninvasive prenatal, cancer, and organ transplantation assessment.
Collapse
|
21
|
Sumbalová Z, Kucharská J, Rausová Z, Palacka P, Kovalčíková E, Takácsová T, Mojto V, Navas P, Lopéz-Lluch G, Gvozdjáková A. Reduced platelet mitochondrial respiration and oxidative phosphorylation in patients with post COVID-19 syndrome are regenerated after spa rehabilitation and targeted ubiquinol therapy. Front Mol Biosci 2022; 9:1016352. [PMID: 36339707 PMCID: PMC9634579 DOI: 10.3389/fmolb.2022.1016352] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/06/2022] [Indexed: 08/27/2023] Open
Abstract
European Association of Spa Rehabilitation recommend spa rehabilitation for patients with post COVID-19 syndrome (post C-19). We studied effects of special mountain spa rehabilitation program and its combination with ubiquinol (reduced form of coenzyme Q10-CoQ10) supplementation on pulmonary function, clinical symptoms, endogenous CoQ10 levels, and platelet mitochondrial bioenergetics of patients with post C-19. 36 patients with post C-19 enrolled for rehabilitation in mountain spa resort and 15 healthy volunteers representing the control group were included in this study. 14 patients with post C-19 (MR group) were on mountain spa rehabilitation lasting 16-18 days, 22 patients (MRQ group) were supplemented with ubiquinol (2 × 100 mg/day) during the rehabilitation and additional 12-14 days at home. Clinical symptoms and functional capacity of the lungs were determined in the patients before and after the spa rehabilitation program. Platelet bioenergetics by high-resolution respirometry, plasma TBARS concentration, and CoQ10 concentration in blood, plasma and platelets were evaluated before and after the spa rehabilitation program, and in 8 patients of MRQ group also after additional 12-14 days of CoQ10 supplementation. Pulmonary function and clinical symptoms improved after the rehabilitation program in both groups, 51.8% of symptoms disappeared in the MR group and 62.8% in the MRQ group. Platelet mitochondrial Complex I (CI)-linked oxidative phosphorylation (OXPHOS) and electron transfer (ET) capacity were markedly reduced in both groups of patients. After the rehabilitation program the improvement of these parameters was significant in the MRQ group and moderate in the MR group. CI-linked OXPHOS and ET capacity increased further after additional 12-14 days of CoQ10 supplementation. CoQ10 concentration in platelets, blood and plasma markedly raised after the spa rehabilitation with ubiquinol supplementation, not in non-supplemented group. In the MRQ group all parameters of platelet mitochondrial respiration correlated with CoQ10 concentration in platelets, and the increase in CI-linked OXPHOS and ET capacity correlated with the increase of CoQ10 concentration in platelets. Our data show a significant role of supplemented ubiquinol in accelerating the recovery of mitochondrial health in patients with post C-19. Mountain spa rehabilitation with coenzyme Q10 supplementation could be recommended to patients with post C-19. This study was registered as a clinical trial: ClinicalTrials.gov ID: NCT05178225.
Collapse
Affiliation(s)
- Zuzana Sumbalová
- Comenius University in Bratislava, Faculty of Medicine, Pharmacobiochemical Laboratory of 3rd Department of Internal Medicine, Bratislava, Slovakia
| | - Jarmila Kucharská
- Comenius University in Bratislava, Faculty of Medicine, Pharmacobiochemical Laboratory of 3rd Department of Internal Medicine, Bratislava, Slovakia
| | - Zuzana Rausová
- Comenius University in Bratislava, Faculty of Medicine, Pharmacobiochemical Laboratory of 3rd Department of Internal Medicine, Bratislava, Slovakia
| | - Patrik Palacka
- Comenius University in Bratislava, Faculty of Medicine, 2nd Department of Oncology, Bratislava, Slovakia
| | | | | | - Viliam Mojto
- Comenius University in Bratislava, Faculty of Medicine, 3rd Department of Internal Medicine, Bratislava, Slovakia
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA and CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | - Guillermo Lopéz-Lluch
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA and CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | - Anna Gvozdjáková
- Comenius University in Bratislava, Faculty of Medicine, Pharmacobiochemical Laboratory of 3rd Department of Internal Medicine, Bratislava, Slovakia
| |
Collapse
|
22
|
Lewis J, Greenway SC, Khan F, Singh G, Bhatia M, Guilcher GMT. Assessment of donor cell engraftment after hematopoietic stem cell transplantation for sickle cell disease: A review of current and future methods. Am J Hematol 2022; 97:1359-1371. [PMID: 35583381 DOI: 10.1002/ajh.26599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 01/24/2023]
Abstract
Hematopoietic stem cell transplantation (HSCT) is the only established curative treatment for sickle cell disease (SCD), a debilitating red blood cell (RBC) disorder with significant prevalence worldwide. Accurate assessment of RBC engraftment following HSCT is essential to evaluate the status of the graft and can enable early intervention to treat or prevent graft rejection. Currently, chimerism measurement is performed on whole blood samples, which mainly reflect white blood cell (WBC) chimerism. This approach has limitations in assessing engraftment in patients with SCD because RBCs engraft non-linearly with WBCs. Direct measures of RBC chimerism exist but are not routinely used. In this review, we critically examine the current methodologies for assessing donor engraftment; highlight the limitations of these different methods, and present emerging and novel technologies with the potential to improve clinical monitoring of RBC engraftment post-HSCT for SCD. Promising alternative methodologies include RBC-specific flow cytometry, RBC-specific RNA analysis, and quantification of plasma cell-free DNA derived specifically from nucleated RBCs.
Collapse
Affiliation(s)
- Jasmine Lewis
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Steven C Greenway
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Pediatrics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Faisal Khan
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gurpreet Singh
- Department of Pediatrics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Monica Bhatia
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Gregory M T Guilcher
- Department of Pediatrics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
23
|
Ju J, Sun K. Plasma cell-free DNA analysis for COVID-19 and beyond. CLINICAL AND TRANSLATIONAL DISCOVERY 2022; 2:e122. [PMID: 35942158 PMCID: PMC9350015 DOI: 10.1002/ctd2.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Jia Ju
- Institute of Cancer ResearchShenzhen Bay LaboratoryShenzhenChina
- Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Kun Sun
- Institute of Cancer ResearchShenzhen Bay LaboratoryShenzhenChina
- BGI‐ShenzhenShenzhenChina
| |
Collapse
|
24
|
Bai Y, Zheng F, Zhang T, Luo Q, Luo Y, Zhou R, Jin Y, Shan Y, Cheng J, Yang Z, Li L, Zhang H, Zhang Y, Yin J, Fang M, Chen D, Cheng F, Jin X. Integrating plasma cell-free DNA with clinical laboratory results enhances the prediction of critically ill patients with COVID-19 at hospital admission. Clin Transl Med 2022; 12:e966. [PMID: 35839327 PMCID: PMC9286531 DOI: 10.1002/ctm2.966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 01/10/2023] Open
Affiliation(s)
- Yong Bai
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Fang Zheng
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | | | - Yuxue Luo
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Ruilong Zhou
- BGI-Shenzhen, Shenzhen, Guangdong, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Jin
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ying Shan
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Jiehui Cheng
- Guangdong Hospital of Traditional Chinese Medicine, Zhuhai, Guangdong, China
| | - Zhimin Yang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Lingguo Li
- BGI-Shenzhen, Shenzhen, Guangdong, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | - Yan Zhang
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | | | | | | | - Fanjun Cheng
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Jin
- BGI-Shenzhen, Shenzhen, Guangdong, China.,School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
25
|
Qian X, Shah P, Agbor-Enoh S. Noninvasive biomarkers in heart transplant: 2020-2021 year in review. Curr Opin Organ Transplant 2022; 27:7-14. [PMID: 34939959 PMCID: PMC8711631 DOI: 10.1097/mot.0000000000000945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE OF REVIEW Endomyocardial biopsy (EMB), the current gold standard for cardiac allograft monitoring is invasive, may have a low sensitivity and is associated with significant variability in histopathologic interpretation. Fortunately, on-going research is identifying noninvasive biomarkers that address some of these limitations. This review provides an update on noninvasive blood-based methods for rejection surveillance and diagnosis in heart transplantation. RECENT FINDINGS Recent studies highlight good test performance to detect acute rejection for donor-derived cell-free DNA (dd-cfDNA) and microRNAs (miR). dd-cfDNA is sensitive, nonspecific, and has a high negative predictive value for acute cellular and antibody-mediated rejection. Clinical utility trials are being planned to test its role as a rule-out test for acute rejection as compared to the EMB. miRs may have an added advantage as it may phenotype the subtypes of rejection alleviating the need for an EMB or permitting the initiation of targeted therapy while awaiting the results of the EMB. SUMMARY In this review, we discuss recent advances in the field of noninvasive biomarkers to detect allograft rejection after heart transplant. We provide a perspective of additional studies needed to prove their clinical utility and bring these biomarkers to widescale clinical use.
Collapse
Affiliation(s)
- Xiaoxiao Qian
- Cardiovascular Medicine, Inova Heart and Vascular Institute, Falls Church VA
| | - Palak Shah
- Heart Failure, MCS and Transplant, Inova Heart and Vascular Institute, Falls Church VA
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, MD
| | - Sean Agbor-Enoh
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, MD
- Laboratory of Applied Precision Omics, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD
- Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
26
|
Cheng AP, Cheng MP, Loy CJ, Lenz JS, Chen K, Smalling S, Burnham P, Timblin KM, Orejas JL, Silverman E, Polak P, Marty FM, Ritz J, De Vlaminck I. Cell-free DNA profiling informs all major complications of hematopoietic cell transplantation. Proc Natl Acad Sci U S A 2022; 119:e2113476118. [PMID: 35058359 PMCID: PMC8795552 DOI: 10.1073/pnas.2113476118] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (HCT) provides effective treatment for hematologic malignancies and immune disorders. Monitoring of posttransplant complications is critical, yet current diagnostic options are limited. Here, we show that cell-free DNA (cfDNA) in blood is a versatile analyte for monitoring of the most important complications that occur after HCT: graft-versus-host disease (GVHD), a frequent immune complication of HCT, infection, relapse of underlying disease, and graft failure. We demonstrate that these therapeutic complications are informed from a single assay, low-coverage bisulfite sequencing of cfDNA, followed by disease-specific bioinformatic analyses. To inform GVHD, we profile cfDNA methylation marks to trace the cfDNA tissues-of-origin and to quantify tissue-specific injury. To inform infection, we implement metagenomic cfDNA profiling. To inform cancer relapse, we implement analyses of tumor-specific genomic aberrations. Finally, to detect graft failure, we quantify the proportion of donor- and recipient-specific cfDNA. We applied this assay to 170 plasma samples collected from 27 HCT recipients at predetermined timepoints before and after allogeneic HCT. We found that the abundance of solid-organ-derived cfDNA in the blood at 1 mo after HCT is predictive of acute GVHD (area under the curve, 0.88). Metagenomic profiling of cfDNA revealed the frequent occurrence of viral reactivation in this patient population. The fraction of donor-specific cfDNA was indicative of relapse and remission, and the fraction of tumor-specific cfDNA was informative of cancer relapse. This proof-of-principle study shows that cfDNA has the potential to improve the care of allogeneic HCT recipients by enabling earlier detection and better prediction of the complex array of complications that occur after HCT.
Collapse
Affiliation(s)
| | - Matthew Pellan Cheng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
- Division of Infectious Disease, Brigham and Women's Hospital, Boston, MA 02215
| | - Conor James Loy
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Joan Sesing Lenz
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Kaiwen Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
- Division of Infectious Disease, Brigham and Women's Hospital, Boston, MA 02215
| | - Sami Smalling
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Philip Burnham
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Kaitlyn Marie Timblin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
- Division of Infectious Disease, Brigham and Women's Hospital, Boston, MA 02215
| | - José Luis Orejas
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
- Division of Infectious Disease, Brigham and Women's Hospital, Boston, MA 02215
| | - Emily Silverman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
- Division of Infectious Disease, Brigham and Women's Hospital, Boston, MA 02215
| | - Paz Polak
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Francisco M Marty
- Division of Infectious Disease, Brigham and Women's Hospital, Boston, MA 02215
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Jerome Ritz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Iwijn De Vlaminck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853;
| |
Collapse
|
27
|
Andargie TE, Zhou W, Karaba AH, Li T, Seifuddin F, Rittenhouse AG, Kong H, Singh K, Woodward R, Iacono A, Avery RK, Pirooznia M, Jang MK, Ji H, Cox AL, Agbor-Enoh S. Integrated cell-free DNA and cytokine analysis uncovers distinct tissue injury and immune response patterns in solid organ transplant recipients with COVID-19. RESEARCH SQUARE 2022:rs.3.rs-1262270. [PMID: 35075453 PMCID: PMC8786231 DOI: 10.21203/rs.3.rs-1262270/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
COVID-19 pathogenesis is associated with an exuberant inflammatory response. However, the tissue injury pattern and immune response in solid-organ transplant recipients (SOTRs) taking immunosuppressive therapy have not been well characterized. Here, we perform both cfDNA and cytokine profiling on plasma samples to map tissue damage, including allograft injury and delineate underlying immunopathology. We identified injuries from multiple-tissue types, including hematopoietic cells, vascular endothelium, hepatocyte, adipocyte, pancreas, kidney, heart, and lung in SOTRs with COVID-19 that correlates with disease severity. SOTRs with COVID-19 have higher plasma levels of cytokines such as IFN-λ1, IFN-γ, IL-15, IL-18 IL-1RA, IL-6, MCP-2, and TNF-α as compared to healthy controls, and the levels of GM-CSF, IL-15, IL-6, IL-8, and IL-10 were associated with disease severity in SOTRs. Strikingly, IFN-λ and IP-10 were markedly increased in SOTRs compared to immunocompetent patients with COVID-19. Correlation analyses showed a strong association between monocyte-derived cfDNA and inflammatory cytokines/chemokines in SOTRs with COVID-19. Moreover, compared to other respiratory viral infections, COVID-19 induced pronounced injury in hematopoietic, vascular endothelial and endocrine tissues. Allograft injury, measured as donor-derived cfDNA was elevated in SOTRs with COVID-19, including allografts distant from the primary site of infection. Allograft injury correlated with inflammatory cytokines and cfDNA from immune cells. Furthermore, longitudinal analysis identified a gradual decrease of cfDNA and inflammatory cytokine levels in patients with a favorable outcome. Our findings highlight distinct tissue injury and cytokine features in SOTRs with COVID-19 that correlate with disease severity.
Collapse
Affiliation(s)
- Temesgen E. Andargie
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD
- Department of Biology, Howard University, Washington DC
| | - Weiqiang Zhou
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Andrew H. Karaba
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD
| | - Taibo Li
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | | | - Alex G. Rittenhouse
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Hyesik Kong
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD
| | | | | | - Aldo Iacono
- Department of Medicine, University of Maryland, College Park, MD
| | - Robin K Avery
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD
| | | | - Moon Kyoo Jang
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD
| | - Hongkai Ji
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Andrea L. Cox
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD
| | - Sean Agbor-Enoh
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD
| |
Collapse
|
28
|
Single-molecule sequencing reveals a large population of long cell-free DNA molecules in maternal plasma. Proc Natl Acad Sci U S A 2021; 118:2114937118. [PMID: 34873045 PMCID: PMC8685924 DOI: 10.1073/pnas.2114937118] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2021] [Indexed: 11/18/2022] Open
Abstract
In the field of circulating cell-free DNA, most of the studies have focused on short DNA molecules (e.g., <500 bp). The existence of long cell-free DNA molecules has been poorly explored. In this study, we demonstrated that single-molecule real-time sequencing allowed us to detect and analyze a substantial proportion of long DNA molecules from both fetal and maternal sources in maternal plasma. Such molecules were beyond the size detection limits of short-read sequencing technologies. The proportions of long cell-free DNA molecules in maternal plasma over 500 bp were 15.5%, 19.8%, and 32.3% for the first, second, and third trimesters, respectively. The longest fetal-derived plasma DNA molecule observed was 23,635 bp. Long plasma DNA molecules demonstrated predominance of A or G 5' fragment ends. Pregnancies with preeclampsia demonstrated a reduction in long maternal plasma DNA molecules, reduced frequencies for selected 5' 4-mer end motifs ending with G or A, and increased frequencies for selected motifs ending with T or C. Finally, we have developed an approach that employs the analysis of methylation patterns of the series of CpG sites on a long DNA molecule for determining its tissue origin. This approach achieved an area under the curve of 0.88 in differentiating between fetal and maternal plasma DNA molecules, enabling the determination of maternal inheritance and recombination events in the fetal genome. This work opens up potential clinical utilities of long cell-free DNA analysis in maternal plasma including noninvasive prenatal testing of monogenic diseases and detection/monitoring of pregnancy-associated disorders such as preeclampsia.
Collapse
|
29
|
Bruneau T, Wack M, Poulet G, Robillard N, Philippe A, Laurent-Puig P, Bélec L, Hadjadj J, Xiao W, Kallberg JL, Kernéis S, Diehl JL, Terrier B, Smadja D, Taly V, Veyer D, Péré H. Circulating ubiquitous RNA, a highly predictive and prognostic biomarker in hospitalized COVID-19 patients. Clin Infect Dis 2021; 75:e410-e417. [PMID: 34894121 PMCID: PMC8689820 DOI: 10.1093/cid/ciab997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Approximately 15-30% of hospitalized COVID-19 patients develop acute respiratory distress syndrome, systemic tissue injury, and/or multi-organ failure leading to death in around 45% of cases. There is a clear need for biomarkers which quantify tissue injury, predict clinical outcomes and guide the clinical management of hospitalized COVID-19 patients. METHODS We herein report the quantification by droplet-based digital PCR (ddPCR) of the SARS-CoV-2 RNAemia and the plasmatic release of a ubiquitous human intracellular marker, the ribonuclease P (RNase P) in order to evaluate tissue injury and cell lysis in the plasma of 139 COVID-19 hospitalized patients at admission. RESULTS We confirmed that SARS-CoV-2 RNAemia was associated with clinical severity of COVID-19 patients. In addition, we showed that plasmatic RNase P RNAemia at admission was also highly correlated with disease severity (P<0.001) and invasive mechanical ventilation status (P<0.001) but not with pulmonary severity. Altogether, these results indicate a consequent cell lysis process in severe and critical patients but not systematically due to lung cell death. Finally, the plasmatic RNase P RNA value was also significantly associated with overall survival. CONCLUSION Viral and ubiquitous blood biomarkers monitored by ddPCR could be useful for the clinical monitoring and the management of hospitalized COVID-19 patients. Moreover, these results could pave the way for new and more personalized circulating biomarkers in COVID-19, and more generally in infectious diseases, specific from each patient organ injury profile.
Collapse
Affiliation(s)
- Thomas Bruneau
- Department of Microbiology, Assistance Publique Hôpitaux de Paris. Centre-Université de Paris (APHP.CUP) Hôpital Européen Georges Pompidou, F- 75015 Paris, France
| | - Maxime Wack
- Department of Medical Informatics, Assistance Publique Hôpitaux de Paris. Centre-Université de Paris (APHP.CUP) Hôpital Européen Georges Pompidou, F- 75015 Paris, France.,Centre de Recherche des Cordeliers, INSERM, Université Sorbonne Paris Cité, Université de Paris, UMRS 1138, Information sciences to support medicine, Paris, France
| | - Geoffroy Poulet
- Centre de Recherche des Cordeliers, INSERM, CNRS, Université Sorbonne Paris Cité, Université de Paris, Equipe labellisée Ligue Nationale contre le cancer, CNRS SNC 5096, Paris, France
| | - Nicolas Robillard
- Department of Microbiology, Assistance Publique Hôpitaux de Paris. Centre-Université de Paris (APHP.CUP) Hôpital Européen Georges Pompidou, F- 75015 Paris, France
| | - Aurélien Philippe
- Hematology department, Assistance Publique Hôpitaux de Paris-Centre (AP-HP.CUP), F-75015 Paris, France.,Université de Paris, Innovative Therapies in Hemostasis, INSERM, F-75006 Paris, France and Biosurgical Research Lab (Carpentier Foundation) European Georges Pompidou Hospital, F-75015 Paris, France
| | - Pierre Laurent-Puig
- Centre de Recherche des Cordeliers, INSERM, CNRS, Université Sorbonne Paris Cité, Université de Paris, Equipe labellisée Ligue Nationale contre le cancer, CNRS SNC 5096, Paris, France
| | - Laurent Bélec
- Department of Microbiology, Assistance Publique Hôpitaux de Paris. Centre-Université de Paris (APHP.CUP) Hôpital Européen Georges Pompidou, F- 75015 Paris, France.,Université de Paris, INSERM U970, PARCC, Paris, F- 75015, France
| | - Jérôme Hadjadj
- Department of Internal Medicine, National Referral Center for Rare Systemic Autoimmune Diseases, AP-HP CUP, Paris, France.,Université de Paris, Institut Imagine, INSERMU1163, Laboratory of Immunogenetics of Pediatric Autoimmuninity, F-75015, Paris, France
| | - Wenjin Xiao
- Centre de Recherche des Cordeliers, INSERM, CNRS, Université Sorbonne Paris Cité, Université de Paris, Equipe labellisée Ligue Nationale contre le cancer, CNRS SNC 5096, Paris, France
| | - Julia-Linnea Kallberg
- Centre de Recherche des Cordeliers, INSERM, CNRS, Université Sorbonne Paris Cité, Université de Paris, Equipe labellisée Ligue Nationale contre le cancer, CNRS SNC 5096, Paris, France
| | - Solen Kernéis
- Equipe de Prévention du Risque Infectieux (EPRI), Assistance Publique Hôpitaux de Paris, Hôpital Bichat, F-75018 Paris, France.,Université de Paris, INSERM, IAME, F-75018 Paris, France
| | - Jean-Luc Diehl
- Hematology department, Assistance Publique Hôpitaux de Paris-Centre (AP-HP.CUP), F-75015 Paris, France.,Intensive Care Unit, Assistance Publique - Hôpitaux de Paris-Centre (APHP-CUP), Georges Pompidou European Hospital, F- 75015 Paris, France
| | - Benjamin Terrier
- Université de Paris, INSERM U970, PARCC, Paris, F- 75015, France.,Department of Internal Medicine, National Referral Center for Rare Systemic Autoimmune Diseases, AP-HP CUP, Paris, France
| | - David Smadja
- Hematology department, Assistance Publique Hôpitaux de Paris-Centre (AP-HP.CUP), F-75015 Paris, France.,Université de Paris, Innovative Therapies in Hemostasis, INSERM, F-75006 Paris, France and Biosurgical Research Lab (Carpentier Foundation) European Georges Pompidou Hospital, F-75015 Paris, France
| | - Valerie Taly
- Centre de Recherche des Cordeliers, INSERM, CNRS, Université Sorbonne Paris Cité, Université de Paris, Equipe labellisée Ligue Nationale contre le cancer, CNRS SNC 5096, Paris, France
| | - David Veyer
- Department of Microbiology, Assistance Publique Hôpitaux de Paris. Centre-Université de Paris (APHP.CUP) Hôpital Européen Georges Pompidou, F- 75015 Paris, France.,Centre de Recherche des Cordeliers, INSERM, Université Sorbonne Paris Cité, Université de Paris, UMRS 1138, Equipe FunGest, Paris, France
| | - Hélène Péré
- Centre de Recherche des Cordeliers, INSERM, Université Sorbonne Paris Cité, Université de Paris, UMRS 1138, Equipe FunGest, Paris, France
| |
Collapse
|
30
|
Mzava O, Cheng AP, Chang A, Smalling S, Djomnang Kounatse LA, Lenz J, Longman R, Steadman A, Salvatore M, Suthanthiran M, Lee JR, Mason CE, Dadhania D, De Vlaminck I. A metagenomic DNA sequencing assay that is robust against environmental DNA contamination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34845444 DOI: 10.1101/2021.12.02.470912v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Metagenomic DNA sequencing is a powerful tool to characterize microbial communities but is sensitive to environmental DNA contamination, in particular when applied to samples with low microbial biomass. Here, we present contamination-free metagenomic DNA sequencing (Coffee-seq), a metagenomic sequencing assay that is robust against environmental contamination. The core idea of Coffee-seq is to tag the DNA in the sample prior to DNA isolation and library preparation with a label that can be recorded by DNA sequencing. Any contaminating DNA that is introduced in the sample after tagging can then be bioinformatically identified and removed. We applied Coffee-seq to screen for infections from microorganisms with low burden in blood and urine, to identify COVID-19 co-infection, to characterize the urinary microbiome, and to identify microbial DNA signatures of inflammatory bowel disease in blood.
Collapse
Affiliation(s)
- Omary Mzava
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Alexandre Pellan Cheng
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Adrienne Chang
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Sami Smalling
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | | | - Joan Lenz
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Randy Longman
- Jill Roberts Center for IBD, Weill Cornell Medicine, Division of Gastroenterology and Hepatology, New York, NY, USA
| | | | - Mirella Salvatore
- Division of Public Health Programs, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Manikkam Suthanthiran
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA.,Department of Transplantation Medicine, New York Presbyterian Hospital-Weill Cornell Medical Center, New York, NY, 10065, USA
| | - John R Lee
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA.,Department of Transplantation Medicine, New York Presbyterian Hospital-Weill Cornell Medical Center, New York, NY, 10065, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York City, NY, USA
| | - Darshana Dadhania
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA.,Department of Transplantation Medicine, New York Presbyterian Hospital-Weill Cornell Medical Center, New York, NY, 10065, USA
| | - Iwijn De Vlaminck
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
31
|
Mzava O, Cheng AP, Chang A, Smalling S, Djomnang Kounatse LA, Lenz J, Longman R, Steadman A, Salvatore M, Suthanthiran M, Lee JR, Mason CE, Dadhania D, De Vlaminck I. A metagenomic DNA sequencing assay that is robust against environmental DNA contamination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.11.22.469599. [PMID: 34845444 PMCID: PMC8629186 DOI: 10.1101/2021.11.22.469599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Metagenomic DNA sequencing is a powerful tool to characterize microbial communities but is sensitive to environmental DNA contamination, in particular when applied to samples with low microbial biomass. Here, we present contamination-free metagenomic DNA sequencing (Coffee-seq), a metagenomic sequencing assay that is robust against environmental contamination. The core idea of Coffee-seq is to tag the DNA in the sample prior to DNA isolation and library preparation with a label that can be recorded by DNA sequencing. Any contaminating DNA that is introduced in the sample after tagging can then be bioinformatically identified and removed. We applied Coffee-seq to screen for infections from microorganisms with low burden in blood and urine, to identify COVID-19 co-infection, to characterize the urinary microbiome, and to identify microbial DNA signatures of inflammatory bowel disease in blood.
Collapse
Affiliation(s)
- Omary Mzava
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Alexandre Pellan Cheng
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Adrienne Chang
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Sami Smalling
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | | | - Joan Lenz
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Randy Longman
- Jill Roberts Center for IBD, Weill Cornell Medicine, Division of Gastroenterology and Hepatology, New York, NY, USA
| | | | - Mirella Salvatore
- Division of Public Health Programs, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Manikkam Suthanthiran
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Transplantation Medicine, New York Presbyterian Hospital–Weill Cornell Medical Center, New York, NY, 10065, USA
| | - John R. Lee
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Transplantation Medicine, New York Presbyterian Hospital–Weill Cornell Medical Center, New York, NY, 10065, USA
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York City, NY, USA
| | - Darshana Dadhania
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Transplantation Medicine, New York Presbyterian Hospital–Weill Cornell Medical Center, New York, NY, 10065, USA
| | - Iwijn De Vlaminck
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
32
|
Gomes C, Zuniga M, Crotty KA, Qian K, Tovar NC, Lin LH, Argyropoulos KV, Clancy R, Izmirly P, Buyon J, Lee DC, Yasnot-Acosta MF, Li H, Cotzia P, Rodriguez A. Autoimmune anti-DNA and anti-phosphatidylserine antibodies predict development of severe COVID-19. Life Sci Alliance 2021; 4:4/11/e202101180. [PMID: 34504035 PMCID: PMC8441539 DOI: 10.26508/lsa.202101180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 11/30/2022] Open
Abstract
COVID-19 induces high levels of autoimmune anti-DNA and anti-phosphatidylserine antibodies that are detected in some patients upon hospital admission and predict later development of severe disease. High levels of autoimmune antibodies are observed in COVID-19 patients but their specific contribution to disease severity and clinical manifestations remains poorly understood. We performed a retrospective study of 115 COVID-19 hospitalized patients with different degrees of severity to analyze the generation of autoimmune antibodies to common antigens: a lysate of erythrocytes, the lipid phosphatidylserine (PS) and DNA. High levels of IgG autoantibodies against erythrocyte lysates were observed in a large percentage (up to 36%) of patients. Anti-DNA and anti-PS antibodies determined upon hospital admission correlated strongly with later development of severe disease, showing a positive predictive value of 85.7% and 92.8%, respectively. Patients with positive values for at least one of the two autoantibodies accounted for 24% of total severe cases. Statistical analysis identified strong correlations between anti-DNA antibodies and markers of cell injury, coagulation, neutrophil levels and erythrocyte size. Anti-DNA and anti-PS autoantibodies may play an important role in the pathogenesis of COVID-19 and could be developed as predictive biomarkers for disease severity and specific clinical manifestations.
Collapse
Affiliation(s)
- Claudia Gomes
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Marisol Zuniga
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Kelly A Crotty
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Kun Qian
- Division of Biostatistics, Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Nubia Catalina Tovar
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA.,Universidad de Córdoba, Montería, Córdoba, Colombia.,Universidad Del Sinú, Montería, Córdoba, Colombia
| | - Lawrence Hsu Lin
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Kimon V Argyropoulos
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Robert Clancy
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Peter Izmirly
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Jill Buyon
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - David C Lee
- Department of Emergency Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | | | - Huilin Li
- Division of Biostatistics, Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Paolo Cotzia
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ana Rodriguez
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
33
|
Barefoot ME, Loyfer N, Kiliti AJ, McDeed AP, Kaplan T, Wellstein A. Detection of Cell Types Contributing to Cancer From Circulating, Cell-Free Methylated DNA. Front Genet 2021; 12:671057. [PMID: 34386036 PMCID: PMC8353442 DOI: 10.3389/fgene.2021.671057] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
Detection of cellular changes in tissue biopsies has been the basis for cancer diagnostics. However, tissue biopsies are invasive and limited by inaccuracies due to sampling locations, restricted sampling frequency, and poor representation of tissue heterogeneity. Liquid biopsies are emerging as a complementary approach to traditional tissue biopsies to detect dynamic changes in specific cell populations. Cell-free DNA (cfDNA) fragments released into the circulation from dying cells can be traced back to the tissues and cell types they originated from using DNA methylation, an epigenetic regulatory mechanism that is highly cell-type specific. Decoding changes in the cellular origins of cfDNA over time can reveal altered host tissue homeostasis due to local cancer invasion and metastatic spread to distant organs as well as treatment responses. In addition to host-derived cfDNA, changes in cancer cells can be detected from cell-free, circulating tumor DNA (ctDNA) by monitoring DNA mutations carried by cancer cells. Here, we will discuss computational approaches to identify and validate robust biomarkers of changed tissue homeostasis using cell-free, methylated DNA in the circulation. We highlight studies performing genome-wide profiling of cfDNA methylation and those that combine genetic and epigenetic markers to further identify cell-type specific signatures. Finally, we discuss opportunities and current limitations of these approaches for implementation in clinical oncology.
Collapse
Affiliation(s)
- Megan E. Barefoot
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Netanel Loyfer
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amber J. Kiliti
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, United States
| | - A. Patrick McDeed
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University, Washington, DC, United States
| | - Tommy Kaplan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Anton Wellstein
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| |
Collapse
|
34
|
Chen X, Wu T, Li L, Lin Y, Ma Z, Xu J, Li H, Cheng F, Chen R, Sun K, Luo Y, Zhang C, Chen F, Wang J, Kuo T, Li X, Geng C, Lin F, Huang C, Hu J, Yin J, Liu M, Tao Y, Zhang J, Ou R, Zheng F, Jin Y, Yang H, Wang J, Xu X, Fu S, Jiang H, Jin X, Zhang H. Transcriptional Start Site Coverage Analysis in Plasma Cell-Free DNA Reveals Disease Severity and Tissue Specificity of COVID-19 Patients. Front Genet 2021; 12:663098. [PMID: 34122515 PMCID: PMC8194351 DOI: 10.3389/fgene.2021.663098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/14/2021] [Indexed: 01/10/2023] Open
Abstract
Symptoms of coronavirus disease 2019 (COVID-19) range from asymptomatic to severe pneumonia and death. A deep understanding of the variation of biological characteristics in severe COVID-19 patients is crucial for the detection of individuals at high risk of critical condition for the clinical management of the disease. Herein, by profiling the gene expression spectrum deduced from DNA coverage in regions surrounding transcriptional start site in plasma cell-free DNA (cfDNA) of COVID-19 patients, we deciphered the altered biological processes in the severe cases and demonstrated the feasibility of cfDNA in measuring the COVID-19 progression. The up- and downregulated genes in the plasma of severe patient were found to be closely related to the biological processes and functions affected by COVID-19 progression. More importantly, with the analysis of transcriptome data of blood cells and lung cells from control group and cases with severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection, we revealed that the upregulated genes were predominantly involved in the viral and antiviral activity in blood cells, reflecting the intense viral replication and the active reaction of immune system in the severe patients. Pathway analysis of downregulated genes in plasma DNA and lung cells also demonstrated the diminished adenosine triphosphate synthesis function in lung cells, which was evidenced to correlate with the severe COVID-19 symptoms, such as a cytokine storm and acute respiratory distress. Overall, this study revealed tissue involvement, provided insights into the mechanism of COVID-19 progression, and highlighted the utility of cfDNA as a noninvasive biomarker for disease severity inspections.
Collapse
Affiliation(s)
- Xinping Chen
- Hainan Provincial Key Laboratory of Cell and Molecular Genetic Translational Medicine, Hainan General Hospital, Hainan Hospital Affiliated to The Hainan Medical College, Haikou, China
| | - Tao Wu
- Hainan Provincial Key Laboratory of Cell and Molecular Genetic Translational Medicine, Hainan General Hospital, Hainan Hospital Affiliated to The Hainan Medical College, Haikou, China
| | - Lingguo Li
- BGI-Shenzhen, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Yu Lin
- BGI-Shenzhen, Shenzhen, China
| | - Zhichao Ma
- Hainan Provincial Key Laboratory of Cell and Molecular Genetic Translational Medicine, Hainan General Hospital, Hainan Hospital Affiliated to The Hainan Medical College, Haikou, China
| | | | - Hui Li
- Hainan Provincial Key Laboratory of Cell and Molecular Genetic Translational Medicine, Hainan General Hospital, Hainan Hospital Affiliated to The Hainan Medical College, Haikou, China
| | - Fanjun Cheng
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Kun Sun
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Yuxue Luo
- BGI-Shenzhen, Shenzhen, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Chen Zhang
- Hainan Provincial Key Laboratory of Cell and Molecular Genetic Translational Medicine, Hainan General Hospital, Hainan Hospital Affiliated to The Hainan Medical College, Haikou, China
| | | | - Jiao Wang
- Hainan Provincial Key Laboratory of Cell and Molecular Genetic Translational Medicine, Hainan General Hospital, Hainan Hospital Affiliated to The Hainan Medical College, Haikou, China
| | - Tingyu Kuo
- BGI-Shenzhen, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Xiaojuan Li
- Hainan Provincial Key Laboratory of Cell and Molecular Genetic Translational Medicine, Hainan General Hospital, Hainan Hospital Affiliated to The Hainan Medical College, Haikou, China
| | | | - Feng Lin
- Hainan Provincial Key Laboratory of Cell and Molecular Genetic Translational Medicine, Hainan General Hospital, Hainan Hospital Affiliated to The Hainan Medical College, Haikou, China
| | | | - Junjie Hu
- Hainan Provincial Key Laboratory of Cell and Molecular Genetic Translational Medicine, Hainan General Hospital, Hainan Hospital Affiliated to The Hainan Medical College, Haikou, China
| | | | - Ming Liu
- Hainan Provincial Key Laboratory of Cell and Molecular Genetic Translational Medicine, Hainan General Hospital, Hainan Hospital Affiliated to The Hainan Medical College, Haikou, China
| | - Ye Tao
- BGI-Shenzhen, Shenzhen, China
| | - Jiye Zhang
- Hainan Provincial Key Laboratory of Cell and Molecular Genetic Translational Medicine, Hainan General Hospital, Hainan Hospital Affiliated to The Hainan Medical College, Haikou, China
| | | | - Fang Zheng
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Jin
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China
- James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, China
- James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, China
| | - Shengmiao Fu
- Hainan Provincial Key Laboratory of Cell and Molecular Genetic Translational Medicine, Hainan General Hospital, Hainan Hospital Affiliated to The Hainan Medical College, Haikou, China
| | - Hongyan Jiang
- Hainan Provincial Key Laboratory of Cell and Molecular Genetic Translational Medicine, Hainan General Hospital, Hainan Hospital Affiliated to The Hainan Medical College, Haikou, China
| | - Xin Jin
- BGI-Shenzhen, Shenzhen, China
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | |
Collapse
|
35
|
Extremely High Cell-free DNA Levels Observed in Renal Allograft Patient With SARS-CoV-2 Infection. Transplant Direct 2021; 7:e691. [PMID: 33912658 PMCID: PMC8078311 DOI: 10.1097/txd.0000000000001145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/10/2021] [Accepted: 02/13/2021] [Indexed: 11/27/2022] Open
Abstract
Beyond its widely recognized morbidity and mortality, coronavirus disease 2019 poses an additional health risk to renal allograft recipients. Detection and measurement of donor-derived cell-free DNA (dd-cfDNA), expressed as a fraction of the total cell-free DNA (cfDNA), has emerged as a noninvasive biomarker for allograft rejection. Here, we present a case report of a patient who was infected with severe acute respiratory syndrome coronavirus 2, 11 mo post-kidney transplant. The patient was serially monitored using an analytically and clinically validated massively multiplex PCR-based dd-cfDNA assay to assess allograft injury and risk for rejection. Over the course of infection, low dd-cfDNA fractions were observed (below the 1% cutoff) and were accompanied by unusually highly elevated levels of total cfDNA, which gradually declined as the infection resolved. The case study highlights the variability in total cfDNA levels during and after viral infection, and the need to consider both total and dd-cfDNA levels when clinically interpreting the results for allograft rejection. Furthermore, the study highlights the importance of serial testing, wherein an interplay between total cfDNA and dd-cfDNA can inform the optimization of a patient's immunosuppressive treatment regimen in response to infection.
Collapse
|
36
|
Andargie TE, Tsuji N, Seifuddin F, Jang MK, Yuen PS, Kong H, Tunc I, Singh K, Charya A, Wilkins K, Nathan S, Cox A, Pirooznia M, Star RA, Agbor-Enoh S. Cell-free DNA maps COVID-19 tissue injury and risk of death and can cause tissue injury. JCI Insight 2021; 6:147610. [PMID: 33651717 PMCID: PMC8119224 DOI: 10.1172/jci.insight.147610] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/02/2021] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION The clinical course of coronavirus 2019 (COVID-19) is heterogeneous, ranging from mild to severe multiorgan failure and death. In this study, we analyzed cell-free DNA (cfDNA) as a biomarker of injury to define the sources of tissue injury that contribute to such different trajectories. METHODS We conducted a multicenter prospective cohort study to enroll patients with COVID-19 and collect plasma samples. Plasma cfDNA was subject to bisulfite sequencing. A library of tissue-specific DNA methylation signatures was used to analyze sequence reads to quantitate cfDNA from different tissue types. We then determined the correlation of tissue-specific cfDNA measures to COVID-19 outcomes. Similar analyses were performed for healthy controls and a comparator group of patients with respiratory syncytial virus and influenza. RESULTS We found markedly elevated levels and divergent tissue sources of cfDNA in COVID-19 patients compared with patients who had influenza and/or respiratory syncytial virus and with healthy controls. The major sources of cfDNA in COVID-19 were hematopoietic cells, vascular endothelium, hepatocytes, adipocytes, kidney, heart, and lung. cfDNA levels positively correlated with COVID-19 disease severity, C-reactive protein, and D-dimer. cfDNA profile at admission identified patients who subsequently required intensive care or died during hospitalization. Furthermore, the increased cfDNA in COVID-19 patients generated excessive mitochondrial ROS (mtROS) in renal tubular cells in a concentration-dependent manner. This mtROS production was inhibited by a TLR9-specific antagonist. CONCLUSION cfDNA maps tissue injury that predicts COVID-19 outcomes and may mechanistically propagate COVID-19–induced tissue injury. FUNDING Intramural Targeted Anti–COVID-19 grant, NIH.
Collapse
Affiliation(s)
- Temesgen E Andargie
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA.,Department of Biology, Howard University, Washington DC, USA
| | - Naoko Tsuji
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | | | - Moon Kyoo Jang
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| | - Peter St Yuen
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Hyesik Kong
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| | - Ilker Tunc
- Bioinformatics and Computation Core, NHLBI, Maryland, USA
| | - Komudi Singh
- Bioinformatics and Computation Core, NHLBI, Maryland, USA
| | - Ananth Charya
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| | | | - Steven Nathan
- Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Fairfax, Virginia, USA
| | - Andrea Cox
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Robert A Star
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Sean Agbor-Enoh
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|