1
|
Wang PH, Shah PT, Xing L. Genetic characteristics and geographic distribution of rabies virus in China. Arch Virol 2023; 169:14. [PMID: 38157057 DOI: 10.1007/s00705-023-05947-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024]
Abstract
China is one of the largest countries with endemic rabies. In this study, we examined the full-length genome sequences of 87 rabies virus (RABV) strains identified in China from 1931 to 2019. Chinese RABV isolates were divided into two major clades, GI and GII. Clade GI consisted of viruses from the Asian clade, which was further divided into three subclades: Asian1, Asian2, and Asian3. Clade GII consisted of viruses from the Cosmopolitan, Arctic-related, and Indian clades. A phylogeographic network showed that the variation of rabies virus was more closely associated with geographic location than with the host species. Recombination appears to be one of the factors driving the emergence of new viral strains.
Collapse
Affiliation(s)
- Pei-Hua Wang
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi Province, China
| | - Pir Tariq Shah
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi Province, China
| | - Li Xing
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi Province, China.
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi Province, China.
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi Province, China.
| |
Collapse
|
2
|
de Souza DN, Oliveira RN, Asprino PF, Bettoni F, Macedo CI, Achkar SM, Fahl WO, Brandão PE, Castilho JG. Evolution and divergence of the genetic lineage Desmodus rotundus/Artibeus lituratus of rabies virus in São Paulo State. Arch Virol 2023; 168:266. [PMID: 37798456 DOI: 10.1007/s00705-023-05864-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 07/27/2023] [Indexed: 10/07/2023]
Abstract
The last record of a rabies case caused by the dog-specific rabies virus (RABV) lineage in dogs or cats in São Paulo State was in 1998. From 2002 to 2021, 57 cases of rabies in these animals were reported, and the vast majority (51) were genetically characterized as belonging to the Desmodus rotundus/Artibeus lituratus RABV lineage. However, it is not currently possible to infer which of these bats is the source of infection by genome sequencing of RABV isolates. The aims of this study were (a) to characterize the Desmodus rotundus/Artibeus lituratus lineage to determine the relationships between the RABV lineages and each reservoir, (b) to assess the phylogeny and common ancestors of the RABV lineages found in D. rotundus and A. lituratus, and (c) to further understand the epidemiology and control of rabies. In this study, we genetically analyzed 70 RABV isolates from São Paulo State that were received by the Virology Laboratory of the Pasteur Institute of São Paulo between 2006 and 2015. Of these isolates, 33 were associated with the hematophagous bat D. rotundus and 37 with the fruit bat A. lituratus. A genomic approach using phylogenetic analysis and nucleotide sequence comparisons demonstrated that these isolates belonged to the same genetic lineage of RABV. We also found that, in São Paulo State, the D. rotundus/A. lituratus lineage could be subdivided into at least four phylogenetic sublineages: two associated with D. rotundus and two with A. lituratus. These results are of importance for the epidemiological surveillance of rabies in São Paulo.
Collapse
Affiliation(s)
| | | | - P F Asprino
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - F Bettoni
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - C I Macedo
- Pasteur Institute, São Paulo, SP, Brazil
| | - S M Achkar
- Pasteur Institute, São Paulo, SP, Brazil
| | - W O Fahl
- Pasteur Institute, São Paulo, SP, Brazil
| | - P E Brandão
- Departments of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
3
|
Evolutionary analysis of rabies virus isolates from Georgia. Arch Virol 2022; 167:2293-2298. [DOI: 10.1007/s00705-022-05550-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/14/2022] [Indexed: 11/02/2022]
|
4
|
Caraballo DA, Lema C, Novaro L, Gury-Dohmen F, Russo S, Beltrán FJ, Palacios G, Cisterna DM. A Novel Terrestrial Rabies Virus Lineage Occurring in South America: Origin, Diversification, and Evidence of Contact between Wild and Domestic Cycles. Viruses 2021; 13:v13122484. [PMID: 34960753 PMCID: PMC8707302 DOI: 10.3390/v13122484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/30/2021] [Accepted: 12/09/2021] [Indexed: 12/25/2022] Open
Abstract
The rabies virus (RABV) is characterized by a history dominated by host shifts within and among bats and carnivores. One of the main outcomes of long-term RABV maintenance in dogs was the establishment of variants in a wide variety of mesocarnivores. In this study, we present the most comprehensive phylogenetic and phylogeographic analysis, contributing to a better understanding of the origins, diversification, and the role of different host species in the evolution and diffusion of a dog-related variant endemic of South America. A total of 237 complete Nucleoprotein gene sequences were studied, corresponding to wild and domestic species, performing selection analyses, ancestral states reconstructions, and recombination analyses. This variant originated in Brazil and disseminated through Argentina and Paraguay, where a previously unknown lineage was found. A single host shift was identified in the phylogeny, from dog to the crab-eating fox (Cerdocyon thous) in the Northeast of Brazil. Although this process occurred in a background of purifying selection, there is evidence of adaptive evolution -or selection of sub-consensus sequences- in internal branches after the host shift. The interaction of domestic and wild cycles persisted after host switching, as revealed by spillover and putative recombination events.
Collapse
Affiliation(s)
- Diego A. Caraballo
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), CONICET-Universidad de Buenos Aires, Ciudad Universitaria-Pabellón II, Buenos Aires C1428EHA, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1053ABH, Argentina
- Correspondence:
| | - Cristina Lema
- Servicio de Neurovirosis, Administración Nacional de Laboratorios e Institutos de Salud (ANLIS), Instituto Nacional de Enfermedades Infecciosas, “Dr. Carlos G. Malbrán”, Av. Vélez Sarsfield 563, Buenos Aires C1282AFF, Argentina; (C.L.); (D.M.C.)
| | - Laura Novaro
- DILAB, SENASA, Av. Paseo Colón 367, Buenos Aires C1063ACD, Argentina; (L.N.); (S.R.)
| | - Federico Gury-Dohmen
- Instituto de Zoonosis “Dr. Luis Pasteur”, Av. Díaz Vélez 4821, Buenos Aires C1405DCD, Argentina; (F.G.-D.); (F.J.B.)
| | - Susana Russo
- DILAB, SENASA, Av. Paseo Colón 367, Buenos Aires C1063ACD, Argentina; (L.N.); (S.R.)
| | - Fernando J. Beltrán
- Instituto de Zoonosis “Dr. Luis Pasteur”, Av. Díaz Vélez 4821, Buenos Aires C1405DCD, Argentina; (F.G.-D.); (F.J.B.)
| | - Gustavo Palacios
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Daniel M. Cisterna
- Servicio de Neurovirosis, Administración Nacional de Laboratorios e Institutos de Salud (ANLIS), Instituto Nacional de Enfermedades Infecciosas, “Dr. Carlos G. Malbrán”, Av. Vélez Sarsfield 563, Buenos Aires C1282AFF, Argentina; (C.L.); (D.M.C.)
| |
Collapse
|
5
|
Bacus MG, Buenaventura SGC, Mamites AMC, Elizagaque HG, Labrador CC, Delfin FC, Eng MNJ, Lagare AP, Marquez GN, Murao LAE. Genome-based local dynamics of canine rabies virus epidemiology, transmission, and evolution in Davao City, Philippines, 2018-2019. INFECTION GENETICS AND EVOLUTION 2021; 92:104868. [PMID: 33878454 DOI: 10.1016/j.meegid.2021.104868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/01/2021] [Accepted: 04/13/2021] [Indexed: 11/19/2022]
Abstract
Rabies is a fatal zoonotic and neglected tropical disease caused by the rabies virus (RABV) and is associated with neuronal dysfunction and death, with dogs as the predominant carrier. The Philippines plans to eradicate rabies by 2022, but this is challenged with sub-optimal coverage of vaccination programs coupled with sustained transmission chains, making it unable to eradicate the disease. We investigated the dynamics of canine rabies in the highly urbanized Davao City of the Philippines and its neighboring localities by assessing genetic relationships, transmission patterns, selection pressure, and recombination events using the whole genome sequence of 49 RABV cases from June 2018 to May 2019, majority of which (46%) were from the district of Talomo, Davao City. Although phylogeographic clustering was observed, local variants also exhibited genetic sub-lineages. Phylogenetic and spatial transmission analysis provided evidence for intra- and inter-city transmission predominantly through the Talomo district of Davao City. Around 84% of the cases were owned dogs, but the genetic similiarity of RABVs from stray and owned dogs further alluded to the role of the former as transmission vectors. The high rate of improper vaccination among the affected dogs (80%) was also a likely contributor to transmission. The RABV population under Investigation is generally under strong purifying selection with no evidence of vaccine evasion due to the genetic homogeneity of viruses from vaccinated and improperly vaccinated dogs. However, some homologous recombination (HR) events were identified along the G and L genes, also predominantly associated with viruses from Talomo. The complementary findings on epidemiology, transmission, and recombination for Talomo suggest that high incidence areas can be seeds for virus dispersal and evolution. We recommend further Investigations on the possibility of HR in future large-scale genome studies. Finally, districts associated with these phenomena can be targeted for evidence-based local strategies that can help break RABV transmission chains and prevent emergence of novel strains in Davao City.
Collapse
Affiliation(s)
- Michael G Bacus
- Philippine Genome Center Mindanao, University of the Philippines Mindanao, Tugbok District, Mintal, Davao City, Philippines
| | - Sheryl Grace C Buenaventura
- Department of Biological Sciences and Environmental Studies, University of the Philippines Mindanao, Tugbok District, Mintal, Davao City, Philippines
| | - Allan Michael C Mamites
- Department of Biological Sciences and Environmental Studies, University of the Philippines Mindanao, Tugbok District, Mintal, Davao City, Philippines
| | - Hannah G Elizagaque
- Department of Biological Sciences and Environmental Studies, University of the Philippines Mindanao, Tugbok District, Mintal, Davao City, Philippines
| | - Christian C Labrador
- Philippine Genome Center Mindanao, University of the Philippines Mindanao, Tugbok District, Mintal, Davao City, Philippines
| | - Frederick C Delfin
- DNA Analysis Laboratory, Natural Sciences Research Institute, University of the Philippines Diliman, Quezon City, Philippines
| | - Ma Noreen J Eng
- Davao City Veterinary Office, Pichon St., Davao City, Philippines
| | - Arlene P Lagare
- Davao City Veterinary Office, Pichon St., Davao City, Philippines
| | - Gloria N Marquez
- Davao City Veterinary Office, Pichon St., Davao City, Philippines
| | - Lyre Anni E Murao
- Department of Biological Sciences and Environmental Studies, University of the Philippines Mindanao, Tugbok District, Mintal, Davao City, Philippines; Philippine Genome Center Mindanao, University of the Philippines Mindanao, Tugbok District, Mintal, Davao City, Philippines.
| |
Collapse
|
6
|
Abrantes J, Lopes AM, Lemaitre E, Ahola H, Banihashem F, Droillard C, Marchandeau S, Esteves PJ, Neimanis A, Le Gall-Reculé G. Retrospective Analysis Shows That Most RHDV GI.1 Strains Circulating Since the Late 1990s in France and Sweden Were Recombinant GI.3P-GI.1d Strains. Genes (Basel) 2020; 11:E910. [PMID: 32784857 PMCID: PMC7464634 DOI: 10.3390/genes11080910] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/27/2020] [Accepted: 08/06/2020] [Indexed: 12/27/2022] Open
Abstract
Recombination is one of the major sources of genetic variation in viruses. RNA viruses, such as rabbit hemorrhagic disease virus (RHDV), are among the viruses with the highest recombination rates. Several recombination events have been described for RHDV, mostly as a consequence of their genomic architecture. Here, we undertook phylogenetic and recombination analyses of French and Swedish RHDV strains from 1994 to 2016 and uncovered a new intergenotypic recombination event. This event occurred in the late 1990s/early 2000s and involved nonpathogenic GI.3 strains as donors for the nonstructural part of the genome of these recombinants, while pathogenic GI.1d strains contributed to the structural part. These GI.3P-GI.1d recombinant strains did not entirely replace GI.1d (nonrecombinant) strains, but became the dominant strains in France and Sweden, likely due to a fitness advantage associated with this genomic architecture. GI.3P-GI.1d (P stands for polymerase) strains persisted until 2013 and 2016 in Sweden and France, respectively, and cocirculated with the new genotype GI.2 in France. Since strains from the first GI.2 outbreaks were GI.3P-GI.2, we hypothesize that GI.3P-GI.1d could be the parental strain. Our results confirm the outstanding recombination ability of RHDV and its importance in the evolution of lagoviruses, which was only revealed by studying complete genomic sequences.
Collapse
Affiliation(s)
- Joana Abrantes
- CIBIO/InBio-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Portugal; (J.A.); (A.M.L.); (P.J.E.)
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| | - Ana M. Lopes
- CIBIO/InBio-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Portugal; (J.A.); (A.M.L.); (P.J.E.)
- Instituto de Ciências Biomédicas Abel Salazar/Unidade Multidisciplinar de Investigação Biomédica, Universidade do Porto, 4050-313 Porto, Portugal
| | - Evelyne Lemaitre
- Unité de Virologie, Immunologie, Parasitologie, Aviaires et Cunicoles, Laboratoire de Ploufragan-Plouzané-Niort, Agence nationale de sécurité sanitaire, de l’alimentation, de l’environnement et du travail (Anses), 22440 Ploufragan, France; (E.L.); (C.D.)
| | - Harri Ahola
- Department of Microbiology, National Veterinary Institute (SVA), Ulls väg 2B, SE75189 Uppsala, Sweden; (H.A.); (F.B.)
| | - Fereshteh Banihashem
- Department of Microbiology, National Veterinary Institute (SVA), Ulls väg 2B, SE75189 Uppsala, Sweden; (H.A.); (F.B.)
| | - Clément Droillard
- Unité de Virologie, Immunologie, Parasitologie, Aviaires et Cunicoles, Laboratoire de Ploufragan-Plouzané-Niort, Agence nationale de sécurité sanitaire, de l’alimentation, de l’environnement et du travail (Anses), 22440 Ploufragan, France; (E.L.); (C.D.)
| | - Stéphane Marchandeau
- Unité Petite Faune Sédentaire et Espèces Outre-Mer, Direction de la Recherche et de l’Appui Scientifique, Office Français de la Biodiversité (OFB), 44300 Nantes, France;
| | - Pedro J. Esteves
- CIBIO/InBio-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Portugal; (J.A.); (A.M.L.); (P.J.E.)
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| | - Aleksija Neimanis
- Department of Pathology and Wildlife Diseases, National Veterinary Institute (SVA), Ulls väg 2B, SE75189 Uppsala, Sweden
| | - Ghislaine Le Gall-Reculé
- Unité de Virologie, Immunologie, Parasitologie, Aviaires et Cunicoles, Laboratoire de Ploufragan-Plouzané-Niort, Agence nationale de sécurité sanitaire, de l’alimentation, de l’environnement et du travail (Anses), 22440 Ploufragan, France; (E.L.); (C.D.)
| |
Collapse
|
7
|
Deviatkin AA, Lukashev AN. Recombination in the rabies virus and other lyssaviruses. INFECTION GENETICS AND EVOLUTION 2018; 60:97-102. [PMID: 29477551 DOI: 10.1016/j.meegid.2018.02.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/06/2018] [Accepted: 02/18/2018] [Indexed: 12/15/2022]
Abstract
Recombination is a common event in RNA viruses; however, in the rabies virus there have been only a few reports of isolated recombination events. Comprehensive analysis found traces of recent recombination events within Arctic, Arctic-like and Africa 1b rabies virus groups, as well as recombination between distinct lyssaviruses. Recombination breakpoints were not linked to gene boundaries and could be detected all over the genome. However, there was no evidence that recombination is an important factor in the genetic variability of the rabies virus. It is therefore likely that recombination in the rabies virus is limited by ecological factors (e.g., rare co-circulation of distinguishable lineages and a narrow window for productive coinfection in most carnivore hosts), rather than molecular barriers (e.g., incompatibility of genome fragments).
Collapse
Affiliation(s)
- Andrei A Deviatkin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Preparations of Russian Academy of Sciences, Moscow, Russia.
| | - Alexander N Lukashev
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia; Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, Moscow, Russia; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Preparations of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
8
|
Kondo H, Hirota K, Maruyama K, Andika IB, Suzuki N. A possible occurrence of genome reassortment among bipartite rhabdoviruses. Virology 2017; 508:18-25. [PMID: 28478311 DOI: 10.1016/j.virol.2017.04.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/23/2017] [Accepted: 04/25/2017] [Indexed: 12/18/2022]
Abstract
Orchid fleck virus (OFV) represents a rhabdovirus with a unique bipartite genome. OFV genetic diversity at the whole genome level has not been described. Using the partial genome sequence of RNA1, we have determined that several OFV isolates derived from orchids in Japan belong to two genetically distant subgroups: subgroup I, the members of which are distributed worldwide but previously not known in Asia, and subgroup II, which is commonly distributed in Japan. However, complete genome sequence analysis of a novel Japanese subgroup I isolate revealed that although its RNA1 sequence differs considerably from those of subgroup II isolates, its RNA2 sequence is almost identical to them. Based on phylogenetic and recombination analyses, the genome reassortment events were predicted to occur between OFV subgroups including other unseen strains. Our data show that genome reassortment contributes to the genetic diversities of the bipartite rhabdoviruses and its occurrence may be geographically constrained.
Collapse
Affiliation(s)
- Hideki Kondo
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan.
| | - Keisuke Hirota
- Tokushima Agriculture, Forestry and Fisheries Technology Support Center, Tokushima, Tokushima Prefecture 779-3233, Japan
| | - Kazuyuki Maruyama
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Ida Bagus Andika
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| |
Collapse
|
9
|
Tibayrenc M, Ayala FJ. Is Predominant Clonal Evolution a Common Evolutionary Adaptation to Parasitism in Pathogenic Parasitic Protozoa, Fungi, Bacteria, and Viruses? ADVANCES IN PARASITOLOGY 2016; 97:243-325. [PMID: 28325372 DOI: 10.1016/bs.apar.2016.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We propose that predominant clonal evolution (PCE) in microbial pathogens be defined as restrained recombination on an evolutionary scale, with genetic exchange scarce enough to not break the prevalent pattern of clonal population structure. The main features of PCE are (1) strong linkage disequilibrium, (2) the widespread occurrence of stable genetic clusters blurred by occasional bouts of genetic exchange ('near-clades'), (3) the existence of a "clonality threshold", beyond which recombination is efficiently countered by PCE, and near-clades irreversibly diverge. We hypothesize that the PCE features are not mainly due to natural selection but also chiefly originate from in-built genetic properties of pathogens. We show that the PCE model obtains even in microbes that have been considered as 'highly recombining', such as Neisseria meningitidis, and that some clonality features are observed even in Plasmodium, which has been long described as panmictic. Lastly, we provide evidence that PCE features are also observed in viruses, taking into account their extremely fast genetic turnover. The PCE model provides a convenient population genetic framework for any kind of micropathogen. It makes it possible to describe convenient units of analysis (clones and near-clades) for all applied studies. Due to PCE features, these units of analysis are stable in space and time, and clearly delimited. The PCE model opens up the possibility of revisiting the problem of species definition in these organisms. We hypothesize that PCE constitutes a major evolutionary strategy for protozoa, fungi, bacteria, and viruses to adapt to parasitism.
Collapse
Affiliation(s)
- M Tibayrenc
- Institut de Recherche pour le Développement, Montpellier, France
| | - F J Ayala
- University of California at Irvine, United States
| |
Collapse
|
10
|
Wu H, Padhi A, Xu J, Gong X, Tien P. Evidence for Within-Host Genetic Recombination among the Human Pegiviral Strains in HIV Infected Subjects. PLoS One 2016; 11:e0161880. [PMID: 27560699 PMCID: PMC4999292 DOI: 10.1371/journal.pone.0161880] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 08/12/2016] [Indexed: 12/19/2022] Open
Abstract
The non-pathogenic Human Pegivirus (HPgV, formerly GBV-C/HGV), the most prevalent RNA virus worldwide, is known to be associated with reduced morbidity and mortality in HIV-infected individuals. Although previous studies documented its ubiquity and important role in HIV-infected individuals, little is known about the underlying genetic mechanisms that maintain high genetic diversity of HPgV within the HIV-infected individuals. To assess the within-host genetic diversity of HPgV and forces that maintain such diversity within the co-infected hosts, we performed phylogenetic analyses taking into account 229 HPgV partial E1-E2 clonal sequences representing 15 male and 8 female co-infected HIV patients from Hubei province of central China. Our results revealed the presence of eleven strongly supported clades. While nine clades belonged to genotype 3, two clades belonged to genotype 2. Additionally, four clades that belonged to genotype 3 exhibited inter-clade recombination events. The presence of clonal sequences representing multiple clades within the HIV-infected individual provided the evidence of co-circulation of HPgV strains across the region. Of the 23 patients, six patients (i.e., five males and one female) were detected to have HPgV recombinant sequences. Our results also revealed that while male patients shared the viral strains with other patients, viral strains from the female patients had restricted dispersal. Taken together, the present study revealed that multiple infections with divergent HPgV viral strains may have caused within-host genetic recombination, predominantly in male patients, and therefore, could be the major driver in shaping genetic diversity of HPgV.
Collapse
Affiliation(s)
- Haoming Wu
- College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Abinash Padhi
- Department of Animal and Avian Sciences, University of Maryland, College Park, 20742, MD, United States of America
| | - Junqiang Xu
- Hubei Provincial Centers for Disease Control and Prevention, Wuhan 430072, Hubei, China
| | - Xiaoyan Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, China
- * E-mail: (PT); (XG)
| | - Po Tien
- College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- * E-mail: (PT); (XG)
| |
Collapse
|
11
|
Reverse genetics of rabies virus: new strategies to attenuate virus virulence for vaccine development. J Neurovirol 2015; 21:335-45. [DOI: 10.1007/s13365-015-0350-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 02/27/2015] [Accepted: 04/30/2015] [Indexed: 12/25/2022]
|
12
|
Miia JV, Tiina N, Tarja S, Olli V, Liisa S, Anita H. Evolutionary trends of European bat lyssavirus type 2 including genetic characterization of Finnish strains of human and bat origin 24 years apart. Arch Virol 2015; 160:1489-98. [PMID: 25877913 PMCID: PMC4429142 DOI: 10.1007/s00705-015-2424-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/05/2015] [Indexed: 12/25/2022]
Abstract
Among other Lyssaviruses, Daubenton’s and pond-bat-related European bat lyssavirus type 2 (EBLV-2) can cause human rabies. To investigate the diversity and evolutionary trends of EBLV-2, complete genome sequences of two Finnish isolates were analysed. One originated from a human case in 1985, and the other originated from a bat in 2009. The overall nucleotide and deduced amino acid sequence identity of the two Finnish isolates were high, as well as the similarity to fully sequenced EBLV-2 strains originating from the UK and the Netherlands. In phylogenetic analysis, the EBLV-2 strains formed a monophyletic group that was separate from other bat-type lyssaviruses, with significant support. EBLV-2 shared the most recent common ancestry with Bokeloh bat lyssavirus (BBLV) and Khujan virus (KHUV). EBLV-2 showed limited diversity compared to RABV and appears to be well adapted to its host bat species. The slow tempo of viral evolution was evident in the estimations of divergence times for EBLV-2: the current diversity was estimated to have built up during the last 2000 years, and EBLV-2 diverged from KHUV about 8000 years ago. In a phylogenetic tree of partial N gene sequences, the Finnish EBLV-2 strains clustered with strains from Central Europe, supporting the hypothesis that EBLV-2 circulating in Finland might have a Central European origin. The Finnish EBLV-2 strains and a Swiss strain were estimated to have diverged from other EBLV-2 strains during the last 1000 years, and the two Finnish strains appear to have evolved from a common ancestor during the last 200 years.
Collapse
Affiliation(s)
| | - Nokireki Tiina
- />Finnish Food Safety Authority Evira, Mustialankatu 3, 00790 Helsinki, Finland
| | - Sironen Tarja
- />Department of Virology, University of Helsinki, POB 21, Helsinki, Finland
| | - Vapalahti Olli
- />Department of Virology, University of Helsinki, POB 21, Helsinki, Finland
- />Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, POB 66, FI-00014 Helsinki, Finland
| | - Sihvonen Liisa
- />Finnish Food Safety Authority Evira, Mustialankatu 3, 00790 Helsinki, Finland
- />Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, POB 66, FI-00014 Helsinki, Finland
| | - Huovilainen Anita
- />Finnish Food Safety Authority Evira, Mustialankatu 3, 00790 Helsinki, Finland
| |
Collapse
|
13
|
The adaptive potential of hybridization demonstrated with bacteriophages. J Mol Evol 2014; 77:221-30. [PMID: 24078088 DOI: 10.1007/s00239-013-9586-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 09/18/2013] [Indexed: 10/26/2022]
Abstract
The success or failure of hybrids and the factors that determine their fitness have ecological, evolutionary, medical, and economic implications. Hybrid fitness is a major determinant of the size of hybrid zones and the maintenance of related species with overlapping ranges. It also influences the evolution of emerging pathogens and the success of economically important crop species experimentally hybridized in search of strains with increased yields or disease resistance. Hybrid fitness may largely be determined by the pervasiveness of epistasis in the genome, as epistasis is known to debilitate hybrids through disrupted inter- and intragenic interactions. We identified two bacteriophages isolated from their natural environment, one the result of a past hybridization event involving an ancestor of the other phage and a third, unknown phage. By performing a reciprocal cross of the affected region of the genome, consisting of a single complete gene, we both approximately recreated and reversed this original hybridization event in two chimeric bacteriophage genomes. Subsequent adaptation of the hybrid phages allowed for the recovery of fitness losses incurred by the hybrid genotypes. Furthermore, adaptation led to the ascension of a substantially higher and previously inaccessible adaptive peak. We show that by allowing genotypes to take large leaps across the adaptive landscape rather than single mutational steps, hybridization can lead to huge long-term fitness gains in spite of short-term costs resulting from disrupted epistatic interactions, demonstrating that the success or failure of hybrids may be determined not by their initial fitness, but rather by their adaptive potential.
Collapse
|
14
|
He CQ, Meng SL, Yan HY, Ding NZ, He HB, Yan JX, Xu GL. Isolation and identification of a novel rabies virus lineage in China with natural recombinant nucleoprotein gene. PLoS One 2012; 7:e49992. [PMID: 23226506 PMCID: PMC3514186 DOI: 10.1371/journal.pone.0049992] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 10/19/2012] [Indexed: 12/25/2022] Open
Abstract
Rabies virus (RABV) causes severe neurological disease and death. As an important mechanism for generating genetic diversity in viruses, homologous recombination can lead to the emergence of novel virus strains with increased virulence and changed host tropism. However, it is still unclear whether recombination plays a role in the evolution of RABV. In this study, we isolated and sequenced four circulating RABV strains in China. Phylogenetic analyses identified a novel lineage of hybrid origin that comprises two different strains, J and CQ92. Analyses revealed that the virus 3′ untranslated region (UTR) and part of the N gene (approximate 500 nt in length) were likely derived from Chinese lineage I while the other part of the genomic sequence was homologous to Chinese lineage II. Our findings reveal that homologous recombination can occur naturally in the field and shape the genetic structure of RABV populations.
Collapse
Affiliation(s)
- Cheng-Qiang He
- Key Laboratory of Systems Biology in Universities of Shandong, College of Life Science, Shandong Normal University, Jinan, China
- * E-mail: (CQH); (HBH)
| | - Sheng-Li Meng
- Wuhan Institute of Biological Products, Wuhan, China
| | - Hong-Yan Yan
- Key Laboratory of Systems Biology in Universities of Shandong, College of Life Science, Shandong Normal University, Jinan, China
| | - Nai-Zheng Ding
- Key Laboratory of Systems Biology in Universities of Shandong, College of Life Science, Shandong Normal University, Jinan, China
| | - Hong-Bin He
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
- * E-mail: (CQH); (HBH)
| | - Jia-Xin Yan
- Wuhan Institute of Biological Products, Wuhan, China
| | - Ge-Lin Xu
- Wuhan Institute of Biological Products, Wuhan, China
| |
Collapse
|
15
|
Tibayrenc M, Ayala FJ. Reproductive clonality of pathogens: a perspective on pathogenic viruses, bacteria, fungi, and parasitic protozoa. Proc Natl Acad Sci U S A 2012; 109:E3305-13. [PMID: 22949662 PMCID: PMC3511763 DOI: 10.1073/pnas.1212452109] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We propose that clonal evolution in micropathogens be defined as restrained recombination on an evolutionary scale, with genetic exchange scarce enough to not break the prevalent pattern of clonal population structure, a definition already widely used for all kinds of pathogens, although not clearly formulated by many scientists and rejected by others. The two main manifestations of clonal evolution are strong linkage disequilibrium (LD) and widespread genetic clustering ("near-clading"). We hypothesize that this pattern is not mainly due to natural selection, but originates chiefly from in-built genetic properties of pathogens, which could be ancestral and could function as alternative allelic systems to recombination genes ("clonality/sexuality machinery") to escape recombinational load. The clonal framework of species of pathogens should be ascertained before any analysis of biomedical phenotypes (phylogenetic character mapping). In our opinion, this model provides a conceptual framework for the population genetics of any micropathogen.
Collapse
Affiliation(s)
- Michel Tibayrenc
- Maladies Infectieuses et Vecteurs Ecologie, Génétique, Evolution et Contrôle, Institut de Rercherche pour le Développement 224, Centre National de la Recherche Scientifique 5290, Universités Montpellier 1 and 2, 34394 Montpellier Cedex 5, France; and
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697
| | - Francisco J. Ayala
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697
| |
Collapse
|