1
|
Ma L, Li J, He J, Jiang T, Hao Y, Bu Y. Characterization and phylogenetic analysis of the mitochondrial genome of Cylicostephanus longibursatus. Parasitol Res 2024; 123:363. [PMID: 39467850 DOI: 10.1007/s00436-024-08385-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Cylicostephanus longibursatus is a common parasite in equine animals. Hosts infected by these nematodes might face disease or death. This study utilized next-generation sequencing technology to sequence the complete mitochondrial genome (mt genome) of C. longibursatus. Through bioinformatics techniques, the genomic base composition, codon usage, tRNA secondary structures, evolutionary relationships, and taxonomic status were analyzed. The results revealed that the mitochondrial genome of C. longibursatus is a double-stranded, 13,807-bp closed circular molecule with an AT content of 76.0%, indicating a clear preference for AT bases. The mitochondrial genome consisted of a total of 12 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 2 non-coding regions. Among the 12 protein-coding genes, TTG and ATT were the common start codons. TAA was the predominant termination codon, except for the ND3 and ND6 coding genes, and the COШ genes used TAG and "T" as termination codons, respectively. All tRNAs exhibited atypical clover-leaf secondary structures, except for tRNALys and tRNALeu2, where two tRNASer genes lacked DHU arms and DHU loops, tRNAmet lacked the TΨC-arm, tRNAIle lacked the TΨC-loop, and the remaining 16 tRNAs lacked the TΨC-arm and TΨC loop, which were substituted by the "TV-replacement loop". Phylogenetic analyses, based on the 12 protein-coding genes and utilizing maximum likelihood (ML) and Bayesian inference (BI) analyses, indicated that C. longibursatus did not form a monophyletic group with other Cylicostephanus but was instead more closely related to Cyathostomum. These research findings provide fundamental data for exploring the population classification and phylogeny of strongylid nematodes.
Collapse
Affiliation(s)
- Liqun Ma
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Jing Li
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Jingying He
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Tiantian Jiang
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Yan Hao
- Hebi Polytechnic, Hebi, China
| | - Yanzhen Bu
- College of Life Science, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
2
|
Nikolaeva OV, Rusin LY, Mikhailov KV, Aleoshin VV, De Ley P. Both-strand gene coding in a plastome-like mitogenome of an enoplid nematode. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:419-424. [PMID: 38318934 DOI: 10.1002/jez.b.23241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/18/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
The phylum Nematoda remains very poorly sampled for mtDNA, with a strong bias toward parasitic, economically important or model species of the Chromadoria lineage. Most chromadorian mitogenomes share a specific order of genes encoded on one mtDNA strand. However, the few sequenced representatives of the Dorylaimia lineage exhibit a variable order of mtDNA genes encoded on both strands. While the ancestral arrangement of nematode mitogenome remains undefined, no evidence has been reported for Enoplia, the phylum's third early divergent major lineage. We describe the first mitogenome of an enoplian nematode, Campydora demonstrans, and contend that the complete 37-gene repertoire and both-strand gene encoding are ancestral states preserved in Enoplia and Dorylaimia versus the derived mitogenome arrangement in some Chromadoria. The C. demonstrans mitogenome is 17,018 bp in size and contains a noncoding perfect inverted repeat with 2013 bp-long arms, subdividing the mitogenome into two coding regions. This mtDNA arrangement is very rare among animals and instead resembles that of chloroplast genomes in land plants. Our report broadens mtDNA taxonomic sampling of the phylum Nematoda and adds support to the applicability of cox1 gene as a phylogenetic marker for establishing nematode relationships within higher taxa.
Collapse
Affiliation(s)
- Olga V Nikolaeva
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Leonid Yu Rusin
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
| | - Kirill V Mikhailov
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
| | - Vladimir V Aleoshin
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
| | - Paul De Ley
- Department of Entomology, Plant Pathology & Weed Science, New Mexico State University, Las Cruces, New Mexico, USA
| |
Collapse
|
3
|
Ismail BIB, El-Seify MA, Khalafalla RE, Sorour SS, Sultan K, Elhawary NM. Trichuris Globulosa Von Linstow, 1901 from one-humped camel (Camelus dromedarius) in Egypt: prevalence, morphological and molecular study. BMC Vet Res 2024; 20:240. [PMID: 38831389 PMCID: PMC11145819 DOI: 10.1186/s12917-024-04078-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/13/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Trichuris spp. (whipworms) are soil-transmitted helminths distributed worldwide, parasitizing several mammalian hosts such as ruminants, primates, and rodents. Trichuris spp. is one of the most common intestinal parasites affecting both humans and animals, and it can spread directly through the fecal-oral route, resulting in severe illness and financial loss. So, this work aims to detect the frequency of Trichuris spp. in camels in Beheira Governorate, Egypt, and to identify Trichuris spp. through morphometrical studies, molecular analysis, and phylogenetic analysis. RESULTS A total of 35 dromedaries out of 127 investigated had Trichuris spp. infection, meaning that the overall prevalence was 27.56%. The age of the camel affected the infection rate, older animals (> 5 years) having a higher prevalence of infection (24%) than animals of ages (< 3 years) (20%) than animals of ages (3-5 years) (19.14%). According to season: Trichuris spp. showed a unique pattern in camels in different seasons: summer (31.25%) > autumn (28.13%) > spring (25.8%) > winter (25%) indicating year-round infection. T. globulosa was identified morphometrically from camels in Beheira Governorate, Egypt. The BLAST analysis revealed the presence of T. globulosa isolate from camels using the Genbank database depending on nuclear small subunit ribosomal RNA (18s) and cytochrome b (Cytb) genes. CONCLUSION A high prevalence of T. globulosa was found in camels in Beheira Governorate, Egypt. This is the first report to confirm the identification of T. globulosa from camel based on morphometrical studies and molecular and phylogenetic analysis in Egypt. More thorough studies on the incidence, molecular, and genetic analysis of Trichuris spp. in Egypt are required in addition to camel control programs.
Collapse
Affiliation(s)
- Badawy I B Ismail
- Department of Parasitology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt.
| | - Mahmoud A El-Seify
- Department of Parasitology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Reda E Khalafalla
- Department of Parasitology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Shimaa S Sorour
- Department of Parasitology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Khaled Sultan
- Department of Parasitology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Nagwa M Elhawary
- Department of Parasitology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| |
Collapse
|
4
|
Zeng JL, Chen HX, Ni XF, Kang JY, Li L. Molecular phylogeny of the family Rhabdiasidae (Nematoda: Rhabditida), with morphology, genetic characterization and mitochondrial genomes of Rhabdias kafunata and R. bufonis. Parasit Vectors 2024; 17:100. [PMID: 38429838 PMCID: PMC10908064 DOI: 10.1186/s13071-024-06201-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/15/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND The family Rhabdiasidae (Nematoda: Rhabditida) is a globally distributed group of nematode parasites, with over 110 species parasitic mainly in amphibians and reptiles. However, the systematic position of the family Rhabdiasidae in the order Rhabditida remains unsolved, and the evolutionary relationships among its genera are still unclear. Moreover, the present knowledge of the mitochondrial genomes of rhabdiasids remains limited. METHODS Two rhabdiasid species: Rhabdias kafunata Sata, Takeuchi & Nakano, 2020 and R. bufonis (Schrank, 1788) collected from the Asiatic toad Bufo gargarizans Cantor (Amphibia: Anura) in China, were identified based on morphology (light and scanning electron microscopy) and molecular characterization (sequencing of the nuclear 28S and ITS regions and mitochondrial cox1 and 12S genes). The complete mitochondrial genomes of R. kafunata and R. bufonis were also sequenced and annotated for the first time. Moreover, phylogenetic analyses based on the amino acid sequences of 12 protein-coding genes (PCGs) of the mitochondrial genomes were performed to clarify the systematic position of the family Rhabdiasidae in the order Rhabditida using maximum likelihood (ML) and Bayesian inference (BI). The phylogenetic analyses based on the 28S + ITS sequences, were also inferred to assess the evolutionary relationships among the genera within Rhabdiasidae. RESULTS The detailed morphology of the cephalic structures, vulva and eggs in R. kafunata and R. bufonis was revealed using scanning electron microscopy (SEM) for the first time. The characterization of 28S and ITS regions of R. kafunata was reported for the first time. The mitogenomes of R. kafunata and R. bufonis are 15,437 bp and 15,128 bp long, respectively, and both contain 36 genes, including 12 PCGs (missing atp8). Comparative mitogenomics revealed that the gene arrangement of R. kafunata and R. bufonis is different from all of the currently available mitogenomes of nematodes. Phylogenetic analyses based on the ITS + 28S data showed Neoentomelas and Kurilonema as sister lineages, and supported the monophyly of Entomelas, Pneumonema, Serpentirhabdias and Rhabdias. Mitochondrial phylogenomic results supported Rhabdiasidae as a member of the superfamily Rhabditoidea in the suborder Rhabditina, and its occurrance as sister to the family Rhabditidae. CONCLUSIONS The complete mitochondrial genome of R. kafunata and R. bufonis were reported for the first time, and two new gene arrangements of mitogenomes in Nematoda were revealed. Mitogenomic phylogenetic results indicated that the family Rhabdiasidae is a member of Rhabditoidea in Rhabditina, and is closely related to Rhabditidae. Molecular phylogenies based on the ITS + 28S sequence data supported the validity of Kurilonema, and showed that Kurilonema is sister to Neoentomelas. The present phylogenetic results also indicated that the ancestors of rhabdiasids seem to have initially infected reptiles, then spreading to amphibians.
Collapse
Affiliation(s)
- Jia-Lu Zeng
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China
- Hebei Research Center of the Basic Discipline Cell Biology; Ministry of Education Key Laboratory of Molecular and Cellular Biology, Shijiazhuang, 050024, Hebei, People's Republic of China
| | - Hui-Xia Chen
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China
| | - Xue-Feng Ni
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China
| | - Jia-Yi Kang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China
| | - Liang Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China.
- Hebei Research Center of the Basic Discipline Cell Biology; Ministry of Education Key Laboratory of Molecular and Cellular Biology, Shijiazhuang, 050024, Hebei, People's Republic of China.
| |
Collapse
|
5
|
Gu XH, Guo N, Chen HX, Sitko J, Li LW, Guo BQ, Li L. Mitogenomic phylogenies suggest the resurrection of the subfamily Porrocaecinae and provide insights into the systematics of the superfamily Ascaridoidea (Nematoda: Ascaridomorpha), with the description of a new species of Porrocaecum. Parasit Vectors 2023; 16:275. [PMID: 37563590 PMCID: PMC10416420 DOI: 10.1186/s13071-023-05889-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND The family Toxocaridae is a group of zooparasitic nematodes of veterinary, medical and economic significance. However, the evolutionary relationship of Porrocaecum and Toxocara, both genera currently classified in Toxocaridae, and the monophyly of the Toxocaridae remain under debate. Moreover, the validity of the subgenus Laymanicaecum in the genus Porrocaecum is open to question. Due to the scarcity of an available genetic database, molecular identification of Porrocaecum nematodes is still in its infancy. METHODS A number of Porrocaecum nematodes collected from the Eurasian marsh harrier Circus aeruginosus (Linnaeus) (Falconiformes: Accipitridae) in the Czech Republic were identified using integrated morphological methods (light and scanning electron microscopy) and molecular techniques (sequencing and analyzing the nuclear 18S, 28S and ITS regions). The complete mitochondrial genomes of the collected nematode specimens and of Porrocaecum (Laymanicaecum) reticulatum (Linstow, 1899) were sequenced and annotated for the first time. Phylogenetic analyses of ascaridoid nematodes based on the amino acid sequences of 12 protein-coding genes of mitochondrial genomes were performed using maximum likelihood and Bayesian inference. RESULTS A new species of Porrocaecum, named P. moraveci n. sp., is described based on the morphological and genetic evidence. The mitogenomes of P. moraveci n. sp. and P. reticulatum both contain 36 genes and are 14,517 and 14,210 bp in length, respectively. Comparative mitogenomics revealed that P. moraveci n. sp. represents the first known species with three non-coding regions and that P. reticulatum has the lowest overall A + T content in the mitogenomes of ascaridoid nematodes tested to date. Phylogenetic analyses showed the representatives of Toxocara clustered together with species of the family Ascarididae rather than with Porrocaecum and that P. moraveci n. sp. is a sister to P. reticulatum. CONCLUSIONS The characterization of the complete mitochondrial genomes of P. moraveci n. sp. and P. reticulatum is reported for the first time. Mitogenomic phylogeny analyses indicated that the family Toxocaridae is non-monophyletic and that the genera Porrocaecum and Toxocara do not have an affinity. The validity of the subgenus Laymanicaecum in Porrocaecum was also rejected. Our results suggest that: (i) Toxocaridae should be degraded to a subfamily of the Ascarididae that includes only the genus Toxocara; and (ii) the subfamily Porrocaecinae should be resurrected to include only the genus Porrocaecum. The present study enriches the database of ascaridoid mitogenomes and provides a new insight into the systematics of the superfamily Ascaridoidea.
Collapse
Affiliation(s)
- Xiao-Hong Gu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, People's Republic of China
- Hebei Research Center of the Basic Discipline Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Shijiazhuang, 050024, Hebei Province, People's Republic of China
| | - Ning Guo
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, People's Republic of China
- Hebei Research Center of the Basic Discipline Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Shijiazhuang, 050024, Hebei Province, People's Republic of China
| | - Hui-Xia Chen
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, People's Republic of China
- Hebei Research Center of the Basic Discipline Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Shijiazhuang, 050024, Hebei Province, People's Republic of China
| | - Jiljí Sitko
- Muzeum Komenského V Přerově, 750 02, Přerově, Czech Republic
| | - Lin-Wei Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, People's Republic of China
| | - Bing-Qian Guo
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, People's Republic of China
| | - Liang Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, People's Republic of China.
- Hebei Research Center of the Basic Discipline Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Shijiazhuang, 050024, Hebei Province, People's Republic of China.
| |
Collapse
|
6
|
Rivero J, Cutillas C, Callejón R. New genetic lineage of whipworm present in Bactrian camel (Camelus bactrianus). Vet Parasitol 2023; 315:109886. [PMID: 36724679 DOI: 10.1016/j.vetpar.2023.109886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
With a global population of around 35 million in 47 countries, camels play a crucial role in the economy of many marginal and desert areas of the world where they survive in harsh conditions. Nonetheless, there is insufficient knowledge regarding camels' parasite fauna which can reduce their milk and meat production. A molecular study for the Trichuris population of Camelus bactrianus from Spain is presented based on sequences of mitochondrial (cox1, cob, rrnL) and ribosomal (ITS1 and ITS2) DNA regions. Bayesian Inference and Maximum Likelihood methods were used to infer phylogenies for (i) each gene separately, (ii) the combined mitochondrial data, and (iii) the combined mitochondrial and ribosomal dataset. Molecular analyses revealed the existence of two different genetic lineages in the Trichuris parasites populations of C. bactrianus. Future studies should focus on whether there is a coevolution process corresponding to the wild or domestic character of C. bactrianus and Camelus dromedarius. Furthermore, it is necessary to increase integrative taxonomic studies on Trichuris spp. based on morphological, biometric, and molecular data, which will inevitably contribute to our knowledge of the etiology of trichuriasis.
Collapse
Affiliation(s)
- Julia Rivero
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Cristina Cutillas
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain.
| | - Rocío Callejón
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| |
Collapse
|
7
|
Shtolz N, Mishmar D. The metazoan landscape of mitochondrial DNA gene order and content is shaped by selection and affects mitochondrial transcription. Commun Biol 2023; 6:93. [PMID: 36690686 PMCID: PMC9871016 DOI: 10.1038/s42003-023-04471-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
Mitochondrial DNA (mtDNA) harbors essential genes in most metazoans, yet the regulatory impact of the multiple evolutionary mtDNA rearrangements has been overlooked. Here, by analyzing mtDNAs from ~8000 metazoans we found high gene content conservation (especially of protein and rRNA genes), and codon preferences for mtDNA-encoded tRNAs across most metazoans. In contrast, mtDNA gene order (MGO) was selectively constrained within but not between phyla, yet certain gene stretches (ATP8-ATP6, ND4-ND4L) were highly conserved across metazoans. Since certain metazoans with different MGOs diverge in mtDNA transcription, we hypothesized that evolutionary mtDNA rearrangements affected mtDNA transcriptional patterns. As a first step to test this hypothesis, we analyzed available RNA-seq data from 53 metazoans. Since polycistron mtDNA transcripts constitute a small fraction of the steady-state RNA, we enriched for polycistronic boundaries by calculating RNA-seq read densities across junctions between gene couples encoded either by the same strand (SSJ) or by different strands (DSJ). We found that organisms whose mtDNA is organized in alternating reverse-strand/forward-strand gene blocks (mostly arthropods), displayed significantly reduced DSJ read counts, in contrast to organisms whose mtDNA genes are preferentially encoded by one strand (all chordates). Our findings suggest that mtDNA rearrangements are selectively constrained and likely impact mtDNA regulation.
Collapse
Affiliation(s)
- Noam Shtolz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Dan Mishmar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
8
|
DETECTION AND DIFFERENTIATION OF TRICHURIS IN GIRAFFE ( GIRAFFA CAMELOPARDALIS) UNDER HUMAN CARE. J Zoo Wildl Med 2022; 53:383-392. [PMID: 35758580 DOI: 10.1638/2021-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 02/03/2023] Open
Abstract
Trichuris spp. are nematode parasites infecting many species, including domestic and wild ruminants in zoological and wildlife parks worldwide. These nematodes cause significant morbidity in giraffes (Giraffa camelopardalis) and other hoofstock. Parasite transmission between ruminant species is well reported; however, relative to domestic species, little is known about Trichuris infections in giraffes under human care. We hypothesized that Trichuris spp. differ between individual giraffes in different US regions, suggesting giraffes are susceptible to Trichuris from other ruminant hosts. The study sites used to assess this hypothesis included The Wilds in Cumberland, Ohio; Fossil Rim Wildlife Center in Glen Rose, Texas; White Oak Conservation in Yulee, Florida; and Binder Park Zoo in Battle Creek, Michigan. Trichuris eggs were collected from the feces of 14 individual giraffes located at the four different study sites and from soil samples from the enclosures where Trichuris-positive giraffes were housed. The eggs were isolated and their genes were amplified by PCR and compared at the molecular level. Trichuris samples from four giraffe hosts and one soil site were sequenced and portions of the cox1 and 18S genes compared. This study found that >12 eggs per gram of fecal-derived Trichuris eggs must be present to amplify Trichuris-specific DNA. The Trichuris spp. found in the majority of giraffes in this study were most similar to T. ovis and T. discolor, and one giraffe sample had greater similarity to T. skrjabini and T. leporis.
Collapse
|
9
|
Inverted base composition skews and discontinuous mitochondrial genome architecture evolution in the Enoplea (Nematoda). BMC Genomics 2022; 23:376. [PMID: 35585506 PMCID: PMC9115964 DOI: 10.1186/s12864-022-08607-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/25/2022] [Indexed: 11/26/2022] Open
Abstract
Background Within the class Enoplea, the earliest-branching lineages in the phylum Nematoda, the relatively highly conserved ancestral mitochondrial architecture of Trichinellida is in stark contrast to the rapidly evolving architecture of Dorylaimida and Mermithida. To better understand the evolution of mitogenomic architecture in this lineage, we sequenced the mitogenome of a fish parasite Pseudocapillaria tomentosa (Trichinellida: Capillariidae) and compared it to all available enoplean mitogenomes. Results P. tomentosa exhibited highly reduced noncoding regions (the largest was 98 bp), and a unique base composition among the Enoplea. We attributed the latter to the inverted GC skew (0.08) in comparison to the ancestral skew in Trichinellidae (-0.43 to -0.37). Capillariidae, Trichuridae and Longidoridae (Dorylaimida) generally exhibited low negative or low positive skews (-0.1 to 0.1), whereas Mermithidae exhibited fully inverted low skews (0 to 0.05). This is indicative of inversions in the strand replication order or otherwise disrupted replication mechanism in the lineages with reduced/inverted skews. Among the Trichinellida, Trichinellidae and Trichuridae have almost perfectly conserved architecture, whereas Capillariidae exhibit multiple rearrangements of tRNA genes. In contrast, Mermithidae (Mermithida) and Longidoridae (Dorylaimida) exhibit almost no similarity to the ancestral architecture. Conclusions Longidoridae exhibited more rearranged mitogenomic architecture than the hypervariable Mermithidae. Similar to the Chromadorea, the evolution of mitochondrial architecture in enoplean nematodes exhibits a strong discontinuity: lineages possessing a mostly conserved architecture over tens of millions of years are interspersed with lineages exhibiting architectural hypervariability. As Longidoridae also have some of the smallest metazoan mitochondrial genomes, they contradict the prediction that compact mitogenomes should be structurally stable. Lineages exhibiting inverted skews appear to represent the intermediate phase between the Trichinellidae (ancestral) and fully derived skews in Chromadorean mitogenomes (GC skews = 0.18 to 0.64). Multiple lines of evidence (CAT-GTR analysis in our study, a majority of previous mitogenomic results, and skew disruption scenarios) support the Dorylaimia split into two sister-clades: Dorylaimida + Mermithida and Trichinellida. However, skew inversions produce strong base composition biases, which can hamper phylogenetic and other evolutionary studies, so enoplean mitogenomes have to be used with utmost care in evolutionary studies. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08607-4.
Collapse
|
10
|
Rivero J, Zurita A, Cutillas C, Callejón R. The Use of MALDI-TOF MS as a Diagnostic Tool for Adult Trichuris Species. Front Vet Sci 2022; 9:867919. [PMID: 35647091 PMCID: PMC9132177 DOI: 10.3389/fvets.2022.867919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/13/2022] [Indexed: 01/07/2023] Open
Abstract
Trichuriasis is considered a neglected tropical disease, being the second most common helminthiasis in humans. Detection of Trichuris in routine diagnosis is usually done by microscopic detection of eggs in fecal samples. Other molecular analyses are more reliable and could be used, but these analyses are not routinely available in clinical microbiology laboratories. The use of matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS) is increasing since the last decades due to its recent evidence as a potential role for reliable identification of microorganisms and a few nematodes. But, for parasites detection, normalized protocols and the acquisition and introduction of new species to the database are required. We carried out a preliminary study confirming the usefulness of MALDI-TOF MS for the rapid and reliable identification of Trichuris suis used as control and the creation of an internal database. To create main spectra profiles (MSPs), the different parts of five whipworms (esophagus and intestine) were used, developing different tests to verify the repeatability and reproducibility of the spectra. Thus, to validate the new internal database, 20 whipworms, separating the esophagus and intestine, were used, of which 100% were accurately identified as T. suis, but could not distinguish between both parts of the worm. Log score values ranged between 1.84 and 2.36, meaning a high-quality identification. The results confirmed that MALDI-TOF MS was able to identify Trichuris species. Additionally, a MALDI-TOF MS profile of T. suis proteome was carried out to develop the first internal database of spectra for the diagnosis of trichuriasis and other Trichuris spp.
Collapse
|
11
|
Mitogenomics and Evolutionary History of Rodent Whipworms ( Trichuris spp.) Originating from Three Biogeographic Regions. Life (Basel) 2021; 11:life11060540. [PMID: 34207698 PMCID: PMC8228637 DOI: 10.3390/life11060540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 11/30/2022] Open
Abstract
Trichuris spp. is a widespread nematode which parasitizes a wide range of mammalian hosts including rodents, the most diverse mammalian order. However, genetic data on rodent whipworms are still scarce, with only one published whole genome (Trichuris muris) despite an increasing demand for whole genome data. We sequenced the whipworm mitogenomes from seven rodent hosts belonging to three biogeographic regions (Palearctic, Afrotropical, and Indomalayan), including three previously described species: Trichuris cossoni, Trichurisarvicolae, and Trichurismastomysi. We assembled and annotated two complete and five almost complete mitogenomes (lacking only the long non-coding region) and performed comparative genomic and phylogenetic analyses. All the mitogenomes are circular, have the same organisation, and consist of 13 protein-coding, 2 rRNA, and 22 tRNA genes. The phylogenetic analysis supports geographical clustering of whipworm species and indicates that T. mastomysi found in Eastern Africa is able to infect multiple closely related rodent hosts. Our results are informative for species delimitation based on mitochondrial markers and could be further used in studies on phylogeny, phylogeography, and population genetics of rodent whipworms
Collapse
|
12
|
The complete mitochondrial genome of capillariid nematodes (Eucoleus annulatus): A novel gene arrangement and phylogenetic implications. Vet Parasitol 2021; 296:109476. [PMID: 34089993 DOI: 10.1016/j.vetpar.2021.109476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/28/2021] [Accepted: 05/24/2021] [Indexed: 11/20/2022]
Abstract
Capillariid nematode is a group of endoparasites of vertebrates with a complex taxonomy, causing significant economic losses to poultry industry. The taxonomic status of the genus Eucoleus remained controversial for several decades. Mitochondrial (mt) DNA provides useful genetic markers for accurate identification of species, but complete mt genome sequences have been lacking for any Capillariid nematodes. In the present study, we decoded the complete mt genome of E. annulatus and examined its phylogenetic relationship with selected members of the class Enoplea nematodes. The circular mt genome of E. annulatus was 14,118 bp, encoded 37 genes with a single non-coding region and showed substantial gene rearrangements (especially tRNA genes) compared to other nematodes studied to date. The complete mt genome of E. annulatus showed a clear A + T bias in nucleotide composition. The number of A (5404) was approximately equal to T (5405) and the GC-skew was negative on average (-0.073). Phylogenetic analyses based on 18S rDNA placed Eucoleus spp. well apart from each other and supported the proposal that Eucoleus and Capillaria are two distinct genera. Similarly, Bayesian inference (BI) and Maximum likelihood (ML) phylogenies based on mtDNA sequences revealed that the family Capillariidae is more closely related to the family Trichuridae than to the family Trichinellidae. This is the first report of the complete mt genome of capillariid nematodes, and it will provide additional genetic markers for studying the molecular epidemiology, population genetics and systematics of capillariid nematodes and should have implications for the molecular diagnosis, prevention, and control of capillariosis in animals.
Collapse
|
13
|
Rivero J, Callejón R, Cutillas C. Complete Mitochondrial Genome of Trichuristrichiura from Macaca sylvanus and Papio papio. Life (Basel) 2021; 11:life11020126. [PMID: 33562044 PMCID: PMC7915941 DOI: 10.3390/life11020126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 12/26/2022] Open
Abstract
Trichuriasis is among the most prevalent worldwide parasitism caused by helminths. For many years, Trichuris spp. have been described with a relatively narrow range of both morphological and biometrical features. The use of the complete mitochondrial genome (mitogenome) is an alternative and powerful molecular method for inferring phylogenies. Here, we present an overview of the contributions of mitogenome for Trichuris spp. from human and non-human primates. In addition, we carry out structural and phylogenetic comparative analyses with genomes of Trichuris species available in public datasets. The complete mt genomes of Trichuris trichiura and Trichuris sp. from Macaca sylvanus and T. trichiura from Papio papio are 14,091 bp, 14,047 bp and 14,089 bp in length, respectively. The three mt genomes are circular and consist of 37 genes—13 PCGs (cox1–3, nad1–6, nad4L, atp6, atp8 and cob), 22 transfer RNA genes (tRNAs), and two rRNAs (rrnL and rrnS). The molecular evidence presented here supports the hypothesis that T. trichiura de M. sylvanus (TMF31) and T. trichiura de P. papio (TPM1) were similar but genetically different with respect to Trichuris sp. from macaques (TMM5). The phylogenetic study also supported the evolution of the different Trichuris species. In conclusion, we suggest the existence of two cryptic species parasitizing M. sylvanus.
Collapse
|
14
|
Yu Z, Zhao Z, Chen L, Li J, Ju X. Development of a Droplet Digital PCR for Detection of Trichuriasis in Sheep. J Parasitol 2021; 106:603-610. [PMID: 32997756 DOI: 10.1645/20-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Trichuriasis is a serious threat to the economic development of animal husbandry. This research aimed to establish a droplet digital PCR (ddPCR) method to detect Trichuris spp. for the early diagnosis and prevention of trichuriasis in sheep. The real-time quantitative PCR (qPCR) and ddPCR methods were used for the detection of nematodes by targeted amplification of the ITS gene. Each means was evaluated to optimize the limit of detection and reproducibility. For a recombinant plasmid, the qPCR results showed that the detection limit was 31.7 copies per reaction. In contrast to qPCR, ddPCR was able to detect concentrations below 3.17 copies per reaction. Both assays exhibited good reproducibility. However, the ddPCR method was more stable for low-copy-number detection. This new assay was specific for Trichuris spp. and did not cross-react with other relevant gastrointestinal nematodes. A total of 98 clinical samples were tested with both assays. The results showed that the positive rate of ddPCR (80.6%) was higher than that of qPCR (72.4%). This method could be used as an efficient molecular biology tool to test for Trichuris spp. and could be a new valuable tool for the clinical diagnosis and prevention of trichuriasis.
Collapse
Affiliation(s)
- Zhichao Yu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China.,Technology Center, Hohhot Customs District, Hohhot, 010020, Inner Mongolia, China
| | - Zhiguo Zhao
- Technology Center, Hohhot Customs District, Hohhot, 010020, Inner Mongolia, China
| | - Linjun Chen
- Technology Center, Hohhot Customs District, Hohhot, 010020, Inner Mongolia, China
| | - Junyan Li
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China
| | - Xianghong Ju
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
| |
Collapse
|
15
|
Jones KR. Trichuris spp. in Animals, with Specific Reference to Neo-Tropical Rodents. Vet Sci 2021; 8:15. [PMID: 33494133 PMCID: PMC7909510 DOI: 10.3390/vetsci8020015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 12/21/2022] Open
Abstract
Trichuriasis is the clinical disease of animals infected with the parasite of the genus Trichuris. This review attempts to present information on Trichuris spp. infestation in neo-tropical rodents that are utilized for meat consumption by humans. Neo-tropical rodents utilized for meat production can be divided into two categories: those that have been domesticated, which include the guinea pig (Cavia porcellus), and those that are on the verge of domestication, such as the capybara (Hydrochoerus hydrochaeris), lappe (Cuniculus paca/Agouti paca), and agouti (Dasyprocta leporina). This document reviews the literature on the species of Trichuris that affects the rodents mentioned above, as well as the clinical signs observed. The literature obtained spans over sixty years, from 1951 to 2020. Trichuris spp. was found in these neo-tropical rodents mentioned. However, there is a dearth of information on the species of Trichuris that parasitize these animals. The capybara was the only rodent where some molecular techniques were used to identify a new species named T. cutillasae. In most cases, Trichuris spp. was found in combination with other endoparasites, and was found at a low prevalence in the lappe and guinea pig. The presence of Trichuris spp. ranged from 4.62-53.85% in the agouti, 4.21-10.00% in the lappe, 50% in the capybaras, and 1-31% in guinea pigs. Further work must be done towards molecular identification of various Trichuris spp. present in these rodents, as well as the clinical effect of infection on the performance of agouti, lappe, capybara, and guinea pigs.
Collapse
Affiliation(s)
- Kegan Romelle Jones
- Department of Basic Veterinary Sciences (DBVS), School of Veterinary Medicine (SVM), Faculty of Medical Sciences (FMS), University of the West Indies (UWI), Mt. Hope Campus, Trinidad and Tobago;
- Department of Food Production (DFP), Faculty of Food and Agriculture (FFA), University of the West Indies (UWI), St. Augustine Campus, Trinidad and Tobago
| |
Collapse
|
16
|
Gao Y, Wang XX, Ma XX, Zhang ZH, Lan Z, Qiu YY, Wang S, Song MX, Wang CR. Characterization of the complete mitochondrial genomes of Coronocyclus labiatus and Cylicodontophorus bicoronatus: Comparison with Strongylidae species and phylogenetic implication. Vet Parasitol 2021; 290:109359. [PMID: 33516119 DOI: 10.1016/j.vetpar.2021.109359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/26/2020] [Accepted: 01/06/2021] [Indexed: 11/29/2022]
Abstract
Coronocyclus labiatus and Cylicodontophorus bicoronatus are two significant horse parasitic nematodes which are classified into subfamily Cyathostominae, family Strongylidae, however, the classification of these nematodes has been controversial for more than a century. Mitochondrial (mt) genomes are considered valuable sources for parasite taxonomy, population genetics, and systematics studies. In the present study, the mt genomes of Co. labiatus and Cd. bicoronatus (type species) were determined and subsequently compared with those from closely related species by phylogenetic analysis based on concatenated datasets of amino acid sequences predicted from mt protein-coding genes. The complete mt genomes of Co. labiatus and Cd. bicoronatus were circular with 13,827 bp and 13,753 bp in size, respectively. Both mt genomes consisted of a total of 12 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes and two non-coding regions. All protein coding genes were transcribed in the same direction, and the gene order in both mt genomes belonged to the gene arrangement type 3 (GA3). There were 19 intergenic spacers with 1 bp to 35 bp and one overlap with 4 bp in mt genome of Co. labiatus, and 22 intergenic spacers with 1-29 bp in size but no overlap in the mt genome of Cd. bicoronatus. The A + T content of Co. labiatus and Cd. bicoronatus mt genomes were 75.87 % and 75.16 %, respectively. Similar to mt genones of other Strongylidae species published in GenBank, they also exhibited a strong A + T bias not only in the nucleotide composition but also in codon usage. Comparative analyses of mt genomes nucleotide sequence showed that mt genomes of Co. labiatus and Cd. bicoronatus had higher identities to that of Cylicostephanus goldi (90.3 % and 86.9 %, respectively), followed by those of two Cyathostomum species (89.9∼90.0 %; 86.4 %), respectively. Phylogenetic analyses using mt genomes of 26 Strongyloidea nematodes revealed that Co. labiatus was closely related to Cyathostomum species, and Cd. bicoronatus formed a distinct branch with Cyathostominae species, which was closer to Triodontophorus than Poteriostomum imparidentatum. We concluded Coronocyclus might be closely related with Cyathostomum but represent a distinct genus based on comparative mt genome sequences and phylogenetic analyses. The availability of complete mt genome sequences of Co. labiatus and Cd. bicoronatus provides new and useful genetic markers for further studies on Strongylidae nematodes.
Collapse
Affiliation(s)
- Yuan Gao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, China; College of Veterinary Medicine, Northeast Agricultural University, Harbin, 15000, Heilongjiang Province, China
| | - Xiao-Xu Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, China
| | - Xiao-Xiao Ma
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, China
| | - Zhong-Huai Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, China
| | - Zhuo Lan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, China
| | - Yang-Yuan Qiu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, China
| | - Shuang Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 15000, Heilongjiang Province, China
| | - Min-Xin Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 15000, Heilongjiang Province, China
| | - Chun-Ren Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, China.
| |
Collapse
|
17
|
Hawash MBF, Al-Jubury A, Sengupta ME, Hansen TVA, Thamsborg SM, Nejsum P. Evidence for mitochondrial pseudogenes (numts) as a source of contamination in the phylogeny of human whipworms. INFECTION GENETICS AND EVOLUTION 2020; 86:104627. [PMID: 33181334 DOI: 10.1016/j.meegid.2020.104627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 10/23/2022]
Abstract
Trichuris trichiura and T. suis are whipworms of humans and pigs, respectively, but it has recently been suggested that humans may be infected with multiple genotypes or species of Trichuris and cross-infection with Trichuris of pig origin has also been reported. In addition, the species status of Trichuris in non-human primates is unsettled and it is unknown how many whipworm species we share with other primates. Herein, we inferred the phylogeny of Trichuris collected from human, baboon and pig based on nuclear (18S and beta-tubulin) and mitochondrial (cox1) genes and evaluated the use of three PCR linked restriction fragment length polymorphism (PCR-RFLP) to identify worms. We found that all baboon worms clustered with human worms and that all these primate worms are different from T. suis. In general, there was an agreement between the phylogeny established based on the nuclear and mtDNA genes. However, we found evidence for non-targeted cox1 gene amplification for a subset of the human worms and suggest the presence of mitochondrial pseudogenes (numts) of pig cox1 gene in the human Trichuris genome. In conclusion, phylogenetic characterization of human whipworm based on the cox1 gene alone may be problematic without suitable preceded measures to avoid the numts amplification.
Collapse
Affiliation(s)
- Mohamed Bayoumi Fahmy Hawash
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt; Department of Genetics, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, Canada.
| | - Azmi Al-Jubury
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Mita Eva Sengupta
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | | - Stig Milan Thamsborg
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Peter Nejsum
- Department of Clinical Medicine, Health, Aarhus University, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
18
|
|
19
|
Hu L, Zhang M, Sun Y, Bu Y. Characterization and phylogenetic analysis of the first complete mitochondrial genome of Cylicocyclus radiatus. Vet Parasitol 2020; 281:109097. [DOI: 10.1016/j.vetpar.2020.109097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 10/24/2022]
|
20
|
Montalbano Di Filippo M, Berrilli F, De Liberato C, Di Giovanni V, D'Amelio S, Friedrich KG, Cavallero S. Molecular characterization of Trichuris spp. from captive animals based on mitochondrial markers. Parasitol Int 2019; 75:102043. [PMID: 31881362 DOI: 10.1016/j.parint.2019.102043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 11/28/2022]
Abstract
Monoxenous parasites may easily infect animals in captivity, and nematodes belonging to the genus Trichuris are commonly reported in zoological gardens worldwide. Infections in captive animals should be accurately monitored and the characterization of pathogens is highly advisable, as a tool to infer possible routes of intra- and interspecific transmission pathways and to assess the related zoonotic potential. Whipworms are usually identified on the basis of few morphological features of adults males and eggs and by an host-affiliation criterion. Given the strong morphological convergence of adaptive traits and the possible occurrence of hybridization and/or cross-infections events, the use of molecular methods is of great utility. Here, we analysed two partial mitochondrial loci, the cytochrome c oxidase I and the cytochrome b regions, in Trichuris spp. infecting four animal species hosted in the Bioparco Zoological Garden of Rome. Results from molecular systematics, compared to previous data, suggested that the five Trichuris taxa recovered were well separated, showing a significant degree of host affiliation (herbivorous, primates/swine and rodents/canids). The screw horn antelopes and the camels were infected with two variants of Trichuris ovis; Trichuris sp. similar to those observed in rodents from South America was infecting the Patagonian maras. Moreover, Trichuris from the ring-tailed lemur showed a great similarity to Trichuris infecting the Japanese macaque previously analysed from the same zoological garden, and clustering together with Trichuris trichiura, posing a potential zoonotic threat for visitors and workers.
Collapse
Affiliation(s)
| | - Federica Berrilli
- Department of Clinical Sciences and Translational Medicine, Tor Vergata University, Via Montpellier 1, 00133, Rome, Italy
| | - Claudio De Liberato
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Vittoria Di Giovanni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Stefano D'Amelio
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Klaus G Friedrich
- Fondazione Bioparco, Viale del Giardino Zoologico, 00197 Rome, Italy
| | - Serena Cavallero
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
21
|
Ahmad AA, Shabbir MAB, Xin Y, Ikram M, Hafeez MA, Wang C, Zhang T, Zhou C, Yan X, Hassan M, Hu M. Characterization of the Complete Mitochondrial Genome of a Whipworm Trichuris skrjabini (Nematoda: Trichuridae). Genes (Basel) 2019; 10:E438. [PMID: 31181837 PMCID: PMC6627073 DOI: 10.3390/genes10060438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 01/30/2023] Open
Abstract
The complete mitochondrial (mt) genome of Trichuris skrjabini has been determined in the current study and subsequently compared with closely related species by phylogenetic analysis based on concatenated datasets of mt amino acid sequences. The whole mt genome of T. skrjabini is circular and 14,011 bp in length. It consists of a total of 37 genes including 13 protein coding genes (PCGs), two ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNAs) genes, and two non-coding regions. The gene arrangement and contents were consistent with other members of the Trichuridae family including Trichuris suis, Trichuris trichiura, Trichuris ovis, and Trichuris discolor. Phylogenetic analysis based on concatenated datasets of amino acids of the 12 PCGs predicted the distinctiveness of Trichuris skrjabini as compared to other members of the Trichuridae family. Overall, our study supports the hypothesis that T. skrjabini is a distinct species. The provision of molecular data of whole mt genome of T. skrjabini delivers novel genetic markers for future studies of diagnostics, systematics, population genetics, and molecular epidemiology of T. skrjabini.
Collapse
Affiliation(s)
- Awais Ali Ahmad
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Muhammad Abu Bakr Shabbir
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Yang Xin
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Muhammad Ikram
- Statistical Genomics Lab, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Mian Abdul Hafeez
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan.
| | - Chunqun Wang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Ting Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Caixian Zhou
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Xingrun Yan
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Mubashar Hassan
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
22
|
Ahmad AA, Yang X, Zhang T, Wang C, Zhou C, Yan X, Hassan M, Ikram M, Hu M. Characterization of the Complete Mitochondrial Genome of Ostertagia trifurcata of Small Ruminants and its Phylogenetic Associations for the Trichostrongyloidea Superfamily. Genes (Basel) 2019; 10:genes10020107. [PMID: 30709051 PMCID: PMC6410049 DOI: 10.3390/genes10020107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 11/16/2022] Open
Abstract
The complete mitochondrial (mt) genome of Ostertagia trifurcata, a parasitic nematode of small ruminants, has been sequenced and its phylogenetic relationship with selected members from the superfamily Trichostrongyloidea was investigated on the basis of deduced datasets of mt amino acid sequences. The entire mt genome of Ostertagia trifurcata is circular and 14,151 bp in length. It consists of a total of 36 genes comprising 12 genes coding for proteins (PCGs), 2 genes for ribosomal RNA (rRNA), 22 transfer RNA (tRNA) genes and 2 non-coding regions, since all genes are transcribed in the same direction. The phylogenetic analysis based on the concatenated datasets of predicted amino acid sequences of the 12 protein coding genes supported monophylies of the Haemonchidae, Dictyocaulidae and Molineidae families, but rejected monophylies of the Trichostrongylidae family. The complete characterization and provision of the mtDNA sequence of Ostertagia trifurcata provides novel genetic markers for molecular epidemiological investigations, systematics, diagnostics and population genetics of Ostertagia trifurcata and its correspondents.
Collapse
Affiliation(s)
- Awais Ali Ahmad
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xin Yang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ting Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chunqun Wang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Caixian Zhou
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xingrun Yan
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mubashar Hassan
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Muhammad Ikram
- Statistical Genomics Lab, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
23
|
Yilmaz E, Wongkamchai S, Ramünke S, Koutsovoulos GD, Blaxter ML, Poppert S, Schaper R, von Samson-Himmelstjerna G, Krücken J. High genetic diversity in the Dirofilaria repens species complex revealed by mitochondrial genomes of feline microfilaria samples from Narathiwat, Thailand. Transbound Emerg Dis 2018; 66:389-399. [PMID: 30281949 DOI: 10.1111/tbed.13033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/10/2018] [Accepted: 09/24/2018] [Indexed: 11/28/2022]
Abstract
Dirofilaria repens is a zoonotic, mosquito-borne filaria infecting carnivores, particularly dogs. It is expanding its range in Europe but epidemiological information is sparse for other Eurasian regions. In Hong Kong and India, the closely related species Candidatus Dirofilaria hongkongensis was proposed. Previous analysis of 2.5 kb partial mitochondrial genome sequences containing the particularly variable non-coding control region revealed low diversity in European D. repens while Asian nematodes showed high diversity. Sequences derived from feline blood samples from Narathiwat (Thailand) led to the proposal of a third potential species, Dirofilaria sp. "Thailand II". To avoid bias from rapidly evolving non-coding regions, this study aimed to compare Dirofilaria sp. "Thailand II" with D. repens and C. D. hongkongensis based on complete mitochondrial genomes. Using PCRs and Sanger sequencing, three complete mitochondrial genomes (13,651 bp) were assembled from DNA obtained from different feline blood samples. Mitochondrial genome organization was identical to other onchocercids with eleven protein-coding, two rRNA and 22 tRNA genes and no atp-8 gene. All genes were on the same strand showing an extremely high thymidine content (56.7%). Maximum-likelihood phylogenetic analysis using protein and rRNA sequences confirmed closer relationship of Dirofilaria sp. "Thailand II" to C. D. hongkongensis than to D. repens. All distances between these three putative species were considerably larger than the distance between the valid sibling species Onchocerca volvulus and Onchocerca ochengi. Sequencing of a 2.5 kb fragment containing the control region from microfilarial DNA from additional feline blood samples from Narathiwat 3-4 years later revealed that these also fell into the C. D. hongkongensis clade but were remarkably different from C. D. hongkongensis and Dirofilaria sp. "Thailand II". Since D. repens-like filaria are absent from dogs in Narathiwat, further field studies are required to confirm if these genotypes represent locally circulating cat-specific Dirofilaria genotypes or species.
Collapse
Affiliation(s)
- Esra Yilmaz
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Sirichit Wongkamchai
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sabrina Ramünke
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Georgios D Koutsovoulos
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Mark L Blaxter
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,The GenePool Genomics Facility, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Sven Poppert
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | | | | | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
24
|
Kim T, Kern E, Park C, Nadler SA, Bae YJ, Park JK. The bipartite mitochondrial genome of Ruizia karukerae (Rhigonematomorpha, Nematoda). Sci Rep 2018; 8:7482. [PMID: 29749383 PMCID: PMC5945635 DOI: 10.1038/s41598-018-25759-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/27/2018] [Indexed: 11/24/2022] Open
Abstract
Mitochondrial genes and whole mitochondrial genome sequences are widely used as molecular markers in studying population genetics and resolving both deep and shallow nodes in phylogenetics. In animals the mitochondrial genome is generally composed of a single chromosome, but mystifying exceptions sometimes occur. We determined the complete mitochondrial genome of the millipede-parasitic nematode Ruizia karukerae and found its mitochondrial genome consists of two circular chromosomes, which is highly unusual in bilateral animals. Chromosome I is 7,659 bp and includes six protein-coding genes, two rRNA genes and nine tRNA genes. Chromosome II comprises 7,647 bp, with seven protein-coding genes and 16 tRNA genes. Interestingly, both chromosomes share a 1,010 bp sequence containing duplicate copies of cox2 and three tRNA genes (trnD, trnG and trnH), and the nucleotide sequences between the duplicated homologous gene copies are nearly identical, suggesting a possible recent genesis for this bipartite mitochondrial genome. Given that little is known about the formation, maintenance or evolution of abnormal mitochondrial genome structures, R. karukerae mtDNA may provide an important early glimpse into this process.
Collapse
Affiliation(s)
- Taeho Kim
- Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Elizabeth Kern
- Division of EcoScience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Chungoo Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Steven A Nadler
- Department of Entomology and Nematology, University of California, Davis, CA, 95616, USA
| | - Yeon Jae Bae
- Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Joong-Ki Park
- Division of EcoScience, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
25
|
Long-term occurrence of Trichuris species in wild ruminants in the Czech Republic. Parasitol Res 2018; 117:1699-1708. [DOI: 10.1007/s00436-018-5841-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/13/2018] [Indexed: 12/01/2022]
|
26
|
Gao JF, Liu GH, Duan H, Gao Y, Zhang Y, Chang QC, Fang M, Wang CR. Complete mitochondrial genomes of Triodontophorus serratus and Triodontophorus nipponicus , and their comparison with Triodontophorus brevicauda. Exp Parasitol 2017; 181:88-93. [DOI: 10.1016/j.exppara.2017.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 06/07/2017] [Accepted: 08/08/2017] [Indexed: 11/26/2022]
|
27
|
Gao Y, Zhang Y, Yang X, Qiu JH, Duan H, Xu WW, Chang QC, Wang CR. Mitochondrial DNA Evidence Supports the Hypothesis that Triodontophorus Species Belong to Cyathostominae. Front Microbiol 2017; 8:1444. [PMID: 28824575 PMCID: PMC5540935 DOI: 10.3389/fmicb.2017.01444] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 07/17/2017] [Indexed: 11/23/2022] Open
Abstract
Equine strongyles, the significant nematode pathogens of horses, are characterized by high quantities and species abundance, but classification of this group of parasitic nematodes is debated. Mitochondrial (mt) genome DNA data are often used to address classification controversies. Thus, the objectives of this study were to determine the complete mt genomes of three Cyathostominae nematode species (Cyathostomum catinatum, Cylicostephanus minutus, and Poteriostomum imparidentatum) of horses and reconstruct the phylogenetic relationship of Strongylidae with other nematodes in Strongyloidea to test the hypothesis that Triodontophorus spp. belong to Cyathostominae using the mt genomes. The mt genomes of Cy. catinatum, Cs. minutus, and P. imparidentatum were 13,838, 13,826, and 13,817 bp in length, respectively. Complete mt nucleotide sequence comparison of all Strongylidae nematodes revealed that sequence identity ranged from 77.8 to 91.6%. The mt genome sequences of Triodontophorus species had relatively high identity with Cyathostominae nematodes, rather than Strongylus species of the same subfamily (Strongylinae). Comparative analyses of mt genome organization for Strongyloidea nematodes sequenced to date revealed that members of this superfamily possess identical gene arrangements. Phylogenetic analyses using mtDNA data indicated that the Triodontophorus species clustered with Cyathostominae species instead of Strongylus species. The present study first determined the complete mt genome sequences of Cy. catinatum, Cs. minutus, and P. imparidentatum, which will provide novel genetic markers for further studies of Strongylidae taxonomy, population genetics, and systematics. Importantly, sequence comparison and phylogenetic analyses based on mtDNA sequences supported the hypothesis that Triodontophorus belongs to Cyathostominae.
Collapse
Affiliation(s)
- Yuan Gao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural UniversityDaqing, China
| | - Yan Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural UniversityDaqing, China
| | - Xin Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Jian-Hua Qiu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural UniversityDaqing, China
| | - Hong Duan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural UniversityDaqing, China
| | - Wen-Wen Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural UniversityDaqing, China
| | - Qiao-Cheng Chang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural UniversityDaqing, China
| | - Chun-Ren Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural UniversityDaqing, China.,College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural UniversityDaqing, China
| |
Collapse
|
28
|
Vejl P, Nechybová S, Peřinková P, Melounová M, Sedláková V, Vašek J, Čílová D, Rylková K, Jankovská I, Vadlejch J, Langrová I. Reliable molecular differentiation of Trichuris ovis and Trichuris discolor from sheep (Ovis orientalis aries) and roe deer (Capreolus capreolus) and morphological characterisation of their females: morphology does not work sufficiently. Parasitol Res 2017. [PMID: 28624874 DOI: 10.1007/s00436-017-5524-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The main aim of the study was to evaluate associations between morphological variability of Trichuris females from sheep and roe deer and their rDNA polymorphism in whipworm populations from the Czech Republic. The results introduced the use of new molecular markers based on the internal transcribed spacer (ITS)1-5.8S RNA-ITS2 region polymorphisms, as useful tools for the unambiguous differentiation of congeners Trichuris ovis and Trichuris discolor. These markers revealed both parasites in roe deer and in sheep; however, T. ovis females predominated in sheep while T. discolor females occurred mostly in roe deer. Additional analysis of ITS1-5.8 rRNA-ITS2 discovered the genetic uniformity of the analysed T. discolor but high haplotype variation of T. ovis. Simultaneously, molecularly designated female individuals of both species were categorised into four morphotypes (MT) on the basis of morphology of genital pore area. MT1 and MT4 (vulvar opening on everted vaginal appendage/on visible cuticular bulge) occurred only in T. ovis, MT2 (uneverted vagina-vulvar opening without any elevation) was identified only in T. discolor and MT3 (transient type of vulvar opening on a small swelling) was observed in both species. Statistical analysis of biometric data confirmed that morphology of vulva is not a reliable marker for the species determination. On the basis of the ITS1-5.8S RNA-ITS2 region variability, we carried out a phylogenetic analysis (maximum likelihood method, Hasegawa-Kishino-Yano model) which showed that T. ovis haplotypes from the Czech Republic and Ireland and T. discolor haplotypes from the Czech Republic, Spain, Iran and Japan are sister OTUs.
Collapse
Affiliation(s)
- Pavel Vejl
- Department of Genetics and Breeding, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences in Prague, Prague, Czech Republic.
| | - Stanislava Nechybová
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences in Prague, Prague, Czech Republic
| | - Pavla Peřinková
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences in Prague, Prague, Czech Republic
| | - Martina Melounová
- Department of Genetics and Breeding, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences in Prague, Prague, Czech Republic
| | - Vladimíra Sedláková
- Department of Genetics and Breeding, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences in Prague, Prague, Czech Republic
| | - Jakub Vašek
- Department of Genetics and Breeding, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences in Prague, Prague, Czech Republic
| | - Daniela Čílová
- Department of Genetics and Breeding, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences in Prague, Prague, Czech Republic
| | - Kateřina Rylková
- Department of Genetics and Breeding, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences in Prague, Prague, Czech Republic
| | - Ivana Jankovská
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences in Prague, Prague, Czech Republic
| | - Jaroslav Vadlejch
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences in Prague, Prague, Czech Republic
| | - Iva Langrová
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences in Prague, Prague, Czech Republic
| |
Collapse
|
29
|
Mitochondrial genome diversity in dagger and needle nematodes (Nematoda: Longidoridae). Sci Rep 2017; 7:41813. [PMID: 28150734 PMCID: PMC5288807 DOI: 10.1038/srep41813] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/30/2016] [Indexed: 11/23/2022] Open
Abstract
Dagger and needle nematodes included in the family Longidoridae (viz. Longidorus, Paralongidorus, and Xiphinema) are highly polyphagous plant-parasitic nematodes in wild and cultivated plants and some of them are plant-virus vectors (nepovirus). The mitochondrial (mt) genomes of the dagger and needle nematodes, Xiphinema rivesi, Xiphinema pachtaicum, Longidorus vineacola and Paralongidorus litoralis were sequenced in this study. The four circular mt genomes have an estimated size of 12.6, 12.5, 13.5 and 12.7 kb, respectively. Up to date, the mt genome of X. pachtaicum is the smallest genome found in Nematoda. The four mt genomes contain 12 protein-coding genes (viz. cox1-3, nad1-6, nad4L, atp6 and cob) and two ribosomal RNA genes (rrnL and rrnS), but the atp8 gene was not detected. These mt genomes showed a gene arrangement very different within the Longidoridae species sequenced, with the exception of very closely related species (X. americanum and X. rivesi). The sizes of non-coding regions in the Longidoridae nematodes were very small and were present in a few places in the mt genome. Phylogenetic analysis of all coding genes showed a closer relationship between Longidorus and Paralongidorus and different phylogenetic possibilities for the three Xiphinema species.
Collapse
|
30
|
Kim J, Kern E, Kim T, Sim M, Kim J, Kim Y, Park C, Nadler SA, Park JK. Phylogenetic analysis of two Plectus mitochondrial genomes (Nematoda: Plectida) supports a sister group relationship between Plectida and Rhabditida within Chromadorea. Mol Phylogenet Evol 2017; 107:90-102. [DOI: 10.1016/j.ympev.2016.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/08/2016] [Accepted: 10/11/2016] [Indexed: 11/28/2022]
|
31
|
Yilmaz E, Fritzenwanker M, Pantchev N, Lendner M, Wongkamchai S, Otranto D, Kroidl I, Dennebaum M, Le TH, Anh Le T, Ramünke S, Schaper R, von Samson-Himmelstjerna G, Poppert S, Krücken J. The Mitochondrial Genomes of the Zoonotic Canine Filarial Parasites Dirofilaria (Nochtiella) repens and Candidatus Dirofilaria (Nochtiella) hongkongensis Provide Evidence for Presence of Cryptic Species. PLoS Negl Trop Dis 2016; 10:e0005028. [PMID: 27727270 PMCID: PMC5058507 DOI: 10.1371/journal.pntd.0005028] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/09/2016] [Indexed: 11/18/2022] Open
Abstract
Background Cutaneous dirofilariosis is a canine mosquito-borne zoonosis that can cause larva migrans disease in humans. Dirofilaria repens is considered an emerging pathogen occurring with high prevalence in Mediterranean areas and many parts of tropical Asia. In Hong Kong, a second species, Candidatus Dirofilaria hongkongensis, has been reported. The present study aimed to compare mitochondrial genomes from these parasites and to obtain population genetic information. Methods and Findings Complete mitochondrial genomes were obtained by PCR and Sanger sequencing or ILLUMINA sequencing for four worms. Cytochrome oxidase subunit 1 sequences identified three as D. repens (all from Europe) and one as C. D. hongkongensis (from India). Mitochondrial genomes have the same organization as in other spirurid nematodes but a higher preference for thymine in the coding strand. Phylogenetic analysis was in contradiction to current taxonomy of the Onchocercidae but in agreement with a recent multi-locus phylogenetic analysis using both mitochondrial and nuclear markers. D. repens and C. D. hongkongensis sequences clustered together and were the common sister group to Dirofilaria immitis. Analysis of a 2.5 kb mitochondrial genome fragment from macrofilaria or canine blood samples from Europe (42), Thailand (2), India (1) and Vietnam (1) revealed only small genetic differences in the D. repens samples including all European and the Vietnam sample. The Indian C. D. hongkongensis and the two Thai samples formed separate clusters and differences were comparatively large. Conclusion Genetic differences between Dirofilaria spp. causing cutaneous disease can be considerable whereas D. repens itself was genetically quite homogenous. C. D. hongkongensis was identified for the first time from the Indian subcontinent. The full mitochondrial genome sequence strengthens the hypothesis that it represents an independent species and the Thai samples might represent another cryptic species, Candidatus Dirofilaria sp. ‘Thailand II’, or a quite divergent population of C. D. hongkongensis. The mitochondrial genomes of the zoonotic parasite species Dirofilaria repens and Candidatus Dirofilaria hongkongensis were characterized and compared to the genomes of other filariae. The resulting phylogeny is largely in agreement with recent molecular data. C. D. hongkongensis was placed as a sister group to D. repens and both as a common sister to D. immitis. The large genetic difference between D. repens and C. D. hongkongensis further supports the hypothesis that both are distinct valid species. Two canine samples from Thailand that were diagnosed as D. repens are either from a C. D. hongkongensis population that is quite divergent from the Indian population or might represent another currently unrecognized species in the genus.
Collapse
Affiliation(s)
- Esra Yilmaz
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Moritz Fritzenwanker
- Institute of Medical Microbiology, Justus-Liebig-University, Giessen, Germany; German Center for Infection Research (DZIF), Partner site Giessen-Marburg-Langen, Campus Giessen, Giessen, Germany
| | | | - Mathias Lendner
- Institut für Parasitologie, Universität Leipzig, Leipzig, Germany
| | - Sirichit Wongkamchai
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Bari, Italy
| | - Inge Kroidl
- Division of Infectious Diseases and Tropical Medicine, Medical Centre of the University of Munich (LMU); German Center for Infection Research (DZIF), Partner site Munich, Germany
| | - Martin Dennebaum
- Section Clinical Tropical Medicine, Department of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Thanh Hoa Le
- Immunology Department, Institute of Biotechnology, Ha Noi, Viet Nam
| | - Tran Anh Le
- Department of Parasitology, Viet Nam Veterinary Medical University, Ha Noi, Viet Nam
| | - Sabrina Ramünke
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | | | | | - Sven Poppert
- University Medical Center, Hamburg-Eppendorf, Germany
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
32
|
Comparative analyses of the complete mitochondrial genomes of the two murine pinworms Aspiculuris tetraptera and Syphacia obvelata. Gene 2016; 585:71-75. [PMID: 27016298 DOI: 10.1016/j.gene.2016.03.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/13/2016] [Accepted: 03/20/2016] [Indexed: 01/17/2023]
Abstract
Pinworms Aspiculuris tetraptera and Syphacia obvelata are important parasitic nematodes of laboratory mice, rat and other rodents. However, the mitochondrial (mt) genome of these parasites have not been known yet. In the present study, the complete mt genomes of A. tetraptera and S. obvelata were sequenced, which were 13,669 bp and 14,235 bp in size, respectively. Both genomes included 12 protein-coding genes, two rRNA genes, 22 tRNA genes and one non-coding region. The mt genomes of A. tetraptera and S. obvelata preferred bases A and T, with the highest for T and the lowest for C. The mt gene arrangements of the two pinworms were the same as that of the GA8 type. Phylogenetic analysis using mtDNA data revealed that the Bayesian inference (BI) trees contained two big branches: species from Oxyuridomorpha, Rhabditomorpha and Ascaridomorpha formed one branch, and those from Spiruromorpha formed another branch with high statistical support. The two murine pinworms A. tetraptera and S. obvelata have closer relationship than to other pinworms. This study provides a foundation for studying the population genetics, systematics and molecular phylogeny of pinworms.
Collapse
|
33
|
The complete mitochondrial genome of Metorchis orientalis (Trematoda: Opisthorchiidae): Comparison with other closely related species and phylogenetic implications. INFECTION GENETICS AND EVOLUTION 2016; 39:45-50. [PMID: 26805437 DOI: 10.1016/j.meegid.2016.01.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 11/21/2022]
Abstract
Metorchis orientalis (Trematoda: Opisthorchiidae) is an important trematode infecting many animals and humans, causing metorchiasis. In the present study, the complete mitochondrial (mt) genome of M. orientalis was sequenced. The complete mt genome of M. orientalis is 13,834 bp circular DNA molecule and contains 12 protein-coding genes, 22 transfer RNA genes, and two ribosomal RNA genes. The gene content and arrangement of M. orientalis is the same as those of Opisthorchiidae trematodes (Opisthorchis viverrini, Opisthorchis felineus and Clonorchis sinensis), but distinct from Schistosoma spp. Phylogenetic analyses using concatenated amino acid sequences of 12 protein-coding genes with three different computational algorithms (Bayesian inference, maximum likelihood and maximum parsimony) revealed that M. orientalis and O. viverrini represent sister taxa. The mt genome provides a novel genetic marker for further studies of the identification, classification and molecular epidemiology of Opisthorchiidae trematodes, and should have implications for the diagnosis, prevention and control of metorchiasis in animals and humans.
Collapse
|
34
|
Zhang Y, Xu WW, Guo DH, Liu ZX, Duan H, Su X, Fu X, Yue DM, Gao Y, Wang CR. The complete mitochondrial genome of Oxyuris equi: Comparison with other closely related species and phylogenetic implications. Exp Parasitol 2015; 159:215-21. [DOI: 10.1016/j.exppara.2015.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 07/13/2015] [Accepted: 09/24/2015] [Indexed: 10/22/2022]
|
35
|
Kim T, Kim J, Nadler SA, Park JK. The complete mitochondrial genome of Koerneria sudhausi (Diplogasteromorpha: Nematoda) supports monophyly of Diplogasteromorpha within Rhabditomorpha. Curr Genet 2015; 62:391-403. [PMID: 26581631 DOI: 10.1007/s00294-015-0536-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 11/29/2022]
Abstract
Testing hypotheses of monophyly for different nematode groups in the context of broad representation of nematode diversity is central to understanding the patterns and processes of nematode evolution. Herein sequence information from mitochondrial genomes is used to test the monophyly of diplogasterids, which includes an important nematode model organism. The complete mitochondrial genome sequence of Koerneria sudhausi, a representative of Diplogasteromorpha, was determined and used for phylogenetic analyses along with 60 other nematode species. The mtDNA of K. sudhausi is comprised of 16,005 bp that includes 36 genes (12 protein-coding genes, 2 ribosomal RNA genes and 22 transfer RNA genes) encoded in the same direction. Phylogenetic trees inferred from amino acid and nucleotide sequence data for the 12 protein-coding genes strongly supported the sister relationship of K. sudhausi with Pristionchus pacificus, supporting Diplogasteromorpha. The gene order of K. sudhausi is identical to that most commonly found in members of the Rhabditomorpha + Ascaridomorpha + Diplogasteromorpha clade, with an exception of some tRNA translocations. Both the gene order pattern and sequence-based phylogenetic analyses support a close relationship between the diplogasterid species and Rhabditomorpha. The nesting of the two diplogasteromorph species within Rhabditomorpha is consistent with most molecular phylogenies for the group, but inconsistent with certain morphology-based hypotheses that asserted phylogenetic affinity between diplogasteromorphs and tylenchomorphs. Phylogenetic analysis of mitochondrial genome sequences strongly supports monophyly of the diplogasteromorpha.
Collapse
Affiliation(s)
- Taeho Kim
- Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Republic of Korea
| | - Jiyeon Kim
- Division of EcoScience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 120-750, Republic of Korea
| | - Steven A Nadler
- Department of Entomology and Nematology, University of California, Davis, CA, 95616, USA
| | - Joong-Ki Park
- Division of EcoScience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 120-750, Republic of Korea.
| |
Collapse
|
36
|
Hawash MBF, Andersen LO, Gasser RB, Stensvold CR, Nejsum P. Mitochondrial Genome Analyses Suggest Multiple Trichuris Species in Humans, Baboons, and Pigs from Different Geographical Regions. PLoS Negl Trop Dis 2015; 9:e0004059. [PMID: 26367282 PMCID: PMC4569395 DOI: 10.1371/journal.pntd.0004059] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 08/14/2015] [Indexed: 11/19/2022] Open
Abstract
Background The whipworms Trichuris trichiura and Trichuris suis are two parasitic nematodes of humans and pigs, respectively. Although whipworms in human and non-human primates historically have been referred to as T. trichiura, recent reports suggest that several Trichuris spp. are found in primates. Methods and Findings We sequenced and annotated complete mitochondrial genomes of Trichuris recovered from a human in Uganda, an olive baboon in the US, a hamadryas baboon in Denmark, and two pigs from Denmark and Uganda. Comparative analyses using other published mitochondrial genomes of Trichuris recovered from a human and a porcine host in China and from a françois’ leaf-monkey (China) were performed, including phylogenetic analyses and pairwise genetic and amino acid distances. Genetic and protein distances between human Trichuris in Uganda and China were high (~19% and 15%, respectively) suggesting that they represented different species. Trichuris from the olive baboon in US was genetically related to human Trichuris in China, while the other from the hamadryas baboon in Denmark was nearly identical to human Trichuris from Uganda. Baboon-derived Trichuris was genetically distinct from Trichuris from françois’ leaf monkey, suggesting multiple whipworm species circulating among non-human primates. The genetic and protein distances between pig Trichuris from Denmark and other regions were roughly 9% and 6%, respectively, while Chinese and Ugandan whipworms were more closely related. Conclusion and Significance Our results indicate that Trichuris species infecting humans and pigs are phylogenetically distinct across geographical regions, which might have important implications for the implementation of suitable and effective control strategies in different regions. Moreover, we provide support for the hypothesis that Trichuris infecting primates represents a complex of cryptic species with some species being able to infect both humans and non-human primates. Trichuris trichiura and Trichuris suis are whipworms found in humans and pigs, respectively, causing morbidity in humans and being associated with production losses in pigs. Although Trichuris from non-human primates is attributed to T. trichiura, hence considered the same species as the one infecting humans, several recent reports question this assumption. Morphologically similar parasites that have a wide global distribution and/or those capable of infecting several host species may comprise several ‘hidden’ species. In this study, we sequenced, annotated, and compared the mitochondrial genomes (including published genomes) of Trichuris obtained from different hosts in different geographical regions, including humans (Uganda and China), pigs (China, Uganda, and Denmark) and two types of non-human primates (baboons and françois’ leaf monkey). We found high genetic distinctiveness between human Trichuris from China and Uganda. Likewise, pig Trichuris from Denmark and other regions also showed considerable, although lower, genetic diversity. This suggests that both pig- and human-derived Trichuris may represent different species with potential differences in endemicity, which may have important implications for implementing effective control strategies. Our data also suggests that Trichuris infecting primates comprises several species and may be transmitted from non-human primates to humans.
Collapse
Affiliation(s)
- Mohamed B. F. Hawash
- Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Lee O. Andersen
- Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
| | - Robin B. Gasser
- Department of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Christen Rune Stensvold
- Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
| | - Peter Nejsum
- Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
- * E-mail:
| |
Collapse
|
37
|
Xu WW, Qiu JH, Liu GH, Zhang Y, Liu ZX, Duan H, Yue DM, Chang QC, Wang CR, Zhao XC. The complete mitochondrial genome of Strongylus equinus (Chromadorea: Strongylidae): Comparison with other closely related species and phylogenetic analyses. Exp Parasitol 2015; 159:94-9. [PMID: 26366671 DOI: 10.1016/j.exppara.2015.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 07/14/2015] [Accepted: 08/16/2015] [Indexed: 11/25/2022]
Abstract
The roundworms of genus Strongylus are the common parasitic nematodes in the large intestine of equine, causing significant economic losses to the livestock industries. In spite of its importance, the genetic data and epidemiology of this parasite are not entirely understood. In the present study, the complete S. equinus mitochondrial (mt) genome was determined. The length of S. equinus mt genome DNA sequence is 14,545 bp, containing 36 genes, of which 12 code for protein, 22 for transfer RNA, and two for ribosomal RNA, but lacks atp8 gene. All 36 genes are encoded in the same direction which is consistent with all other Chromadorea nematode mtDNAs published to date. Phylogenetic analysis based on concatenated amino acid sequence data of all 12 protein-coding genes showed that there were two large branches in the Strongyloidea nematodes, and S. equinus is genetically closer to S. vulgaris than to Cylicocyclus insignis in Strongylidae. This new mt genome provides a source of genetic markers for the molecular phylogeny and population genetics of equine strongyles.
Collapse
Affiliation(s)
- Wen-Wen Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Jian-Hua Qiu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Guo-Hua Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Yan Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Ze-Xuan Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Hong Duan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Dong-Mei Yue
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Qiao-Cheng Chang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Chun-Ren Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China.
| | - Xing-Cun Zhao
- Animal and Plant Department, Quanzhou Entry-Exit Inspection and Quarantine Bureau, Quanzhou, Fujian Province, 362000, PR China.
| |
Collapse
|
38
|
Mitochondrial genomes of Trichinella species and genotypes – a basis for diagnosis, and systematic and epidemiological explorations. Int J Parasitol 2015; 44:1073-80. [PMID: 25245252 DOI: 10.1016/j.ijpara.2014.08.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 11/22/2022]
Abstract
In the present study we sequenced or re-sequenced, assembled and annotated 15 mitochondrial genomes representing the 12 currently recognised taxa of Trichinella using a deep sequencing-coupled approach. We then defined and compared the gene order in individual mitochondrial genomes (14 to 17.7 kb), evaluated genetic differences among species/genotypes and re-assessed the relationships among these taxa using the mitochondrial nucleic acid or amino acid sequence data sets. In addition, a rich source of mitochondrial genetic markers was defined that could be used in future systematic, epidemiological and population genetic studies of Trichinella. The sequencing-bioinformatic approach employed herein should be applicable to a wide range of eukaryotic parasites.
Collapse
|
39
|
Duan H, Gao JF, Hou MR, Zhang Y, Liu ZX, Gao DZ, Guo DH, Yue DM, Su X, Fu X, Wang CR. Complete Mitochondrial genome of an equine intestinal parasite, Triodontophorus brevicauda (Chromadorea: Strongylidae): the first characterization within the genus. Parasitol Int 2015; 64:429-34. [PMID: 26100950 DOI: 10.1016/j.parint.2015.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 06/16/2015] [Accepted: 06/18/2015] [Indexed: 01/11/2023]
Abstract
The complete mitochondrial (mt) genome sequence of Triodontophorus brevicauda, an intestinal equine nematode parasite was determined for the first time. The circular T. brevicauda mt genome is 14,305 bp in length and contains 36 genes, of which 12 code for protein, 22 for transfer RNA, and two for ribosomal RNA, and lacks atp8 mtDNA gene. Phylogenetic analysis based on the concatenated amino acid sequence of the 12 protein-coding genes was performed using three different tree-building methods. The Strongyloidea cluster divides into two large branches, and each nematode family included in our study forms an independent clade, though paraphyly confounds the issue at some nodes. T. brevicauda clusters together with Cylicocyclus insignis with high statistical support. The mtDNA data in this study not only provide a new mtDNA resource for phylogeny, but also become a novel and useful genetic marker for further studies on the identification, population genetics, and molecular epidemiology of the genus Triodontophorus in equine.
Collapse
Affiliation(s)
- Hong Duan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Jun-Feng Gao
- Department of Parasitology, Heilongjiang Institute of Veterinary Science, Qiqihar, Heilongjiang Province 161006, PR China
| | - Mei-Ru Hou
- Department of Parasitology, Heilongjiang Institute of Veterinary Science, Qiqihar, Heilongjiang Province 161006, PR China
| | - Yan Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Ze-Xuan Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - De-Zhen Gao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Dong-Hui Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Dong-Mei Yue
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Xin Su
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Xue Fu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Chun-Ren Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China.
| |
Collapse
|
40
|
Li J, Chen F, Sugiyama H, Blair D, Lin RQ, Zhu XQ. A specific indel marker for the Philippines Schistosoma japonicum revealed by analysis of mitochondrial genome sequences. Parasitol Res 2015; 114:2697-704. [PMID: 25899327 DOI: 10.1007/s00436-015-4475-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
In the present study, near-complete mitochondrial (mt) genome sequences for Schistosoma japonicum from different regions in the Philippines and Japan were amplified and sequenced. Comparisons among S. japonicum from the Philippines, Japan, and China revealed a geographically based length difference in mt genomes, but the mt genomic organization and gene arrangement were the same. Sequence differences among samples from the Philippines and all samples from the three endemic areas were 0.57-2.12 and 0.76-3.85 %, respectively. The most variable part of the mt genome was the non-coding region. In the coding portion of the genome, protein-coding genes varied more than rRNA genes and tRNAs. The near-complete mt genome sequences for Philippine specimens were identical in length (14,091 bp) which was 4 bp longer than those of S. japonicum samples from Japan and China. This indel provides a unique genetic marker for S. japonicum samples from the Philippines. Phylogenetic analyses based on the concatenated amino acids of 12 protein-coding genes showed that samples of S. japonicum clustered according to their geographical origins. The identified mitochondrial indel marker will be useful for tracing the source of S. japonicum infection in humans and animals in Southeast Asia.
Collapse
Affiliation(s)
- Juan Li
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong Province, People's Republic of China
| | | | | | | | | | | |
Collapse
|
41
|
Humphreys-Pereira DA, Elling AA. Mitochondrial genome plasticity among species of the nematode genus Meloidogyne (Nematoda: Tylenchina). Gene 2015; 560:173-83. [PMID: 25655462 DOI: 10.1016/j.gene.2015.01.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 11/30/2022]
Abstract
The mitochondrial (mt) genomes of the plant-parasitic root-knot nematodes Meloidogyne arenaria, Meloidogyne enterolobii and Meloidogyne javanica were sequenced and compared with those of three other root-knot nematode species in order to explore the mt genome plasticity within Meloidogyne. The mt genomes of M. arenaria, M. enterolobii and M. javanica are circular, with an estimated size of 18.8, 18.9 and 19.6 kb, respectively. Compared to other nematodes these mt genomes are larger, due to the presence of large non-coding regions. The mt genome architecture within the genus Meloidogyne varied in the position of trn genes and in the position, length and nucleotide composition of non-coding regions. These variations were observed independent of the species' natural environments or reproductive modes. M. enterolobii showed three main non-coding regions whereas Meloidogyne chitwoodi, Meloidogyne incognita, M. javanica and M. arenaria had two non-coding regions, and Meloidogyne graminicola had a unique large non-coding region interrupted by two trn genes. trn genes were positioned in different regions of the mt genomes in M. chitwoodi, M. enterolobii and M. graminicola, whereas the trn gene order was identical between M. arenaria, M. incognita and M. javanica. Importantly, M. graminicola had extra copies of trnV and trnS2. High divergence levels between the two copies of each trn might indicate duplication events followed by random loss and mutations in the anticodon. Tree-based methods based on amino acid sequences of 12 mt protein-coding genes support the monophyly for the tropical and mitotic parthenogenetic species, M. arenaria, M. enterolobii, M. incognita and M. javanica and for a clade that includes the meiotic parthenogenetic species, M. chitwoodi and M. graminicola. A comparison of the mt genome architecture in plant-parasitic nematodes and phylogenetic analyses support that Pratylenchus is the most recent ancestor of root-knot nematodes.
Collapse
Affiliation(s)
| | - Axel A Elling
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
42
|
Ghai RR, Simons ND, Chapman CA, Omeja PA, Davies TJ, Ting N, Goldberg TL. Hidden population structure and cross-species transmission of whipworms (Trichuris sp.) in humans and non-human primates in Uganda. PLoS Negl Trop Dis 2014; 8:e3256. [PMID: 25340752 PMCID: PMC4207677 DOI: 10.1371/journal.pntd.0003256] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/09/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Whipworms (Trichuris sp.) are a globally distributed genus of parasitic helminths that infect a diversity of mammalian hosts. Molecular methods have successfully resolved porcine whipworm, Trichuris suis, from primate whipworm, T. trichiura. However, it remains unclear whether T. trichiura is a multi-host parasite capable of infecting a wide taxonomic breadth of primate hosts or a complex of host specific parasites that infect one or two closely related hosts. METHODS AND FINDINGS We examined the phylogenetic structure of whipworms in a multi-species community of non-human primates and humans in Western Uganda, using both traditional microscopy and molecular methods. A newly developed nested polymerase chain reaction (PCR) method applied to non-invasively collected fecal samples detected Trichuris with 100% sensitivity and 97% specificity relative to microscopy. Infection rates varied significantly among host species, from 13.3% in chimpanzees (Pan troglodytes) to 88.9% in olive baboons (Papio anubis). Phylogenetic analyses based on nucleotide sequences of the Trichuris internal transcribed spacer regions 1 and 2 of ribosomal DNA revealed three co-circulating Trichuris groups. Notably, one group was detected only in humans, while another infected all screened host species, indicating that whipworms from this group are transmitted among wild primates and humans. CONCLUSIONS AND SIGNIFICANCE Our results suggest that the host range of Trichuris varies by taxonomic group, with some groups showing host specificity, and others showing host generality. In particular, one Trichuris taxon should be considered a multi-host pathogen that is capable of infecting wild primates and humans. This challenges past assumptions about the host specificity of this and similar helminth parasites and raises concerns about animal and human health.
Collapse
Affiliation(s)
- Ria R. Ghai
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Noah D. Simons
- Department of Anthropology, University of Oregon, Eugene, Oregon, United States of America
| | - Colin A. Chapman
- Department of Anthropology and McGill School of Environment, Montreal, Quebec, Canada, and Wildlife Conservation Society, Bronx, New York, New York, United States of America
- Makerere University Biological Field Station, Fort Portal, Uganda
| | - Patrick A. Omeja
- Makerere University Biological Field Station, Fort Portal, Uganda
| | | | - Nelson Ting
- Department of Anthropology, University of Oregon, Eugene, Oregon, United States of America
- Institute for Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Tony L. Goldberg
- Makerere University Biological Field Station, Fort Portal, Uganda
- Department of Pathobiological Sciences and Global Health Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
43
|
Mitochondrial genomes of Meloidogyne chitwoodi and M. incognita (Nematoda: Tylenchina): comparative analysis, gene order and phylogenetic relationships with other nematodes. Mol Biochem Parasitol 2014; 194:20-32. [PMID: 24751670 DOI: 10.1016/j.molbiopara.2014.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/07/2014] [Accepted: 04/09/2014] [Indexed: 11/21/2022]
Abstract
Root-knot nematodes (Meloidogyne spp.) are among the most important plant pathogens. In this study, the mitochondrial (mt) genomes of the root-knot nematodes, M. chitwoodi and M. incognita were sequenced. PCR analyses suggest that both mt genomes are circular, with an estimated size of 19.7 and 18.6-19.1kb, respectively. The mt genomes each contain a large non-coding region with tandem repeats and the control region. The mt gene arrangement of M. chitwoodi and M. incognita is unlike that of other nematodes. Sequence alignments of the two Meloidogyne mt genomes showed three translocations; two in transfer RNAs and one in cox2. Compared with other nematode mt genomes, the gene arrangement of M. chitwoodi and M. incognita was most similar to Pratylenchus vulnus. Phylogenetic analyses (Maximum Likelihood and Bayesian inference) were conducted using 78 complete mt genomes of diverse nematode species. Analyses based on nucleotides and amino acids of the 12 protein-coding mt genes showed strong support for the monophyly of class Chromadorea, but only amino acid-based analyses supported the monophyly of class Enoplea. The suborder Spirurina was not monophyletic in any of the phylogenetic analyses, contradicting the Clade III model, which groups Ascaridomorpha, Spiruromorpha and Oxyuridomorpha based on the small subunit ribosomal RNA gene. Importantly, comparisons of mt gene arrangement and tree-based methods placed Meloidogyne as sister taxa of Pratylenchus, a migratory plant endoparasitic nematode, and not with the sedentary endoparasitic Heterodera. Thus, comparative analyses of mt genomes suggest that sedentary endoparasitism in Meloidogyne and Heterodera is based on convergent evolution.
Collapse
|
44
|
Gao JF, Zhao Q, Liu GH, Zhang Y, Zhang Y, Wang WT, Chang QC, Wang CR, Zhu XQ. Comparative analyses of the complete mitochondrial genomes of the two ruminant hookworms Bunostomum trigonocephalum and Bunostomum phlebotomum. Gene 2014; 541:92-100. [PMID: 24625354 DOI: 10.1016/j.gene.2014.03.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 02/04/2014] [Accepted: 03/07/2014] [Indexed: 01/13/2023]
Abstract
Bunostomum trigonocephalum and Bunostomum phlebotomum are blood-feeding hookworms of sheep and cattle, causing considerable economic losses to the live stock industries. Studying genetic variability within and among hookworm populations is critical to addressing epidemiological and ecological questions. Mitochondrial (mt) DNA is known to provide useful markers for investigations of population genetics of hookworms, but mt genome sequence data are scant. In the present study, the complete mitochondrial DNA (mtDNA) sequences of the sheep and goat hookworm B. trigonocephalum were determined for the first time, and the mt genome of B. phlebotomum from yak in China was also sequenced for comparative analyses of their gene contents and genome organizations. The lengths of mt DNA sequences of B. trigonocephalum sheep isolate, B. trigonocephalum goat isolate and B. phlebotomum China yak isolate were 13,764bp, 13,771bp and 13,803bp in size, respectively. The identity of the mt genomes was 99.7% between B. trigonocephalum sheep isolate and B. trigonocephalum goat isolate. The identity of B. phlebotomum China yak isolate mt genomes was 85.3% with B. trigonocephalum sheep isolate, and 85.2% with B. trigonocephalum goat isolate. All the mt genes of the two hookworms were transcribed in the same direction and gene arrangements were consistent with those of the GA3 type, including 12 protein-coding genes, 2 rRNA genes and 22 tRNA genes, but lacking ATP synthetase subunit 8 gene. The mt genomes of B. trigonocephalum and B. phlebotomum were similar to prefer bases A and T, the contents of A+T are 76.5% (sheep isolate), 76.4% (goat isolate) and 76.9% (China yak isolate), respectively. Phylogenetic relationships reconstructed using concatenated amino acid sequences of 12 protein-coding genes with three methods (maximum likelihood, Bayesian inference and neighbor joining) revealed that the B. trigonocephalum and B. phlebotomum represent distinct but closely-related species. These data provide novel and useful genetic markers for studying the systematics, and population genetics of the two ruminant hookworms.
Collapse
Affiliation(s)
- Jun-Feng Gao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China; Department of Parasitology, Heilongjiang Institute of Veterinary Science, Qiqihar, Heilongjiang Province 161006, PR China
| | - Quan Zhao
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China
| | - Guo-Hua Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, PR China; State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Yan Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Ying Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Wen-Tao Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Qiao-Cheng Chang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Chun-Ren Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China; Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China.
| | - Xing-Quan Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China; Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China; State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China.
| |
Collapse
|
45
|
Liu GH, Zhao L, Song HQ, Zhao GH, Cai JZ, Zhao Q, Zhu XQ. Chabertia erschowi (Nematoda) is a distinct species based on nuclear ribosomal DNA sequences and mitochondrial DNA sequences. Parasit Vectors 2014; 7:44. [PMID: 24450932 PMCID: PMC3937141 DOI: 10.1186/1756-3305-7-44] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 01/18/2014] [Indexed: 01/22/2023] Open
Abstract
Background Gastrointestinal nematodes of livestock have major socio-economic importance worldwide. In small ruminants, Chabertia spp. are responsible for economic losses to the livestock industries globally. Although much attention has given us insights into epidemiology, diagnosis, treatment and control of this parasite, over the years, only one species (C. ovina) has been accepted to infect small ruminants, and it is not clear whether C. erschowi is valid as a separate species. Methods The first and second internal transcribed spacers (ITS-1 and ITS-2) regions of nuclear ribosomal DNA (rDNA) and the complete mitochondrial (mt) genomes of C. ovina and C. erschowi were amplified and then sequenced. Phylogenetic re-construction of 15 Strongylida species (including C. erschowi) was carried out using Bayesian inference (BI) based on concatenated amino acid sequence datasets. Results The ITS rDNA sequences of C. ovina China isolates and C. erschowi samples were 852–854 bp and 862 -866 bp in length, respectively. The mt genome sequence of C. erschowi was 13,705 bp in length, which is 12 bp shorter than that of C. ovina China isolate. The sequence difference between the entire mt genome of C. ovina China isolate and that of C. erschowi was 15.33%. In addition, sequence comparison of the most conserved mt small subunit ribosomal (rrnS) and the least conserved nad2 genes among multiple individual nematodes revealed substantial nucleotide differences between these two species but limited sequence variation within each species. Conclusions The mtDNA and rDNA datasets provide robust genetic evidence that C. erschowi is a valid strongylid nematode species. The mtDNA and rDNA datasets presented in the present study provide useful novel markers for further studies of the taxonomy and systematics of the Chabertia species from different hosts and geographical regions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China.
| |
Collapse
|
46
|
The complete mitochondrial genomes of Oesophagostomum asperum and Oesophagostomum columbianum in small ruminants. INFECTION GENETICS AND EVOLUTION 2013; 19:205-11. [DOI: 10.1016/j.meegid.2013.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 06/11/2013] [Accepted: 07/16/2013] [Indexed: 11/21/2022]
|
47
|
Guardone L, Deplazes P, Macchioni F, Magi M, Mathis A. Ribosomal and mitochondrial DNA analysis of Trichuridae nematodes of carnivores and small mammals. Vet Parasitol 2013; 197:364-9. [PMID: 23920054 DOI: 10.1016/j.vetpar.2013.06.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/04/2013] [Accepted: 06/29/2013] [Indexed: 11/19/2022]
Abstract
Several species of Trichuridae nematodes can infect dogs, cats and wild mammals. The diagnosis of these infections relies on the microscopic identification of eggs which are characterized by a similar "lemon" shape and polar plugs in all Trichuridae. Thus, morphological diagnosis to species level is challenging. The use of biomolecular diagnostic methods is desirable but very little genetic data are known from Trichuridae of carnivores and small mammals. The aim of this work was to genetically characterize several species of Trichuridae that can affect dogs, cats and wild mammals, as a basis to develop molecular diagnostic tests. Specimens (adult worms or eggs) of Eucoleus aerophilus (syn. Capillaria aerophila), Eucoleus boehmi (syn. Capillaria boehmi), Pearsonema plica (syn. Capillaria plica), Aonchotheca putorii (syn. Capillaria putorii), Calodium hepaticum (syn. Capillaria hepatica), Calodium splenaecum (syn. Capillaria splenaeca) and Trichuris vulpis were obtained from carcasses of red foxes, feces of dogs, the liver of a vole and from the spleen of Crocidura sp. Parts of the small subunit rRNA (18S rRNA) gene and of the mitochondrial cytochrome c oxidase subunit I (cox 1 mtDNA) gene were amplified from the above mentioned nematodes, yielding the first 18S rRNA gene sequences of all the capillariid nematodes and the first cox 1 mtDNA sequences of E. boehmi, P. plica, C. hepaticum, A. putorii and T. vulpis. The 18S rRNA gene is highly conserved among the different species and not suitable as a target for specific diagnostic oligonucleotides. However, these sequences contribute to a better understanding of the complex taxonomic relations among Trichuridae. Indeed, a dendrogram based on the 18S rRNA gene locus supports the latest taxonomic revision. Interspecies divergence was much higher at the cox 1 mtDNA gene locus, rendering it suitable for DNA barcoding and particularly valuable in resolving closely related species. Furthermore, the mitochondrial genetic markers defined in the present study are useful to develop Trichuridae species-specific primers.
Collapse
Affiliation(s)
- Lisa Guardone
- Department of Veterinary Science, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy.
| | | | | | | | | |
Collapse
|
48
|
Liu GH, Gasser RB, Nejsum P, Wang Y, Chen Q, Song HQ, Zhu XQ. Mitochondrial and nuclear ribosomal DNA evidence supports the existence of a new Trichuris species in the endangered françois' leaf-monkey. PLoS One 2013; 8:e66249. [PMID: 23840431 PMCID: PMC3688784 DOI: 10.1371/journal.pone.0066249] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 05/03/2013] [Indexed: 11/24/2022] Open
Abstract
The whipworm of humans, Trichuris trichiura, is responsible for a neglected tropical disease (NTD) of major importance in tropical and subtropical countries of the world. Whipworms also infect animal hosts, including pigs, dogs and non-human primates, cause clinical disease (trichuriasis) similar to that of humans. Although Trichuris species are usually considered to be host specific, it is not clear whether non-human primates are infected with T. trichiura or other species. In the present study, we sequenced the complete mitochondrial (mt) genome as well as the first and second internal transcribed spacers (ITS-1 and ITS-2) of Trichuris from the François’ leaf-monkey (langur), and compared them with homologous sequences from human- and pig-derived Trichuris. In addition, sequence comparison of a conserved mt ribosomal gene among multiple individual whipworms revealed substantial nucleotide differences among these three host species but limited sequence variation within each of them. The molecular data indicate that the monkey-derived whipworm is a separate species from that of humans. Future work should focus on detailed population genetic and morphological studies (by electron microscopy) of whipworms from various non-humans primates and humans.
Collapse
Affiliation(s)
- Guo-Hua Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People’s Republic of China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, People’s Republic of China
| | - Robin B. Gasser
- Faculty of Veterinary Science, The University of Melbourne, Melbourne, Victoria, Australia
- * E-mail: (RBG); (XQZ)
| | - Peter Nejsum
- Departments of Veterinary Disease Biology and Basic Animal and Veterinary Science, University of Copenhagen, Copenhagen, Denmark
| | - Yan Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People’s Republic of China
| | - Qiang Chen
- Guangzhou ZhongDa Medical Equipment Co., Ltd., Guangzhou, Guangdong Province, People’s Republic of China
| | - Hui-Qun Song
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People’s Republic of China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People’s Republic of China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, People’s Republic of China
- * E-mail: (RBG); (XQZ)
| |
Collapse
|
49
|
Liu GH, Wang Y, Song HQ, Li MW, Ai L, Yu XL, Zhu XQ. Characterization of the complete mitochondrial genome of Spirocerca lupi: sequence, gene organization and phylogenetic implications. Parasit Vectors 2013; 6:45. [PMID: 23433345 PMCID: PMC3606334 DOI: 10.1186/1756-3305-6-45] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 02/17/2013] [Indexed: 11/29/2022] Open
Abstract
Background Spirocerca lupi is a life-threating parasitic nematode of dogs that has a cosmopolitan distribution but is most prevalent in tropical and subtropical countries. Despite its veterinary importance in canids, the epidemiology, molecular ecology and population genetics of this parasite still remain unexplored. Methods The complete mitochondrial (mt) genome of S. lupi was amplified in four overlapping long fragments using primers designed based on partial cox1, rrnS, cox2 and nad2 sequences. Phylogenetic re-construction of 13 spirurid species (including S. lupi) was carried out using Bayesian inference (BI) based on concatenated amino acid sequence datasets. Results The complete mt genome sequence of S. lupi is 13,780 bp in length, including 12 protein-coding genes, 22 transfer RNA genes and two ribosomal RNA genes, but lacks the atp8 gene. The gene arrangement is identical to that of Thelazia callipaeda (Thelaziidae) and Setaria digitata (Onchocercidae), but distinct from that of Dracunculus medinensis (Dracunculidae) and Heliconema longissimum (Physalopteridae). All genes are transcribed in the same direction and have a nucleotide composition high in A and T. The content of A + T is 73.73% for S. lupi, in accordance with mt genomes of other spirurid nematodes sequenced to date. Phylogenetic analyses using concatenated amino acid sequences of the 12 protein-coding genes by BI showed that the S. lupi (Thelaziidae) is closely related to the families Setariidae and Onchocercidae. Conclusions The present study determined the complete mt genome sequence of S. lupi. These new mt genome dataset should provide novel mtDNA markers for studying the molecular epidemiology and population genetics of this parasite, and should have implications for the molecular diagnosis, prevention and control of spirocercosis in dogs and other canids.
Collapse
Affiliation(s)
- Guo-Hua Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, 410128, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Liu GH, Gasser RB, Otranto D, Xu MJ, Shen JL, Mohandas N, Zhou DH, Zhu XQ. Mitochondrial genome of the eyeworm, Thelazia callipaeda (Nematoda: Spirurida), as the first representative from the family Thelaziidae. PLoS Negl Trop Dis 2013; 7:e2029. [PMID: 23383353 PMCID: PMC3561134 DOI: 10.1371/journal.pntd.0002029] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 12/07/2012] [Indexed: 12/14/2022] Open
Abstract
Human thelaziosis is an underestimated parasitic disease caused by Thelazia species (Spirurida: Thelaziidae). The oriental eyeworm, Thelazia callipaeda, infects a range of mammalian definitive hosts, including canids, felids and humans. Although this zoonotic parasite is of socio-economic significance in Asian countries, its genetics, epidemiology and biology are poorly understood. Mitochondrial (mt) DNA is known to provide useful genetic markers to underpin fundamental investigations, but no mt genome had been characterized for any members of the family Thelaziidae. In the present study, we sequenced and characterized the mt genome of T. callipaeda. This AT-rich (74.6%) mt genome (13,668 bp) is circular and contains 12 protein-coding genes, 22 transfer RNA genes and two ribosomal RNA genes, but lacks an atp8 gene. All protein-coding genes are transcribed in the same direction; the gene order is the same as those of Dirofilaria immitis and Setaria digitata (Onchocercidae), but distinct from Dracunculus medinensis (Dracunculidae) and Heliconema longissimum (Physalopteridae). Phylogenetic analyses of the concatenated amino acid sequence data for all 12 protein-coding genes by Bayesian inference (BI) showed that T. callipaeda (Thelaziidae) is related to the family Onchocercidae. This is the first mt genome of any member of the family Thelaziidae and should represent a new source of genetic markers for studying the epidemiology, ecology, population genetics and systematics of this parasite of humans and other mammals. Human thelaziosis is an underestimated parasitic disease caused by the eyeworm Thelazia callipaeda (Spirurida: Thelaziidae). Although this parasite is of significance in humans in many Asian countries, its genetics, epidemiology and biology are poorly understood. Mitochondrial (mt) DNA can provide useful genetic markers for fundamental investigations, but no mt genome had been characterized for any members of the family Thelaziidae. In this study, we sequenced and characterized the mt genome of T. callipaeda. This circular mt genome is 13,668 bp long and contains 12 protein-coding genes, 22 transfer RNA genes and two ribosomal RNA genes, but lacks an atp8 gene. Phylogenetic analyses of the concatenated amino acid sequence data for all 12 protein-coding genes by Bayesian inference showed that T. callipaeda is closely related to the family Onchocercidae, consistent with previous study. This is the first mt genome of any member of the family Thelaziidae, and represents a new source of genetic markers for studies of the epidemiology, ecology, population genetics and systematics of this parasite of human and animal health significance.
Collapse
Affiliation(s)
- Guo-Hua Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, PR China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, PR China
| | - Robin B. Gasser
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (RBG); (XQZ)
| | - Domenico Otranto
- Dipartimento di Sanità Pubblica e Zootecnia, Università degli Studi di Bari, Valenzano, Bari, Italy
| | - Min-Jun Xu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, PR China
| | - Ji-Long Shen
- Department of Pathogen Biology, Anhui Medical University, Hefei, Anhui Province, China
| | - Namitha Mohandas
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Dong-Hui Zhou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, PR China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, PR China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, PR China
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, PR China
- * E-mail: (RBG); (XQZ)
| |
Collapse
|