1
|
Cai M, Wei Z, Hu X, Ji Y, Li S, Huang J, Jin R, Liang Q, Zhang G, Zheng Z, Gong L, Li M. The evolution, complexity, and diversity of swine influenza viruses in China: A hidden public health threat. Virology 2024; 598:110167. [PMID: 39003988 DOI: 10.1016/j.virol.2024.110167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024]
Abstract
Swine influenza viruses (SIVs), including H1N1, H1N2, and H3N2, have spread throughout the global pig population. Potential pandemics are a concern with the recent sporadic cross-species transmission of SIVs to humans. We collected 1421 samples from Guangdong, Fujian, Henan, Yunnan and Jiangxi provinces during 2017-2018 and isolated 29 viruses. These included 21H1N1, 5H1N2, and 3H3N2 strains. Genome analysis showed that the domestic epidemic genotypes of H1N1 were mainly G4 and G5 reassortant EA swine H1N1. These genotypes have a clear epidemic advantage. Two strains were Clade 6B.1 pdm/09H1N1, suggesting a possible pig-to-human transmission route. Notably, three new H1N2 genotypes were identified using the genomic backbones of G4 or G5 viruses for recombination. The identification of various subtypes and genotypes highlight the complexity and diversity of SIVs in China and need for continuous monitoring of SIV evolution to assess the risks and prepare for potential influenza pandemics.
Collapse
Affiliation(s)
- Mengkai Cai
- Meizhou Engineering Research Center for Veterinary Medicine and Natural Medicine, Guangdong Meizhou Vocational and Technical College, Meizhou 514028, China
| | - Zhi Wei
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510462, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, 510462, China
| | - Xiaokun Hu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510462, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, 510462, China
| | - Yikuan Ji
- Meizhou Engineering Research Center for Veterinary Medicine and Natural Medicine, Guangdong Meizhou Vocational and Technical College, Meizhou 514028, China
| | - Shaofang Li
- Meizhou Engineering Research Center for Veterinary Medicine and Natural Medicine, Guangdong Meizhou Vocational and Technical College, Meizhou 514028, China
| | - Junmei Huang
- Meizhou Engineering Research Center for Veterinary Medicine and Natural Medicine, Guangdong Meizhou Vocational and Technical College, Meizhou 514028, China
| | - Rong Jin
- Meizhou Engineering Research Center for Veterinary Medicine and Natural Medicine, Guangdong Meizhou Vocational and Technical College, Meizhou 514028, China
| | - Quanming Liang
- Meizhou Engineering Research Center for Veterinary Medicine and Natural Medicine, Guangdong Meizhou Vocational and Technical College, Meizhou 514028, China
| | - Guihong Zhang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510462, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, 510462, China
| | - Zezhong Zheng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510462, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, 510462, China
| | - Lang Gong
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510462, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, 510462, China.
| | - Meidi Li
- Meizhou Engineering Research Center for Veterinary Medicine and Natural Medicine, Guangdong Meizhou Vocational and Technical College, Meizhou 514028, China.
| |
Collapse
|
2
|
Ospina-Jimenez AF, Gomez AP, Rincon-Monroy MA, Ortiz L, Perez DR, Peña M, Ramirez-Nieto G. Sequence-Based Antigenic Analyses of H1 Swine Influenza A Viruses from Colombia (2008-2021) Reveals Temporal and Geographical Antigenic Variations. Viruses 2023; 15:2030. [PMID: 37896808 PMCID: PMC10612065 DOI: 10.3390/v15102030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Swine influenza is a respiratory disease that affects the pork industry and is a public health threat. It is caused by type A influenza virus (FLUAV), which continuously undergoes genetic and antigenic variations. A large amount of information regarding FLUAV in pigs is available worldwide, but it is limited in Latin America. The HA sequences of H1 subtype FLUAV-positive samples obtained from pigs in Colombia between 2008-2021 were analyzed using sequence-based antigenic cartography and N-Glycosylation analyses. Of the 12 predicted global antigenic groups, Colombia contained five: four corresponding to pandemic strains and one to the classical swine H1N1 clade. Circulation of these clusters was observed in some regions during specific years. Ca2 was the immunodominant epitope among Colombian viruses. The counts of N-Glycosylation motifs were associated with the antigenic cluster ranging from three to five. The results show for the first time the existence of antigenic diversity of FLUAV in Colombia and highlight the impact of spatial and temporal factors on this diversity. This study provides information about FLUAV variability in pigs under natural conditions in the absence of vaccination and emphasizes the need for surveillance of its phylogenetic and antigenic characteristics.
Collapse
Affiliation(s)
- Andres F. Ospina-Jimenez
- Grupo de Investigación en Microbiología y Epidemiología, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (A.F.O.-J.); (A.P.G.); (M.A.R.-M.)
| | - Arlen P. Gomez
- Grupo de Investigación en Microbiología y Epidemiología, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (A.F.O.-J.); (A.P.G.); (M.A.R.-M.)
| | - Maria A. Rincon-Monroy
- Grupo de Investigación en Microbiología y Epidemiología, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (A.F.O.-J.); (A.P.G.); (M.A.R.-M.)
- National Veterinary Diagnostics Laboratory, Colombian Agricultural Institute (ICA), Bogotá 110931, Colombia
| | - Lucia Ortiz
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (L.O.); (D.R.P.)
| | - Daniel R. Perez
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (L.O.); (D.R.P.)
| | - Mario Peña
- Asociación Colombiana de Porcicultores Porkcolombia—FNP, Bogotá 111311, Colombia;
| | - Gloria Ramirez-Nieto
- Grupo de Investigación en Microbiología y Epidemiología, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (A.F.O.-J.); (A.P.G.); (M.A.R.-M.)
| |
Collapse
|
3
|
Cheung J, Bui AN, Younas S, Edwards KM, Nguyen HQ, Pham NT, Bui VN, Peiris M, Dhanasekaran V. Long-Term Epidemiology and Evolution of Swine Influenza Viruses, Vietnam. Emerg Infect Dis 2023; 29:1397-1406. [PMID: 37347532 PMCID: PMC10310380 DOI: 10.3201/eid2907.230165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023] Open
Abstract
Influenza A viruses are a One Health threat because they can spill over between host populations, including among humans, swine, and birds. Surveillance of swine influenza virus in Hanoi, Vietnam, during 2013-2019 revealed gene pool enrichment from imported swine from Asia and North America and showed long-term maintenance, persistence, and reassortment of virus lineages. Genome sequencing showed continuous enrichment of H1 and H3 diversity through repeat introduction of human virus variants and swine influenza viruses endemic in other countries. In particular, the North American H1-δ1a strain, which has a triple-reassortant backbone that potentially results in increased human adaptation, emerged as a virus that could pose a zoonotic threat. Co-circulation of H1-δ1a viruses with other swine influenza virus genotypes raises concerns for both human and animal health.
Collapse
Affiliation(s)
- Jonathan Cheung
- The University of Hong Kong, Hong Kong, China (J. Cheung, S. Younas, K.M. Edwards, M. Peiris, V. Dhanasekaran)
- National Institute of Veterinary Research, Hanoi, Vietnam (A.N. Bui, H.Q. Nguyen, N.T. Pham, V.N. Bui)
- Centre for Immunology & Infection, Hong Kong (M. Peiris)
| | - Anh Ngoc Bui
- The University of Hong Kong, Hong Kong, China (J. Cheung, S. Younas, K.M. Edwards, M. Peiris, V. Dhanasekaran)
- National Institute of Veterinary Research, Hanoi, Vietnam (A.N. Bui, H.Q. Nguyen, N.T. Pham, V.N. Bui)
- Centre for Immunology & Infection, Hong Kong (M. Peiris)
| | - Sonia Younas
- The University of Hong Kong, Hong Kong, China (J. Cheung, S. Younas, K.M. Edwards, M. Peiris, V. Dhanasekaran)
- National Institute of Veterinary Research, Hanoi, Vietnam (A.N. Bui, H.Q. Nguyen, N.T. Pham, V.N. Bui)
- Centre for Immunology & Infection, Hong Kong (M. Peiris)
| | - Kimberly M. Edwards
- The University of Hong Kong, Hong Kong, China (J. Cheung, S. Younas, K.M. Edwards, M. Peiris, V. Dhanasekaran)
- National Institute of Veterinary Research, Hanoi, Vietnam (A.N. Bui, H.Q. Nguyen, N.T. Pham, V.N. Bui)
- Centre for Immunology & Infection, Hong Kong (M. Peiris)
| | - Huy Quang Nguyen
- The University of Hong Kong, Hong Kong, China (J. Cheung, S. Younas, K.M. Edwards, M. Peiris, V. Dhanasekaran)
- National Institute of Veterinary Research, Hanoi, Vietnam (A.N. Bui, H.Q. Nguyen, N.T. Pham, V.N. Bui)
- Centre for Immunology & Infection, Hong Kong (M. Peiris)
| | - Ngoc Thi Pham
- The University of Hong Kong, Hong Kong, China (J. Cheung, S. Younas, K.M. Edwards, M. Peiris, V. Dhanasekaran)
- National Institute of Veterinary Research, Hanoi, Vietnam (A.N. Bui, H.Q. Nguyen, N.T. Pham, V.N. Bui)
- Centre for Immunology & Infection, Hong Kong (M. Peiris)
| | - Vuong Nghia Bui
- The University of Hong Kong, Hong Kong, China (J. Cheung, S. Younas, K.M. Edwards, M. Peiris, V. Dhanasekaran)
- National Institute of Veterinary Research, Hanoi, Vietnam (A.N. Bui, H.Q. Nguyen, N.T. Pham, V.N. Bui)
- Centre for Immunology & Infection, Hong Kong (M. Peiris)
| | | | | |
Collapse
|
4
|
Kim P, Jang YH, Kwon SB, Lee CM, Han G, Seong BL. Glycosylation of Hemagglutinin and Neuraminidase of Influenza A Virus as Signature for Ecological Spillover and Adaptation among Influenza Reservoirs. Viruses 2018; 10:v10040183. [PMID: 29642453 PMCID: PMC5923477 DOI: 10.3390/v10040183] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 03/25/2018] [Accepted: 04/05/2018] [Indexed: 12/12/2022] Open
Abstract
Glycosylation of the hemagglutinin (HA) and neuraminidase (NA) of the influenza provides crucial means for immune evasion and viral fitness in a host population. However, the time-dependent dynamics of each glycosylation sites have not been addressed. We monitored the potential N-linked glycosylation (NLG) sites of over 10,000 HA and NA of H1N1 subtype isolated from human, avian, and swine species over the past century. The results show a shift in glycosylation sites as a hallmark of 1918 and 2009 pandemics, and also for the 1976 “abortive pandemic”. Co-segregation of particular glycosylation sites was identified as a characteristic of zoonotic transmission from animal reservoirs, and interestingly, of “reverse zoonosis” of human viruses into swine populations as well. After the 2009 pandemic, recent isolates accrued glycosylation at canonical sites in HA, reflecting gradual seasonal adaptation, and a novel glycosylation in NA as an independent signature for adaptation among humans. Structural predictions indicated a remarkably pleiotropic influence of glycans on multiple HA epitopes for immune evasion, without sacrificing the receptor binding of HA or the activity of NA. The results provided the rationale for establishing the ecological niche of influenza viruses among the reservoir and could be implemented for influenza surveillance and improving pandemic preparedness.
Collapse
Affiliation(s)
- Paul Kim
- Vaccine Translational Research Center, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
- Department of Integrated OMICS for Biomedical Science, College of World Class University, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Yo Han Jang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Soon Bin Kwon
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
- Vaccine Translational Research Center, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Chung Min Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
- Biomedicine Pharmaceutical Group, CJ Healthcare R&D Center, CJ HealthCare, 811 Deokpyeong-ro, Majang-myeon, Icheon 17389, Korea.
| | - Gyoonhee Han
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
- Department of Integrated OMICS for Biomedical Science, College of World Class University, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Baik Lin Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
- Vaccine Translational Research Center, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| |
Collapse
|
5
|
Zhu W, Zhang H, Xiang X, Zhong L, Yang L, Guo J, Xie Y, Li F, Deng Z, Feng H, Huang Y, Hu S, Xu X, Zou X, Li X, Bai T, Chen Y, Li Z, Li J, Shu Y. Reassortant Eurasian Avian-Like Influenza A(H1N1) Virus from a Severely Ill Child, Hunan Province, China, 2015. Emerg Infect Dis 2018; 22:1930-1936. [PMID: 27767007 PMCID: PMC5088044 DOI: 10.3201/eid2211.160181] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Infectivity and virulence of this virus in mice are higher than for previous human-origin Eurasian avian–like viruses. In 2015, a novel influenza A(H1N1) virus was isolated from a boy in China who had severe pneumonia. The virus was a genetic reassortant of Eurasian avian-like influenza A(H1N1) (EA-H1N1) virus. The hemagglutinin, neuraminidase, and matrix genes of the reassortant virus were highly similar to genes in EA-H1N1 swine influenza viruses, the polybasic 1 and 2, polymerase acidic, and nucleoprotein genes originated from influenza A(H1N1)pdm09 virus, and the nonstructural protein gene derived from classical swine influenza A(H1N1) (CS H1N1) virus. In a mouse model, the reassortant virus, termed influenza A/Hunan/42443/2015(H1N1) virus, showed higher infectivity and virulence than another human EA-H1N1 isolate, influenza A/Jiangsu/1/2011(H1N1) virus. In the respiratory tract of mice, virus replication by influenza A/Hunan/42443/2015(H1N1) virus was substantially higher than that by influenza A/Jiangsu/1/2011(H1N1) virus. Human-to-human transmission of influenza A/Hunan/42443/2015(H1N1) virus has not been detected; however, given the circulation of novel EA-H1N1 viruses in pigs, enhanced surveillance should be instituted among swine and humans.
Collapse
MESH Headings
- Animals
- Cell Line
- China/epidemiology
- Genes, Viral
- History, 21st Century
- Humans
- Infant
- Influenza A Virus, H1N1 Subtype/classification
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/isolation & purification
- Influenza A Virus, H1N1 Subtype/pathogenicity
- Influenza, Human/diagnosis
- Influenza, Human/epidemiology
- Influenza, Human/history
- Influenza, Human/virology
- Multilocus Sequence Typing
- Phylogeny
- RNA, Viral
- Reassortant Viruses
- Serologic Tests
- Severity of Illness Index
- Virulence
- Virus Replication
Collapse
|
6
|
Zhu W, Yang S, Dong L, Yang L, Tang J, Zou X, Chen T, Yang J, Shu Y. The repeated introduction of the H3N2 virus from human to swine during 1979-1993 in China. INFECTION GENETICS AND EVOLUTION 2015; 33:20-4. [PMID: 25858119 DOI: 10.1016/j.meegid.2015.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 03/26/2015] [Accepted: 04/01/2015] [Indexed: 10/23/2022]
Abstract
Limited data are available regarding the swine influenza viruses (SIVs) that circulated in Mainland China prior to the 1990s. Eleven H3N2 virus strains were isolated from swine populations from 1979 to 1992. To determine the origin and tendency of these SIVs, the phylogenetic and antigenic properties of these viruses were analyzed based on the whole genome sequenced and the HI titrations with post-infection ferret antisera against influenza A (H3N2) virus isolates of swine and human origin. The results revealed that these 11 SIVs originated from humans and were not maintained in swine populations, indicating the interspecies transmission from humans to pigs occurred frequently and independently throughout these periods. However, human H3N2 viruses might not have the ability to circulate in pig herds.
Collapse
Affiliation(s)
- Wenfei Zhu
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Key Laboratory of Surveillance and Early-warning on Infectious Disease, China CDC, Key Laboratory for Medical Virology, National Health and Family Planning Commission, 155 Changbai Road, Beijing 102206, PR China
| | - Shuai Yang
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Key Laboratory of Surveillance and Early-warning on Infectious Disease, China CDC, Key Laboratory for Medical Virology, National Health and Family Planning Commission, 155 Changbai Road, Beijing 102206, PR China
| | - Libo Dong
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Key Laboratory of Surveillance and Early-warning on Infectious Disease, China CDC, Key Laboratory for Medical Virology, National Health and Family Planning Commission, 155 Changbai Road, Beijing 102206, PR China
| | - Lei Yang
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Key Laboratory of Surveillance and Early-warning on Infectious Disease, China CDC, Key Laboratory for Medical Virology, National Health and Family Planning Commission, 155 Changbai Road, Beijing 102206, PR China
| | - Jing Tang
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Key Laboratory of Surveillance and Early-warning on Infectious Disease, China CDC, Key Laboratory for Medical Virology, National Health and Family Planning Commission, 155 Changbai Road, Beijing 102206, PR China
| | - Xiaohui Zou
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Key Laboratory of Surveillance and Early-warning on Infectious Disease, China CDC, Key Laboratory for Medical Virology, National Health and Family Planning Commission, 155 Changbai Road, Beijing 102206, PR China
| | - Tao Chen
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Key Laboratory of Surveillance and Early-warning on Infectious Disease, China CDC, Key Laboratory for Medical Virology, National Health and Family Planning Commission, 155 Changbai Road, Beijing 102206, PR China
| | - Jing Yang
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Key Laboratory of Surveillance and Early-warning on Infectious Disease, China CDC, Key Laboratory for Medical Virology, National Health and Family Planning Commission, 155 Changbai Road, Beijing 102206, PR China
| | - Yuelong Shu
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Key Laboratory of Surveillance and Early-warning on Infectious Disease, China CDC, Key Laboratory for Medical Virology, National Health and Family Planning Commission, 155 Changbai Road, Beijing 102206, PR China.
| |
Collapse
|