1
|
Gu H, Qiu H, Yang H, Deng Z, Zhang S, Du L, He F. PRRSV utilizes MALT1-regulated autophagy flux to switch virus spread and reserve. Autophagy 2024:1-22. [PMID: 39081059 DOI: 10.1080/15548627.2024.2386195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a major swine pathogen, which can survive host antiviral immunity with various mechanisms. PRRSV infection induces macroautophagy/autophagy, facilitating virus replication. MALT1, a central immune regulator, was manipulated by PRRSV to optimize viral infection at different stages of the virus cycle. In this study, the key role of MALT1 in autophagy regulation during PRRSV infection was characterized, enlightening the role of autophagy flux in favor of virus spread and persistent infection. PRRSV-induced autophagy was confirmed to facilitate virus proliferation. Furthermore, autophagic fusion was dynamically regulated during PRRSV infection. Importantly, PRRSV-induced MALT1 facilitated autophagosome-lysosome fusion and autolysosome formation, thus contributing to autophagy flux and virus proliferation. Mechanically, MALT1 regulated autophagy via mediating MTOR-ULK1 and -TFEB signaling and affecting lysosomal homeostasis. MALT1 inhibition by inhibitor Mi-2 or RNAi induced lysosomal membrane permeabilization (LMP), leading to the block of autophagic fusion. Further, MALT1 overexpression alleviated PRRSV-induced LMP via inhibiting ROS generation. In addition, blocking autophagy flux suppressed virus release significantly, indicating that MALT1-maintained complete autophagy flux during PRRSV infection favors successful virus spread and its proliferation. In contrast, autophagosome accumulation upon MALT1 inhibition promoted PRRSV reserve for future virus proliferation once the autophagy flux recovers. Taken together, for the first time, these findings elucidate that MALT1 was utilized by PRRSV to regulate host autophagy flux, to determine the fate of virus for either proliferation or reserve.Abbreviations: 3-MA: 3-methyladenine; BafA1: bafilomycin A1; BFP/mBFP: monomeric blue fluorescent protein; CQ: chloroquine; DMSO: dimethyl sulfoxide; dsRNA: double-stranded RNA; GFP: green fluorescent protein; hpi: hours post infection; IFA: indirect immunofluorescence assay; LAMP1: lysosomal associated membrane protein 1; LGALS3: galectin 3; LLOMe: L-leucyl-L-leucine-methyl ester; LMP: lysosomal membrane permeabilization; mAb: monoclonal antibody; MALT1: MALT1 paracaspase; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MOI: multiplicity of infection; MTOR: mechanistic target of rapamycin kinase; NFKB/NF-κB: nuclear factor kappa B; nsp: nonstructural protein; ORF: open reading frame; pAb: polyclonal antibody; PRRSV: porcine reproductive and respiratory syndrome virus; PRRSV-N: PRRSV nucleocapsid protein; Rapa: rapamycin; RFP: red fluorescent protein; ROS: reactive oxygen species; SBI: SBI-0206965; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; TCID50: 50% tissue culture infective dose; TFEB: transcription factor EB; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Han Gu
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- TianMu Laboratory, ZJU-Xinchang Joint Innovation Centre, Xinchang, Zhejiang, P.R. China
| | - He Qiu
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- TianMu Laboratory, ZJU-Xinchang Joint Innovation Centre, Xinchang, Zhejiang, P.R. China
| | - Haotian Yang
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- TianMu Laboratory, ZJU-Xinchang Joint Innovation Centre, Xinchang, Zhejiang, P.R. China
| | - Zhuofan Deng
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- TianMu Laboratory, ZJU-Xinchang Joint Innovation Centre, Xinchang, Zhejiang, P.R. China
| | - Shengkun Zhang
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- TianMu Laboratory, ZJU-Xinchang Joint Innovation Centre, Xinchang, Zhejiang, P.R. China
| | - Liuyang Du
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Fang He
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- TianMu Laboratory, ZJU-Xinchang Joint Innovation Centre, Xinchang, Zhejiang, P.R. China
| |
Collapse
|
2
|
Di Florio DN, Beetler DJ, McCabe EJ, Sin J, Ikezu T, Fairweather D. Mitochondrial extracellular vesicles, autoimmunity and myocarditis. Front Immunol 2024; 15:1374796. [PMID: 38550582 PMCID: PMC10972887 DOI: 10.3389/fimmu.2024.1374796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/28/2024] [Indexed: 04/02/2024] Open
Abstract
For many decades viral infections have been suspected as 'triggers' of autoimmune disease, but mechanisms for how this could occur have been difficult to establish. Recent studies have shown that viral infections that are commonly associated with viral myocarditis and other autoimmune diseases such as coxsackievirus B3 (CVB3) and SARS-CoV-2 target mitochondria and are released from cells in mitochondrial vesicles that are able to activate the innate immune response. Studies have shown that Toll-like receptor (TLR)4 and the inflammasome pathway are activated by mitochondrial components. Autoreactivity against cardiac myosin and heart-specific immune responses that occur after infection with viruses where the heart is not the primary site of infection (e.g., CVB3, SARS-CoV-2) may occur because the heart has the highest density of mitochondria in the body. Evidence exists for autoantibodies against mitochondrial antigens in patients with myocarditis and dilated cardiomyopathy. Defects in tolerance mechanisms like autoimmune regulator gene (AIRE) may further increase the likelihood of autoreactivity against mitochondrial antigens leading to autoimmune disease. The focus of this review is to summarize current literature regarding the role of viral infection in the production of extracellular vesicles containing mitochondria and virus and the development of myocarditis.
Collapse
Affiliation(s)
- Damian N. Di Florio
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Danielle J. Beetler
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Elizabeth J. McCabe
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Jon Sin
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Tsuneya Ikezu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Department of Immunology, Mayo Clinic, Jacksonville, FL, United States
- Department of Medicine, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
3
|
Gheitasi H, Sabbaghian M, Fadaee M, Mohammadzadeh N, Shekarchi AA, Poortahmasebi V. The relationship between autophagy and respiratory viruses. Arch Microbiol 2024; 206:136. [PMID: 38436746 DOI: 10.1007/s00203-024-03838-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 03/05/2024]
Abstract
Respiratory viruses have caused severe global health problems and posed essential challenges to the medical community. In recent years, the role of autophagy as a critical process in cells in viral respiratory diseases has been noticed. One of the vital catabolic biological processes in the body is autophagy. Autophagy contributes to energy recovery by targeting and selectively directing foreign microorganisms, organelles, and senescent intracellular proteins to the lysosome for degradation and phagocytosis. Activation or suppression of autophagy is often initiated when foreign pathogenic organisms such as viruses infect cells. Because of its antiviral properties, several viruses may escape or resist this process by encoding viral proteins. Viruses can also use autophagy to enhance their replication or prolong the persistence of latent infections. Here, we provide an overview of autophagy and respiratory viruses such as coronavirus, rhinovirus, parainfluenza, influenza, adenovirus, and respiratory syncytial virus, and examine the interactions between them and the role of autophagy in the virus-host interaction process and the resulting virus replication strategy.
Collapse
Affiliation(s)
- Hamidreza Gheitasi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sabbaghian
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manouchehr Fadaee
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader Mohammadzadeh
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Shekarchi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Pan W, Zhang J, Zhang L, Zhang Y, Song Y, Han L, Tan M, Yin Y, Yang T, Jiang T, Li H. Comprehensive view of macrophage autophagy and its application in cardiovascular diseases. Cell Prolif 2024; 57:e13525. [PMID: 37434325 PMCID: PMC10771119 DOI: 10.1111/cpr.13525] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the primary drivers of the growing public health epidemic and the leading cause of premature mortality and economic burden worldwide. With decades of research, CVDs have been proven to be associated with the dysregulation of the inflammatory response, with macrophages playing imperative roles in influencing the prognosis of CVDs. Autophagy is a conserved pathway that maintains cellular functions. Emerging evidence has revealed an intrinsic connection between autophagy and macrophage functions. This review focuses on the role and underlying mechanisms of autophagy-mediated regulation of macrophage plasticity in polarization, inflammasome activation, cytokine secretion, metabolism, phagocytosis, and the number of macrophages. In addition, autophagy has been shown to connect macrophages and heart cells. It is attributed to specific substrate degradation or signalling pathway activation by autophagy-related proteins. Referring to the latest reports, applications targeting macrophage autophagy have been discussed in CVDs, such as atherosclerosis, myocardial infarction, heart failure, and myocarditis. This review describes a novel approach for future CVD therapies.
Collapse
Affiliation(s)
- Wanqian Pan
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Jun Zhang
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Lei Zhang
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yue Zhang
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yiyi Song
- Suzhou Medical College of Soochow UniversitySuzhouChina
| | - Lianhua Han
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Mingyue Tan
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yunfei Yin
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Tianke Yang
- Department of Ophthalmology, Eye Institute, Eye & ENT HospitalFudan UniversityShanghaiChina
- Department of OphthalmologyThe First Affiliated Hospital of USTC, University of Science and Technology of ChinaHefeiChina
| | - Tingbo Jiang
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Hongxia Li
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
5
|
Li Z, Ali Shah SW, Zhou Q, Yin X, Teng X. The contributions of miR-25-3p, oxidative stress, and heat shock protein in a complex mechanism of autophagy caused by pollutant cadmium in common carp (Cyprinus carpio L.) hepatopancreas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117554. [PMID: 34174664 DOI: 10.1016/j.envpol.2021.117554] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 05/27/2021] [Accepted: 06/05/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal that can be discharged into water environment through industrial activities, threatening the health of aquatic organisms and humans. MicroRNA (miRNA) plays an important role in the process of autophagy. The purpose of this experiment was to study the mechanism of Cd-induced autophagy in common carp hepatopancreas. We established a Cd poisoning model of common carp and explored ultrastructure, two oxidation indicators, three antioxidant indicators, miR-25-3p, two heat shock proteins (Hsps), and nine autophagy-related genes. The results confirmed that deleterious effect of Cd caused the injury of hepatopancreas and the appearance of hepatopancreas autophagic cells in common carp. At the same time, Cd exposure increased the contents of hydrogen peroxide (H2O2) and malonaldehyde (MDA), and decreased the activities of catalase (CAT), superoxide dismutase (SOD), and total antioxidative capacity (T-AOC), meaning that Cd caused oxidative stress via the imbalance between peroxide level and antioxidant capacity. Moreover, exposure to Cd increased mRNA expression of microtubule associated protein-1 light chain 3 beta (LC3-II), Dynein, Beclin 1, autophagy-related gene 5 (Atg5), and autophagy-related gene 12 (Atg12); and decreased mRNA expression of mechanistic target of rapamycin kinase (mTOR), indicating that excess Cd caused autophagy, and AMPK/mTOR/ULK1 signaling pathway took part in autophagy induced by Cd in common carp hepatopancreas. Furthermore, Cd down-regulated miR-25-3p and up-regulated its three target genes (AMPK, ULK1 as well as PTEN), suggesting that miR-25-3p mediated autophagy induced by Cd. In addition, we found that Hsps were activated via the up-regulation of Hsp70 and Hsp90. Moreover, oxidative stress mediated autophagy via Hsps in Cd-treated common carp hepatopancreas and Cd-induced autophagy was time dependent. In summary, miR-25-3p, oxidative stress, and Hsps participated in autophagy caused by Cd in common carp hepatopancreas. This study provided a new idea for the mechanism of Cd-induced autophagy in hepatopancreas.
Collapse
Affiliation(s)
- Zhuo Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Syed Waqas Ali Shah
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Qin Zhou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiujie Yin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China; Electrical and Information Engineering College, Jilin Agricultural Science and Technology University, Jilin, 132101, People's Republic of China.
| |
Collapse
|
6
|
Owusu IA, Quaye O, Passalacqua KD, Wobus CE. Egress of non-enveloped enteric RNA viruses. J Gen Virol 2021; 102:001557. [PMID: 33560198 PMCID: PMC8515858 DOI: 10.1099/jgv.0.001557] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/04/2021] [Indexed: 12/27/2022] Open
Abstract
A long-standing paradigm in virology was that non-enveloped viruses induce cell lysis to release progeny virions. However, emerging evidence indicates that some non-enveloped viruses exit cells without inducing cell lysis, while others engage both lytic and non-lytic egress mechanisms. Enteric viruses are transmitted via the faecal-oral route and are important causes of a wide range of human infections, both gastrointestinal and extra-intestinal. Virus cellular egress, when fully understood, may be a relevant target for antiviral therapies, which could minimize the public health impact of these infections. In this review, we outline lytic and non-lytic cell egress mechanisms of non-enveloped enteric RNA viruses belonging to five families: Picornaviridae, Reoviridae, Caliciviridae, Astroviridae and Hepeviridae. We discuss factors that contribute to egress mechanisms and the relevance of these mechanisms to virion stability, infectivity and transmission. Since most data were obtained in traditional two-dimensional cell cultures, we will further attempt to place them into the context of polarized cultures and in vivo pathogenesis. Throughout the review, we highlight numerous knowledge gaps to stimulate future research into the egress mechanisms of these highly prevalent but largely understudied viruses.
Collapse
Affiliation(s)
- Irene A. Owusu
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Osbourne Quaye
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Karla D. Passalacqua
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA
- Henry Ford Health System, Detroit, MI 48202, USA
| | - Christiane E. Wobus
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA
| |
Collapse
|
7
|
Liu T, Di QN, Sun JH, Zhao M, Xu Q, Shen Y. Effects of nonylphenol induced oxidative stress on apoptosis and autophagy in rat ovarian granulosa cells. CHEMOSPHERE 2020; 261:127693. [PMID: 32736244 DOI: 10.1016/j.chemosphere.2020.127693] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/30/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Nonylphenol (NP) is a kind of environmental endocrine disruptors which is generally recognized to cause female reproductive toxicity, but its basic mechanism has not been fully elucidated. In this study, granulosa cells (GCs) were treated with 0-70 μM NP for 24 h, the cell viability of GCs was reduced significantly, as well as increased cell apoptosis with G2/M arrest. Furthermore, NP significantly induced autophagy and the production of reactive oxygen species (ROS). However, these phenomenons were inhibited by blocking the production of ROS with N-Acetyl-l-cysteine (NAC) administration. Intriguingly, the inhibition of autophagy with 3-Methyladenine (3-MA) could enhance the apoptosis induced by NP. Moreover, the down regulating of p-Akt/Akt, p-mTOR/mTOR and subsequent up-regulation of p-AMPK/AMPK induced by NP can be rescued by pretreatment of NAC. Our findings suggested that NP promotes rat ovarian GCs apoptosis and autophagy simultaneously, which may involve the activation of ROS-dependent Akt/AMPK/mTOR pathway. Whatever, the activation of autophagy is likely to develop a protective mechanism to improve the apoptosis of rat ovarian GCs induced by NP.
Collapse
Affiliation(s)
- Teng Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Qian-Nan Di
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Jia-Hui Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Meng Zhao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Qian Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| | - Yang Shen
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
| |
Collapse
|
8
|
Lai Y, Wang M, Cheng A, Mao S, Ou X, Yang Q, Wu Y, Jia R, Liu M, Zhu D, Chen S, Zhang S, Zhao XX, Huang J, Gao Q, Wang Y, Xu Z, Chen Z, Zhu L, Luo Q, Liu Y, Yu Y, Zhang L, Tian B, Pan L, Rehman MU, Chen X. Regulation of Apoptosis by Enteroviruses. Front Microbiol 2020; 11:1145. [PMID: 32582091 PMCID: PMC7283464 DOI: 10.3389/fmicb.2020.01145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/05/2020] [Indexed: 01/14/2023] Open
Abstract
Enterovirus infection can cause a variety of diseases and severely impair the health of humans, animals, poultry, and other organisms. To resist viral infection, host organisms clear infected cells and viruses via apoptosis. However, throughout their long-term competition with host cells, enteroviruses have evolved a series of mechanisms to regulate the balance of apoptosis in order to replicate and proliferate. In the early stage of infection, enteroviruses mainly inhibit apoptosis by regulating the PI3K/Akt pathway and the autophagy pathway and by impairing cell sensors, thereby delaying viral replication. In the late stage of infection, enteroviruses mainly regulate apoptotic pathways and the host translation process via various viral proteins, ultimately inducing apoptosis. This paper discusses the means by which these two phenomena are balanced in enteroviruses to produce virus-favoring conditions – in a temporal sequence or through competition with each other. This information is important for further elucidation of the relevant mechanisms of acute infection by enteroviruses and other members of the picornavirus family.
Collapse
Affiliation(s)
- Yalan Lai
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yin Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhengli Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qihui Luo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mujeeb Ur Rehman
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
9
|
Autophagy-Independent Functions of the Autophagy Machinery. Cell 2020; 177:1682-1699. [PMID: 31199916 PMCID: PMC7173070 DOI: 10.1016/j.cell.2019.05.026] [Citation(s) in RCA: 583] [Impact Index Per Article: 145.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/11/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023]
Abstract
Macroautophagy (herein referred to as autophagy) is an evolutionary ancient mechanism that culminates with the lysosomal degradation of superfluous or potentially dangerous cytosolic entities. Over the past 2 decades, the molecular mechanisms underlying several variants of autophagy have been characterized in detail. Accumulating evidence suggests that most, if not all, components of the molecular machinery for autophagy also mediate autophagy-independent functions. Here, we discuss emerging data on the non-autophagic functions of autophagy-relevant proteins.
Collapse
|
10
|
Sun D, Wen X, Wang M, Mao S, Cheng A, Yang X, Jia R, Chen S, Yang Q, Wu Y, Zhu D, Liu M, Zhao X, Zhang S, Wang Y, Xu Z, Chen Z, Zhu L, Luo Q, Liu Y, Yu Y, Zhang L, Chen X. Apoptosis and Autophagy in Picornavirus Infection. Front Microbiol 2019; 10:2032. [PMID: 31551969 PMCID: PMC6733961 DOI: 10.3389/fmicb.2019.02032] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022] Open
Abstract
Cell death is a fundamental process in maintaining cellular homeostasis, which can be either accidental or programed. Programed cell death depends on the specific signaling pathways, resulting in either lytic or non-lytic morphology. It exists in two primary forms: apoptosis and autophagic cell death. Apoptosis is a non-lytic and selective cell death program, which is executed by caspases in response to non-self or external stimuli. In contrast, autophagy is crucial for maintaining cellular homeostasis via the degradation and recycling of cellular components. These two mechanisms also function in the defense against pathogen attack. However, picornaviruses have evolved to utilize diverse strategies and target critical components to regulate the apoptotic and autophagic processes for optimal replication and the release from the host cell. Although an increasing number of investigations have shown that the apoptosis and autophagy are altered in picornavirus infection, the mechanism by which viruses take advantage of these two processes remains unknown. In this review, we discuss the mechanisms of picornavirus executes cellular apoptosis and autophagy at the molecular level and the relationship between these interactions and viral pathogenesis.
Collapse
Affiliation(s)
- Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xingjian Wen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yin Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhengli Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qihui Luo
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
11
|
Jiang D, Li M, Yu Y, Shi H, Chen R. microRNA-34a aggravates coxsackievirus B3-induced apoptosis of cardiomyocytes through the SIRT1-p53 pathway. J Med Virol 2019; 91:1643-1651. [PMID: 30968966 DOI: 10.1002/jmv.25482] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/08/2019] [Accepted: 04/07/2019] [Indexed: 01/24/2023]
Abstract
Viral myocarditis is inflammation of the myocardium mainly caused by a viral infection, and coxsackievirus B3 (CVB3) infection is one of the most common. It is well known that cardiomyocyte apoptosis is involved in the pathogenesis of viral myocarditis. microRNAs (miRNAs, miRs) are endogenous noncoding oligoribonucleotides involved in various pathological conditions, and miR-34a is one of the miRNAs causing apoptosis. Whether miR-34a participates in cardiomyocyte apoptosis during CVB3 infection and the underlying mechanisms is still unclear. In this in vitro study, we found that miR-34a expression increased in cardiomyocytes after CVB3 infection. Furthermore, we found that CVB3 infection augmented histone deacetylase 1 (HDAC1) and Bax expression while inhibiting sirtuin 1 (SIRT1) and Bcl-2 expression, along with the acetylated p53 (Ac-p53) upregulation in cardiomyocytes. The above-mentioned phenomenon was reversed by a miR-34a inhibitor after CVB3 infection. In addition, the Ac-p53 amount increased in CVB3-infected cardiomyocytes, and SRT1720 and trichostatin A (TSA) pretreatment decreased Ac-p53 levels. After pifithrin-α pretreatment of CVB3-infected cardiomyocytes, the protein expression level of HDAC1 decreased while that of SIRT1 increased. Moreover, miR-34a expression and CVB3-induced apoptosis of cardiomyocytes were attenuated by pretreatment with SRT1720, TSA, or pifithrin-α, accompanied with Bax downregulation and Bcl-2 upregulation. In summary, these data indicate that miR-34a induces cardiomyocyte apoptosis by downregulating SIRT1, and the activation of the SIRT1-p53 pathway contributes to CVB3-induced apoptosis of cardiomyocytes. Thus, miR-34a might serve as a potential therapeutic target because it promotes cardiomyocyte apoptosis through the SIRT1-p53 signaling pathway.
Collapse
Affiliation(s)
- Dehua Jiang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai, China
| | - Minghui Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai, China
| | - Ying Yu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai, China
| | - Hui Shi
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai, China
| | - Ruizhen Chen
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai, China
| |
Collapse
|
12
|
Atanasova ND, Dey R, Scott C, Li Q, Pang XL, Ashbolt NJ. Persistence of infectious Enterovirus within free-living amoebae - A novel waterborne risk pathway? WATER RESEARCH 2018; 144:204-214. [PMID: 30031365 DOI: 10.1016/j.watres.2018.07.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 07/04/2018] [Accepted: 07/08/2018] [Indexed: 05/21/2023]
Abstract
Free-living amoebae (FLA) are phagocytic protozoa found in natural and engineered water systems. They can form disinfectant-resistant cysts, which can harbor various human pathogenic bacteria, therefore providing them with a means of environmental persistence and dispersion through water distribution and other engineered water systems. The association of FLA with human viruses has been raised, but the limited data on the persistence of infectious virions within amoebae leaves this aspect unresolved. Enteroviruses can cause a wide range of illness and replicate in human respiratory and gastrointestinal tracts, both of which could be exposed through contact with contaminated waters if virus detection and removal are compromised by virion internalization in free-living protozoa. This is especially problematic for high-risk contaminants, such as coxsackieviruses, representative members of the Enterovirus genus that are likely infectious at low doses and cause a variety of symptoms to a vulnerable portion of the population (particularly infants). To investigate Enterovirus persistence within free-living amoebae we co-cultured an infectious clinical coxsackievirus B5 (CVB5) isolate, with the commonly reported tap water amoeba Vermamoeba vermiformis, after which we tracked virus localization and persistence in co-culture over time through a combination of advanced imaging, molecular and cell culture assays. Our results clearly demonstrate that infectious CVB5 can persist in all life stages of the amoebae without causing any visible injury to them. We also demonstrated that the amoeba generated vesicles containing virions that were expelled into the bulk liquid surroundings, a finding previously described for FLA-bacteria interactions, but not for FLA and human pathogenic viruses. Therefore, our findings suggest that the ability of CVB5 to persist in V. vermiformis could be a novel waterborne risk pathway for the persistence and dispersion of infectious human enteric viruses through water systems.
Collapse
Affiliation(s)
- Nikki D Atanasova
- Dept. Medical Microbiology and Immunology, 6-020 Katz Group Centre, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Rafik Dey
- Dept. Medical Microbiology and Immunology, 6-020 Katz Group Centre, University of Alberta, Edmonton, AB, T6G 2E1, Canada; School of Public Health, Room 3-57D, South Academic Building, Edmonton, AB, T6G 2G7, Canada University of Alberta, Edmonton, Canada
| | - Candis Scott
- School of Public Health, Room 3-57D, South Academic Building, Edmonton, AB, T6G 2G7, Canada University of Alberta, Edmonton, Canada
| | - Qiaozhi Li
- School of Public Health, Room 3-57D, South Academic Building, Edmonton, AB, T6G 2G7, Canada University of Alberta, Edmonton, Canada
| | - Xiao-Li Pang
- Provincial Laboratory for Public Health, Edmonton, AB, T6G 2J2, Canada
| | - Nicholas J Ashbolt
- Dept. Medical Microbiology and Immunology, 6-020 Katz Group Centre, University of Alberta, Edmonton, AB, T6G 2E1, Canada; School of Public Health, Room 3-57D, South Academic Building, Edmonton, AB, T6G 2G7, Canada University of Alberta, Edmonton, Canada; Provincial Laboratory for Public Health, Edmonton, AB, T6G 2J2, Canada.
| |
Collapse
|
13
|
Corbic Ramljak I, Stanger J, Real-Hohn A, Dreier D, Wimmer L, Redlberger-Fritz M, Fischl W, Klingel K, Mihovilovic MD, Blaas D, Kowalski H. Cellular N-myristoyltransferases play a crucial picornavirus genus-specific role in viral assembly, virion maturation, and infectivity. PLoS Pathog 2018; 14:e1007203. [PMID: 30080883 PMCID: PMC6089459 DOI: 10.1371/journal.ppat.1007203] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/13/2018] [Accepted: 07/05/2018] [Indexed: 01/06/2023] Open
Abstract
In nearly all picornaviruses the precursor of the smallest capsid protein VP4 undergoes co-translational N-terminal myristoylation by host cell N-myristoyltransferases (NMTs). Curtailing this modification by mutation of the myristoylation signal in poliovirus has been shown to result in severe assembly defects and very little, if any, progeny virus production. Avoiding possible pleiotropic effects of such mutations, we here used pharmacological abrogation of myristoylation with the NMT inhibitor DDD85646, a pyrazole sulfonamide originally developed against trypanosomal NMT. Infection of HeLa cells with coxsackievirus B3 in the presence of this drug decreased VP0 acylation at least 100-fold, resulting in a defect both early and late in virus morphogenesis, which diminishes the yield of viral progeny by about 90%. Virus particles still produced consisted mainly of provirions containing RNA and uncleaved VP0 and, to a substantially lesser extent, of mature virions with cleaved VP0. This indicates an important role of myristoylation in the viral maturation cleavage. By electron microscopy, these RNA-filled particles were indistinguishable from virus produced under control conditions. Nevertheless, their specific infectivity decreased by about five hundred fold. Since host cell-attachment was not markedly impaired, their defect must lie in the inability to transfer their genomic RNA into the cytosol, likely at the level of endosomal pore formation. Strikingly, neither parechoviruses nor kobuviruses are affected by DDD85646, which appears to correlate with their native capsid containing only unprocessed VP0. Individual knockout of the genes encoding the two human NMT isozymes in haploid HAP1 cells further demonstrated the pivotal role for HsNMT1, with little contribution by HsNMT2, in the virus replication cycle. Our results also indicate that inhibition of NMT can possibly be exploited for controlling the infection by a wide spectrum of picornaviruses. Picornaviruses are important human and animal pathogens. Protective vaccines are only available against very few representatives. Furthermore, antiviral drugs have not made it to the market because of serious side effects and viral mutational escape. We here show that pharmacological inhibition of cellular myristoyltransferases severely decreased myristoylation of enteroviral structural proteins as exemplified by coxsackievirus B3, a prominent pathogen causing virus-induced acute and chronic heart disease. The drug DDD85646 substantially diminished virus yield and almost abolished the infectivity of the residual progeny virus. It is highly effective against several other picornaviruses, except those two included in our study that naturally do not process VP0. Our work provides new insight into the role of myristoylation in the life cycle of picornaviruses and identifies the responsible cellular enzyme as a promising candidate for antiviral therapy.
Collapse
Affiliation(s)
- Irena Corbic Ramljak
- Center for Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Julia Stanger
- Center for Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Antonio Real-Hohn
- Center for Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Dominik Dreier
- Institute of Applied Synthetic Chemistry, TU Wien, Vienna, Austria
| | - Laurin Wimmer
- Institute of Applied Synthetic Chemistry, TU Wien, Vienna, Austria
| | | | - Wolfgang Fischl
- Haplogen GmbH, Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | | | - Dieter Blaas
- Center for Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Heinrich Kowalski
- Center for Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
- * E-mail:
| |
Collapse
|
14
|
Chang H, Tian L, Chen J, Tang A, Li C, Li Z, Yang Z. Rapamycin and ZSTK474 can have differential effects at different post‑infection time‑points regarding CVB3 replication and CVB3‑induced autophagy. Mol Med Rep 2018; 18:1088-1094. [PMID: 29845290 DOI: 10.3892/mmr.2018.9037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 05/03/2018] [Indexed: 11/05/2022] Open
Abstract
Coxsackievirus B3 (CVB3) infection has been shown to stimulate autophagy. We have demonstrated that the inhibition of phosphoinositide 3‑kinase (PI3K)/protein kinase B/mammalian target of rapamycin complex (mTORC) signaling pathway could affect the autophagic reaction induced by CVB3 infection in our previous study. However, the processes associating autophagy and CVB3 replication remain to be determined. In the present study, CVB3‑induced autophagy and its impact on viral replication were investigated. Rapamycin (inhibitor of mTOR) and ZSTK474 (inhibitor of PI3K) were used to change the autophagic reaction caused by CVB3 in Hela cells at different post‑infection (p.i.) time points (6, 9, 12 and 24 h p.i.), meanwhile, we detected the CVB3 mRNA replication and CVB3 capsid protein VP1 expression following the change of autophagy. Here, it was showed that ZSTK474 and Rapamycin promoted CVB3‑induced autophagy, as well as decreasing CVB3 mRNA replication and CVB3 capsid protein VP1 expression at 6 and 9 h p.i. ZSTK474 also alleviated CVB3‑induced autophagy, and decreased CVB3 mRNA replication and VP1 expression at 12 and 24 h p.i. However, Rapamycin continued to promote CVB3‑induced autophagy and increase CVB3 mRNA replication at 12 and 24 h p.i, as well as increase VP1 expression at 12 h, but not at 24 h, p.i. In the present study, we found Rapamycin and ZSTK474 have differential effects at different p.i. time‑points regarding CVB3 replication and CVB3‑induced autophagy. This indicates that the association between CVB3‑induced autophagy and viral replication depends on the infection time. During the early course of infection, autophagy may help host cells clear the virus, thereby providing protection, whereas when the infection time increases, autophagy may be exploited for viral replication.
Collapse
Affiliation(s)
- Huan Chang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Lang Tian
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jia Chen
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Anliu Tang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Chunyun Li
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhuoying Li
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Zuocheng Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
15
|
Wang X, Qi X, Yang B, Chen S, Wang J. Autophagy Benefits the Replication of Egg Drop Syndrome Virus in Duck Embryo Fibroblasts. Front Microbiol 2018; 9:1091. [PMID: 29896171 PMCID: PMC5986908 DOI: 10.3389/fmicb.2018.01091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 05/07/2018] [Indexed: 12/19/2022] Open
Abstract
Egg drop syndrome virus (EDSV) is an economically important pathogen with a broad host range, and it causes disease that leads to markedly decreased egg production. Although EDSV is known to induce apoptosis in duck embryo fibroblasts (DEFs), the interaction between EDSV and its host needs to be further researched. Here, we provide the first evidence that EDSV infection triggers autophagy in DEFs through increases in autophagosome-like double-membrane vesicles, the conversion of LC3-I to LC3-II, and LC3 colocalization with viral hexon proteins. Conversely, P62/SQSTM1 degradation, LC3-II turnover, and colocalization of LAMP and LC3 confirmed that EDSV infection triggers complete autophagy. Furthermore, we demonstrated that inhibition of autophagy by chloroquine (CQ) and 3-methyladenine (3MA) or RNA interference targeting ATG-7 decreased the yield of EDSV progeny. In contrast, induction of autophagy by rapamycin increased the EDSV progeny yield. In addition, we preliminarily demonstrated that the class I phosphoinositide 3-kinase (PI3K)/Akt/mTOR pathway contributes to autophagic induction following EDSV infection. Altogether, these finding lead us to conclude that EDSV infection induces autophagy, which benefits its own replication in host cells. These findings provide novel insights into EDSV-host interactions.
Collapse
Affiliation(s)
- Xueping Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xuefeng Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Bo Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Shuying Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
16
|
Tian L, Yang Y, Li C, Chen J, Li Z, Li X, Li S, Wu F, Hu Z, Yang Z. The cytotoxicity of coxsackievirus B3 is associated with a blockage of autophagic flux mediated by reduced syntaxin 17 expression. Cell Death Dis 2018; 9:242. [PMID: 29445155 PMCID: PMC5833838 DOI: 10.1038/s41419-018-0271-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 12/08/2017] [Accepted: 12/22/2017] [Indexed: 12/19/2022]
Abstract
Coxsackievirus B3 (CVB3) is an important human pathogen linked to cardiac arrhythmias and acute heart failure. CVB3 infection has been reported to induce the formation of autophagosomes that support the viral replication in host cells. Interestingly, our study shows that the accumulation of autophagosomes during CVB3 infection is caused by a blockage of autophagosome–lysosome fusion rather than the induction of autophagosome biogenesis. Moreover, CVB3 decreases the transcription and translation of syntaxin 17 (STX17), a SNARE (soluble N-ethylmaleimide-sensitive factor activating protein receptor) protein involved in autophagosome–lysosome fusion. Overexpression of STX17 restored the autophagic flux, alleviated the virus-induced lysosomal dysfunction, and decreased the apoptosis induced by CVB3 infection in HeLa cells. Taken together, our results suggest that CVB3 infection impairs the autophagic flux by blocking autophagosome–lysosome fusion. These findings thus point to potential new therapeutic strategies targeting STX17 or autophagosome–lysosome fusion for treating CVB3-associated diseases.
Collapse
Affiliation(s)
- Lang Tian
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, 410013, Changsha, China
| | - Yeyi Yang
- Department of Medicine, The Third Xiangya Hospital, Central South University, 410013, Changsha, China
| | - Chunyun Li
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, 410013, Changsha, China
| | - Jia Chen
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, 410013, Changsha, China
| | - Zhuoying Li
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, 410013, Changsha, China
| | - Xin Li
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, 410013, Changsha, China
| | - Shentang Li
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, 410013, Changsha, China
| | - Fang Wu
- Department of Pediatrics, Daping Hospital and Field Surgery Institute, Third Military Medical University, 400042, Chongqing, China
| | - Zhangxue Hu
- Department of Pediatrics, Daping Hospital and Field Surgery Institute, Third Military Medical University, 400042, Chongqing, China.
| | - Zuocheng Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, 410013, Changsha, China.
| |
Collapse
|
17
|
Wang Y, Qin Y, Wang T, Chen Y, Lang X, Zheng J, Gao S, Chen S, Zhong X, Mu Y, Wu X, Zhang F, Zhao W, Zhong Z. Pyroptosis induced by enterovirus 71 and coxsackievirus B3 infection affects viral replication and host response. Sci Rep 2018; 8:2887. [PMID: 29440739 PMCID: PMC5811489 DOI: 10.1038/s41598-018-20958-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 01/22/2018] [Indexed: 02/07/2023] Open
Abstract
Enterovirus 71 (EV71) is the primary causative pathogen of hand, foot, and mouth disease (HFMD), affecting children with severe neurological complications. Pyroptosis is a programmed cell death characterized by cell lysis and inflammatory response. Although proinflammatory response has been implicated to play important roles in EV71-caused diseases, the involvement of pyroptosis in the pathogenesis of EV71 is poorly defined. We show that EV71 infection induced caspase-1 activation. Responding to the activation of caspase-1, the expression and secretion of both IL-1β and IL-18 were increased in EV71-infected cells. The treatment of caspase-1 inhibitor markedly improved the systemic response of the EV71-infected mice. Importantly, caspase-1 inhibitor suppressed EV71 replication in mouse brains. Similarly, pyroptosis was activated by the infection of coxsackievirus B3 (CVB3), an important member of the Enterovirus genus. Caspase-1 activation and the increased expression of IL-18 and NLRP3 were demonstrated in HeLa cells infected with CVB3. Caspase-1 inhibitor also alleviated the overall conditions of virus-infected mice with markedly decreased replication of CVB3 and reduced expression of caspase-1. These results indicate that pyroptosis is involved in the pathogenesis of both EV71 and CVB3 infections, and the treatment of caspase-1 inhibitor is beneficial to the host response during enterovirus infection.
Collapse
Affiliation(s)
- Yan Wang
- Department of Microbiology, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Ying Qin
- Department of Microbiology, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Tianying Wang
- Department of Microbiology, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Yang Chen
- Department of Microbiology, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Xiujuan Lang
- Department of Microbiology, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Jia Zheng
- Department of Microbiology, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Shuoyang Gao
- Department of Microbiology, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Sijia Chen
- Department of Microbiology, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Xiaoyan Zhong
- Department of Microbiology, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Yusong Mu
- Department of Microbiology, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Xiaoyu Wu
- Department of Cardiology, Harbin Medical University, 23 Youzheng Street, Harbin, 150001, China
| | - Fengming Zhang
- Department of Microbiology, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Wenran Zhao
- Department of Cell Biology, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China.
| | - Zhaohua Zhong
- Department of Microbiology, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China.
| |
Collapse
|
18
|
Zhou X, Li Y, Li C. Autophagy plays a positive role in zinc-induced apoptosis in intestinal porcine epithelial cells. Toxicol In Vitro 2017; 44:392-402. [DOI: 10.1016/j.tiv.2017.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/26/2017] [Accepted: 08/09/2017] [Indexed: 12/18/2022]
|
19
|
Tschöpe C, Müller I, Xia Y, Savvatis K, Pappritz K, Pinkert S, Lassner D, Heimesaat MM, Spillmann F, Miteva K, Bereswill S, Schultheiss HP, Fechner H, Pieske B, Kühl U, Van Linthout S. NOD2 (Nucleotide-Binding Oligomerization Domain 2) Is a Major Pathogenic Mediator of Coxsackievirus B3-Induced Myocarditis. Circ Heart Fail 2017; 10:CIRCHEARTFAILURE.117.003870. [PMID: 28912259 DOI: 10.1161/circheartfailure.117.003870] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 08/07/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND The cytoplasmatic pattern recognition receptor, NOD2 (nucleotide-binding oligomerization domain 2), belongs to the innate immune system and is among others responsible for the recognition of single-stranded RNA. With Coxsackievirus B3 (CVB3) being a single-stranded RNA virus, and the recent evidence that the NOD2 target, NLRP3 (NOD-like receptor family, pyrin domain containing 3) is of importance in the pathogenesis of CVB3-induced myocarditis, we aimed to unravel the role of NOD2 in CVB3-induced myocarditis. METHODS AND RESULTS Endomyocardial biopsy NOD2 mRNA expression was higher in CVB3-positive patients compared with patients with myocarditis but without evidence of persistent CVB3 infection. Left ventricular NOD2 mRNA expression was also induced in CVB3-induced myocarditis versus healthy control mice. NOD2 knockdown(-/-) mice were rescued from the detrimental CVB3-mediated effects as shown by a reduced cardiac inflammation (less cardiac infiltrates and suppression of proinflammatory cytokines), cardiac fibrosis, apoptosis, lower CAR (Coxsackievirus and adenovirus receptor) expression and CVB3 copy number, and an improved left ventricular function in NOD2-/- CVB3 mice compared with wild-type CVB3 mice. In agreement, NOD2-/- decreased the CVB3-induced inflammatory response, CVB3 copy number, and apoptosis in vitro. NOD2-/- was further associated with a reduction in CVB3-induced NLRP3 expression and activity as evidenced by lower ASC (apoptosis-associated speck-like protein containing a CARD) expression, caspase 1 activity, or IL-1β (interleukin-1β) protein expression under in vivo and in vitro CVB3 conditions. CONCLUSIONS NOD2 is an important mediator in the viral uptake and inflammatory response during the pathogenesis of CVB3 myocarditis.
Collapse
Affiliation(s)
- Carsten Tschöpe
- From the Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Germany (C.T., Y.X., K.S., F.S., B.P., U.K., S.V.L.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (C.T., I.M., K.P., B.P., S.V.L.); Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Germany (C.T., I.M., K.P., K.M., S.V.L.); Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany (S.P., H.F.); Institut Kardiale Diagnostik und Therapie (IKDT), Berlin, Germany (D.L., H.-P.S.); Institut für Mikrobiologie und Infektionsmedizin, Campus Benjamin Franklin, Berlin, Germany (M.M.H., S.B.); and Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Germany (B.P.).
| | - Irene Müller
- From the Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Germany (C.T., Y.X., K.S., F.S., B.P., U.K., S.V.L.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (C.T., I.M., K.P., B.P., S.V.L.); Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Germany (C.T., I.M., K.P., K.M., S.V.L.); Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany (S.P., H.F.); Institut Kardiale Diagnostik und Therapie (IKDT), Berlin, Germany (D.L., H.-P.S.); Institut für Mikrobiologie und Infektionsmedizin, Campus Benjamin Franklin, Berlin, Germany (M.M.H., S.B.); and Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Germany (B.P.)
| | - Yu Xia
- From the Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Germany (C.T., Y.X., K.S., F.S., B.P., U.K., S.V.L.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (C.T., I.M., K.P., B.P., S.V.L.); Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Germany (C.T., I.M., K.P., K.M., S.V.L.); Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany (S.P., H.F.); Institut Kardiale Diagnostik und Therapie (IKDT), Berlin, Germany (D.L., H.-P.S.); Institut für Mikrobiologie und Infektionsmedizin, Campus Benjamin Franklin, Berlin, Germany (M.M.H., S.B.); and Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Germany (B.P.)
| | - Konstantinos Savvatis
- From the Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Germany (C.T., Y.X., K.S., F.S., B.P., U.K., S.V.L.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (C.T., I.M., K.P., B.P., S.V.L.); Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Germany (C.T., I.M., K.P., K.M., S.V.L.); Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany (S.P., H.F.); Institut Kardiale Diagnostik und Therapie (IKDT), Berlin, Germany (D.L., H.-P.S.); Institut für Mikrobiologie und Infektionsmedizin, Campus Benjamin Franklin, Berlin, Germany (M.M.H., S.B.); and Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Germany (B.P.)
| | - Kathleen Pappritz
- From the Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Germany (C.T., Y.X., K.S., F.S., B.P., U.K., S.V.L.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (C.T., I.M., K.P., B.P., S.V.L.); Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Germany (C.T., I.M., K.P., K.M., S.V.L.); Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany (S.P., H.F.); Institut Kardiale Diagnostik und Therapie (IKDT), Berlin, Germany (D.L., H.-P.S.); Institut für Mikrobiologie und Infektionsmedizin, Campus Benjamin Franklin, Berlin, Germany (M.M.H., S.B.); and Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Germany (B.P.)
| | - Sandra Pinkert
- From the Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Germany (C.T., Y.X., K.S., F.S., B.P., U.K., S.V.L.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (C.T., I.M., K.P., B.P., S.V.L.); Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Germany (C.T., I.M., K.P., K.M., S.V.L.); Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany (S.P., H.F.); Institut Kardiale Diagnostik und Therapie (IKDT), Berlin, Germany (D.L., H.-P.S.); Institut für Mikrobiologie und Infektionsmedizin, Campus Benjamin Franklin, Berlin, Germany (M.M.H., S.B.); and Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Germany (B.P.)
| | - Dirk Lassner
- From the Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Germany (C.T., Y.X., K.S., F.S., B.P., U.K., S.V.L.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (C.T., I.M., K.P., B.P., S.V.L.); Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Germany (C.T., I.M., K.P., K.M., S.V.L.); Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany (S.P., H.F.); Institut Kardiale Diagnostik und Therapie (IKDT), Berlin, Germany (D.L., H.-P.S.); Institut für Mikrobiologie und Infektionsmedizin, Campus Benjamin Franklin, Berlin, Germany (M.M.H., S.B.); and Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Germany (B.P.)
| | - Markus M Heimesaat
- From the Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Germany (C.T., Y.X., K.S., F.S., B.P., U.K., S.V.L.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (C.T., I.M., K.P., B.P., S.V.L.); Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Germany (C.T., I.M., K.P., K.M., S.V.L.); Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany (S.P., H.F.); Institut Kardiale Diagnostik und Therapie (IKDT), Berlin, Germany (D.L., H.-P.S.); Institut für Mikrobiologie und Infektionsmedizin, Campus Benjamin Franklin, Berlin, Germany (M.M.H., S.B.); and Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Germany (B.P.)
| | - Frank Spillmann
- From the Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Germany (C.T., Y.X., K.S., F.S., B.P., U.K., S.V.L.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (C.T., I.M., K.P., B.P., S.V.L.); Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Germany (C.T., I.M., K.P., K.M., S.V.L.); Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany (S.P., H.F.); Institut Kardiale Diagnostik und Therapie (IKDT), Berlin, Germany (D.L., H.-P.S.); Institut für Mikrobiologie und Infektionsmedizin, Campus Benjamin Franklin, Berlin, Germany (M.M.H., S.B.); and Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Germany (B.P.)
| | - Kapka Miteva
- From the Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Germany (C.T., Y.X., K.S., F.S., B.P., U.K., S.V.L.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (C.T., I.M., K.P., B.P., S.V.L.); Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Germany (C.T., I.M., K.P., K.M., S.V.L.); Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany (S.P., H.F.); Institut Kardiale Diagnostik und Therapie (IKDT), Berlin, Germany (D.L., H.-P.S.); Institut für Mikrobiologie und Infektionsmedizin, Campus Benjamin Franklin, Berlin, Germany (M.M.H., S.B.); and Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Germany (B.P.)
| | - Stefan Bereswill
- From the Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Germany (C.T., Y.X., K.S., F.S., B.P., U.K., S.V.L.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (C.T., I.M., K.P., B.P., S.V.L.); Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Germany (C.T., I.M., K.P., K.M., S.V.L.); Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany (S.P., H.F.); Institut Kardiale Diagnostik und Therapie (IKDT), Berlin, Germany (D.L., H.-P.S.); Institut für Mikrobiologie und Infektionsmedizin, Campus Benjamin Franklin, Berlin, Germany (M.M.H., S.B.); and Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Germany (B.P.)
| | - Heinz-Peter Schultheiss
- From the Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Germany (C.T., Y.X., K.S., F.S., B.P., U.K., S.V.L.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (C.T., I.M., K.P., B.P., S.V.L.); Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Germany (C.T., I.M., K.P., K.M., S.V.L.); Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany (S.P., H.F.); Institut Kardiale Diagnostik und Therapie (IKDT), Berlin, Germany (D.L., H.-P.S.); Institut für Mikrobiologie und Infektionsmedizin, Campus Benjamin Franklin, Berlin, Germany (M.M.H., S.B.); and Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Germany (B.P.)
| | - Henry Fechner
- From the Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Germany (C.T., Y.X., K.S., F.S., B.P., U.K., S.V.L.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (C.T., I.M., K.P., B.P., S.V.L.); Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Germany (C.T., I.M., K.P., K.M., S.V.L.); Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany (S.P., H.F.); Institut Kardiale Diagnostik und Therapie (IKDT), Berlin, Germany (D.L., H.-P.S.); Institut für Mikrobiologie und Infektionsmedizin, Campus Benjamin Franklin, Berlin, Germany (M.M.H., S.B.); and Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Germany (B.P.)
| | - Burkert Pieske
- From the Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Germany (C.T., Y.X., K.S., F.S., B.P., U.K., S.V.L.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (C.T., I.M., K.P., B.P., S.V.L.); Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Germany (C.T., I.M., K.P., K.M., S.V.L.); Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany (S.P., H.F.); Institut Kardiale Diagnostik und Therapie (IKDT), Berlin, Germany (D.L., H.-P.S.); Institut für Mikrobiologie und Infektionsmedizin, Campus Benjamin Franklin, Berlin, Germany (M.M.H., S.B.); and Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Germany (B.P.)
| | - Uwe Kühl
- From the Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Germany (C.T., Y.X., K.S., F.S., B.P., U.K., S.V.L.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (C.T., I.M., K.P., B.P., S.V.L.); Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Germany (C.T., I.M., K.P., K.M., S.V.L.); Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany (S.P., H.F.); Institut Kardiale Diagnostik und Therapie (IKDT), Berlin, Germany (D.L., H.-P.S.); Institut für Mikrobiologie und Infektionsmedizin, Campus Benjamin Franklin, Berlin, Germany (M.M.H., S.B.); and Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Germany (B.P.)
| | - Sophie Van Linthout
- From the Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Germany (C.T., Y.X., K.S., F.S., B.P., U.K., S.V.L.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (C.T., I.M., K.P., B.P., S.V.L.); Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Germany (C.T., I.M., K.P., K.M., S.V.L.); Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany (S.P., H.F.); Institut Kardiale Diagnostik und Therapie (IKDT), Berlin, Germany (D.L., H.-P.S.); Institut für Mikrobiologie und Infektionsmedizin, Campus Benjamin Franklin, Berlin, Germany (M.M.H., S.B.); and Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Germany (B.P.)
| |
Collapse
|
20
|
Chang H, Li X, Cai Q, Li C, Tian L, Chen J, Xing X, Gan Y, Ouyang W, Yang Z. The PI3K/Akt/mTOR pathway is involved in CVB3-induced autophagy of HeLa cells. Int J Mol Med 2017; 40:182-192. [PMID: 28560385 PMCID: PMC5466389 DOI: 10.3892/ijmm.2017.3008] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 05/26/2017] [Indexed: 12/19/2022] Open
Abstract
Recent studies have found that viral myocarditis (VMC) associated with coxsackievirus B3 (CVB3) causes autophagy activation after infection, but the specific mechanism is not clear. The present study demonstrated that the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB)/mammalian target of rapamycin (mTOR) signaling pathway participates in CVB3-induced autophagy. We found that the light chain 3 (LC3)-II/LC3-I ratio was increased and p62 and p-mTOR were altered at different times during CVB3 infection. To further assess the effects of this signaling pathway on CVB3 infection and viral replication, we selected 24 h post-inoculation (h.p.i.) as our research time point to conduct our next study. We inhibited the function of PI3K, Akt1 and mTOR. The outcome showed that inhibition of PI3K with ZSTK474 alleviated autophagy and decreased CVB3 mRNA replication and VP1 expression. Inhibition of mTOR with rapamycin promoted autophagy and viral mRNA replication but did not impact VP1 expression. Inhibition of Akt with MK2206 aggravated autophagy induced by viral infection. In our research, p62 exhibited a decrease at the beginning of infection but then increased as infection time increased. This finding may serve as a clue to elucidate the function of autophagy at different times of infection. However, the details merit further study. In conclusion, our findings suggest that the PI3K/Akt/mTOR signaling pathway participates in the process of autophagy induced by CVB3 infection. This finding may provide a new perspective of CVB3-induced autophagy.
Collapse
Affiliation(s)
- Huan Chang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xin Li
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Qian Cai
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Chunyun Li
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Lang Tian
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jia Chen
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xiaowei Xing
- Center for Medical Experiments, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yu Gan
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Wen Ouyang
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Zuocheng Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
21
|
Wang X, Xu X, Wang W, Yu Z, Wen L, He K, Fan H. MicroRNA-30a-5p promotes replication of porcine circovirus type 2 through enhancing autophagy by targeting 14-3-3. Arch Virol 2017; 162:2643-2654. [PMID: 28530014 DOI: 10.1007/s00705-017-3400-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/31/2017] [Indexed: 12/11/2022]
Abstract
Accumulating evidence demonstrates that autophagy and microRNAs (miRNAs) play key roles in regulating virus-host interactions and can restrict or facilitate viral replication. In the present study we examined whether a functional relationship exists between autophagy, miRNA and porcine circovirus type 2 (PCV2) infection, using several approaches. We demonstrated that there was a positive correlation between PCV2 infection and autophagy in 3D4/21 cells and autophagy induced by PCV2 infection triggered PCV2 replication. Four miRNA were selected by real-time PCR and further studied, but only miR-30a-5p mimic had a significant effect on PCV2 replication. Overexpression of miR-30a-5p significantly enhanced PCV2 infection and autophagy in a dose-dependent manner. Blockage of miR-30a-5p significantly decreased PCV2 replication. We provided further evidence that miR-30a-5p regulate the link between PCV2 infection and host immune system. Furthermore, miR-30a-5p targeted and regulated 14-3-3 gene, which is a regulator of autophagy. Flow cytometry data demonstrated that miR-30a-5p promotes cell cycle arrest at the G2 phase to regulate PCV2 replication and autophagy by interacting directly with 14-3-3, but not with the PCV2 genome. These data not only provide new insights into virus-host interactions during PCV2 infection but also suggest a potential new antiviral therapeutic strategy against PCV2 infection.
Collapse
Affiliation(s)
- Xiaomin Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, 210014, China
| | - Xianglan Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, 210014, China
| | - Wei Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, 210014, China
| | - Zhengyu Yu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, 210014, China
| | - Libin Wen
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, 210014, China
| | - Kongwang He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, 210014, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| | - Hongjie Fan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
22
|
Porcine Epidemic Diarrhea Virus Induces Autophagy to Benefit Its Replication. Viruses 2017; 9:v9030053. [PMID: 28335505 PMCID: PMC5371808 DOI: 10.3390/v9030053] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/13/2017] [Accepted: 03/15/2017] [Indexed: 02/06/2023] Open
Abstract
The new porcine epidemic diarrhea (PED) has caused devastating economic losses to the swine industry worldwide. Despite extensive research on the relationship between autophagy and virus infection, the concrete role of autophagy in porcine epidemic diarrhea virus (PEDV) infection has not been reported. In this study, autophagy was demonstrated to be triggered by the effective replication of PEDV through transmission electron microscopy, confocal microscopy, and Western blot analysis. Moreover, autophagy was confirmed to benefit PEDV replication by using autophagy regulators and RNA interference. Furthermore, autophagy might be associated with the expression of inflammatory cytokines and have a positive feedback loop with the NF-κB signaling pathway during PEDV infection. This work is the first attempt to explore the complex interplay between autophagy and PEDV infection. Our findings might accelerate our understanding of the pathogenesis of PEDV infection and provide new insights into the development of effective therapeutic strategies.
Collapse
|
23
|
Zhang H, Luo X, Ke J, Duan Y, He Y, Zhang D, Cai M, Sun G, Sun X. Procyanidins, from Castanea mollissima Bl. shell, induces autophagy following apoptosis associated with PI3K/AKT/mTOR inhibition in HepG2 cells. Biomed Pharmacother 2016; 81:15-24. [DOI: 10.1016/j.biopha.2016.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 11/25/2022] Open
|
24
|
Abstract
Type 1 diabetes (T1D) results from genetic predisposition and environmental factors leading to the autoimmune destruction of pancreatic beta cells. Recently, a rapid increase in the incidence of childhood T1D has been observed worldwide; this is too fast to be explained by genetic factors alone, pointing to the spreading of environmental factors linked to the disease. Enteroviruses (EVs) are perhaps the most investigated environmental agents in relationship to the pathogenesis of T1D. While several studies point to the likelihood of such correlation, epidemiological evidence in its support is inconclusive or in some instances even against it. Hence, it is still unknown if and how EVs are involved in the development of T1D. Here we review recent findings concerning the biology of EV in beta cells and the potential implications of this knowledge for the understanding of beta cell dysfunction and autoimmune destruction in T1D.
Collapse
Affiliation(s)
- Antje Petzold
- />Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Fetscherstr.74, 01307 Dresden, Germany
- />German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Michele Solimena
- />Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Fetscherstr.74, 01307 Dresden, Germany
- />German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- />Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Klaus-Peter Knoch
- />Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Fetscherstr.74, 01307 Dresden, Germany
- />German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| |
Collapse
|
25
|
Wen X, Cheng A, Wang M, Jia R, Zhu D, Chen S, Liu M, Sun K, Yang Q, Wu Y, Chen X. Recent advances from studies on the role of structural proteins in enterovirus infection. Future Microbiol 2015; 10:1529-42. [DOI: 10.2217/fmb.15.62] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Enteroviruses are a large group of small nonenveloped viruses that cause common and debilitating illnesses affecting humans and animals worldwide. The capsid composed by viral structural proteins packs the RNA genome. It is becoming apparent that structural proteins of enteroviruses play versatile roles in the virus–host interaction in the viral life cycle, more than just a shell. Furthermore, structural proteins to some extent may be associated with viral virulence and pathogenesis. Better understanding the roles of structural proteins in enterovirus infection may lead to the development of potential antiviral strategies. Here, we discuss recent advances from studies on the role of structural proteins in enterovirus infection and antiviral therapeutics targeted structural proteins.
Collapse
Affiliation(s)
- Xingjian Wen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Engineering & Technology Center for Laboratory Animals of Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Kunfeng Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Xiaoyue Chen
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| |
Collapse
|
26
|
Xin L, Ma X, Xiao Z, Yao H, Liu Z. Coxsackievirus B3 induces autophagy in HeLa cells via the AMPK/MEK/ERK and Ras/Raf/MEK/ERK signaling pathways. INFECTION GENETICS AND EVOLUTION 2015; 36:46-54. [PMID: 26305625 DOI: 10.1016/j.meegid.2015.08.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 08/17/2015] [Accepted: 08/20/2015] [Indexed: 12/19/2022]
Abstract
In a previous study, the number of autophagosomes increased after coxsackievirus B3 (CVB3) infection. However, the exact mechanism by which CVB3 regulates the number of autophagosomes is unclear. Earlier studies have found that infection with CVB3 activates extracellular signal-regulated kinase (ERK). ERK is essential for CVB3 replication and can increase the number of autophagosomes. In the current study, extracellular signal-regulated kinase 1/2 was activated in HeLa cells after CVB3 infection. The ERK kinase inhibitor, U0126, was then used to inhibit the activity of ERK. Treatment with U0126 led to a significant reduction in the number of autophagosomes indicating that the CVB3-induced autophagosome accumulation may have occurred via the ERK pathway. The relationship between CVB3 infection and ERK pathway activation was also investigated. The results showed that the RasGAP protein could be further cleaved, leading to the activation of the Ras/Raf/MEK (mitogen/extracellular signal-regulated kinase)/ERK pathway and that CVB3 infection could result in an increase in the concentration of calcium in the cytoplasm, resulting in mitochondrial damage, a decrease in the concentration of ATP and activation of the AMPK (AMP-activated protein kinase)/MEK/ERK pathway. In summary, CVB3 might directly or indirectly induce autophagy via AMPK/MEK/ERK and Ras/Raf/MEK/ERK signaling pathways in the host cells, representing a pivotal mechanism for CVB3 pathogenesis.
Collapse
Affiliation(s)
- Le Xin
- Department of Molecular Immunology, Capital Institute of Pediatrics, China
| | - Xiaolin Ma
- Department of Molecular Immunology, Capital Institute of Pediatrics, China
| | - Zonghui Xiao
- Department of Molecular Immunology, Capital Institute of Pediatrics, China
| | - Hailan Yao
- Department of Molecular Immunology, Capital Institute of Pediatrics, China.
| | - Zhewei Liu
- Department of Molecular Immunology, Capital Institute of Pediatrics, China.
| |
Collapse
|
27
|
Abstract
Apoptosis and autophagy are both highly regulated biological processes that have important roles in development, differentiation, homeostasis, and disease. These processes may take place independently, with autophagy being cytoprotective for preventing cells from apoptosis and apoptosis blocking autophagy. But in most circumstances, both may be induced sequentially with autophagy preceding apoptosis. The simultaneous activation of both processes has been observed not only in experimental settings but also in pathophysiological conditions. In fact, these two pathways are tightly connected with each other by substantial interplays between them, enabling the coordinated regulation of cell fates by these two pathways. They share some common upstream signaling components, and some components of one pathway may play important roles in the other, and vice versa. Such proteins represent the critical interconnections of the two pathways, which seem to determine the cell for survival or death. Here several critical molecular interconnections between apoptosis and autophagy pathways are reviewed, with their action mechanisms being highlighted.
Collapse
Affiliation(s)
- Gao-Xiang Zhao
- Department of Immunobiology, College of Life Science and Technology, Jinan University , Guangzhou 510632 , China
| | | | | | | |
Collapse
|
28
|
Autophagy regulates colistin-induced apoptosis in PC-12 cells. Antimicrob Agents Chemother 2015; 59:2189-97. [PMID: 25645826 DOI: 10.1128/aac.04092-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Colistin is a cyclic cationic polypeptide antibiotic with activity against multidrug-resistant Gram-negative bacteria. Our recent study demonstrated that colistin induces apoptosis in primary chick cortex neurons and PC-12 cells. Although apoptosis and autophagy have different impacts on cell fate, there is a complex interaction between them. Autophagy plays an important role as a homeostasis regulator by removing excessive or unnecessary proteins and damaged organelles. The aim of the present study was to investigate the modulation of autophagy and apoptosis regulation in PC-12 cells in response to colistin treatment. PC-12 cells were exposed to colistin (125 to 250 μg/ml), and autophagy was detected by visualization of monodansylcadaverine (MDC)-labeled vacuoles, LC3 (microtubule-associated protein 1 light chain 3) immunofluorescence microscopic examination, and Western blotting. Apoptosis was measured by flow cytometry, Hoechst 33258 staining, and Western blotting. Autophagosomes were observed after treatment with colistin for 12 h, and the levels of LC3-II gene expression were determined; observation and protein levels both indicated that colistin induced a high level of autophagy. Colistin treatment also led to apoptosis in PC-12 cells, and the level of caspase-3 expression increased over the 24-h period. Pretreatment of cells with 3-methyladenine (3-MA) increased colistin toxicity in PC-12 cells remarkably. However, rapamycin treatment significantly increased the expression levels of LC3-II and beclin 1 and decreased the rate of apoptosis of PC-12 cells. Our results demonstrate that colistin induced autophagy and apoptosis in PC-12 cells and that the latter was affected by the regulation of autophagy. It is very likely that autophagy plays a protective role in the reduction of colistin-induced cytotoxicity in neurons.
Collapse
|
29
|
Harris KG, Coyne CB. Death waits for no man--does it wait for a virus? How enteroviruses induce and control cell death. Cytokine Growth Factor Rev 2014; 25:587-96. [PMID: 25172372 DOI: 10.1016/j.cytogfr.2014.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 08/05/2014] [Indexed: 12/29/2022]
Abstract
Enteroviruses (EVs) are the most common human viral pathogens. They cause a variety of pathologies, including myocarditis and meningoencephalopathies, and have been linked to the onset of type I diabetes. These pathologies result from the death of cells in the myocardium, central nervous system, and pancreas, respectively. Understanding the role of EVs in inducing cell death is crucial to understanding the etiologies of these diverse pathologies. EVs both induce and delay host cell death, and their exquisite control of this balance is crucial for their success as human viral pathogens. Thus, EVs are tightly involved with cell death signaling pathways and interact with host cell signaling at multiple points. Here, we review the literature detailing the mechanisms of EV-induced cell death. We discuss the mechanisms by which EVs induce cell death, the signaling pathways involved in these pathways, and the strategies by which EVs antagonize cell death pathways. We also discuss the role of cell death in both the resulting pathology in the host and in the facilitation of viral spread.
Collapse
Affiliation(s)
- Katharine G Harris
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, United States
| | - Carolyn B Coyne
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, United States.
| |
Collapse
|