1
|
Nour I, Mohanty SK. Avian Reovirus: From Molecular Biology to Pathogenesis and Control. Viruses 2024; 16:1966. [PMID: 39772272 PMCID: PMC11728826 DOI: 10.3390/v16121966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/14/2025] Open
Abstract
Avian reoviruses (ARVs) represent a significant economic burden on the poultry industry due to their widespread prevalence and potential pathogenicity. These viruses, capable of infecting a diverse range of avian species, can lead to a variety of clinical manifestations, most notably tenosynovitis/arthritis. While many ARV strains are asymptomatic, pathogenic variants can cause severe inflammation and tissue damage in organs such as the tendons, heart, and liver. In broilers and turkeys, ARVs can induce severe arthritis/tenosynovitis, characterized by swollen hock joints and lesions in the gastrocnemius tendons. Additionally, ARVs have been implicated in other diseases, although their precise role in these conditions remains to be fully elucidated. In recent years, ARV cases have surged in the United States, emphasizing the need for effective control measures. Routine vaccination with commercial or autogenous vaccines is currently the primary strategy for mitigating ARV's impact. Future research efforts should focus on enhancing our understanding of ARV-induced pathogenesis, identifying host factors that influence disease severity, and developing novel vaccines based on ongoing surveillance of circulating ARV strains. This review aims to explore the molecular aspects of ARV, including virus structure, replication, molecular epidemiology, the roles of its encoded proteins in host pathogenesis, and the immune response to ARV infection. Furthermore, we discuss the diagnostic approaches of avian reovirus and the potential biosecurity measures and vaccination trials in combating ARV and developing effective antiviral strategies.
Collapse
Affiliation(s)
| | - Sujit K. Mohanty
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Athens, GA 30605, USA;
| |
Collapse
|
2
|
Gál B, Varga-Kugler R, Ihász K, Kaszab E, Farkas S, Marton S, Martella V, Bányai K. A Snapshot on the Genomic Epidemiology of Turkey Reovirus Infections, Hungary. Animals (Basel) 2023; 13:3504. [PMID: 38003122 PMCID: PMC10668827 DOI: 10.3390/ani13223504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/29/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Reovirus infections in turkeys are associated with arthritis and lameness. Viral genome sequence data are scarce, which makes an accurate description of the viral evolution and epidemiology difficult. In this study, we isolated and characterized turkey reoviruses from Hungary. The isolates were identified in 2016; these isolates were compared with earlier Hungarian turkey reovirus strains and turkey reoviruses isolated in the 2010s in the United States. Gene-wise sequence and phylogenetic analyses identified the cell-receptor binding protein and the main neutralization antigen, σC, to be the most conserved. The most genetically diverse gene was another surface antigen coding gene, μB. This gene was shown to undergo frequent reassortment among chicken and turkey origin reoviruses. Additional reassortment events were found primarily within members of the homologous turkey reovirus clade. Our data showed evidence for low variability among strains isolated from independent outbreaks, a finding that suggests a common source of turkey reoviruses in Hungarian turkey flocks. Given that commercial vaccines are not available, identification of the source of these founder virus strains would permit a more efficient prevention of disease outbreaks before young birds are settled to fattening facilities.
Collapse
Affiliation(s)
- Bence Gál
- Intervet Hungária Kft, Lechner Odon Fasor 10/b, H-1095 Budapest, Hungary;
| | - Renáta Varga-Kugler
- Veterinary Medical Research Institute, Hungária krt. 21, H-1143 Budapest, Hungary; (R.V.-K.); (K.I.); (E.K.); (S.M.)
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Hungária krt. 21, H-1143 Budapest, Hungary
| | - Katalin Ihász
- Veterinary Medical Research Institute, Hungária krt. 21, H-1143 Budapest, Hungary; (R.V.-K.); (K.I.); (E.K.); (S.M.)
| | - Eszter Kaszab
- Veterinary Medical Research Institute, Hungária krt. 21, H-1143 Budapest, Hungary; (R.V.-K.); (K.I.); (E.K.); (S.M.)
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Hungária krt. 21, H-1143 Budapest, Hungary
- Institute of Metagenomics, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Szilvia Farkas
- Department of Obstetrics and Food Animal Medicine Clinic, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary;
| | - Szilvia Marton
- Veterinary Medical Research Institute, Hungária krt. 21, H-1143 Budapest, Hungary; (R.V.-K.); (K.I.); (E.K.); (S.M.)
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Hungária krt. 21, H-1143 Budapest, Hungary
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari, Aldo Moro, S.P. per Casamassima km 3, 70010 Valenzano, Italy;
| | - Krisztián Bányai
- Veterinary Medical Research Institute, Hungária krt. 21, H-1143 Budapest, Hungary; (R.V.-K.); (K.I.); (E.K.); (S.M.)
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Hungária krt. 21, H-1143 Budapest, Hungary
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary
| |
Collapse
|
3
|
Nour I, Alvarez-Narvaez S, Harrell TL, Conrad SJ, Mohanty SK. Whole Genomic Constellation of Avian Reovirus Strains Isolated from Broilers with Arthritis in North Carolina, USA. Viruses 2023; 15:2191. [PMID: 38005869 PMCID: PMC10675200 DOI: 10.3390/v15112191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Avian reovirus (ARV) is an emerging pathogen which causes significant economic challenges to the chicken and turkey industry in the USA and globally, yet the molecular characterization of most ARV strains is restricted to a single particular gene, the sigma C gene. The genome of arthrogenic reovirus field isolates (R18-37308 and R18-38167), isolated from broiler chickens in North Carolina (NC), USA in 2018, was sequenced using long-read next-generation sequencing (NGS). The isolates were genotyped based on the amino acid sequence of sigma C (σC) followed by phylogenetic and amino acid analyses of the other 11 genomically encoded proteins for whole genomic constellation and genetic variation detection. The genomic length of the NC field strains was 23,494 bp, with 10 dsRNA segments ranging from 3959 bp (L1) to 1192 bp (S4), and the 5' and 3' untranslated regions (UTRs) of all the segments were found to be conserved. R18-37308 and R18-38167 were found to belong to genotype (G) VI based on the σC analysis and showed nucleotide and amino acid sequence identity ranging from 84.91-98.47% and 83.43-98.46%, respectively, with G VI strains. Phylogenetic analyses of individual genes of the NC strains did not define a single common ancestor among the available completely sequenced ARV strains. Nevertheless, most sequences supported the Chinese strain LY383 as a probable ancestor of these isolates. Moreover, amino acid analysis revealed multiple amino acid substitution events along the entirety of the genes, some of which were unique to each strain, which suggests significant divergence owing to the accumulation of point mutations. All genes from R18-37308 and R18-38167 were found to be clustered within genotypic clusters that included only ARVs of chicken origin, which negates the possibility of genetic pooling or host variation. Collectively, this study revealed sequence divergence between the NC field strains and reference ARV strains, including the currently used vaccine strains could help updating the vaccination regime through the inclusion of these highly divergent circulating indigenous field isolates.
Collapse
Affiliation(s)
| | | | | | | | - Sujit K. Mohanty
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), US National Poultry Research Center, Athens, GA 30605, USA; (I.N.); (S.A.-N.); (T.L.H.); (S.J.C.)
| |
Collapse
|
4
|
Diller JR, Thoner TW, Ogden KM. Mammalian orthoreoviruses exhibit rare genotype variability in genome constellations. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 110:105421. [PMID: 36871695 PMCID: PMC10112866 DOI: 10.1016/j.meegid.2023.105421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
Mammalian orthoreoviruses (reoviruses) are currently classified based on properties of the attachment protein, σ1. Four reovirus serotypes have been identified, three of which are represented by well-studied prototype human reovirus strains. Reoviruses contain ten segments of double-stranded RNA that encode 12 proteins and can reassort during coinfection. To understand the breadth of reovirus genetic diversity and its potential influence on reassortment, the sequence of the entire genome should be considered. While much is known about the prototype strains, a thorough analysis of all ten reovirus genome segment sequences has not previously been conducted. We analyzed phylogenetic relationships and nucleotide sequence conservation for each of the ten segments of more than 60 complete or nearly complete reovirus genome sequences, including those of the prototype strains. Using these relationships, we defined genotypes for each segment, with minimum nucleotide identities of 77-88% for most genotypes that contain several representative sequences. We applied segment genotypes to determine reovirus genome constellations, and we propose implementation of an updated reovirus genome classification system that incorporates genotype information for each segment. For most sequenced reoviruses, segments other than S1, which encodes σ1, cluster into a small number of genotypes and a limited array of genome constellations that do not differ greatly over time or based on animal host. However, a small number of reoviruses, including prototype strain Jones, have constellations in which segment genotypes differ from those of most other sequenced reoviruses. For these reoviruses, there is little evidence of reassortment with the major genotype. Future basic research studies that focus on the most genetically divergent reoviruses may provide new insights into reovirus biology. Analysis of available partial sequences and additional complete reovirus genome sequencing may also reveal reassortment biases, host preferences, or infection outcomes that are based on reovirus genotype.
Collapse
Affiliation(s)
- Julia R Diller
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy W Thoner
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kristen M Ogden
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
5
|
Kovács E, Varga-Kugler R, Mató T, Homonnay Z, Tatár-Kis T, Farkas S, Kiss I, Bányai K, Palya V. Identification of the main genetic clusters of avian reoviruses from a global strain collection. Front Vet Sci 2023; 9:1094761. [PMID: 36713877 PMCID: PMC9878682 DOI: 10.3389/fvets.2022.1094761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Avian reoviruses (ARV), an important pathogen of poultry, have received increasing interest lately due to their widespread occurrence, recognized genetic diversity, and association to defined disease conditions or being present as co-infecting agents. The efficient control measures require the characterization of the available virus strains. Methods The present study describes an ARV collection comprising over 200 isolates from diagnostic samples collected over a decade from 34 countries worldwide. One hundred and thirty-six ARV isolates were characterized based on σC sequences. Results and discussion The samples represented not only arthritis/tenosynovitis and runting-stunting syndrome, but also respiratory symptoms, egg production problems, and undefined disease conditions accompanied with increased mortality, and were obtained from broiler, layer or breeder flocks. In 31 percent of the cases other viral or bacterial agents were demonstrated besides ARV. The most frequent co-infectious agent was infectious bronchitis virus followed by infectious bursal disease virus and adenoviruses. All isolates could be classified in one of the major genetic clusters, although we observed marked discrepancies in the genotyping systems currently in use, a finding that made genotype assignment challenging. Reovirus related clinical symptoms could not be unequivocally connected to any particular virus strains belonging to a specific genetic group, suggesting the lack of strict association between disease forms of ARV infection and the investigated genetic features of ARV strains. Also, large genetic differences were seen between field and vaccine strains. The presented findings reinforce the need to establish a uniform, widely accepted molecular classification scheme for ARV and further, highlight the need for ARV strain identification to support more efficient control measures.
Collapse
Affiliation(s)
| | | | | | | | | | - Szilvia Farkas
- Veterinary Medical Research Institute, Budapest, Hungary,Department of Obstetrics and Food Animal Medicine Clinic, University of Veterinary Medicine, Budapest, Hungary
| | - István Kiss
- Ceva-Phylaxia Ltd., Budapest, Hungary,*Correspondence: István Kiss ✉
| | - Krisztián Bányai
- Veterinary Medical Research Institute, Budapest, Hungary,Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| | | |
Collapse
|
6
|
Kumar R, Porter RE, Mor SK, Goyal SM. Efficacy and Immunogenicity of Recombinant Pichinde Virus-Vectored Turkey Arthritis Reovirus Subunit Vaccine. Vaccines (Basel) 2022; 10:486. [PMID: 35455235 PMCID: PMC9030058 DOI: 10.3390/vaccines10040486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
We created a recombinant live pichinde virus-vectored bivalent codon optimized subunit vaccine that expresses immunogenic Sigma C and Sigma B proteins of turkey arthritis reovirus. The vaccine virus could be transmitted horizontally immunizing the non-vaccinated pen mates. The vaccine was tested for efficacy against homologous (TARV SKM121) and heterologous (TARV O'Neil) virus challenge. Immunized poults produced serum neutralizing antibodies capable of neutralizing both viruses. The vaccinated and control birds showed similar body weights indicating no adverse effect on feed efficiency. Comparison of virus gene copy numbers in intestine and histologic lesion scores in tendons of vaccinated and non-vaccinated birds showed a decrease in the replication of challenge viruses in the intestine and tendons of vaccinated birds. These results indicate the potential usefulness of this vaccine.
Collapse
Affiliation(s)
- Rahul Kumar
- Veterinary Diagnostic Laboratory, Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, 1333 Gortner Ave, Saint Paul, MN 55108, USA; (R.K.); (R.E.P.); (S.K.M.)
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Pandit Deen Dayal Upadhyaya Veterinary Science University and Cattle Research Institute, Mathura 281001, Uttar Pradesh, India
| | - Robert E. Porter
- Veterinary Diagnostic Laboratory, Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, 1333 Gortner Ave, Saint Paul, MN 55108, USA; (R.K.); (R.E.P.); (S.K.M.)
| | - Sunil K. Mor
- Veterinary Diagnostic Laboratory, Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, 1333 Gortner Ave, Saint Paul, MN 55108, USA; (R.K.); (R.E.P.); (S.K.M.)
| | - Sagar M. Goyal
- Veterinary Diagnostic Laboratory, Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, 1333 Gortner Ave, Saint Paul, MN 55108, USA; (R.K.); (R.E.P.); (S.K.M.)
| |
Collapse
|
7
|
De la Torre D, Astolfi-Ferreira CS, Chacón RD, Puga B, Piantino Ferreira AJ. Emerging new avian reovirus variants from cases of enteric disorders and arthritis/tenosynovitis in Brazilian poultry flocks. Br Poult Sci 2021; 62:361-372. [PMID: 33448227 DOI: 10.1080/00071668.2020.1864808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
1. The objective of this study was to characterise circulating Brazilian avian reovirus (ARV) strains by genetic analysis of the σC protein encoded by segment 1 of the viral genome and compare these with those of viral strains used for immunising commercial poultry.2. The analysis detected the presence of ARV genomes by quantitative reverse transcriptase PCR (RT-qPCR) in the enteric samples and the joint tissues (JT) of birds with signs of viral arthritis/tenosynovitis. Nucleotide sequencing used 16 strains (three commercial vaccines, 10 from enteric tissues and three from JT). The results indicated high variability in the amino acid sequences of 13 wild strains, showing between 40% and 75% similarity compared with the vaccine strains (S1133 and 2177).3. The sequences were grouped into three well-defined clusters in a phylogenetic tree, two of these clusters together with previous Brazilian σC ARV sequences, and one cluster (VII) that was novel for Brazilian strains. Antigenic analysis showed that there were amino acids within putative epitopes located on the surface of the receptor-binding region of the σC protein with a high degree of variability.4. The study confirmed the presence of ARV genetic variants circulating in commercial birds in Brazil, and according to the antigenic prediction, the possibility of antigenic variants appears to be high.
Collapse
Affiliation(s)
- D De la Torre
- School of Veterinary Medicine, Institute for Research in Biomedicine, Central University of Ecuador, Quito, CP, Ecuador.,School of Veterinary Medicine, University of São Paulo, São Paulo, SP, Brazil
| | | | - R D Chacón
- School of Veterinary Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - B Puga
- School of Veterinary Medicine, Institute for Research in Biomedicine, Central University of Ecuador, Quito, CP, Ecuador
| | | |
Collapse
|
8
|
Tang Y, Lu H, Sebastian A, Yeh YT, Praul CA, Albert IU, Zheng SY. Genomic characterization of a turkey reovirus field strain by Next-Generation Sequencing. INFECTION GENETICS AND EVOLUTION 2015; 32:313-21. [PMID: 25841748 DOI: 10.1016/j.meegid.2015.03.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 10/23/2022]
Abstract
The genome of a turkey arthritis reovirus (TARV) field strain (Reo/PA/Turkey/22342/13), isolated from a turkey flock in Pennsylvania (PA) in 2013, has been sequenced using Next-Generation Sequencing (NGS) on the Illumina MiSeq platform. The genome of the PA TARV field strain was 23,496bp in length with 10 dsRNA segments encoding 12 viral proteins. The lengths of the genomic segments ranged from 1192bp (S4) to 3959bp (L1). The 5' and 3' conserved terminal sequences of the PA TARV field strain were similar to the two Minnesota (MN) TARVs (MN9 and MN10) published recently and avian orthoreovirus (ARV) reference strains. Phylogenetic analysis of the nucleotide sequences of all 10 genome segments revealed that there was a low to significant nucleotide sequence divergence between the PA TARV field strain and reference TARV and ARV strains. Analysis of the PA TARV sequence indicates that this PA TARV field strain is a unique strain and is different from the TARV MN9 or MN10 in M2 segment genes and ARV S1133 vaccine strain.
Collapse
Affiliation(s)
- Yi Tang
- Wiley Lab/Avian Virology, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, United States
| | - Huaguang Lu
- Wiley Lab/Avian Virology, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, United States.
| | - Aswathy Sebastian
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States
| | - Yin-Ting Yeh
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States
| | - Craig A Praul
- Genomics Core Facility, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, United States
| | - Istvan U Albert
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States
| | - Si-Yang Zheng
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States
| |
Collapse
|