1
|
Sharma DK, Soni I, Rajpurohit YS. Surviving the storm: exploring the role of natural transformation in nutrition and DNA repair of stressed Deinococcus radiodurans. Appl Environ Microbiol 2025; 91:e0137124. [PMID: 39651863 PMCID: PMC11784314 DOI: 10.1128/aem.01371-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/23/2024] [Indexed: 02/01/2025] Open
Abstract
Deinococcus radiodurans, a natural transformation (NT)-enabled bacterium renowned for its exceptional radiation resistance, employs unique DNA repair and oxidative stress mitigation mechanisms as a strategic response to DNA damage. This study excavates into the intricate roles of NT machinery in the stressed D. radiodurans, focusing on the genes comEA, comEC, endA, pilT, and dprA, which are instrumental in the uptake and processing of extracellular DNA (eDNA). Our data reveal that NT not only supports the nutritional needs of D. radiodurans under stress but also has roles in DNA repair. The study findings establish that NT-specific proteins (ComEA, ComEC, and endonuclease A [EndA]) may contribute to support the nutritional requirements in unstressed and heavily DNA-damaged cells, while DprA contributes differently and in a context-dependent manner to navigating through the DNA damage storm. Thus, this dual functionality of NT-specific genes is proposed to be a contributing factor in the remarkable ability of D. radiodurans to survive and thrive in environments characterized by high levels of DNA-damaging agents.IMPORTANCEDeinococcus radiodurans is a bacterium known for its extraordinary radiation resistance. This study explores the roles of NT machinery in the radiation-resistant bacterium Deinococcus radiodurans, focusing on the genes comEA, comEC, endA, pilT, and dprA. These genes are crucial for the uptake and processing of eDNA and contribute to the bacterium nutritional needs and DNA repair under stress. The findings suggest that the NT-specific proteins ComEA, ComEC, and EndA may help meet the nutritional needs of unstressed and heavily DNA-damaged cells, whereas DprA plays a distinct role that varies, depending on the context in aiding cells to cope with DNA damage. The functionality of NT genes is proposed to enhance D. radiodurans survival in environments with high levels of DNA-damaging agents.
Collapse
Affiliation(s)
- Dhirendra Kumar Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute (DAE-Deemed University), Mumbai, India
| | - Ishu Soni
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute (DAE-Deemed University), Mumbai, India
| | - Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute (DAE-Deemed University), Mumbai, India
| |
Collapse
|
2
|
Xu Y, Ding Y, Wu H, Li D, Li Y, Hu Y, Meng H. Glycyrrhetinic acid reduces lung inflammation caused by pneumococcal infection by reducing the toxicity of pneumolysin. Heliyon 2024; 10:e38611. [PMID: 39397991 PMCID: PMC11471213 DOI: 10.1016/j.heliyon.2024.e38611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
Objective In this study, to provide new methods for the treatment of Streptococcus pneumoniae infection, we aimed to describe the anti-inflammatory and antibacterial value of glycyrrhetinic acid on the basis of its inhibitory effect on bacterial growth (without killing the bacteria) and its reduction of the toxicity of S. pneumoniae. Methods A mouse model was established via intranasal administration of Streptococcus pneumoniae D39, and glycyrrhetinic acid was subcutaneously injected for treatment. The wet‒dry ratio, bacterial flora content and inflammatory factor levels in the mouse lungs were determined. Cell experiments were used to evaluate glycyrrhetinic acid-mediated inhibition of PLY hemolysis and A549 cell death, and WB was used to measure glycyrrhetinic acid-mediated inhibition of PLY oligomerization. Results Glycyrrhetinic acid reduced the levels of inflammatory factors, the dry‒wet ratio, the abundance of S. pneumoniae in the lungs of infected mice, pneumolysin-mediated A549 cell death, erythrocyte hemolysis and PLY oligoplasia. Conclusion Glycyrrhetinic acid can reduce the virulence of S. pneumoniae by preventing the oligomerization of PLY.
Collapse
Affiliation(s)
- Yan Xu
- Department of Pediatrics, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, China
- School of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, China
| | - Ying Ding
- Department of Pediatrics, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, China
- School of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, China
| | - Hongji Wu
- Department of Pediatrics, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, China
| | - Donglin Li
- Department of Pediatrics, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, China
| | - Yudi Li
- Department of Pediatrics, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, China
| | - Yibo Hu
- Department of Pediatrics, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, China
| | - Haoji Meng
- Department of Pediatrics, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, China
| |
Collapse
|
3
|
Yao M, Wang K, Song G, Hu Y, Chen J, Li T, Liang L, Wu J, Xu H, Wang L, Zheng Y, Zhang X, Yin Y, Yao S, Wu K. Transcriptional regulation of TacL-mediated lipoteichoic acids biosynthesis by ComE during competence impacts pneumococcal transformation. Front Cell Infect Microbiol 2024; 14:1375312. [PMID: 38779562 PMCID: PMC11109429 DOI: 10.3389/fcimb.2024.1375312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/08/2024] [Indexed: 05/25/2024] Open
Abstract
Competence development is essential for bacterial transformation since it enables bacteria to take up free DNA from the surrounding environment. The regulation of teichoic acid biosynthesis is tightly controlled during pneumococcal competence; however, the mechanism governing this regulation and its impact on transformation remains poorly understood. We demonstrated that a defect in lipoteichoic acid ligase (TacL)-mediated lipoteichoic acids (LTAs) biosynthesis was associated with impaired pneumococcal transformation. Using a fragment of tacL regulatory probe as bait in a DNA pulldown assay, we successfully identified several regulatory proteins, including ComE. Electrophoretic mobility shift assays revealed that phosphomimetic ComE, but not wild-type ComE, exhibited specific binding to the probe. DNase I footprinting assays revealed the specific binding sequences encompassing around 30 base pairs located 31 base pairs upstream from the start codon of tacL. Expression of tacL was found to be upregulated in the ΔcomE strain, and the addition of exogenous competence-stimulating peptide repressed the tacL transcription in the wild-type strain but not the ΔcomE mutant, indicating that ComE exerted a negative regulatory effect on the transcription of tacL. Mutation in the JH2 region of tacL upstream regulatory sequence led to increased LTAs abundance and displayed higher transformation efficiency. Collectively, our work identified the regulatory mechanisms that control LTAs biosynthesis during competence and thereby unveiled a repression mechanism underlying pneumococcal transformation.
Collapse
Affiliation(s)
- Miao Yao
- Department of Laboratory Medicine, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
- Scientific Research Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Kun Wang
- Department of Laboratory Medicine, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
- Scientific Research Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Guangming Song
- Department of Laboratory Medicine, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
- Scientific Research Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Yumeng Hu
- Department of Laboratory Medicine, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
- Scientific Research Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Jiali Chen
- Department of Laboratory Medicine, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
- Scientific Research Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Tingting Li
- Department of Laboratory Medicine, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
- Scientific Research Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Longying Liang
- Department of Laboratory Medicine, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
- Scientific Research Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Jie Wu
- Scientific Research Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Hongmei Xu
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Libin Wang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yuqiang Zheng
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xuemei Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yibing Yin
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Shifei Yao
- Department of Laboratory Medicine, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
- Scientific Research Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Kaifeng Wu
- Department of Laboratory Medicine, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
- Scientific Research Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| |
Collapse
|
4
|
Rodriguez-Ruiz JP, Xavier BB, Stöhr W, van Heirstraeten L, Lammens C, Finn A, Goossens H, Bielicki JA, Sharland M, Malhotra-Kumar S. High-resolution genomics identifies pneumococcal diversity and persistence of vaccine types in children with community-acquired pneumonia in the UK and Ireland. BMC Microbiol 2024; 24:146. [PMID: 38678217 PMCID: PMC11055344 DOI: 10.1186/s12866-024-03300-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Streptococcus pneumoniae is a global cause of community-acquired pneumonia (CAP) and invasive disease in children. The CAP-IT trial (grant No. 13/88/11; https://www.capitstudy.org.uk/ ) collected nasopharyngeal swabs from children discharged from hospitals with clinically diagnosed CAP, and found no differences in pneumococci susceptibility between higher and lower antibiotic doses and shorter and longer durations of oral amoxicillin treatment. Here, we studied in-depth the genomic epidemiology of pneumococcal (vaccine) serotypes and their antibiotic resistance profiles. METHODS Three-hundred and ninety pneumococci cultured from 1132 nasopharyngeal swabs from 718 children were whole-genome sequenced (Illumina) and tested for susceptibility to penicillin and amoxicillin. Genome heterogeneity analysis was performed using long-read sequenced isolates (PacBio, n = 10) and publicly available sequences. RESULTS Among 390 unique pneumococcal isolates, serotypes 15B/C, 11 A, 15 A and 23B1 were most prevalent (n = 145, 37.2%). PCV13 serotypes 3, 19A, and 19F were also identified (n = 25, 6.4%). STs associated with 19A and 19F demonstrated high genome variability, in contrast to serotype 3 (n = 13, 3.3%) that remained highly stable over a 20-year period. Non-susceptibility to penicillin (n = 61, 15.6%) and amoxicillin (n = 10, 2.6%) was low among the pneumococci analysed here and was independent of treatment dosage and duration. However, all 23B1 isolates (n = 27, 6.9%) were penicillin non-susceptible. This serotype was also identified in ST177, which is historically associated with the PCV13 serotype 19F and penicillin susceptibility, indicating a potential capsule-switch event. CONCLUSIONS Our data suggest that amoxicillin use does not drive pneumococcal serotype prevalence among children in the UK, and prompts consideration of PCVs with additional serotype coverage that are likely to further decrease CAP in this target population. Genotype 23B1 represents the convergence of a non-vaccine genotype with penicillin non-susceptibility and might provide a persistence strategy for ST types historically associated with vaccine serotypes. This highlights the need for continued genomic surveillance.
Collapse
Affiliation(s)
- Juan Pablo Rodriguez-Ruiz
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, Universiteit Antwerpen, Antwerp, Belgium
| | - Basil Britto Xavier
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, Universiteit Antwerpen, Antwerp, Belgium
| | - Wolfgang Stöhr
- MRC Clinical Trials Unit, University College London, London, UK
| | - Liesbet van Heirstraeten
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, Universiteit Antwerpen, Antwerp, Belgium
| | - Christine Lammens
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, Universiteit Antwerpen, Antwerp, Belgium
| | | | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, Universiteit Antwerpen, Antwerp, Belgium
| | - Julia Anna Bielicki
- Paediatric Infectious Diseases Research Group, St George's University of London, London, UK
| | - Michael Sharland
- Paediatric Infectious Diseases Research Group, St George's University of London, London, UK
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, Universiteit Antwerpen, Antwerp, Belgium.
| |
Collapse
|
5
|
Dekaj E, Gjini E. Pneumococcus and the stress-gradient hypothesis: A trade-off links R 0 and susceptibility to co-colonization across countries. Theor Popul Biol 2024; 156:77-92. [PMID: 38331222 DOI: 10.1016/j.tpb.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/06/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Modern molecular technologies have revolutionized our understanding of bacterial epidemiology, but reported data across studies and different geographic endemic settings remain under-integrated in common theoretical frameworks. Pneumococcus serotype co-colonization, caused by the polymorphic bacteria Streptococcus pneumoniae, has been increasingly investigated and reported in recent years. While the global genomic diversity and serotype distribution of S. pneumoniae have been well-characterized, there is limited information on how co-colonization patterns vary globally, critical for understanding the evolution and transmission dynamics of the bacteria. Gathering a rich dataset of cross-sectional pneumococcal colonization studies in the literature, we quantified patterns of transmission intensity and co-colonization prevalence variation in children populations across 17 geographic locations. Linking these data to an SIS model with cocolonization under the assumption of quasi-neutrality among multiple interacting strains, our analysis reveals strong patterns of negative co-variation between transmission intensity (R0) and susceptibility to co-colonization (k). In line with expectations from the stress-gradient-hypothesis in ecology (SGH), pneumococcus serotypes appear to compete more in co-colonization in high-transmission settings and compete less in low-transmission settings, a trade-off which ultimately leads to a conserved ratio of single to co-colonization μ=1/(R0-1)k. From the mathematical model's behavior, such conservation suggests preservation of 'stability-diversity-complexity' regimes in coexistence of similar co-colonizing strains. We find no major differences in serotype compositions across studies, pointing to adaptation of the same set of serotypes across variable environments as an explanation for their differential interaction in different transmission settings. Our work highlights that the understanding of transmission patterns of Streptococcus pneumoniae from global scale epidemiological data can benefit from simple analytical approaches that account for quasi-neutrality among strains, co-colonization, as well as variable environmental adaptation.
Collapse
Affiliation(s)
- Ermanda Dekaj
- Center for Computational and Stochastic Mathematics, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Erida Gjini
- Center for Computational and Stochastic Mathematics, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
6
|
Oh MW, Lin J, Chong SY, Lew SQ, Alam T, Lau GW. Time-resolved RNA-seq analysis to unravel the in vivo competence induction by Streptococcus pneumoniae during pneumonia-derived sepsis. Microbiol Spectr 2024; 12:e0305023. [PMID: 38305162 PMCID: PMC10913500 DOI: 10.1128/spectrum.03050-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
Competence development in Streptococcus pneumoniae (pneumococcus) is tightly intertwined with virulence. In addition to genes encoding genetic transformation machinery, the competence regulon also regulates the expression of allolytic factors, bacteriocins, and cytotoxins. Pneumococcal competence system has been extensively interrogated in vitro where the short transient competent state upregulates the expression of three distinct phases of "early," "late," and "delayed" genes. Recently, we have demonstrated that the pneumococcal competent state develops naturally in mouse models of pneumonia-derived sepsis. To unravel the underlying adaptive mechanisms driving the development of the competent state, we conducted a time-resolved transcriptomic analysis guided by the spatiotemporal live in vivo imaging system of competence induction during pneumonia-derived sepsis. Mouse lungs infected by the serotype 2 strain D39 expressing a competent state-specific reporter gene (D39-ssbB-luc) were subjected to RNA sequencing guided by monitoring the competence development at 0, 12, 24, and, at the moribund state, >40 hours post-infection (hpi). Transcriptomic analysis revealed that the competence-specific gene expression patterns in vivo were distinct from those under in vitro conditions. There was significant upregulation of early, late, and some delayed phase competence-specific genes as early as 12 hpi, suggesting that the pneumococcal competence regulon is important for adaptation to the lung environment. Additionally, members of the histidine triad (pht) gene family were sharply upregulated at 12 hpi followed by a steep decline throughout the rest of the infection cycle, suggesting that Pht proteins participate in the early adaptation to the lung environment. Further analysis revealed that Pht proteins execute a metal ion-dependent regulatory role in competence induction.IMPORTANCEThe induction of pneumococcal competence for genetic transformation has been extensively studied in vitro but poorly understood during lung infection. We utilized a combination of live imaging and RNA sequencing to monitor the development of a competent state during acute pneumonia. Upregulation of competence-specific genes was observed as early as 12 hour post-infection, suggesting that the pneumococcal competence regulon plays an important role in adapting pneumococcus to the stressful lung environment. Among others, we report novel finding that the pneumococcal histidine triad (pht) family of genes participates in the adaptation to the lung environment and regulates pneumococcal competence induction.
Collapse
Affiliation(s)
- Myung Whan Oh
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jingjun Lin
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sook Yin Chong
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Shi Qian Lew
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Tauqeer Alam
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Gee W. Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
7
|
Arbulu S, Kjos M. Revisiting the Multifaceted Roles of Bacteriocins : The Multifaceted Roles of Bacteriocins. MICROBIAL ECOLOGY 2024; 87:41. [PMID: 38351266 PMCID: PMC10864542 DOI: 10.1007/s00248-024-02357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
Bacteriocins are gene-encoded antimicrobial peptides produced by bacteria. These peptides are heterogeneous in terms of structure, antimicrobial activities, biosynthetic clusters, and regulatory mechanisms. Bacteriocins are widespread in nature and may contribute to microbial diversity due to their capacity to target specific bacteria. Primarily studied as food preservatives and therapeutic agents, their function in natural settings is however less known. This review emphasizes the ecological significance of bacteriocins as multifunctional peptides by exploring bacteriocin distribution, mobility, and their impact on bacterial population dynamics and biofilms.
Collapse
Affiliation(s)
- Sara Arbulu
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
8
|
Mokaddas E, Asadzadeh M, Syed S, Albert MJ. High Prevalence of Novel Sequence Types in Streptococcus pneumoniae That Caused Invasive Diseases in Kuwait in 2018. Microorganisms 2024; 12:225. [PMID: 38276209 PMCID: PMC10819824 DOI: 10.3390/microorganisms12010225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Multilocus sequence typing (MLST) is used to gain insight into the population genetics of bacteria in the form of sequence type (ST). MLST has been used to study the evolution and spread of virulent clones of Streptococcus pneumoniae in many parts of the world. Such data for S. pneumoniae are lacking for the countries of the Arabian Peninsula, including Kuwait. METHODS We determined the STs of all 31 strains of S. pneumoniae from invasive diseases received at a reference laboratory from various health centers in Kuwait during 2018 by MLST. The relationship among the isolates was determined by phylogenetic analysis. We also determined the serotypes by Quellung reaction, and antimicrobial susceptibility by Etest, against 15 antibiotics belonging to 10 classes. RESULTS There were 28 STs among the 31 isolates, of which 14 were new STs (45.2%) and 5 were rare STs (16.1%). Phylogenetic analysis revealed that 26 isolates (83.9%) were unrelated singletons, and the Kuwaiti isolates were related to those from neighboring countries whose information was gleaned from unpublished data available at the PubMLST website. Many of our isolates were resistant to penicillin, erythromycin, and azithromycin, and some were multidrug-resistant. Virulent serotype 8-ST53, and serotype 19A with new STs, were detected. CONCLUSIONS Our study detected an unusually large number of novel STs, which may indicate that Kuwait provides a milieu for the evolution of novel STs. Novel STs may arise due to recombination and can result in capsular switching. This can impact the effect of vaccination programs on the burden of invasive pneumococcal disease. This first report from the Arabian Peninsula justifies the continuous monitoring of S. pneumoniae STs for the possible evolution of new virulent clones and capsular switching.
Collapse
Affiliation(s)
| | | | | | - M. John Albert
- Department of Microbiology, College of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait; (E.M.); (M.A.); (S.S.)
| |
Collapse
|
9
|
Tartik M. The priority of yeast to select among various DNA options to repair genome breaks by homologous recombination. Mol Biol Rep 2024; 51:99. [PMID: 38206425 DOI: 10.1007/s11033-023-09058-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/02/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Horizontal gene transfer (HGT) is considered an important mechanism to contribute to the evolution of bacteria, plants, and animals by allowing the movement of genetic material between organisms, in difference to vertical inheritance. Thereby it can also play a significant role in spreading traits like antibiotic resistance among bacteria and virulence factors between pathogens. During the HGT, organisms take up free DNA from the environment and incorporate it into their genomes. Although HGT is known to be carried out by many organisms, there is limited information on how organisms select which genetic material for horizontal transfer. Here we have investigated the preference priority of Saccharomyces cerevisiae between different options of gene source presented under certain stress conditions to repair a double-strand break (DSB) in DNA via HR. RESULTS Each genetic module was designed with appropriate sequences being homologous for two sides of the DSB, which is important for yeast to repair the fracture with HR. S. cerevisiae made a random selection between two heterologous T1 (44%) and T2 (56%) modules to repair DSB. Interestingly, yeast corrected the DNA break only with the T3 module (almost 100%) when the homologous T3 module was an option for the selection. It seems that S. cerevisiae tends to prefer T3 over alternatives to fix DSBs when it exists among the options. CONCLUSIONS It seems that S. cerevisiae have a preference for priority to select a particular one under certain conditions when it has various DNA options to repair a DSB in its genome, further studies are required to support our findings.
Collapse
Affiliation(s)
- Musa Tartik
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bingol University, 12000, Bingol, Turkey.
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden.
| |
Collapse
|
10
|
Downs SL, Olwagen CP, Van Der Merwe L, Nzenze SA, Nunes MC, Madhi SA. Streptococcus pneumoniae and other bacterial nasopharyngeal colonization seven years post-introduction of 13-valent pneumococcal conjugate vaccine in South African children. Int J Infect Dis 2023; 134:45-52. [PMID: 37209864 PMCID: PMC10404162 DOI: 10.1016/j.ijid.2023.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/24/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023] Open
Abstract
OBJECTIVES Pneumococcal conjugate vaccines (PCVs) reduce pneumococcal-associated disease by reducing vaccine-serotype (VT) acquisition in vaccinated children, thereby interrupting VT transmission. The 7-valent-PCV was introduced in the South African immunization program in 2009 (13-valent-PCV since 2011) using a 2+1 schedule (at 6, 14, and 40 weeks of age). We aimed to evaluate temporal changes in VT and non-vaccine-serotype (NVT) colonization after 9 years of childhood PCV immunization in South Africa. METHODS Nasopharyngeal swabs were collected from healthy children <60-month-old (n = 571) in 2018 (period-2) and compared with samples (n = 1135) collected during early PCV7-introduction (period-1, 2010-11) in an urban low-income setting (Soweto). Pneumococci were tested for using a multiplex quantitative-polymerase chain reaction serotyping reaction-set. RESULTS Overall pneumococcal colonization in period-2 (49.4%; 282/571) was 27.5% lower than period-1 (68.1%; 773/1135; adjusted odds ratio [aOR]: 0.66; 95% confidence interval [CI]: 0.54-0.88). Colonization by VT was reduced by 54.5% in period-2 (18.6%; 106/571) compared with period-1 (40.9%; 465/1135; aOR: 0.41; 95% CI: 0.3-0.56). Nevertheless, serotype 19F carriage prevalence was higher (8.1%; 46/571) in period-2 compared with period-1 (6.6%; 75/1135; aOR: 2.0; 95% CI: 1.09-3.56). NVT colonization prevalence was similar in period-2 and period-1 (37.8%; 216/571 and 42.4%; 481/1135). CONCLUSION There remains a high residual prevalence of VT, particularly 19F, colonization nine years post-introduction of PCV in the South African childhood immunization program.
Collapse
Affiliation(s)
- Sarah L Downs
- South Africa Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa; Department of Science/ National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa.
| | - Courtney P Olwagen
- South Africa Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa; Department of Science/ National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa
| | - Lara Van Der Merwe
- South Africa Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa; Department of Science/ National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa
| | - Susan A Nzenze
- South Africa Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa; Division of Public Health Surveillance and Response, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Marta C Nunes
- South Africa Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa; Department of Science/ National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa
| | - Shabir A Madhi
- South Africa Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa; Department of Science/ National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa; Infectious Diseases and Oncology Research Institute, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa
| |
Collapse
|
11
|
Rued BE, Federle MJ. The ComRS-SigX Pathway Regulates Natural Transformation in Streptococcus ferus. J Bacteriol 2023; 205:e0008923. [PMID: 37195233 PMCID: PMC10294618 DOI: 10.1128/jb.00089-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/27/2023] [Indexed: 05/18/2023] Open
Abstract
The ability to take up and incorporate foreign DNA via natural transformation is a well-known characteristic of some species of Streptococcus, and is a mechanism that rapidly allows for the acquisition of antibacterial resistance. Here, we describe that the understudied species Streptococcus ferus is also capable of natural transformation and uses a system analogous to that identified in Streptococcus mutans. S. mutans natural transformation is under the control of the alternative sigma factor sigX (also known as comX), whose expression is induced by two types of peptide signals: CSP (competence stimulating peptide, encoded by comC) and XIP (sigX-inducing peptide, encoded by comS). These systems induce competence via either the two-component signal-transduction system ComDE or the RRNPP transcriptional regulator ComR, respectively. Protein and nucleotide homology searches identified putative orthologs of comRS and sigX in S. ferus, but not homologs of S. mutans blpRH (also known as comDE). We demonstrate that natural transformation in S. ferus is induced by a small, double-tryptophan containing sigX-inducing peptide (XIP), akin to that of S. mutans, and requires the presence of the comR and sigX orthologs for efficient transformation. Additionally, we find that natural transformation is induced in S. ferus by both the native XIP and the XIP variant of S. mutans, implying that cross talk between the two species is possible. This process has been harnessed to construct gene deletions in S. ferus and provides a method to genetically manipulate this understudied species. IMPORTANCE Natural transformation is the process by which bacteria take up DNA and allows for acquisition of new genetic traits, including those involved in antibiotic resistance. This study demonstrates that the understudied species Streptococcus ferus is capable of natural transformation using a peptide-pheromone system like that previously identified in Streptococcus mutans and provides a framework for future studies concerning this organism.
Collapse
Affiliation(s)
- Britta E. Rued
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Michael J. Federle
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
12
|
Antezana BS, Lohsen S, Wu X, Vidal JE, Tzeng YL, Stephens DS. Dissemination of Tn 916-Related Integrative and Conjugative Elements in Streptococcus pneumoniae Occurs by Transformation and Homologous Recombination in Nasopharyngeal Biofilms. Microbiol Spectr 2023; 11:e0375922. [PMID: 36912669 PMCID: PMC10101023 DOI: 10.1128/spectrum.03759-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/02/2023] [Indexed: 03/14/2023] Open
Abstract
Multidrug resistance in Streptococcus pneumoniae (or pneumococcus) continues to be a global challenge. An important class of antibiotic resistance determinants disseminating in S. pneumoniae are >20-kb Tn916-related integrative and conjugative elements (ICEs), such as Tn2009, Tn6002, and Tn2010. Although conjugation has been implicated as the transfer mechanism for ICEs in several bacteria, including S. pneumoniae, the molecular basis for widespread dissemination of pneumococcal Tn916-related ICEs remains to be fully elucidated. We found that Tn2009 acquisition was not detectable via in vitro transformation nor conjugative mating with donor GA16833, yielding a transfer frequency of <10-7. GA16833 Tn2009 conjugative gene expression was not significantly induced, and ICE circular intermediate formation was not detected in biofilms. Consistently, Tn2009 transfer efficiency in biofilms was not affected by deletion of the ICE conjugative gene ftsK. However, GA16833 Tn2009 transfer occurred efficiently at a recombination frequency (rF) of 10-4 in dual-strain biofilms formed in a human nasopharyngeal cell bioreactor. DNase I addition and deletions of the early competence gene comE or transformation apparatus genes comEA and comEC in the D39 recipient strain prevented Tn2009 acquisition (rF of <10-7). Genome sequencing and single nucleotide polymorphism analyses of independent recombinants of recipient genotype identified ~33- to ~55-kb donor DNAs containing intact Tn2009, supporting homologous recombination. Additional pneumococcal donor and recipient combinations were demonstrated to efficiently transfer Tn916-related ICEs at a rF of 10-4 in the biofilms. Tn916-related ICEs horizontally disseminate at high frequency in human nasopharyngeal S. pneumoniae biofilms by transformation and homologous recombination of >30-kb DNA fragments into the pneumococcal genome. IMPORTANCE The World Health Organization has designated Streptococcus pneumoniae as a priority pathogen for research and development of new drug treatments due to extensive multidrug resistance. Multiple strains of S. pneumoniae colonize and form mixed biofilms in the human nasopharynx, which could enable exchange of antibiotic resistance determinants. Tn916-related integrative and conjugative elements (ICEs) are largely responsible for the widespread presence of macrolide and tetracycline resistance in S. pneumoniae. Utilizing a system that simulates colonization of donor and recipient S. pneumoniae strains in the human nasopharynx, efficient transfer of Tn916-related ICEs occurred in human nasopharyngeal biofilms, in contrast to in vitro conditions of planktonic cells with exogenous DNA. This high-frequency Tn916-related ICE transfer between S. pneumoniae strains in biofilms was due to transformation and homologous recombination, not conjugation. Understanding the molecular mechanism for dissemination of Tn916-related ICEs can facilitate the design of new strategies to combat antibiotic resistance.
Collapse
Affiliation(s)
- Brenda S. Antezana
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Emory University Laney Graduate School, Atlanta, Georgia, USA
| | - Sarah Lohsen
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Xueqing Wu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine, Hangzhou, China
| | - Jorge E. Vidal
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Yih-Ling Tzeng
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David S. Stephens
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
13
|
Rued BE, Federle MJ. The ComRS-SigX pathway regulates natural transformation in Streptococcus ferus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531454. [PMID: 36945404 PMCID: PMC10028898 DOI: 10.1101/2023.03.06.531454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The ability to take up and incorporate foreign DNA via natural transformation is a well-known characteristic of some species of Streptococcus, and is a mechanism that rapidly allows for the acquisition of antibacterial resistance. Here, we describe that the understudied species Streptococcus ferus is also capable of natural transformation and uses a system analogous to that identified in Streptococcus mutans . S. mutans natural transformation is under the control of the alternative sigma factor sigX (also known as comX ), whose expression is induced by two types of peptide signals: CSP ( c ompetence s timulating p eptide, encoded by comC ) and XIP ( sig X -inducing p eptide, encoded by comS ). These systems induce competence via either the two-component signal-transduction system ComDE or the RRNPP transcriptional regulator ComR, respectively. Protein and nucleotide homology searches identified putative orthologs of comRS and sigX in S. ferus , but not homologs of S. mutans blpRH (also known as comDE ). We demonstrate that natural transformation in S. ferus is induced by a small, double-tryptophan containing competence-inducing peptide (XIP), akin to that of S. mutans , and requires the presence of the comR and sigX orthologs for efficient transformation. Additionally, we find that natural transformation is induced in S. ferus by both the native XIP and the XIP variant of S. mutans , implying that crosstalk between the two species is possible. This process has been harnessed to construct gene deletions in S. ferus and provides a method to genetically manipulate this understudied species. IMPORTANCE Natural transformation is the process by which bacteria take up DNA and allows for acquisition of new genetic traits, including those involved in antibiotic resistance. This study demonstrates that the understudied species Streptococcus ferus is capable of natural transformation using a peptide-pheromone system like that previously identified in Streptococcus mutans and provides a framework for future studies concerning this organism.
Collapse
|
14
|
Jacques LC, Green AE, Barton TE, Baltazar M, Aleksandrowicz J, Xu R, Trochu E, Kadioglu A, Neill DR. Influence of Streptococcus pneumoniae Within-Strain Population Diversity on Virulence and Pathogenesis. Microbiol Spectr 2023; 11:e0310322. [PMID: 36507681 PMCID: PMC9927508 DOI: 10.1128/spectrum.03103-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
The short generation time of many bacterial pathogens allows the accumulation of de novo mutations during routine culture procedures used for the preparation and propagation of bacterial stocks. Taking the major human pathogen Streptococcus pneumoniae as an example, we sought to determine the influence of standard laboratory handling of microbes on within-strain genetic diversity and explore how these changes influence virulence characteristics and experimental outcomes. A single culture of S. pneumoniae D39 grown overnight resulted in the enrichment of previously rare genotypes present in bacterial freezer stocks and the introduction of new variation to the bacterial population through the acquisition of mutations. A comparison of D39 stocks from different laboratories demonstrated how changes in bacterial population structure taking place during individual culture events can cumulatively lead to fixed, divergent change that profoundly alters virulence characteristics. The passage of D39 through mouse models of infection, a process used to standardize virulence, resulted in the enrichment of high-fitness genotypes that were originally rare (<2% frequency) in D39 culture collection stocks and the loss of previously dominant genotypes. In the most striking example, the selection of a <2%-frequency genotype carrying a mutation in sdhB, a gene thought to be essential for the establishment of lung infection, was associated with enhanced systemic virulence. Three separately passaged D39 cultures originating from the same frozen stocks showed considerable genetic divergence despite comparable virulence. IMPORTANCE Laboratory bacteriology involves the use of high-density cultures that we often assume to be clonal but that in reality are populations consisting of multiple genotypes at various abundances. We have demonstrated that the genetic structure of a single population of a widely used Streptococcus pneumoniae strain can be substantially altered by even short-term laboratory handling and culture and that, over time, this can lead to changes in virulence characteristics. Our findings suggest that caution should be applied when comparing data generated in different laboratories using the same strain but also when comparing data within laboratories over time. Given the dramatic reductions in the cost of next-generation sequencing technology in recent years, we advocate for the frequent sampling and sequencing of bacterial isolate collections.
Collapse
Affiliation(s)
- Laura C. Jacques
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Angharad E. Green
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Thomas E. Barton
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Murielle Baltazar
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Julia Aleksandrowicz
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Rong Xu
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Erwan Trochu
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Aras Kadioglu
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Daniel R. Neill
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
15
|
Gibson PS, Bexkens E, Zuber S, Cowley LA, Veening JW. The acquisition of clinically relevant amoxicillin resistance in Streptococcus pneumoniae requires ordered horizontal gene transfer of four loci. PLoS Pathog 2022; 18:e1010727. [PMID: 35877768 PMCID: PMC9352194 DOI: 10.1371/journal.ppat.1010727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/04/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
Understanding how antimicrobial resistance spreads is critical for optimal application of new treatments. In the naturally competent human pathogen Streptococcus pneumoniae, resistance to β-lactam antibiotics is mediated by recombination events in genes encoding the target proteins, resulting in reduced drug binding affinity. However, for the front-line antibiotic amoxicillin, the exact mechanism of resistance still needs to be elucidated. Through successive rounds of transformation with genomic DNA from a clinically resistant isolate, we followed amoxicillin resistance development. Using whole genome sequencing, we showed that multiple recombination events occurred at different loci during one round of transformation. We found examples of non-contiguous recombination, and demonstrated that this could occur either through multiple D-loop formation from one donor DNA molecule, or by the integration of multiple DNA fragments. We also show that the final minimum inhibitory concentration (MIC) differs depending on recipient genome, explained by differences in the extent of recombination at key loci. Finally, through back transformations of mutant alleles and fluorescently labelled penicillin (bocillin-FL) binding assays, we confirm that pbp1a, pbp2b, pbp2x, and murM are the main resistance determinants for amoxicillin resistance, and that the order of allele uptake is important for successful resistance evolution. We conclude that recombination events are complex, and that this complexity contributes to the highly diverse genotypes of amoxicillin-resistant pneumococcal isolates.
Collapse
Affiliation(s)
- Paddy S. Gibson
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Evan Bexkens
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Sylvia Zuber
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Lauren A. Cowley
- Department of Biology & Biochemistry, Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
16
|
Pandey SD, Biswas I. Clp ATPases differentially affect natural competence development in Streptococcus mutans. Microbiologyopen 2022; 11:e1288. [PMID: 35765180 PMCID: PMC9108599 DOI: 10.1002/mbo3.1288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/27/2022] [Indexed: 11/25/2022] Open
Abstract
In naturally competent bacteria, DNA transformation through horizontal gene transfer is an evolutionary mechanism to receive extracellular DNA. Bacteria need to maintain a state of competence to accept foreign DNA, and this is an energy-driven phenomenon that is tightly controlled. In Streptococcus, competence development is a complex process that is not fully understood. In this study, we used Streptococcus mutans, an oral bacterium, to determine how cell density affects competence development. We found that in S. mutans the transformation efficiency is maximum when the transforming DNA was added at low cell density and incubated for 2.5 h before selecting for transformants. We also found that S. mutans cells remain competent until the mid-logarithmic phase, after which the competence decreases drastically. Surprisingly, we observed that individual components of Clp proteolytic complexes differentially regulate competence. If the transformation is carried out at the early growth phase, both ClpP protease and ClpX ATPase are needed for competence. In contrast, we found that both ClpC and ClpE negatively affect competence. We also found that if the transformation is carried out at the mid-logarithmic growth phase ClpX is still required for competence, but ClpP negatively affects competence. While the exact reason for this differential effect of ClpP and ClpX on transformation is currently unknown, we found that both ClpC and ClpE have a negative effect on transformation, which was not reported before.
Collapse
Affiliation(s)
- Satya D. Pandey
- Department of MicrobiologyUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Indranil Biswas
- Department of MicrobiologyUniversity of Kansas Medical CenterKansas CityKansasUSA
| |
Collapse
|
17
|
Zhu Y, Huang WE, Yang Q. Clinical Perspective of Antimicrobial Resistance in Bacteria. Infect Drug Resist 2022; 15:735-746. [PMID: 35264857 PMCID: PMC8899096 DOI: 10.2147/idr.s345574] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/18/2022] [Indexed: 12/22/2022] Open
Abstract
Antimicrobial resistance (AMR) has become a global clinical problem in recent years. With the discovery of antibiotics, infections were not a deadly problem for clinicians as they used to be. However, worldwide AMR comes with the overuse/misuse of antibiotics and the spread of resistance is deteriorated by a multitude of mobile genetic elements and relevant resistant genes. This review provides an overview of the current situation, mechanism, epidemiology, detection methods and clinical treatment for antimicrobial resistant genes in clinical important bacteria including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), penicillin-resistant Streptococcus pneumoniae (PRSP), extended-spectrum β-lactamase-producing Enterobacteriaceae, acquired AmpC β-lactamase-producing Enterobacteriaceae, carbapenemase-producing Enterobacteriaceae (CPE), multidrug-resistant (MDR) Acinetobacter baumannii and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK
| | - Qiwen Yang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Correspondence: Qiwen Yang; Wei E Huang, Email ;
| |
Collapse
|
18
|
Munro LJ, Kell DB. Intelligent host engineering for metabolic flux optimisation in biotechnology. Biochem J 2021; 478:3685-3721. [PMID: 34673920 PMCID: PMC8589332 DOI: 10.1042/bcj20210535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
Optimising the function of a protein of length N amino acids by directed evolution involves navigating a 'search space' of possible sequences of some 20N. Optimising the expression levels of P proteins that materially affect host performance, each of which might also take 20 (logarithmically spaced) values, implies a similar search space of 20P. In this combinatorial sense, then, the problems of directed protein evolution and of host engineering are broadly equivalent. In practice, however, they have different means for avoiding the inevitable difficulties of implementation. The spare capacity exhibited in metabolic networks implies that host engineering may admit substantial increases in flux to targets of interest. Thus, we rehearse the relevant issues for those wishing to understand and exploit those modern genome-wide host engineering tools and thinking that have been designed and developed to optimise fluxes towards desirable products in biotechnological processes, with a focus on microbial systems. The aim throughput is 'making such biology predictable'. Strategies have been aimed at both transcription and translation, especially for regulatory processes that can affect multiple targets. However, because there is a limit on how much protein a cell can produce, increasing kcat in selected targets may be a better strategy than increasing protein expression levels for optimal host engineering.
Collapse
Affiliation(s)
- Lachlan J. Munro
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Douglas B. Kell
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 7ZB, U.K
- Mellizyme Biotechnology Ltd, IC1, Liverpool Science Park, 131 Mount Pleasant, Liverpool L3 5TF, U.K
| |
Collapse
|
19
|
Antibacterial Activity of a Modified Choline Binding Peptide Against Streptococcus pneumoniae with Corresponding Antibody. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10300-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Zhang L, Huang L, Huang M, Wang M, Zhu D, Wang M, Jia R, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Ou X, Mao S, Gao Q, Tian B, Cheng A, Liu M. Effect of Nutritional Determinants and TonB on the Natural Transformation of Riemerella anatipestifer. Front Microbiol 2021; 12:644868. [PMID: 34447355 PMCID: PMC8383284 DOI: 10.3389/fmicb.2021.644868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 07/13/2021] [Indexed: 11/27/2022] Open
Abstract
Riemerella anatipestifer is a gram-negative bacterium that is the first naturally competent bacterium identified in the family Flavobacteriaceae. However, the determinants that influence the natural transformation and the underlying mechanism remain unknown. In this study, we evaluated the effects of various nutritional factors of the GCB medium [glucose, L-glutamine, vitamin B1, Fe (NO3)3, NaCl, phosphate, and peptone], on the natural transformation of R. anatipestifer ATCC 11845. Among the assayed nutrients, peptone and phosphate affected the natural transformation of R. anatipestifer ATCC 11845, and the transformation frequency was significantly decreased when phosphate or peptone was removed from the GCB medium. When the iron chelator 2,2′-dipyridyl (Dip) was added, the transformation frequency was decreased by approximately 100-fold and restored gradually when Fe (NO3)3 was added, suggesting that the natural transformation of R. anatipestifer ATCC 11845 requires iron. Given the importance of TonB in nutrient transportation, we further identified whether TonB is involved in the natural transformation of R. anatipestifer ATCC 11845. Mutation of tonBA or tonBB, but not tbfA, was shown to inhibit the natural transformation of R. anatipestifer ATCC 11845 in the GCB medium. In parallel, it was shown that the tonBB mutant, but not the tonBA mutant, decreased iron acquisition in the GCB medium. This result suggested that the tonBB mutant affects the natural transformation frequency due to the deficiency of iron utilization.
Collapse
Affiliation(s)
- Li Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Li Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Mi Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Mengying Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Dekang Zhu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| |
Collapse
|
21
|
Kaspar JR, Lee K, Richard B, Walker AR, Burne RA. Direct interactions with commensal streptococci modify intercellular communication behaviors of Streptococcus mutans. THE ISME JOURNAL 2021; 15:473-488. [PMID: 32999420 PMCID: PMC8027600 DOI: 10.1038/s41396-020-00789-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/10/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023]
Abstract
The formation of dental caries is a complex process that ultimately leads to damage of the tooth enamel from acids produced by microbes in attached biofilms. The bacterial interactions occurring within these biofilms between cariogenic bacteria, such as the mutans streptococci, and health-associated commensal streptococci, are thought to be critical determinants of health and disease. To better understand these interactions, a Streptococcus mutans reporter strain that actively monitors cell-cell communication via peptide signaling was cocultured with different commensal streptococci. Signaling by S. mutans, normally highly active in monoculture, was completely inhibited by several species of commensals, but only when the bacteria were in direct contact with S. mutans. We identified a novel gene expression pattern that occurred in S. mutans when cultured directly with these commensals. Finally, mutant derivatives of commensals lacking previously shown antagonistic gene products displayed wild-type levels of signal inhibition in cocultures. Collectively, these results reveal a novel pathway(s) in multiple health-associated commensal streptococci that blocks peptide signaling and induces a common contact-dependent pattern of differential gene expression in S. mutans. Understanding the molecular basis for this inhibition will assist in the rational design of new risk assessments, diagnostics, and treatments for the most pervasive oral infectious diseases.
Collapse
Affiliation(s)
- Justin R Kaspar
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA.
- Division of Biosciences, College of Dentistry, Ohio State University, Columbus, OH, USA.
| | - Kyulim Lee
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Brook Richard
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Alejandro R Walker
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Robert A Burne
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
22
|
Nzoyikorera N, Diawara I, Fresia P, Maaloum F, Katfy K, Nayme K, Maaloum M, Cornick J, Chaguza C, Timinouni M, Belabess H, Zerouali K, Elmdaghri N. Whole genomic comparative analysis of Streptococcus pneumoniae serotype 1 isolates causing invasive and non-invasive infections among children under 5 years in Casablanca, Morocco. BMC Genomics 2021; 22:39. [PMID: 33413118 PMCID: PMC7792055 DOI: 10.1186/s12864-020-07316-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 12/09/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Streptococcus pneumoniae serotype 1 remains a leading cause of invasive pneumococcal diseases, even in countries with PCV-10/PCV-13 vaccine implementation. The main objective of this study, which is part of the Pneumococcal African Genome project (PAGe), was to determine the phylogenetic relationships of serotype 1 isolates recovered from children patients in Casablanca (Morocco), compared to these from other African countries; and to investigate the contribution of accessory genes and recombination events to the genetic diversity of this serotype. RESULTS The genome average size of the six-pneumococcus serotype 1 from Casablanca was 2,227,119 bp, and the average content of coding sequences was 2113, ranging from 2041 to 2161. Pangenome analysis of the 80 genomes used in this study revealed 1685 core genes and 1805 accessory genes. The phylogenetic tree based on core genes and the hierarchical bayesian clustering analysis revealed five sublineages with a phylogeographic structure by country. The Moroccan strains cluster in two different lineages, the five invasive strains clusters altogether in a divergent clade distantly related to the non-invasive strain, that cluster with all the serotype 1 genomes from Africa. CONCLUSIONS The whole genome sequencing provides increased resolution analysis of the highly virulent serotype 1 in Casablanca, Morocco. Our results are concordant with previous works, showing that the phylogeography of S. pneumoniae serotype 1 is structured by country, and despite the small size (six isolates) of the Moroccan sample, our analysis shows the genetic cohesion of the Moroccan invasive isolates.
Collapse
Affiliation(s)
- Néhémie Nzoyikorera
- Department of Microbiology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University of Casablanca, Casablanca, Morocco.
- Bacteriology-Virology and Hospital Hygiene Laboratory, Ibn Rochd University Hospital Centre, Casablanca, Morocco.
| | - Idrissa Diawara
- Faculty of Sciences and Health Techniques, Mohammed VI University of Health Sciences (UM6SS) of Casablanca, Casablanca, Morocco
| | - Pablo Fresia
- Institut Pasteur de Montevideo, Pasteur + INIA Joint Unit (UMPI), Montevideo, Uruguay
- Institut Pasteur de Montevideo, Microbial Genomics Laboratory, Montevideo, Uruguay
| | - Fakhreddine Maaloum
- Department of Microbiology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University of Casablanca, Casablanca, Morocco
- Bacteriology-Virology and Hospital Hygiene Laboratory, Ibn Rochd University Hospital Centre, Casablanca, Morocco
| | - Khalid Katfy
- Department of Microbiology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University of Casablanca, Casablanca, Morocco
- Bacteriology-Virology and Hospital Hygiene Laboratory, Ibn Rochd University Hospital Centre, Casablanca, Morocco
| | - Kaotar Nayme
- Molecular Bacteriology Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Mossaab Maaloum
- Laboratory of Biology and Health, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Jennifer Cornick
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | | | - Mohammed Timinouni
- Molecular Bacteriology Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Houria Belabess
- Department of Microbiology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University of Casablanca, Casablanca, Morocco
- Bacteriology-Virology and Hospital Hygiene Laboratory, Ibn Rochd University Hospital Centre, Casablanca, Morocco
| | - Khalid Zerouali
- Department of Microbiology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University of Casablanca, Casablanca, Morocco
- Bacteriology-Virology and Hospital Hygiene Laboratory, Ibn Rochd University Hospital Centre, Casablanca, Morocco
| | - Naima Elmdaghri
- Department of Microbiology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University of Casablanca, Casablanca, Morocco
- Bacteriology-Virology and Hospital Hygiene Laboratory, Ibn Rochd University Hospital Centre, Casablanca, Morocco
| |
Collapse
|
23
|
Genome-wide analysis of DNA uptake across the outer membrane of naturally competent Haemophilus influenzae. iScience 2020; 24:102007. [PMID: 33490915 PMCID: PMC7811141 DOI: 10.1016/j.isci.2020.102007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 11/30/2020] [Accepted: 12/23/2020] [Indexed: 01/15/2023] Open
Abstract
The genomes of naturally competent Pasteurellaceae and Neisseriaceae have many short uptake sequences (USS), which allow them to distinguish self-DNA from foreign DNA. To fully characterize this preference we developed genome-wide maps of DNA uptake using both a sequence-based computational model and genomic DNA that had been sequenced after uptake by and recovery from competent Haemophilus influenzae cells. When DNA fragments were shorter than the average USS spacing of ∼1,000 bp, sharp peaks of uptake were centered at USS and separated by valleys with 1000-fold lower uptake. Long DNA fragments (1.5–17 kb) gave much less variation, with 90% of positions having uptake within 2-fold of the mean. All detectable uptake biases arose from sequences that fit the USS uptake motif. Simulated competition predicted that, in its respiratory tract environment, H. influenzae will efficiently take up its own DNA even when human DNA is present in 100-fold excess. For short DNA fragments, an uptake sequence (USS) improves DNA uptake 1000-fold Most longer H. influenzae fragments have USS, giving even uptake across the genome Preferred USS are stiff, so strand melting may facilitate kinking for uptake H. influenzae will take up its own DNA 100-fold better than human DNA
Collapse
|
24
|
Improved High-Throughput Sequencing of the Human Oral Microbiome: From Illumina to PacBio. ACTA ACUST UNITED AC 2020; 2020:6678872. [PMID: 33381248 PMCID: PMC7748900 DOI: 10.1155/2020/6678872] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/06/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022]
Abstract
Background A comprehensive understanding of the commensal microflora and its relation to health is essential for preventing and combating diseases. The aim of this study was to examine the structure of the oral microbiome by using different sequencing technologies. Material and Methods. Five preschool children with no symptoms of oral and systemic diseases were recruited. Samples of saliva were collected. A 468 bp insert size library was constructed on the MiSeq platform and then subjected to 300 bp paired-end sequencing. Libraries with longer insert sizes, including a full-length 16S rDNA gene, were sequenced on the PacBio RS II platform. Results A total of 122.6 Mb of raw data, including 244,967 high-quality sequences, were generated by the MiSeq platform, while 134.6 Mb of raw data, including 70,030 high-quality reads, were generated by the PacBio RS II platform. Clustering of the unique sequences into OTUs at 3% dissimilarity resulted in an average of 225 OTUs on the MiSeq platform; however, the number of OTUs generated on the PacBio RS II platform was 449, far greater than the number of OTUs generated on the MiSeq platform. A total of 437 species belonging to 10 phyla and 60 genera were detected by the PacBio RS II platform, while 163 species belonging to 12 phyla and 72 genera were detected by the MiSeq platform. Conclusions The oral microflora of healthy Chinese children were analyzed. Compared with traditional 16S rRNA sequencing technology, the PacBio system, despite providing a lower amount of clean data, surpassed the resolution of the MiSeq platform by improving the read length and annotating the nucleotide sequences at the species or strain level. This trial is registered with NCT02341352.
Collapse
|
25
|
El-Kholy A, Badawy M, Gad M, Soliman M. Serotypes and Antimicrobial Susceptibility of Nasopharyngeal Isolates of Streptococcus pneumoniae from Children Less Than 5 Years Old in Egypt. Infect Drug Resist 2020; 13:3669-3677. [PMID: 33116686 PMCID: PMC7586055 DOI: 10.2147/idr.s250315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 09/30/2020] [Indexed: 11/28/2022] Open
Abstract
Purpose Streptococcus pneumoniae (S. pneumoniae) is the etiology of severe and life-threatening infections in children less than 5 years old. Though pneumococcal conjugate vaccines (PCVs) are effective in the prevention of pneumococcal infections, yet they are not included in the National Immunization Program in Egypt pending the identification of pathogenic serotypes. As S. pneumoniae colonization of the pharynx predisposes to pneumonia and invasive pneumococcal disease (IPD) caused by the colonizing serotypes, identification of the nasopharyngeal (NP) serotypes can be a surrogate to the invasive serotypes. In this study, we aimed to 1. Identify the serotypes and antimicrobial susceptibility testing (AST) of Streptococcus pneumoniae colonizing the nasopharynx of Egyptian children younger than 5 years in two successive winter seasons. 2. Correlate the identified serotypes with vaccine coverage of the 13-valent conjugate pneumococcal vaccines (PCV13). 3. Compare the serotypes and AST of S. pneumoniae from NP to those of IPD that were routinely identified in our clinical laboratory during the study period. Materials and Methods The study was conducted in two successive winter seasons (December 2015–March 2016; December 2016–March 2017). We enrolled 334 children, aged 6 months to 5 years, attending the outpatient general clinics of Cairo University Children Hospital, excluding those with fever, signs of infection, history of antibiotic intake or hospitalization in the preceding month. We tested NP swabs for S. pneumoniae by culture and real-time PCR. Serotyping was performed by sequential multiplex PCR for all positive samples. AST was done to S. pneumoniae isolates by Vitek-2™ (BioMérieux, Marcy-L’Etoile, France). We included routinely detected S. pneumoniae from sterile body sites during the study period, and identified their serotypes and AST. Results PCR was positive for pneumococci in 217 out of 334 pharyngeal swabs (65%), including 186 typable samples. The most common serotypes were serotypes 1, 6ABC, 19 F, 5 and 18ABC. By culture, we isolated only 110 out of 334 pharyngeal swabs (32.9%). The theoretical coverage of the PCV13 vaccine for the detected serotypes was 77.4%. The AST of NP isolates revealed low susceptibility rates to all antimicrobials except for vancomycin, linezolid, levofloxacin and clindamycin. During the study period, we identified 40 IPD; 21 identified by PCR and 19 by culture. The commonest pneumococcal serotypes were 1, 18ABC, 6ABC and 5. The PCV13 coverage was 75%. By Vitek-2, the isolates showed 100%, 100%, 94.7%, 89.5%, 84.2%, 84.2% and 78.9% susceptibility to vancomycin, linezolid, clindamycin, levofloxacin, penicillin, cefotaxim and erythromycin, respectively. Conclusion Based on the serotype vaccine coverage and the emerging antimicrobial resistance of S. pneumoniae, PCVs will be valuable to Egyptian children.
Collapse
Affiliation(s)
- Amani El-Kholy
- Department of Clinical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Magda Badawy
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Maha Gad
- Department of Clinical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - May Soliman
- Department of Clinical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
26
|
Kurushima J, Campo N, van Raaphorst R, Cerckel G, Polard P, Veening JW. Unbiased homeologous recombination during pneumococcal transformation allows for multiple chromosomal integration events. eLife 2020; 9:e58771. [PMID: 32965219 PMCID: PMC7567608 DOI: 10.7554/elife.58771] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/22/2020] [Indexed: 01/25/2023] Open
Abstract
The spread of antimicrobial resistance and vaccine escape in the human pathogen Streptococcus pneumoniae can be largely attributed to competence-induced transformation. Here, we studied this process at the single-cell level. We show that within isogenic populations, all cells become naturally competent and bind exogenous DNA. We find that transformation is highly efficient and that the chromosomal location of the integration site or whether the transformed gene is encoded on the leading or lagging strand has limited influence on recombination efficiency. Indeed, we have observed multiple recombination events in single recipients in real-time. However, because of saturation and because a single-stranded donor DNA replaces the original allele, transformation efficiency has an upper threshold of approximately 50% of the population. The fixed mechanism of transformation results in a fail-safe strategy for the population as half of the population generally keeps an intact copy of the original genome.
Collapse
Affiliation(s)
- Jun Kurushima
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of LausanneLausanneSwitzerland
| | - Nathalie Campo
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI)ToulouseFrance
| | - Renske van Raaphorst
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of LausanneLausanneSwitzerland
| | - Guillaume Cerckel
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of LausanneLausanneSwitzerland
| | - Patrice Polard
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI)ToulouseFrance
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of LausanneLausanneSwitzerland
| |
Collapse
|
27
|
Golden AR, Baxter MR, Davidson RJ, Martin I, Demczuk W, Mulvey MR, Karlowsky JA, Hoban DJ, Zhanel GG, Adam HJ. Comparison of antimicrobial resistance patterns in Streptococcus pneumoniae from respiratory and blood cultures in Canadian hospitals from 2007-16. J Antimicrob Chemother 2020; 74:iv39-iv47. [PMID: 31505644 DOI: 10.1093/jac/dkz286] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES To compare the epidemiology and antimicrobial susceptibility patterns of Streptococcus pneumoniae collected from respiratory and blood culture samples in Canada between 2007 and 2016. METHODS S. pneumoniae strains were obtained from Canadian hospitals as part of the ongoing national surveillance study, CANWARD. Isolates were serotyped using the Quellung method. Antimicrobial susceptibility testing was performed using the CLSI broth microdilution method. MDR and XDR were defined as resistance to three or more and five or more classes of antimicrobials, respectively. RESULTS Of the 2581 S. pneumoniae isolates collected, 1685 (65.3%) and 896 (34.7%) were obtained from respiratory and blood samples, respectively. Respiratory isolates demonstrated lower rates of antimicrobial susceptibility than blood isolates to penicillin, ceftriaxone, clarithromycin, clindamycin, doxycycline and trimethoprim/sulfamethoxazole (P ≤ 0.03). From 2007 to 2016, invasive isolates demonstrated trends towards increasing penicillin susceptibility and decreasing clarithromycin susceptibility. MDR was significantly higher in respiratory S. pneumoniae compared with blood (9.1% versus 4.5%, P < 0.0001). Serotypes 11A, 16F, 19F, 23A/B/F, 34, 35B and non-typeable strains were more commonly isolated from respiratory specimens, while 4, 5, 7F, 8, 12F, 14 and 19A were more commonly invasive serotypes. Numerous serotypes, including 3 and 22F, were isolated frequently from both specimen sources. CONCLUSIONS S. pneumoniae from respiratory samples demonstrated lower antimicrobial susceptibilities and higher MDR in a greater diversity of serotypes than isolates obtained from blood. Many serotypes were associated with one specific specimen source, while others were associated with both; genetic characterization is necessary to elucidate the specific factors influencing the ability of these serotypes to commonly cause both invasive and non-invasive disease.
Collapse
Affiliation(s)
- Alyssa R Golden
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba, Canada
| | - Melanie R Baxter
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba, Canada
| | - Ross J Davidson
- Queen Elizabeth II Health Sciences Centre, Dalhousie University, 5788 University Avenue, Halifax, Nova Scotia, Canada
| | - Irene Martin
- National Microbiology Laboratory - Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba, Canada
| | - Walter Demczuk
- National Microbiology Laboratory - Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba, Canada
| | - Michael R Mulvey
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba, Canada.,National Microbiology Laboratory - Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba, Canada
| | - James A Karlowsky
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba, Canada.,Department of Clinical Microbiology, Health Sciences Centre, Diagnostic Services - Shared Health Manitoba, MS673-820 Sherbrook Street, Winnipeg, Manitoba, Canada
| | - Daryl J Hoban
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba, Canada.,Department of Clinical Microbiology, Health Sciences Centre, Diagnostic Services - Shared Health Manitoba, MS673-820 Sherbrook Street, Winnipeg, Manitoba, Canada
| | - George G Zhanel
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba, Canada
| | - Heather J Adam
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba, Canada.,Department of Clinical Microbiology, Health Sciences Centre, Diagnostic Services - Shared Health Manitoba, MS673-820 Sherbrook Street, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
28
|
García López E, Martín-Galiano AJ. The Versatility of Opportunistic Infections Caused by Gemella Isolates Is Supported by the Carriage of Virulence Factors From Multiple Origins. Front Microbiol 2020; 11:524. [PMID: 32296407 PMCID: PMC7136413 DOI: 10.3389/fmicb.2020.00524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/11/2020] [Indexed: 12/29/2022] Open
Abstract
The molecular basis of the pathogenesis of the opportunistic invasive infections caused by isolates of the Gemella genus remains largely unknown. Moreover, inconsistencies in the current species assignation were detected after genome-level comparison of 16 public Gemella isolates. A literature search detected that, between the two most pathogenic species, Gemella morbillorum causes about twice the number of cases compared to Gemella haemolysans. These two species shared their mean diseases - sepsis and endocarditis - but differed in causing other syndromes. A number of well-known virulence factors were harbored by all species, such as a manganese transport/adhesin sharing 83% identity from oral endocarditis-causing streptococci. Likewise, all Gemellae carried the genes required for incorporating phosphorylcholine into their cell walls and encoded some choline-binding proteins. In contrast, other proteins were species-specific, which may justify the known epidemiological differences. G. haemolysans, but not G. morbillorum, harbor a gene cluster potentially encoding a polysaccharidic capsule. Species-specific surface determinants also included Rib and MucBP repeats, hemoglobin-binding NEAT domains, peptidases of C5a complement factor and domains that recognize extracellular matrix molecules exposed in damaged heart valves, such as collagen and fibronectin. Surface virulence determinants were associated with several taxonomically dispersed opportunistic genera of the oral microbiota, such as Granulicatella, Parvimonas, and Streptococcus, suggesting the existence of a horizontally transferrable gene reservoir in the oral environment, likely facilitated by close proximity in biofilms and ultimately linked to endocarditis. The identification of the Gemella virulence pool should be implemented in whole genome-based protocols to rationally predict the pathogenic potential in ongoing clinical infections caused by these poorly known bacterial pathogens.
Collapse
Affiliation(s)
- Ernesto García López
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Antonio J. Martín-Galiano
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
| |
Collapse
|
29
|
Marimon JM, Ardanuy C. Epidemiology of pneumococcal diseases in Spain after the introduction of pneumococcal conjugate vaccines. Enferm Infecc Microbiol Clin 2020; 39:142-150. [PMID: 32229129 DOI: 10.1016/j.eimc.2020.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 01/23/2023]
Abstract
In Spain, the use of pneumococcal conjugate vaccines (PCVs) has led to a decrease in the incidence of vaccine serotypes causing invasive and non-invasive disease in vaccinated and unvaccinated children and adults. Further, the coverage of most of the resistant serotypes by vaccines resulted in an overall decline in antibiotic resistance. As an undesirable effect, there was an increase in the non-vaccine serotypes causing infection, especially serotypes 1, 7F and 19A after PCV7 and serotype 8 after PCV13 approval, this making the beneficial effect of vaccination less apparent. The inclusion of PCVs in childhood vaccination schedules, its approval for use in healthy adults and the increasing number of serotypes covered by the vaccines in development are strong strategies in the fight against pneumococcal disease. Nonetheless, the epidemiology of Streptococcus pneumoniae infections must be still under surveillance to detect new changes, given the high capacity for recombination and adaptability of this always-surprising microorganism.
Collapse
Affiliation(s)
- Jose Maria Marimon
- Biodonostia, Infectious Diseases Area, Respiratory Infection and Antimicrobial Resistance Group, Osakidetza Basque Health Service, Donostialdea Integrated Health Organisation, Microbiology Department, San Sebastian, Spain.
| | - Carmen Ardanuy
- Microbiology Department. Hospital Universitari Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Spain; Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain; Department of Pathology and Experimental Therapeutics, School of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
30
|
Carvalho G, Fouchet D, Danesh G, Godeux AS, Laaberki MH, Pontier D, Charpentier X, Venner S. Bacterial Transformation Buffers Environmental Fluctuations through the Reversible Integration of Mobile Genetic Elements. mBio 2020; 11:mBio.02443-19. [PMID: 32127449 PMCID: PMC7064763 DOI: 10.1128/mbio.02443-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Horizontal gene transfer (HGT) promotes the spread of genes within bacterial communities. Among the HGT mechanisms, natural transformation stands out as being encoded by the bacterial core genome. Natural transformation is often viewed as a way to acquire new genes and to generate genetic mixing within bacterial populations. Another recently proposed function is the curing of bacterial genomes of their infectious parasitic mobile genetic elements (MGEs). Here, we propose that these seemingly opposing theoretical points of view can be unified. Although costly for bacterial cells, MGEs can carry functions that are at points in time beneficial to bacteria under stressful conditions (e.g., antibiotic resistance genes). Using computational modeling, we show that, in stochastic environments, an intermediate transformation rate maximizes bacterial fitness by allowing the reversible integration of MGEs carrying resistance genes, although these MGEs are costly for host cell replication. Based on this dual function (MGE acquisition and removal), transformation would be a key mechanism for stabilizing the bacterial genome in the long term, and this would explain its striking conservation.IMPORTANCE Natural transformation is the acquisition, controlled by bacteria, of extracellular DNA and is one of the most common mechanisms of horizontal gene transfer, promoting the spread of resistance genes. However, its evolutionary function remains elusive, and two main roles have been proposed: (i) the new gene acquisition and genetic mixing within bacterial populations and (ii) the removal of infectious parasitic mobile genetic elements (MGEs). While the first one promotes genetic diversification, the other one promotes the removal of foreign DNA and thus genome stability, making these two functions apparently antagonistic. Using a computational model, we show that intermediate transformation rates, commonly observed in bacteria, allow the acquisition then removal of MGEs. The transient acquisition of costly MGEs with resistance genes maximizes bacterial fitness in environments with stochastic stress exposure. Thus, transformation would ensure both a strong dynamic of the bacterial genome in the short term and its long-term stabilization.
Collapse
Affiliation(s)
- Gabriel Carvalho
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| | - David Fouchet
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| | - Gonché Danesh
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| | - Anne-Sophie Godeux
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, Villeurbanne, France
- CNRS UMR5308, École Normale Supérieure de Lyon, University of Lyon, Villeurbanne, France
| | - Maria-Halima Laaberki
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, Villeurbanne, France
- Université de Lyon, VetAgro Sup, Marcy-l'Étoile, France
- CNRS UMR5308, École Normale Supérieure de Lyon, University of Lyon, Villeurbanne, France
| | - Dominique Pontier
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| | - Xavier Charpentier
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, Villeurbanne, France
- CNRS UMR5308, École Normale Supérieure de Lyon, University of Lyon, Villeurbanne, France
| | - Samuel Venner
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| |
Collapse
|
31
|
Class A PBPs have a distinct and unique role in the construction of the pneumococcal cell wall. Proc Natl Acad Sci U S A 2020; 117:6129-6138. [PMID: 32123104 PMCID: PMC7084106 DOI: 10.1073/pnas.1917820117] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Peptidoglycan, the main structural component of the bacterial cell wall, is made of glycan strands cross-linked by short peptides. It has long been assumed that class A penicillin-binding proteins (PBPs) are the only enzymes capable of synthesizing glycan strands from lipid II. Recently, however, it was discovered that two non-PBP proteins, FtsW and RodA, constitute the core peptidoglycan polymerizing enzymes of the divisome and elongasome, respectively. What, then, is the role of class A PBPs in the construction of the bacterial cell wall? In contrast to previous assumptions, our results strongly suggest that class A PBPs are not an intrinsic part of the divisome and elongasome but have important autonomous roles in construction of the fully mature bacterial cell wall. In oval-shaped Streptococcus pneumoniae, septal and longitudinal peptidoglycan syntheses are performed by independent functional complexes: the divisome and the elongasome. Penicillin-binding proteins (PBPs) were long considered the key peptidoglycan-synthesizing enzymes in these complexes. Among these were the bifunctional class A PBPs, which are both glycosyltransferases and transpeptidases, and monofunctional class B PBPs with only transpeptidase activity. Recently, however, it was established that the monofunctional class B PBPs work together with transmembrane glycosyltransferases (FtsW and RodA) from the shape, elongation, division, and sporulation (SEDS) family to make up the core peptidoglycan-synthesizing machineries within the pneumococcal divisome (FtsW/PBP2x) and elongasome (RodA/PBP2b). The function of class A PBPs is therefore now an open question. Here we utilize the peptidoglycan hydrolase CbpD that targets the septum of S. pneumoniae cells to show that class A PBPs have an autonomous role during pneumococcal cell wall synthesis. Using assays to specifically inhibit the function of PBP2x and FtsW, we demonstrate that CbpD attacks nascent peptidoglycan synthesized by the divisome. Notably, class A PBPs could process this nascent peptidoglycan from a CbpD-sensitive to a CbpD-resistant form. The class A PBP-mediated processing was independent of divisome and elongasome activities. Class A PBPs thus constitute an autonomous functional entity which processes recently formed peptidoglycan synthesized by FtsW/PBP2×. Our results support a model in which mature pneumococcal peptidoglycan is synthesized by three functional entities, the divisome, the elongasome, and bifunctional PBPs. The latter modify existing peptidoglycan but are probably not involved in primary peptidoglycan synthesis.
Collapse
|
32
|
Li S, Lu G, Fang X, Ramelot TA, Kennedy MA, Zhou X, Gong P, Zhang X, Liu M, Zhu J, Yang Y. Structural insight into the length-dependent binding of ssDNA by SP_0782 from Streptococcus pneumoniae, reveals a divergence in the DNA-binding interface of PC4-like proteins. Nucleic Acids Res 2020; 48:432-444. [PMID: 31713614 PMCID: PMC7145681 DOI: 10.1093/nar/gkz1045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/30/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022] Open
Abstract
SP_0782 from Streptococcus pneumoniae is a dimeric protein that potentially binds with single-stranded DNA (ssDNA) in a manner similar to human PC4, the prototype of PC4-like proteins, which plays roles in transcription and maintenance of genome stability. In a previous NMR study, SP_0782 exhibited an ssDNA-binding property different from YdbC, a prokaryotic PC4-like protein from Lactococcus lactis, but the underlying mechanism remains unclear. Here, we show that although SP_0782 adopts an overall fold similar to those of PC4 and YdbC, the ssDNA length occupied by SP_0782 is shorter than those occupied by PC4 and YdbC. SP_0782 exhibits varied binding patterns for different lengths of ssDNA, and tends to form large complexes with ssDNA in a potential high-density binding manner. The structures of SP_0782 complexed with different ssDNAs reveal that the varied binding patterns are associated with distinct capture of nucleotides in two major DNA-binding regions of SP_0782. Moreover, a comparison of known structures of PC4-like proteins complexed with ssDNA reveals a divergence in the binding interface between prokaryotic and eukaryotic PC4-like proteins. This study provides insights into the ssDNA-binding mechanism of PC4-like proteins, and benefits further study regarding the biological function of SP_0782, probably in DNA protection and natural transformation.
Collapse
MESH Headings
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Binding Sites
- Crystallography, X-Ray
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Single-Stranded/chemistry
- DNA, Single-Stranded/genetics
- DNA, Single-Stranded/metabolism
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Humans
- Kinetics
- Lactococcus lactis/genetics
- Lactococcus lactis/metabolism
- Models, Molecular
- Nucleic Acid Conformation
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Folding
- Protein Interaction Domains and Motifs
- Streptococcus pneumoniae/genetics
- Streptococcus pneumoniae/metabolism
- Thermodynamics
- Transcription Factors/chemistry
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Shuangli Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoliang Lu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Fang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Theresa A Ramelot
- Department of Chemistry and Biochemistry, and the Northeast Structural Genomics Consortium, Miami University, Oxford, OH 45056, USA
| | - Michael A Kennedy
- Department of Chemistry and Biochemistry, and the Northeast Structural Genomics Consortium, Miami University, Oxford, OH 45056, USA
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Peng Gong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xu Zhang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Jiang Zhu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| |
Collapse
|
33
|
Hathaway LJ. New Virulence Factors Identified in Pneumococcal Meningitis. Trends Microbiol 2019; 27:895-896. [PMID: 31506191 DOI: 10.1016/j.tim.2019.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/26/2019] [Indexed: 11/15/2022]
Abstract
Streptococcus pneumoniae causes bacterial meningitis with a high fatality rate globally. Patients who survive have a significant risk of lasting disabilities. Schmidt et al. have identified bacterial proteins that play a crucial role in pneumococcal meningitis: AliB, part of an oligopeptide transporter, and ComDE of the competence regulator.
Collapse
Affiliation(s)
- Lucy J Hathaway
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 51, CH-3001 Bern, Switzerland.
| |
Collapse
|
34
|
Winkler ME, Morrison DA. Competence beyond Genes: Filling in the Details of the Pneumococcal Competence Transcriptome by a Systems Approach. J Bacteriol 2019; 201:e00238-19. [PMID: 30988030 PMCID: PMC6560134 DOI: 10.1128/jb.00238-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
DNA uptake by natural competence is a central process underlying the genetic plasticity, biology, and virulence of the human respiratory opportunistic pathogen Streptococcus pneumoniae A study reported in this issue (J. Slager, R. Aprianto, and J.-W. Veening, J. Bacteriol. 201:e00780-18, https://doi.org/10.1128/JB.00780-18) combined deep-genome annotation and high-resolution transcriptome analyses to considerably extend the previous model of temporal regulation of competence at the operon and component gene levels. That extended study also provides a playbook for updating, refining, and extending genomic data sets and making them publicly available.
Collapse
Affiliation(s)
- Malcolm E Winkler
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Donald A Morrison
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
35
|
Kaspar JR, Walker AR. Expanding the Vocabulary of Peptide Signals in Streptococcus mutans. Front Cell Infect Microbiol 2019; 9:194. [PMID: 31245303 PMCID: PMC6563777 DOI: 10.3389/fcimb.2019.00194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/21/2019] [Indexed: 12/18/2022] Open
Abstract
Streptococci, including the dental pathogen Streptococcus mutans, undergo cell-to-cell signaling that is mediated by small peptides to control critical physiological functions such as adaptation to the environment, control of subpopulation behaviors and regulation of virulence factors. One such model pathway is the regulation of genetic competence, controlled by the ComRS signaling system and the peptide XIP. However, recent research in the characterization of this pathway has uncovered novel operons and peptides that are intertwined into its regulation. These discoveries, such as cell lysis playing a critical role in XIP release and importance of bacterial self-sensing during the signaling process, have caused us to reevaluate previous paradigms and shift our views on the true purpose of these signaling systems. The finding of new peptides such as the ComRS inhibitor XrpA and the peptides of the RcrRPQ operon also suggests there may be more peptides hidden in the genomes of streptococci that could play critical roles in the physiology of these organisms. In this review, we summarize the recent findings in S. mutans regarding the integration of other circuits into the ComRS signaling pathway, the true mode of XIP export, and how the RcrRPQ operon controls competence activation. We also look at how new technologies can be used to re-annotate the genome to find new open reading frames that encode peptide signals. Together, this summary of research will allow us to reconsider how we perceive these systems to behave and lead us to expand our vocabulary of peptide signals within the genus Streptococcus.
Collapse
Affiliation(s)
- Justin R. Kaspar
- Department of Oral Biology, University of Florida, Gainesville, FL, United States
| | | |
Collapse
|
36
|
Affiliation(s)
- James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia.
| | - Claudia Trappetti
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| |
Collapse
|
37
|
Salvadori G, Junges R, Morrison DA, Petersen FC. Competence in Streptococcus pneumoniae and Close Commensal Relatives: Mechanisms and Implications. Front Cell Infect Microbiol 2019; 9:94. [PMID: 31001492 PMCID: PMC6456647 DOI: 10.3389/fcimb.2019.00094] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/15/2019] [Indexed: 12/21/2022] Open
Abstract
The mitis group of streptococci comprises species that are common colonizers of the naso-oral-pharyngeal tract of humans. Streptococcus pneumoniae and Streptococcus mitis are close relatives and share ~60–80% of orthologous genes, but still present striking differences in pathogenic potential toward the human host. S. mitis has long been recognized as a reservoir of antibiotic resistance genes for S. pneumoniae, as well as a source for capsule polysaccharide variation, leading to resistance and vaccine escape. Both species share the ability to become naturally competent, and in this context, competence-associated killing mechanisms such as fratricide are thought to play an important role in interspecies gene exchange. Here, we explore the general mechanism of natural genetic transformation in the two species and touch upon the fundamental clinical and evolutionary implications of sharing similar competence, fratricide mechanisms, and a large fraction of their genomic DNA.
Collapse
Affiliation(s)
- Gabriela Salvadori
- Faculty of Dentistry, Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Roger Junges
- Faculty of Dentistry, Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Donald A Morrison
- Department of Biological Sciences, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Fernanda C Petersen
- Faculty of Dentistry, Institute of Oral Biology, University of Oslo, Oslo, Norway
| |
Collapse
|
38
|
Characterization of a Signaling System in Streptococcus mitis That Mediates Interspecies Communication with Streptococcus pneumoniae. Appl Environ Microbiol 2019; 85:AEM.02297-18. [PMID: 30389765 DOI: 10.1128/aem.02297-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/25/2018] [Indexed: 12/14/2022] Open
Abstract
Streptococcus mitis is found in the oral cavity and nasopharynx and forms a significant portion of the human microbiome. In this study, in silico analyses indicated the presence of an Rgg regulator and short hydrophobic peptide (Rgg/SHP) cell-to-cell communication system in S. mitis Although Rgg presented greater similarity to a repressor in Streptococcus pyogenes, autoinducing assays and genetic mutation analysis revealed that in S. mitis Rgg acts as an activator. Transcriptome analysis showed that in addition to shp, the system regulates two other downstream genes, comprising a segment of a putative lantibiotic gene cluster that is in a conjugative element locus in different members of the mitis group. Close comparison to a similar lantibiotic gene cluster in Streptococcus pneumoniae indicated that S. mitis lacked the full set of genes. Despite the potential of SHP to trigger a futile cycle of autoinduction, growth was not significantly affected for the rgg mutant under normal or antibiotic stress conditions. The S. mitis SHP was, however, fully functional in promoting cross-species communication and increasing S. pneumoniae surface polysaccharide production, which in this species is regulated by Rgg/SHP. The activity of SHPs produced by both species was detected in cocultures using a S. mitis reporter strain. In competitive assays, a slight advantage was observed for the rgg mutants. We conclude that the Rgg/SHP system in S. mitis regulates the expression of its own shp and activates an Rgg/SHP system in S. pneumoniae that regulates surface polysaccharide synthesis. Fundamentally, cross-communication of such systems may have a role during multispecies interactions.IMPORTANCE Bacteria secrete signal molecules into the environment which are sensed by other cells when the density reaches a certain threshold. In this study, we describe a communication system in Streptococcus mitis, a commensal species from the oral cavity, which we also found in several species and strains of streptococci from the mitis group. Further, we show that this system can promote cross-communication with S. pneumoniae, a closely related major human pathogen. Importantly, we show that this cross-communication can take place during coculture. While the genes regulated in S. mitis are likely part of a futile cycle of activation, the target genes in S. pneumoniae are potentially involved in virulence. The understanding of such complex communication networks can provide important insights into the dynamics of bacterial communities.
Collapse
|
39
|
Junges R, Salvadori G, Chen T, Morrison DA, Petersen FC. Hidden Gems in the Transcriptome Maps of Competent Streptococci. Front Mol Biosci 2019; 5:116. [PMID: 30662898 PMCID: PMC6328492 DOI: 10.3389/fmolb.2018.00116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 12/11/2018] [Indexed: 11/22/2022] Open
Abstract
Natural transformation is regarded as an important mechanism in bacteria that allows for adaptation to different environmental stressors by ensuring genome plasticity. Since the discovery of this phenomenon in Streptococcus pneumoniae, remarkable progress has been made in the understanding of the molecular mechanisms and pathways coordinating this process. Recently, the advent of high-throughput sequencing allows the posing of questions that address the system at a larger scale but also allow for the creation of high-resolution maps of transcription. Thus, while much is already known about genetic competence in streptococci, recent studies continue to reveal intricate novel regulation pathways and components. In this perspective article, we highlight the use of transcriptional profiling and mapping as a valuable resource in the identification and characterization of “hidden gems” pertinent to the natural transformation system. Such strategies have recently been employed in a variety of different species. In S. mutans, for example, genome editing combined with the power of promoter mapping and RNA-Seq allowed for the identification of a link between the ComCDE and the ComRS systems, a ComR positive feedback loop mediated by SigX, and the XrpA peptide, encoded within sigX, which inhibits competence. In S. pneumoniae, a novel member of the competence regulon termed BriC was found to be directly under control of ComE and to promote biofilm formation and nasopharyngeal colonization but not competence. Together these new technologies enable us to discover new links and to revisit old pathways in the compelling study of natural genetic transformation.
Collapse
Affiliation(s)
- Roger Junges
- Faculty of Dentistry, Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Gabriela Salvadori
- Faculty of Dentistry, Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Tsute Chen
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, United States
| | - Donald A Morrison
- Department of Biological Sciences, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Fernanda C Petersen
- Faculty of Dentistry, Institute of Oral Biology, University of Oslo, Oslo, Norway
| |
Collapse
|
40
|
Sturød K, Salvadori G, Junges R, Petersen FC. Antibiotics alter the window of competence for natural transformation in streptococci. Mol Oral Microbiol 2018; 33:378-387. [PMID: 29968346 DOI: 10.1111/omi.12240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/29/2018] [Indexed: 12/17/2022]
Abstract
Streptococcus pneumoniae transformation occurs within a short competence window, during which the alternative sigma factor X (SigX) is activated to orchestrate the expression of genes allowing extracellular DNA uptake and recombination. Importantly, antibiotic stress promotes transcriptional changes that may affect more than 20% of the S. pneumoniae genome, including competence genes. These can be activated or repressed, depending on the antibiotic agent. For most antibiotics, however, it remains unknown whether transcriptional effects on competence translate into altered transformability. Here we investigate the effect of antibiotic subinhibitory concentrations on sigX expression using a luciferase reporter, and correlate for the first time with transformation kinetics. Induction of sigX expression by ciprofloxacin and novobiocin correlated with increased and prolonged transformability in S. pneumoniae. The prolonged effect of ciprofloxacin on competence and transformation was also observed in the streptococcal relatives Streptococcus mitis and Streptococcus mutans. In contrast, tetracycline and erythromycin, which induced S. pneumoniae sigX expression, had either an inhibitory or a nonsignificant effect on transformation, whereas streptomycin and the β-lactam ampicillin, inhibited both sigX expression and transformation. Thus, the results show that antibiotics may vary in their effects on competence, ranging from inhibitory to stimulatory effects, and that responses affecting transcription of sigX do not always correlate with the transformation outcomes. Antibiotics that increase or decrease transformation are of particular clinical relevance, as they may alter the ability of S. pneumoniae to escape vaccines and antibiotics.
Collapse
Affiliation(s)
- K Sturød
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - G Salvadori
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - R Junges
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - F C Petersen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
41
|
Kaspar J, Shields RC, Burne RA. Competence inhibition by the XrpA peptide encoded within the comX gene of Streptococcus mutans. Mol Microbiol 2018; 109:345-364. [PMID: 29802741 DOI: 10.1111/mmi.13989] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2018] [Indexed: 01/06/2023]
Abstract
Streptococcus mutans displays complex regulation of natural genetic competence. Competence development in S. mutans is controlled by a peptide derived from ComS (XIP); which along with the cytosolic regulator ComR controls the expression of the alternative sigma factor comX, the master regulator of competence development. Recently, a gene embedded within the coding region of comX was discovered and designated xrpA (comX regulatory peptide A). XrpA was found to be an antagonist of ComX, but the mechanism was not established. In this study, we reveal through both genomic and proteomic techniques that XrpA is the first described negative regulator of ComRS systems in streptococci. Transcriptomic and promoter activity assays in the ΔxrpA strain revealed an up-regulation of genes controlled by both the ComR- and ComX-regulons. An in vivo protein crosslinking and in vitro fluorescent polarization assays confirmed that the N-terminal region of XrpA were found to be sufficient in inhibiting ComR-XIP complex binding to ECom-box located within the comX promoter. This inhibitory activity was sufficient for decreases in PcomX activity, transformability and ComX accumulation. XrpA serving as a modulator of ComRS activity ultimately results in changes to subpopulation behaviors and cell fate during competence activation.
Collapse
Affiliation(s)
- Justin Kaspar
- Department of Oral Biology, University of Florida, Gainesville, FL, 32610, USA
| | - Robert C Shields
- Department of Oral Biology, University of Florida, Gainesville, FL, 32610, USA
| | - Robert A Burne
- Department of Oral Biology, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
42
|
Cowley LA, Petersen FC, Junges R, Jimson D. Jimenez M, Morrison DA, Hanage WP. Evolution via recombination: Cell-to-cell contact facilitates larger recombination events in Streptococcus pneumoniae. PLoS Genet 2018; 14:e1007410. [PMID: 29897968 PMCID: PMC6016952 DOI: 10.1371/journal.pgen.1007410] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/25/2018] [Accepted: 05/11/2018] [Indexed: 12/16/2022] Open
Abstract
Homologous recombination in the genetic transformation model organism Streptococcus pneumoniae is thought to be important in the adaptation and evolution of this pathogen. While competent pneumococci are able to scavenge DNA added to laboratory cultures, large-scale transfers of multiple kb are rare under these conditions. We used whole genome sequencing (WGS) to map transfers in recombinants arising from contact of competent cells with non-competent ‘target’ cells, using strains with known genomes, distinguished by a total of ~16,000 SNPs. Experiments designed to explore the effect of environment on large scale recombination events used saturating purified donor DNA, short-term cell assemblages on Millipore filters, and mature biofilm mixed cultures. WGS of 22 recombinants for each environment mapped all SNPs that were identical between the recombinant and the donor but not the recipient. The mean recombination event size was found to be significantly larger in cell-to-cell contact cultures (4051 bp in filter assemblage and 3938 bp in biofilm co-culture versus 1815 bp with saturating DNA). Up to 5.8% of the genome was transferred, through 20 recombination events, to a single recipient, with the largest single event incorporating 29,971 bp. We also found that some recombination events are clustered, that these clusters are more likely to occur in cell-to-cell contact environments, and that they cause significantly increased linkage of genes as far apart as 60,000 bp. We conclude that pneumococcal evolution through homologous recombination is more likely to occur on a larger scale in environments that permit cell-to-cell contact. Bacteria shuffle their genes far less often than humans do and genes or traits are more directly linked with the singular bacterial parent cell rather than the two parents that are involved in sexual reproduction. However, bacteria do occasionally have sex in the form of homologous recombination by taking up external DNA and incorporating it into their genomes. This happens far less regularly than sexual reproduction happens in human generations but is a known way that bacteria undergo ‘Horizontal gene transfer’. This means that genes can be acquired without being inherited. In this study we show that this form of horizontal gene transfer is more likely to happen in certain environments over others in Streptococcus pneumoniae. In particular, we show that this is more likely to happen in environments that closely mirror the nasopharynx which is the natural habitat of S. pneumoniae.
Collapse
Affiliation(s)
- Lauren A. Cowley
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, United States of America
- * E-mail:
| | | | - Roger Junges
- Department of Oral Biology, University of Oslo, Oslo, Norway
| | - Med Jimson D. Jimenez
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, United States of America
| | - Donald A. Morrison
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, United States of America
| | - William P. Hanage
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, United States of America
| |
Collapse
|
43
|
A Mechanism of Unidirectional Transformation, Leading to Antibiotic Resistance, Occurs within Nasopharyngeal Pneumococcal Biofilm Consortia. mBio 2018; 9:mBio.00561-18. [PMID: 29764945 PMCID: PMC5954218 DOI: 10.1128/mbio.00561-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Streptococcus pneumoniae acquires genes for resistance to antibiotics such as streptomycin (Str) or trimethoprim (Tmp) by recombination via transformation of DNA released by other pneumococci and closely related species. Using naturally transformable pneumococci, including strain D39 serotype 2 (S2) and TIGR4 (S4), we studied whether pneumococcal nasopharyngeal transformation was symmetrical, asymmetrical, or unidirectional. Incubation of S2Tet and S4Str in a bioreactor simulating the human nasopharynx led to the generation of SpnTet/Str recombinants. Double-resistant pneumococci emerged soon after 4 h postinoculation at a recombination frequency (rF) of 2.5 × 10−4 while peaking after 8 h at a rF of 1.1 × 10−3. Acquisition of antibiotic resistance genes by transformation was confirmed by treatment with DNase I. A high-throughput serotyping method demonstrated that all double-resistant pneumococci belonged to one serotype lineage (S2Tet/Str) and therefore that unidirectional transformation had occurred. Neither heterolysis nor availability of DNA for transformation was a factor for unidirectional transformation given that the density of each strain and extracellular DNA (eDNA) released from both strains were similar. Unidirectional transformation occurred regardless of the antibiotic-resistant gene carried by donors or acquired by recipients and regardless of whether competence-stimulating peptide-receptor cross talk was allowed. Moreover, unidirectional transformation occurred when two donor strains (e.g., S4Str and S19FTmp) were incubated together, leading to S19FStr/Tmp but at a rF 3 orders of magnitude lower (4.9 × 10−6). We finally demonstrated that the mechanism leading to unidirectional transformation was due to inhibition of transformation of the donor by the recipient. Pneumococcal transformation in the human nasopharynx may lead to the acquisition of antibiotic resistance genes or genes encoding new capsular variants. Antibiotics and vaccines are currently putting pressure on a number of strains, leading to an increase in antibiotic resistance and serotype replacement. These pneumococcal strains are also acquiring virulence traits from vaccine types via transformation. In this study, we recapitulated multiple-strain colonization with strains carrying a resistance marker and selected for those acquiring resistance to two or three antibiotics, such as would occur in the human nasopharynx. Strains acquiring dual and triple resistance originated from one progenitor, demonstrating that transformation was unidirectional. Unidirectional transformation was the result of inhibition of transformation of donor strains. Unidirectional transformation has implications for the understanding of acquisition patterns of resistance determinants or capsule-switching events.
Collapse
|
44
|
Pavlova SI, Wilkening RV, Federle MJ, Lu Y, Schwartz J, Tao L. Streptococcus endopeptidases promote HPV infection in vitro. Microbiologyopen 2018; 8:e00628. [PMID: 29675996 PMCID: PMC6341032 DOI: 10.1002/mbo3.628] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 12/14/2022] Open
Abstract
Both cervical and throat cancers are associated with human papillomavirus (HPV). HPV infection requires cleavage of the minor capsid protein L2 by furin. While furin is present in the vaginal epithelium, it is absent in oral epithelial basal cells where HPV infection occurs. The objective of this study was to investigate whether common oral bacteria express furin‐like peptidases. By screening strains representing 12 oral Streptococcus and Enterococcus species, we identified that eight Streptococcus strains displayed high levels of furin‐like peptidase activity, with S. gordonii V2016 the highest. We constructed null mutations for 14 genes encoding putative endopeptidases in S. gordonii V2016. Results showed that three endopeptidases, PepO, PulO, and SepM, had furin‐like activities. All three mutants showed decreased natural transformation by chromosomal DNA, while the pepO mutant also showed reduced transformation by plasmid DNA, indicating involvement of these endopeptidases in competence development. The purified S. gordonii PepO protein promoted infection of epithelial 293TT cells in vitro by HPV16 pseudovirus. In conclusion, oral bacteria might promote HPV infection and contribute to HPV tissue tropism and subsequent carcinogenesis in the oral cavity and throat by providing furin‐like endopeptidases.
Collapse
Affiliation(s)
- Sylvia I Pavlova
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Reid V Wilkening
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Michael J Federle
- Department of Medicinal Chemistry and Pharmacognosy, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Yu Lu
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Joel Schwartz
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Lin Tao
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
45
|
Engholm DH, Kilian M, Goodsell DS, Andersen ES, Kjærgaard RS. A visual review of the human pathogen Streptococcus pneumoniae. FEMS Microbiol Rev 2018; 41:854-879. [PMID: 29029129 DOI: 10.1093/femsre/fux037] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 09/04/2017] [Indexed: 11/12/2022] Open
Abstract
Being the principal causative agent of bacterial pneumonia, otitis media, meningitis and septicemia, the bacterium Streptococcus pneumoniae is a major global health problem. To highlight the molecular basis of this problem, we have portrayed essential biological processes of the pneumococcal life cycle in eight watercolor paintings. The paintings are done to a consistent nanometer scale based on currently available data from structural biology and proteomics. In this review article, the paintings are used to provide a visual review of protein synthesis, carbohydrate metabolism, cell wall synthesis, cell division, teichoic acid synthesis, virulence, transformation and pilus synthesis based on the available scientific literature within the field of pneumococcal biology. Visualization of the molecular details of these processes reveals several scientific questions about how molecular components of the pneumococcal cell are organized to allow biological function to take place. By the presentation of this visual review, we intend to stimulate scientific discussion, aid in the generation of scientific hypotheses and increase public awareness. A narrated video describing the biological processes in the context of a whole-cell illustration accompany this article.
Collapse
Affiliation(s)
- Ditte Høyer Engholm
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Mogens Kilian
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - David S Goodsell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.,Rutgers, the State University of New Jersey, NJ 08901, USA
| | - Ebbe Sloth Andersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark.,Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus, Denmark
| | | |
Collapse
|
46
|
Hughes D, Andersson DI. Environmental and genetic modulation of the phenotypic expression of antibiotic resistance. FEMS Microbiol Rev 2018; 41:374-391. [PMID: 28333270 PMCID: PMC5435765 DOI: 10.1093/femsre/fux004] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 02/01/2017] [Indexed: 12/22/2022] Open
Abstract
Antibiotic resistance can be acquired by mutation or horizontal transfer of a resistance gene, and generally an acquired mechanism results in a predictable increase in phenotypic resistance. However, recent findings suggest that the environment and/or the genetic context can modify the phenotypic expression of specific resistance genes/mutations. An important implication from these findings is that a given genotype does not always result in the expected phenotype. This dissociation of genotype and phenotype has important consequences for clinical bacteriology and for our ability to predict resistance phenotypes from genetics and DNA sequences. A related problem concerns the degree to which the genes/mutations currently identified in vitro can fully explain the in vivo resistance phenotype, or whether there is a significant additional amount of presently unknown mutations/genes (genetic ‘dark matter’) that could contribute to resistance in clinical isolates. Finally, a very important question is whether/how we can identify the genetic features that contribute to making a successful pathogen, and predict why some resistant clones are very successful and spread globally? In this review, we describe different environmental and genetic factors that influence phenotypic expression of antibiotic resistance genes/mutations and how this information is needed to understand why particular resistant clones spread worldwide and to what extent we can use DNA sequences to predict evolutionary success.
Collapse
Affiliation(s)
- Diarmaid Hughes
- Corresponding author: Department of Medical Biochemistry and Microbiology, Biomedical Center (Box 582), Uppsala University, S-751 23 Uppsala, Sweden. Tel: +46 18 4714507; E-mail:
| | | |
Collapse
|
47
|
Ambur OH, Engelstädter J, Johnsen PJ, Miller EL, Rozen DE. Steady at the wheel: conservative sex and the benefits of bacterial transformation. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0528. [PMID: 27619692 PMCID: PMC5031613 DOI: 10.1098/rstb.2015.0528] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2016] [Indexed: 12/25/2022] Open
Abstract
Many bacteria are highly sexual, but the reasons for their promiscuity remain obscure. Did bacterial sex evolve to maximize diversity and facilitate adaptation in a changing world, or does it instead help to retain the bacterial functions that work right now? In other words, is bacterial sex innovative or conservative? Our aim in this review is to integrate experimental, bioinformatic and theoretical studies to critically evaluate these alternatives, with a main focus on natural genetic transformation, the bacterial equivalent of eukaryotic sexual reproduction. First, we provide a general overview of several hypotheses that have been put forward to explain the evolution of transformation. Next, we synthesize a large body of evidence highlighting the numerous passive and active barriers to transformation that have evolved to protect bacteria from foreign DNA, thereby increasing the likelihood that transformation takes place among clonemates. Our critical review of the existing literature provides support for the view that bacterial transformation is maintained as a means of genomic conservation that provides direct benefits to both individual bacterial cells and to transformable bacterial populations. We examine the generality of this view across bacteria and contrast this explanation with the different evolutionary roles proposed to maintain sex in eukaryotes. This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'.
Collapse
Affiliation(s)
- Ole Herman Ambur
- Department of Life Sciences and Health, Oslo and Akershus University College of Applied Sciences, 1478 Oslo, Norway
| | - Jan Engelstädter
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Pål J Johnsen
- Faculty of Health Sciences, Department of Pharmacy, UiT-The Arctic University of Norway, 9037 Tromsø, Norway
| | - Eric L Miller
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Daniel E Rozen
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands
| |
Collapse
|
48
|
Interbacterial predation as a strategy for DNA acquisition in naturally competent bacteria. Nat Rev Microbiol 2017; 15:621-629. [PMID: 28690319 DOI: 10.1038/nrmicro.2017.66] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Natural competence enables bacteria to take up exogenous DNA. The evolutionary function of natural competence remains controversial, as imported DNA can act as a source of substrates or can be integrated into the genome. Exogenous homologous DNA can also be used for genome repair. In this Opinion article, we propose that predation of non-related neighbouring bacteria coupled with competence regulation might function as an active strategy for DNA acquisition. Competence-dependent kin-discriminated killing has been observed in the unrelated bacteria Vibrio cholerae and Streptococcus pneumoniae. Importantly, both the regulatory networks and the mode of action of neighbour predation differ between these organisms, with V. cholerae using a type VI secretion system and S. pneumoniae secreting bacteriocins. We argue that the forced release of DNA from killed bacteria and the transfer of non-clonal genetic material have important roles in bacterial evolution.
Collapse
|
49
|
Bandara M, Skehel JM, Kadioglu A, Collinson I, Nobbs AH, Blocker AJ, Jenkinson HF. The accessory Sec system (SecY2A2) in Streptococcus pneumoniae is involved in export of pneumolysin toxin, adhesion and biofilm formation. Microbes Infect 2017; 19:402-412. [PMID: 28456649 PMCID: PMC5526788 DOI: 10.1016/j.micinf.2017.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/27/2017] [Accepted: 04/17/2017] [Indexed: 01/04/2023]
Abstract
In Streptococcus pneumoniae TIGR4, genes encoding a SecY2A2 accessory Sec system are present within a locus encoding a serine-rich repeat surface protein PsrP. Mutant strains deleted in secA2 or psrP were deficient in biofilm formation, while the ΔsecA2 mutant was reduced in binding to airway epithelial cells. Cell wall protein (CWP) fractions from the ΔsecA2 mutant, but not from the ΔpsrP mutant, were reduced in haemolytic (pneumolysin) activity. Contact-dependent pneumolysin (Ply) activity of wild type TIGR4 cells was ten-fold greater than that of ΔsecA2 mutant cells suggesting that Ply was not active at the ΔsecA2 cell surface. Ply protein was found to be present in the CWP fraction from the ΔsecA2 mutant, but showed aberrant electrophoretic migration indicative of protein modification. Proteomic analyses led to the discovery that the ΔsecA2 mutant CWP fraction was deficient in two glycosidases as well as other enzymes involved in carbohydrate metabolism. Taken collectively the results suggest that positioning of Ply into the cell wall compartment in active form, together with glycosyl hydrolases and adhesins, requires a functional accessory Sec system.
Collapse
Affiliation(s)
- Mikaila Bandara
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol, BS1 2LY, UK; School of Cellular & Molecular Medicine, University of Bristol, University Walk, Bristol, BS8 1TD, UK; School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - J Mark Skehel
- Biological Mass Spectrometry and Proteomics, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Aras Kadioglu
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection and Global Health, University of Liverpool, 8 West Derby Street, Liverpool L69 7BE, UK
| | - Ian Collinson
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Angela H Nobbs
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol, BS1 2LY, UK
| | - Ariel J Blocker
- School of Cellular & Molecular Medicine, University of Bristol, University Walk, Bristol, BS8 1TD, UK; School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| | - Howard F Jenkinson
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol, BS1 2LY, UK.
| |
Collapse
|
50
|
Knapp S, Brodal C, Peterson J, Qi F, Kreth J, Merritt J. Natural Competence Is Common among Clinical Isolates of Veillonella parvula and Is Useful for Genetic Manipulation of This Key Member of the Oral Microbiome. Front Cell Infect Microbiol 2017; 7:139. [PMID: 28473967 PMCID: PMC5397411 DOI: 10.3389/fcimb.2017.00139] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/04/2017] [Indexed: 12/14/2022] Open
Abstract
The six Veillonella species found in the human oral cavity are among the most abundant members of the oral flora, occurring in both supra- and subgingival dental plaque as well as on the oral mucosa. Epidemiological data have also implicated these species in the development of the most common oral diseases. Despite their ubiquity, abundance, and ecological significance, surprisingly little is known about Veillonella biology, largely due to the difficulties associated with their genetic manipulation. In an effort to improve genetic analyses of Veillonella species, we isolated a collection of veillonellae from clinical plaque samples and screened for natural competence using a newly developed transformation protocol. Numerous strains of V. parvula were found to exhibit a natural competence ability that was highly influenced by growth medium composition. By exploiting this ability, we were able to utilize cloning-independent allelic exchange mutagenesis to identify the likely source of DNA uptake machinery within a locus homologous to type II secretion systems (T2SS). Interestingly, V. parvula natural competence was found to exhibit a clear hierarchy of preference for different sources of DNA (plasmid < PCR product < genomic DNA), which is unlike most naturally competent species. Genomic comparisons with other members of the Veillonellaceae family suggest that natural competence is likely to be widely distributed within this group. To the best of our knowledge, this study is the first demonstration of natural competence and targeted allelic exchange mutagenesis within the entire Veillonellaceae family and demonstrates a simple and rapid method to study Veillonella genetics.
Collapse
Affiliation(s)
- Steven Knapp
- Department of Restorative Dentistry, Oregon Health and Science UniversityPortland, OR, USA
| | - Clint Brodal
- Department of Pediatric Dentistry, Oregon Health and Science UniversityPortland, OR, USA
| | - John Peterson
- Department of Pediatric Dentistry, Oregon Health and Science UniversityPortland, OR, USA
| | - Fengxia Qi
- Department of Microbiology and Immunology, University of Oklahoma Health Science CenterOklahoma, OK, USA
| | - Jens Kreth
- Department of Restorative Dentistry, Oregon Health and Science UniversityPortland, OR, USA
| | - Justin Merritt
- Department of Restorative Dentistry, Oregon Health and Science UniversityPortland, OR, USA.,Department of Molecular Microbiology and Immunology, Oregon Health and Science UniversityPortland, OR, USA
| |
Collapse
|