1
|
Alvedro A, Macchiaverna NP, Murphy N, Enriquez GF, Gaspe MS, Gürtler RE, Cardinal MV. Unusual frequency of Trypanosoma cruzi DTU TcI and predominance of hybrid lineages in Triatoma infestans before and after control interventions in the Argentinian Chaco. Acta Trop 2025; 261:107502. [PMID: 39675410 DOI: 10.1016/j.actatropica.2024.107502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Transmission of Trypanosoma cruzi involves diverse hosts, vectors and parasitic genotypes, in different environments. In recent decades, the distribution of T. cruzi has altered due to urbanization of affected people and vectors. We implemented a longitudinal intervention program between 2015 and 2022 which aimed to suppress (peri)domestic Triatoma infestans in the municipality of Avia Terai (Chaco Province, Argentina), and found a marginal risk of domestic vector-borne transmission across the rural-to-urban gradient after interventions. Here, we identified the parasite Discrete Typing Units (DTUs) in infected T. infestans collected throughout the intervention program (37 insects pre-intervention and 7 post-intervention). Identification of DTUs was conducted by two methodologies, using DNA extracted from T. infestans rectal ampoules. We also assessed the association between blood-feeding sources and DTUs. Complete DTU identification was achieved in 48 % of samples. The hybrid lineages TcV or TcVI and their combinations predominated (72 %), followed by TcI (16 %) and mixed infections of TcI and hybrid lineages (14 %). Half (50 %) of the houses harbored TcI infected bugs either alone or mixed with TcII/TcV/TcVI. Humans predominated as the bloodmeal sources in all insects with identified DTU. All DTUs (TcI, TcV and TcII/TcV/TcVI) were recorded in both rural and peri-urban environments, with 62 % of the houses having more than one DTU. These results confirm the predominance of hybrid lineages in domestic transmission cycles of the Argentine Chaco. However, the finding of several triatomines infected with TcI both pre- and post-intervention raises the question of which host(s) are involved in its transmission.
Collapse
Affiliation(s)
- Alejandra Alvedro
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Laboratorio de Eco-Epidemiología. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Natalia Paula Macchiaverna
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Laboratorio de Eco-Epidemiología. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Niamh Murphy
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Gustavo Fabián Enriquez
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Laboratorio de Eco-Epidemiología. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - María Sol Gaspe
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Laboratorio de Eco-Epidemiología. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Ricardo Esteban Gürtler
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Laboratorio de Eco-Epidemiología. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Marta Victoria Cardinal
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Laboratorio de Eco-Epidemiología. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Silvestrini MMA, Alessio GD, Frias BED, Sales Júnior PA, Araújo MSS, Silvestrini CMA, Brito Alvim de Melo GE, Martins-Filho OA, Teixeira-Carvalho A, Martins HR. New insights into Trypanosoma cruzi genetic diversity, and its influence on parasite biology and clinical outcomes. Front Immunol 2024; 15:1342431. [PMID: 38655255 PMCID: PMC11035809 DOI: 10.3389/fimmu.2024.1342431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/26/2024] [Indexed: 04/26/2024] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi, remains a serious public health problem worldwide. The parasite was subdivided into six distinct genetic groups, called "discrete typing units" (DTUs), from TcI to TcVI. Several studies have indicated that the heterogeneity of T. cruzi species directly affects the diversity of clinical manifestations of Chagas disease, control, diagnosis performance, and susceptibility to treatment. Thus, this review aims to describe how T. cruzi genetic diversity influences the biology of the parasite and/or clinical parameters in humans. Regarding the geographic dispersion of T. cruzi, evident differences were observed in the distribution of DTUs in distinct areas. For example, TcII is the main DTU detected in Brazilian patients from the central and southeastern regions, where there are also registers of TcVI as a secondary T. cruzi DTU. An important aspect observed in previous studies is that the genetic variability of T. cruzi can impact parasite infectivity, reproduction, and differentiation in the vectors. It has been proposed that T. cruzi DTU influences the host immune response and affects disease progression. Genetic aspects of the parasite play an important role in determining which host tissues will be infected, thus heavily influencing Chagas disease's pathogenesis. Several teams have investigated the correlation between T. cruzi DTU and the reactivation of Chagas disease. In agreement with these data, it is reasonable to suppose that the immunological condition of the patient, whether or not associated with the reactivation of the T. cruzi infection and the parasite strain, may have an important role in the pathogenesis of Chagas disease. In this context, understanding the genetics of T. cruzi and its biological and clinical implications will provide new knowledge that may contribute to additional strategies in the diagnosis and clinical outcome follow-up of patients with Chagas disease, in addition to the reactivation of immunocompromised patients infected with T. cruzi.
Collapse
Affiliation(s)
| | - Glaucia Diniz Alessio
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Bruna Estefânia Diniz Frias
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Policarpo Ademar Sales Júnior
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Márcio Sobreira Silva Araújo
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Olindo Assis Martins-Filho
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Andréa Teixeira-Carvalho
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Helen Rodrigues Martins
- Department of Pharmacy, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil
| |
Collapse
|
3
|
Bilheiro AB, Costa GDS, Araújo MS, Ribeiro WAR, Finamore-Araújo P, Moreira OC, Medeiros JF, Fontes G, Camargo LMA. Detection and Genotyping of Trypanosoma cruzi Samples in Species of Genus Rhodnius from Different Environments in the Brazilian Amazon. Vector Borne Zoonotic Dis 2024; 24:95-103. [PMID: 38165392 DOI: 10.1089/vbz.2023.0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Abstract
Background: In the Amazon region, several species of triatomines occur in the natural environments. Among them, species of the genus Rhodnius are a risk to human populations due to their high rates of infection with Trypanosoma cruzi. The aim of this study was to identify the T. cruzi genotypes in Rhodnius specimens and their relationship with sylvatic hosts from different environments in the Brazilian Amazon. Methods: A total of 492 triatomines were collected from the municipalities of Monte Negro, Rondônia state, and Humaitá, Amazonas state, 382 of them being nymphs and 110 adults. Genotyping of T. cruzi in six discrete typing units (DTUs) was performed using conventional multilocus PCR. The triatomines that were positive for T. cruzi and engorged with blood were also targeted for amplification of the cytochrome B (cytB) gene to identify bloodmeal sources. Results: Of the 162 positive samples, the identified DTUs were TcI (87.65%) and TcIV (12.35%). It was observed that 102 specimens were engorged with a variety of bloodmeals. Triatomines infected with TcI were associated with DNA of all identified vertebrates, except Plecturocebus brunneus. TcIV was detected in triatomines that fed on Coendou prehensilis, Didelphis marsupialis, Mabuya nigropunctata, P. brunneus, Pithecia irrorata, Sapajus apella, and Tamandua tetradactyla. Conclusion: Results highlight the need to understand the patterns of T. cruzi genotypes in Rhodnius spp. and their association with sylvatic hosts to better elucidate their role in the transmission of Chagas disease in the Amazon region.
Collapse
Affiliation(s)
- Adriana Benatti Bilheiro
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de São João del Rei, Divinópolis, MG, Brazil
| | - Glaucilene da Silva Costa
- Laboratório de Saúde Pública-LACEN, Núcleo de Biologia Animal e Entomologia Médica, Porto Velho, RO, Brazil
| | - Maisa Silva Araújo
- Fundação Oswaldo Cruz/Fiocruz Rondônia, Porto Velho, RO, Brazil
- Centro de Pesquisa em Medicina Tropical de Rondônia (CEPEM)/Secretaria de Estado da Saúde de Rondônia, Porto Velho, RO, Brazil
| | | | - Paula Finamore-Araújo
- Laboratório de Virologia e Parasitologia Molecular, Instituto Oswaldo Cruz/IOC, Rio de Janeiro, RJ, Brazil
| | - Otacílio C Moreira
- Laboratório de Virologia e Parasitologia Molecular, Instituto Oswaldo Cruz/IOC, Rio de Janeiro, RJ, Brazil
| | - Jansen Fernandes Medeiros
- Fundação Oswaldo Cruz/Fiocruz Rondônia, Porto Velho, RO, Brazil
- Programa de Pós-Graduação em Biologia Experimental, Fundação Universidade Federal de Rondônia, Porto Velho, RO, Brazil
- Instituto Nacional de Epidemiologia da Amazônia Ocidental INCT-EPIAMO, Porto Velho, RO, Brazil
| | - Gilberto Fontes
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de São João del Rei, Divinópolis, MG, Brazil
- Instituto Nacional de Epidemiologia da Amazônia Ocidental INCT-EPIAMO, Porto Velho, RO, Brazil
| | - Luís Marcelo Aranha Camargo
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de São João del Rei, Divinópolis, MG, Brazil
- Centro de Pesquisa em Medicina Tropical de Rondônia (CEPEM)/Secretaria de Estado da Saúde de Rondônia, Porto Velho, RO, Brazil
- Instituto de Ciências Biomédicas 5, Universidade de São Paulo (ICB-5, USP), Monte Negro, RO, Brazil
- Instituto Nacional de Epidemiologia da Amazônia Ocidental INCT-EPIAMO, Porto Velho, RO, Brazil
| |
Collapse
|
4
|
Zingales B, Macedo AM. Fifteen Years after the Definition of Trypanosoma cruzi DTUs: What Have We Learned? Life (Basel) 2023; 13:2339. [PMID: 38137940 PMCID: PMC10744745 DOI: 10.3390/life13122339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Trypanosoma cruzi, the protozoan causative of Chagas disease (ChD), exhibits striking genetic and phenotypic intraspecific diversity, along with ecoepidemiological complexity. Human-pathogen interactions lead to distinct clinical presentations of ChD. In 2009, an international consensus classified T. cruzi strains into six discrete typing units (DTUs), TcI to TcVI, later including TcBat, and proposed reproducible genotyping schemes for DTU identification. This article aims to review the impact of classifying T. cruzi strains into DTUs on our understanding of biological, ecoepidemiological, and pathogenic aspects of T. cruzi. We will explore the likely origin of DTUs and the intrinsic characteristics of each group of strains concerning genome organization, genomics, and susceptibility to drugs used in ChD treatment. We will also provide an overview of the association of DTUs with mammalian reservoirs, and summarize the geographic distribution, and the clinical implications, of prevalent specific DTUs in ChD patients. Throughout this review, we will emphasize the crucial roles of both parasite and human genetics in defining ChD pathogenesis and chemotherapy outcome.
Collapse
Affiliation(s)
- Bianca Zingales
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, São Paulo, Brazil
| | - Andréa M. Macedo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil;
| |
Collapse
|
5
|
Rusman F, Díaz AG, Ponce T, Floridia-Yapur N, Barnabé C, Diosque P, Tomasini N. Wide reference databases for typing Trypanosoma cruzi based on amplicon sequencing of the minicircle hypervariable region. PLoS Negl Trop Dis 2023; 17:e0011764. [PMID: 37956210 PMCID: PMC10681310 DOI: 10.1371/journal.pntd.0011764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/27/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Trypanosoma cruzi, the etiological agent of Chagas Disease, exhibits remarkable genetic diversity and is classified into different Discrete Typing Units (DTUs). Strain typing techniques are crucial for studying T. cruzi, because their DTUs have significant biological differences from one another. However, there is currently no methodological strategy for the direct typing of biological materials that has sufficient sensitivity, specificity, and reproducibility. The high diversity and copy number of the minicircle hypervariable regions (mHVRs) makes it a viable target for typing. METHODOLOGY/PRINCIPAL FINDINGS Approximately 24 million reads obtained by amplicon sequencing of the mHVR were analyzed for 62 strains belonging to the six main T. cruzi DTUs. To build reference databases of mHVR diversity for each DTU and to evaluate this target as a typing tool. Strains of the same DTU shared more mHVR clusters than strains of different DTUs, and clustered together. Different identity thresholds were used to build the reference sets of the mHVR sequences (85% and 95%, respectively). The 95% set had a higher specificity and was more suited for detecting co-infections, whereas the 85% set was excellent for identifying the primary DTU of a sample. The workflow's capacity for typing samples obtained from cultures, a set of whole-genome data, under various simulated PCR settings, in the presence of co-infecting lineages and for blood samples was also assessed. CONCLUSIONS/SIGNIFICANCE We present reference databases of mHVR sequences and an optimized typing workflow for T. cruzi including a simple online tool for deep amplicon sequencing analysis (https://ntomasini.github.io/cruzityping/). The results show that the workflow displays an equivalent resolution to that of the other typing methods. Owing to its specificity, sensitivity, relatively low cost, and simplicity, the proposed workflow could be an alternative for screening different types of samples.
Collapse
Affiliation(s)
- Fanny Rusman
- Unidad de Epidemiología Molecular (UEM), Instituto de Patología Experimental Dr. Miguel Ángel Basombrío, Universidad Nacional de Salta-CONICET, Salta, Salta, Argentina
| | - Anahí G. Díaz
- Unidad de Epidemiología Molecular (UEM), Instituto de Patología Experimental Dr. Miguel Ángel Basombrío, Universidad Nacional de Salta-CONICET, Salta, Salta, Argentina
| | - Tatiana Ponce
- Unidad de Epidemiología Molecular (UEM), Instituto de Patología Experimental Dr. Miguel Ángel Basombrío, Universidad Nacional de Salta-CONICET, Salta, Salta, Argentina
| | - Noelia Floridia-Yapur
- Unidad de Epidemiología Molecular (UEM), Instituto de Patología Experimental Dr. Miguel Ángel Basombrío, Universidad Nacional de Salta-CONICET, Salta, Salta, Argentina
| | - Christian Barnabé
- Institut de Recherche pour le Développement (IRD), UMR INTERTRYP IRD-CIRAD, University of Montpellier, Montpellier, France
| | - Patricio Diosque
- Unidad de Epidemiología Molecular (UEM), Instituto de Patología Experimental Dr. Miguel Ángel Basombrío, Universidad Nacional de Salta-CONICET, Salta, Salta, Argentina
| | - Nicolás Tomasini
- Unidad de Epidemiología Molecular (UEM), Instituto de Patología Experimental Dr. Miguel Ángel Basombrío, Universidad Nacional de Salta-CONICET, Salta, Salta, Argentina
| |
Collapse
|
6
|
Development and Application of an Assay to Evaluate the Anti-Parasitic Effect of Humoral Responses against Trypanosoma cruzi. Microorganisms 2023; 11:microorganisms11020241. [PMID: 36838206 PMCID: PMC9966445 DOI: 10.3390/microorganisms11020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023] Open
Abstract
Mounting a balanced and robust humoral immune response is of utmost importance for reducing the infectivity of Trypanosoma cruzi. While the role of such a response in controlling the infection is well known, there is a lack of tools that can be used to quickly evaluate it. We developed a serum parasite inhibition assay (to evaluate changes in the parasite infection after exposing infective T. cruzi trypomastigotes to serum samples from infected patients). It is based on Vero cells as the hosts and the Tulahuen β-galactosidase parasite strain, genetically engineered to be quantifiable by spectrophotometry. In parallel, we developed an in-house ELISA to correlate the anti-T. cruzi antibody titres of the clinical samples with their observed anti-parasitic effect in the serum parasite inhibition assay. Serum samples from chronically T. cruzi-infected patients significantly inhibited parasite invasion in a titre-dependant manner, regardless of the patient's clinical status, compared to samples from the non-infected controls. In addition, there was a clear correlation between the reactivity of the samples to the whole-parasite lysates by ELISA and the inhibitory effect. The results of this work confirm the previously described anti-parasitic effect of the serum of individuals exposed to T. cruzi and present a framework for its large-scale evaluation in further studies. The serum parasite inhibition assay represents a reproducible way to evaluate the intensity and anti-parasitic effect of humoral responses against T. cruzi, which could be applied to the evaluation of candidate antigens/epitopes in the design of Chagas disease vaccine candidates.
Collapse
|
7
|
Oliveira MM, Bonturi CR, Salu BR, Oliva MLV, Mortara RA, Orikaza CM. Modulation of STAT-1, STAT-3, and STAT-6 activities in THP-1 derived macrophages infected with two Trypanosoma cruzi strains. Front Immunol 2022; 13:1038332. [PMID: 36389843 PMCID: PMC9643828 DOI: 10.3389/fimmu.2022.1038332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/04/2022] [Indexed: 12/03/2022] Open
Abstract
Trypanosoma cruzi is the causative protozoan of Chagas' Disease, a neglected tropical disease that affects 6-7 million people worldwide. Interaction of the parasite with the host immune system is a key factor in disease progression and chronic symptoms. Although the human immune system is capable of controlling the disease, the parasite has numerous evasion mechanisms that aim to maintain intracellular persistence and survival. Due to the pronounced genetic variability of T. cruzi, co-infections or mixed infections with more than one parasite strain have been reported in the literature. The intermodulation in such cases is unclear. This study aimed to evaluate the co-infection of T. cruzi strains G and CL compared to their individual infections in human macrophages derived from THP-1 cells activated by classical or alternative pathways. Flow cytometry analysis demonstrated that trypomastigotes were more infective than extracellular amastigotes (EAs) and that strain G could infect more macrophages than strain CL. Classically activated macrophages showed lower number of infected cells and IL-4-stimulated cells displayed increased CL-infected macrophages. However, co-infection was a rare event. CL EAs decreased the production of reactive oxygen species (ROS), whereas G trypomastigotes displayed increased ROS detection in classically activated cells. Co-infection did not affect ROS production. Monoinfection by strain G or CL mainly induced an anti-inflammatory cytokine profile by decreasing inflammatory cytokines (IFN-γ, TNF-α, IL-1β) and/or increasing IL-4, IL-10, and TGF-β. Co-infection led to a predominant inflammatory milieu, with reduced IL-10 and TGF-β, and/or promotion of IFN-γ and IL-1β release. Infection by strain G reduced activation of intracellular signal transducer and activator of transcription (STAT) factors. In EAs, monoinfections impaired STAT-1 activity and promoted phosphorylation of STAT-3, both changes may prolong cell survival. Coinfected macrophages displayed pronounced activation of all STATs examined. These activations likely promoted parasite persistence and survival of infected cells. The collective results demonstrate that although macrophages respond to both strains, T. cruzi can modulate the intracellular environment, inducing different responses depending on the strain, parasite infective form, and co-infection or monoinfection. The modulation influences parasite persistence and survival of infected cells.
Collapse
Affiliation(s)
- Melissa Martins Oliveira
- ¹Microbiology, Immunology and Parasitology Department, Escola Paulista de Medicina, Federal University of São Paulo - UNIFESP, São Paulo, Brazil
| | - Camila Ramalho Bonturi
- ²Biochemistry Department, Escola Paulista de Medicina, Federal University of São Paulo - UNIFESP, São Paulo, Brazil
| | - Bruno Ramos Salu
- ²Biochemistry Department, Escola Paulista de Medicina, Federal University of São Paulo - UNIFESP, São Paulo, Brazil
| | - Maria Luiza Vilela Oliva
- ²Biochemistry Department, Escola Paulista de Medicina, Federal University of São Paulo - UNIFESP, São Paulo, Brazil
| | - Renato Arruda Mortara
- ¹Microbiology, Immunology and Parasitology Department, Escola Paulista de Medicina, Federal University of São Paulo - UNIFESP, São Paulo, Brazil
| | - Cristina Mary Orikaza
- ¹Microbiology, Immunology and Parasitology Department, Escola Paulista de Medicina, Federal University of São Paulo - UNIFESP, São Paulo, Brazil
| |
Collapse
|
8
|
Freitas NEM, Habib FL, Santos EF, Silva ÂAO, Fontes ND, Leony LM, Sampaio DD, de Almeida MC, Dantas-Torres F, Santos FLN. Technological advances in the serological diagnosis of Chagas disease in dogs and cats: a systematic review. Parasit Vectors 2022; 15:343. [PMID: 36167575 PMCID: PMC9516836 DOI: 10.1186/s13071-022-05476-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/10/2022] [Indexed: 11/12/2022] Open
Abstract
Background Chagas disease (CD) is caused by Trypanosoma cruzi, which is transmitted mainly through the feces/urine of infected triatomine bugs. The acute phase lasts 2–3 months and is characterized by high parasitemia and nonspecific symptoms, whereas the lifelong chronic phase features symptoms affecting the heart and/or digestive tract occurring in 30–40% of infected individuals. As in humans, cardiac abnormalities are observed in T. cruzi-infected dogs and cats. We reviewed the technological advances in the serological diagnosis of CD in dogs and cats. Methods A review of the published literature during the last 54 years (1968–2022) on the epidemiology, clinical features, diagnosis, treatment and prevention of CD in dogs and cats was conducted. Results Using predefined eligibility criteria for a search of the published literature, we retrieved and screened 436 publications. Of these, 84 original studies were considered for inclusion in this review. Dogs and cats are considered as sentinels, potentially indicating an active T. cruzi transmission and thus the risk for human infection. Although dogs and cats are reputed to be important for maintaining the T. cruzi domestic transmission cycle, there are no commercial tests to detect past or active infections in these animals. Most published research on CD in dogs and cats have used in-house serological tests prepared with native and/or full-length recombinant antigens, resulting in variable diagnostic performance. In recent years, chimeric antigens have been used to improve the diagnosis of chronic CD in humans with encouraging results. Some of them have high performance values (> 95%) and extremely low cross-reactivity rates for Leishmania spp., especially the antigens IBMP-8.1 to IBMP-8.4. The diagnostic performance of IBMP antigens was also investigated in dogs, showing high diagnostic performance with negligible cross-reactivity with anti-Leishmania infantum antibodies. Conclusions The development of a commercial immunodiagnostic tool to identify past or active T. cruzi infections in dogs and cats is urgently needed. The use of chimeric recombinant T. cruzi antigens may help to fill this gap and is discussed in this review. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05476-4.
Collapse
Affiliation(s)
- Natália Erdens Maron Freitas
- Advanced Health Public Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Waldemar Falcão Street, 121, Candeal, Bahia, Salvador, 40296-710, Brazil
| | - Fernanda Lopes Habib
- Advanced Health Public Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Waldemar Falcão Street, 121, Candeal, Bahia, Salvador, 40296-710, Brazil
| | - Emily Ferreira Santos
- Advanced Health Public Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Waldemar Falcão Street, 121, Candeal, Bahia, Salvador, 40296-710, Brazil
| | - Ângelo Antônio Oliveira Silva
- Advanced Health Public Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Waldemar Falcão Street, 121, Candeal, Bahia, Salvador, 40296-710, Brazil
| | - Natália Dantas Fontes
- Advanced Health Public Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Waldemar Falcão Street, 121, Candeal, Bahia, Salvador, 40296-710, Brazil
| | - Leonardo Maia Leony
- Advanced Health Public Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Waldemar Falcão Street, 121, Candeal, Bahia, Salvador, 40296-710, Brazil
| | - Daniel Dias Sampaio
- Brazil's Family Health Strategy, Municipal Health Department, Tremedal City Hall, Bahia, Tremedal, Brazil
| | - Marcio Cerqueira de Almeida
- Pathology and Molecular Biology Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil
| | - Filipe Dantas-Torres
- Laboratory of Immunoparasitology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Fred Luciano Neves Santos
- Advanced Health Public Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Waldemar Falcão Street, 121, Candeal, Bahia, Salvador, 40296-710, Brazil. .,Integrated Translational Program in Chagas Disease From Fiocruz (Fio-Chagas), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
9
|
Padilla AM, Yao PY, Landry TJ, Cooley GM, Mahaney SM, Ribeiro I, VandeBerg JL, Tarleton RL. High variation in immune responses and parasite phenotypes in naturally acquired Trypanosoma cruzi infection in a captive non-human primate breeding colony in Texas, USA. PLoS Negl Trop Dis 2021; 15:e0009141. [PMID: 33788859 PMCID: PMC8041201 DOI: 10.1371/journal.pntd.0009141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/12/2021] [Accepted: 03/22/2021] [Indexed: 11/18/2022] Open
Abstract
Trypanosoma cruzi, the causative agent of human Chagas disease, is endemic to the southern region of the United States where it routinely infects many host species. The indoor/outdoor housing configuration used in many non-human primate research and breeding facilities in the southern of the USA provides the opportunity for infection by T. cruzi and thus provides source material for in-depth investigation of host and parasite dynamics in a natural host species under highly controlled and restricted conditions. For cynomolgus macaques housed at such a facility, we used a combination of serial blood quantitative PCR (qPCR) and hemoculture to confirm infection in >92% of seropositive animals, although each method alone failed to detect infection in >20% of cases. Parasite isolates obtained from 43 of the 64 seropositive macaques were of 2 broad genetic types (discrete typing units, (DTU's) I and IV); both within and between these DTU groupings, isolates displayed a wide variation in growth characteristics and virulence, elicited host immune responses, and susceptibility to drug treatment in a mouse model. Likewise, the macaques displayed a diversity in T cell and antibody response profiles that rarely correlated with parasite DTU type, minimum length of infection, or age of the primate. This study reveals the complexity of infection dynamics, parasite phenotypes, and immune response patterns that can occur in a primate group, despite being housed in a uniform environment at a single location, and the limited time period over which the T. cruzi infections were established.
Collapse
Affiliation(s)
- Angel M. Padilla
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Phil Y. Yao
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Tre J. Landry
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Gretchen M. Cooley
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Susan M. Mahaney
- Department of Human Genetics, South Texas Diabetes and Obesity Institute, and Center for Vector-Borne Diseases, The University of Texas Rio Grande Valley, Brownsville/Edinburg/Harlingen, Texas, United States of America
| | - Isabela Ribeiro
- Drugs for Neglected Diseases initiative, Geneva, Switzerland
| | - John L. VandeBerg
- Department of Human Genetics, South Texas Diabetes and Obesity Institute, and Center for Vector-Borne Diseases, The University of Texas Rio Grande Valley, Brownsville/Edinburg/Harlingen, Texas, United States of America
| | - Rick L. Tarleton
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
10
|
Dumonteil E, Herrera C. The Case for the Development of a Chagas Disease Vaccine: Why? How? When? Trop Med Infect Dis 2021; 6:tropicalmed6010016. [PMID: 33530605 PMCID: PMC7851737 DOI: 10.3390/tropicalmed6010016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/06/2021] [Accepted: 01/19/2021] [Indexed: 11/16/2022] Open
Abstract
Chagas disease is a major neglected tropical disease, transmitted predominantly by triatomine insect vectors, but also through congenital and oral routes. While endemic in the Americas, it has turned into a global disease. Because of the current drug treatment limitations, a vaccine would represent a major advancement for better control of the disease. Here, we review some of the rationale, advances, and challenges for the ongoing development of a vaccine against Chagas disease. Recent pre-clinical studies in murine models have further expanded (i) the range of vaccine platforms and formulations tested; (ii) our understanding of the immune correlates for protection; and (iii) the extent of vaccine effects on cardiac function, beyond survival and parasite burden. We further discuss outstanding issues and opportunities to move Chagas disease development forward in the near future.
Collapse
|
11
|
Ledezma AP, Blandon R, Schijman AG, Benatar A, Saldaña A, Osuna A. Mixed infections by different Trypanosoma cruzi discrete typing units among Chagas disease patients in an endemic community in Panama. PLoS One 2020; 15:e0241921. [PMID: 33180799 PMCID: PMC7660484 DOI: 10.1371/journal.pone.0241921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/22/2020] [Indexed: 01/02/2023] Open
Abstract
Background Trypanosoma cruzi, the hemoparasite that causes Chagas disease, is divided into six Discrete Typing Units or DTUs: TcI-TcVI plus Tcbat. This genetic diversity is based on ecobiological and clinical characteristics associated with particular populations of the parasite. The main objective of this study was the identification of DTUs in patients with chronic chagasic infections from a mountainous rural community in the eastern region of Panama. Methods A total of 106 patients were tested for Chagas disease with three serological tests (ELISA, rapid test, and Western blot). Molecular diagnosis and DTU typing were carried out by conventional PCRs and qPCR targeting different genomic markers, respectively. As a control sample for the typing, 28 patients suspected to be chagasic from the metropolitan area of Panama City were included. Results Results showed a positivity in the evaluated patients of 42.3% (33/78); high compared to other endemic regions in the country. In the control group, 20/28 (71.43%) patients presented positive serology. The typing of samples from rural patients showed that 78.78% (26/33) corresponded to TcI, while 9.09% (3/33) were mixed infections (TcI plus TcII/V/VI). Seventy-five percent (15/20) of the patients in the control group presented TcI, and in five samples it was not possible to typify the T. cruzi genotype involved. Conclusions These results confirm that TcI is the main DTU of T. cruzi present in chronic chagasic patients from Panama. However, the circulation of other genotypes (TcII/V/VI) in this country is described for the first time. The eco-epidemiological characteristics that condition the circulation of TcII/V/VI, as well as the immune and clinical impact of mixed infections in this remote mountainous region should be investigated, which will help local action programs in the surveillance, prevention, and management of Chagas disease.
Collapse
Affiliation(s)
- Alexa Prescilla Ledezma
- Institute of Biotechnology, Department of Parasitology, University of Granada, Granada, Spain.,Center for Research and Diagnosis of Parasitic Diseases (CIDEP), Faculty of Medicine, University of Panama, Panama, Panama
| | | | - Alejandro G Schijman
- Laboratory of Molecular Biology of Chagas Disease, Institute of Research in Genetic Engineering and Molecular Biology "Dr Héctor Torres" (INGEBI-CONICET), Buenos Aires, Argentina
| | - Alejandro Benatar
- Laboratory of Molecular Biology of Chagas Disease, Institute of Research in Genetic Engineering and Molecular Biology "Dr Héctor Torres" (INGEBI-CONICET), Buenos Aires, Argentina
| | - Azael Saldaña
- Center for Research and Diagnosis of Parasitic Diseases (CIDEP), Faculty of Medicine, University of Panama, Panama, Panama.,Gorgas Memorial Institute of Health Studies (ICGES), Panama, Panama
| | - Antonio Osuna
- Institute of Biotechnology, Department of Parasitology, University of Granada, Granada, Spain
| |
Collapse
|
12
|
Human Chagas-Flow ATE-IgG1 for advanced universal and Trypanosoma cruzi Discrete Typing Units-specific serodiagnosis of Chagas disease. Sci Rep 2020; 10:13296. [PMID: 32764546 PMCID: PMC7414038 DOI: 10.1038/s41598-020-69921-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/21/2020] [Indexed: 12/23/2022] Open
Abstract
The molecular and serological methods available for Discrete Typing Units (DTU)-specific diagnosis of Trypanosoma cruzi in chronic Chagas disease present limitations. The study evaluated the performance of Human Chagas-Flow ATE-IgG1 for universal and DTU-specific diagnosis of Chagas disease. A total of 102 sera from Chagas disease patients (CH) chronically infected with TcI, TcVI or TcII DTUs were tested for IgG1 reactivity to amastigote/(A), trypomastigote/(T) and epimastigote/(E) antigens along the titration curve (1:250-1:32,000). The results demonstrated that "AI 250/40%", "EVI 250/30%", "AII 250/40%", "TII 250/40%" and "EII 250/30%" have outstanding accuracy (100%) to segregate CH from non-infected controls. The attributes "TI 4,000/50%", "EI 2,000/50%", "AVI 8,000/60%" and "TVI 4,000/50%" were selected for DTU-specific serotyping of Chagas disease. The isolated use of "EI 2,000/50%" provided the highest co-positivity for TcI patients (91%). The combined decision tree algorithms using the pre-defined sets of attributes showed outstanding full accuracy (92% and 97%) to discriminate "TcI vs TcVI vs TcII" and "TcI vs TcII" prototypes, respectively. The elevated performance of Human Chagas-Flow ATE-IgG1 qualifies its use for universal and TcI/TcVI/TcII-specific diagnosis of Chagas disease. These findings further support the application of this method in epidemiological surveys, post-therapeutic monitoring and clinical outcome follow-ups for Chagas disease.
Collapse
|
13
|
Velásquez-Ortiz N, Ramírez JD. Understanding the oral transmission of Trypanosoma cruzi as a veterinary and medical foodborne zoonosis. Res Vet Sci 2020; 132:448-461. [PMID: 32781335 DOI: 10.1016/j.rvsc.2020.07.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/21/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
Chagas disease is a neglected tropical disease transmitted by the protozoan Trypanosoma cruzi that lately has been highlighted because several outbreaks attributed to oral transmission of the parasite have occurred. These outbreaks are characterized by high mortality rates and massive infections that cannot be related to other types of transmission such as the vectorial route. Oral transmission of Chagas disease has been reported in Brazil, Colombia, Venezuela, Bolivia, Ecuador, Argentina and French Guiana, most of them are massive oral outbreaks caused by the ingestion of beverages and food contaminated with triatomine feces or parasites' reservoirs secretions and considered since 2012 as a foodborne disease. In this review, we present the current status and all available data regarding oral transmission of Chagas disease, highlighting its relevance as a veterinary and medical foodborne zoonosis.
Collapse
Affiliation(s)
- Natalia Velásquez-Ortiz
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
14
|
Seroprevalence of the Strongyloides stercoralis Infection in Humans from Yungas Rainforest and Gran Chaco Region from Argentina and Bolivia. Pathogens 2020; 9:pathogens9050394. [PMID: 32443925 PMCID: PMC7281728 DOI: 10.3390/pathogens9050394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022] Open
Abstract
The threadworm, Strongyloides stercoralis, is endemic in tropical and subtropical areas. Data on the prevalence and distribution of infection with this parasite species is scarce in many critical regions. We conducted a seroprevalence study of S. stercoralis infection in 13 locations in the Gran Chaco and Yungas regions of Argentina and Bolivia during the period 2010-2016. A total of 2803 human serum samples were analyzed by ELISA-NIE which has a sensitivity of 75% and specificity of 95%. Results showed that 551 (19.6%) of those samples were positive. The adjusted prevalence was 20.9%, (95% confidence interval (CI) 19.4%-22.4%). The distribution of cases was similar between females and males with an increase of prevalence with age. The prevalence in the different locations ranged from 7.75% in Pampa del Indio to 44.55% in Santa Victoria Este in the triple border between Argentina, Bolivia, and Paraguay in the Chaco region. Our results show that S. stercoralis is highly prevalent in the Chaco and Yungas regions, which should prompt prospective surveys to confirm our findings and the design and deployment of control measures.
Collapse
|
15
|
Monje-Rumi MM, Floridia-Yapur N, Zago MP, Ragone PG, Pérez Brandán CM, Nuñez S, Barrientos N, Tomasini N, Diosque P. Potential association of Trypanosoma cruzi DTUs TcV and TcVI with the digestive form of Chagas disease. INFECTION GENETICS AND EVOLUTION 2020; 84:104329. [PMID: 32339759 DOI: 10.1016/j.meegid.2020.104329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 11/28/2022]
Abstract
The relationship among genetic diversity of Trypanosoma cruzi and clinical forms of Chagas disease remain elusive. In order to assess the possible association between different T. cruzi Discrete Typing Units (DTUs) and the clinical pictures of the disease, 205 chronic patients from Salta province, Argentina, were analysed. One hundred and twenty-two of these patients were clinically categorized as: cardiac 38.5% (47/122), digestive 15% (18/122), cardio-digestive 16% (20/122) and asymptomatic 30% (37/122). From each patient, blood samples were taken for both, Polymerase Chain Reaction (PCR) targeting kDNA and blood culture analyses. The presence of T. cruzi kDNA was detected in 43% (88/205) of the patients. T. cruzi DTUs were identified in 74% (65/88) of the kDNA positive patients by PCR-hybridization using specific probes. We detected the presence of DTUs TcI, TcII, TcV and TcVI. Single infections (i.e. presence of only one DTU in the sample) were detected in 38.64% of the samples (34/88), while mixed infections were 35.23% (31/88). TcV was the most prevalent DTU (60.3%- 53/88). The association analyses showed, for the first time to the best of our knowledge, that TcV and TcVI were associated with the digestive form of Chagas Disease (Fisher p = .0001).
Collapse
Affiliation(s)
- M M Monje-Rumi
- Instituto de Patología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Argentina. Av. Bolivia, 5150 Salta, Argentina
| | - N Floridia-Yapur
- Instituto de Patología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Argentina. Av. Bolivia, 5150 Salta, Argentina
| | - M P Zago
- Instituto de Patología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Argentina. Av. Bolivia, 5150 Salta, Argentina
| | - P G Ragone
- Instituto de Patología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Argentina. Av. Bolivia, 5150 Salta, Argentina
| | - C M Pérez Brandán
- Instituto de Patología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Argentina. Av. Bolivia, 5150 Salta, Argentina
| | - S Nuñez
- Servicio de Cardiología, Hospital San Bernardo, Av. José Tobias 69, Salta, Argentina
| | - N Barrientos
- Servicio de Cardiología, Hospital San Bernardo, Av. José Tobias 69, Salta, Argentina
| | - N Tomasini
- Instituto de Patología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Argentina. Av. Bolivia, 5150 Salta, Argentina
| | - P Diosque
- Instituto de Patología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Argentina. Av. Bolivia, 5150 Salta, Argentina.
| |
Collapse
|
16
|
Wehrendt DP, Gómez-Bravo A, Ramirez JC, Cura C, Pech-May A, Ramsey JM, Abril M, Guhl F, Schijman AG. Development and evaluation of a duplex TaqMan qPCR assay for detection and quantification of Trypanosoma cruzi infection in domestic and sylvatic reservoir hosts. Parasit Vectors 2019; 12:567. [PMID: 31783770 PMCID: PMC6884757 DOI: 10.1186/s13071-019-3817-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 11/20/2019] [Indexed: 11/13/2022] Open
Abstract
Background A question of epidemiological relevance in Chagas disease studies is to understand Trypanosoma cruzi transmission cycles and trace the origins of (re)emerging cases in areas under vector or disease surveillance. Conventional parasitological methods lack sensitivity whereas molecular approaches can fill in this gap, provided that an adequate sample can be collected and processed and a nucleic acid amplification method can be developed and standardized. We developed a duplex qPCR assay for accurate detection and quantification of T. cruzi satellite DNA (satDNA) sequence in samples from domestic and sylvatic mammalian reservoirs. The method incorporates amplification of the gene encoding for the interphotoreceptor retinoid-binding protein (IRBP), highly conserved among mammalian species, as endogenous internal amplification control (eIAC), allowing distinction of false negative PCR findings due to inadequate sample conditions, DNA degradation and/or PCR interfering substances. Results The novel TaqMan probe and corresponding primers employed in this study improved the analytical sensitivity of the assay to 0.01 par.eq/ml, greater than that attained by previous assays for Tc I and Tc IV strains. The assay was tested in 152 specimens, 35 from 15 different wild reservoir species and 117 from 7 domestic reservoir species, captured in endemic regions of Argentina, Colombia and Mexico and thus potentially infected with different parasite discrete typing units. The eIACs amplified in all samples from domestic reservoirs from Argentina and Mexico, such as Canis familiaris, Felis catus, Sus scrofa, Ovis aries, Equus caballus, Bos taurus and Capra hircus with quantification cycles (Cq’s) between 23 and 25. Additionally, the eIACs amplified from samples obtained from wild mammals, such as small rodents Akodon toba, Galea leucoblephara, Rattus rattus, the opossums Didelphis virginiana, D. marsupialis and Marmosa murina, the bats Tadarida brasiliensis, Promops nasutus and Desmodus rotundus, as well as in Conepatus chinga, Lagostomus maximus, Leopardus geoffroyi, Lepus europaeus, Mazama gouazoubira and Lycalopex gymnocercus, rendering Cq’s between 24 and 33. Conclusions This duplex qPCR assay provides an accurate laboratory tool for screening and quantification of T. cruzi infection in a vast repertoire of domestic and wild mammalian reservoir species, contributing to improve molecular epidemiology studies of T. cruzi transmission cycles.
Collapse
Affiliation(s)
- Diana P Wehrendt
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, INGEBI-CONICET, Buenos Aires, Argentina
| | | | - Juan C Ramirez
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, INGEBI-CONICET, Buenos Aires, Argentina
| | - Carolina Cura
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, INGEBI-CONICET, Buenos Aires, Argentina
| | - Angélica Pech-May
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Chiapas, México
| | - Janine M Ramsey
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Chiapas, México
| | | | | | - Alejandro G Schijman
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, INGEBI-CONICET, Buenos Aires, Argentina.
| |
Collapse
|
17
|
Bizai ML, Romina P, Antonela S, Olivera LV, Arias EE, Josefina DC, Silvia M, Walter S, Diana F, Cristina D. Geographic distribution of Trypanosoma cruzi genotypes detected in chronic infected people from Argentina. Association with climatic variables and clinical manifestations of Chagas disease. INFECTION GENETICS AND EVOLUTION 2019; 78:104128. [PMID: 31786340 DOI: 10.1016/j.meegid.2019.104128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 01/15/2023]
Abstract
Chronic Chagas disease affects large number of people in Latin America where it remains one of the biggest public health problems. Trypanosoma cruzi is genetically divided into seven discrete typing units (DTUs), TcI-TcVI and Tcbat, and exhibits differential distribution across vectors, host and transmission cycles. Clinical manifestations (cardiac, digestive and / or neurological) vary according to the geographical region; and the DTUs more frequently found in any of the chronic form of the disease, indeterminate or clinical, are TcI, TcII, TcV and TcVI. However, why they have a particular geographical distribution and how they affect the development of Chagas disease is still unknown. In this study, we assessed the geographic distribution of T. cruzi genotypes detected in chronic infected people from 57 localities of endemic regions of Argentina and analyzed their association with climatic variables. The prevalent DTUs detected in the whole population were TcV (47.4%) and TcVI (66.0%). TcI and TcII were identified in 5.2% each. All DTUs were detected in single and mixed infections (78.4% and 21.6%, respectively). TcV was found in infected people from localities with significantly higher average annual temperature, seasonal temperature and annual temperature range than those infected with TcVI. When we evaluated the association of DTUs with clinical manifestations of Chagas disease, the probability of finding TcVI in subjects with chronic Chagas cardiomyopathy (CCC) was higher than other DTUs, but without reaching statistical significance. Moreover, the probability of finding TcV in those who have not developed the disease after 20 years of infection was significantly higher than in CCC, either if it was present as unique DTU (reciprocal OR=4.95 95%CI: 1.42 to 17.27) (p=0.0117) or if it was also part of mixed infections (reciprocal OR=3.375; 95%CI: 1.227 to 9.276) (p=0.0264). There was no difference in the distribution of TcI between asymptomatic people and those with clinical manifestations, while TcII appeared more frequently in CCC cases, but without statiscal significance.
Collapse
Affiliation(s)
- María L Bizai
- Centro de Investigaciones sobre Endemias Nacionales, Facultad de Bioquímica y Cs. Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Peralta Romina
- Laboratorio de Biología Molecular e Inmunología Aplicadas, Facultad de Bioquímica y Cs. Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Simonetto Antonela
- Laboratorio de Biología Molecular e Inmunología Aplicadas, Facultad de Bioquímica y Cs. Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Lorena V Olivera
- Centro de Investigaciones sobre Endemias Nacionales, Facultad de Bioquímica y Cs. Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Evelyn E Arias
- Centro de Investigaciones sobre Endemias Nacionales, Facultad de Bioquímica y Cs. Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | | | | | - Sione Walter
- Centro Regional de Geomática, Facultad de Ciencia y Tecnología, Universidad Autónoma de Entre Ríos, Oro Verde, Entre Ríos, Argentina
| | - Fabbro Diana
- Centro de Investigaciones sobre Endemias Nacionales, Facultad de Bioquímica y Cs. Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Diez Cristina
- Laboratorio de Biología Molecular e Inmunología Aplicadas, Facultad de Bioquímica y Cs. Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
18
|
Michel-Todó L, Reche PA, Bigey P, Pinazo MJ, Gascón J, Alonso-Padilla J. In silico Design of an Epitope-Based Vaccine Ensemble for Chagas Disease. Front Immunol 2019; 10:2698. [PMID: 31824493 PMCID: PMC6882931 DOI: 10.3389/fimmu.2019.02698] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/01/2019] [Indexed: 01/21/2023] Open
Abstract
Trypanosoma cruzi infection causes Chagas disease, which affects 7 million people worldwide. Two drugs are available to treat it: benznidazole and nifurtimox. Although both are efficacious against the acute stage of the disease, this is usually asymptomatic and goes undiagnosed and untreated. Diagnosis is achieved at the chronic stage, when life-threatening heart and/or gut tissue disruptions occur in ~30% of those chronically infected. By then, the drugs' efficacy is reduced, but not their associated high toxicity. Given current deficiencies in diagnosis and treatment, a vaccine to prevent infection and/or the development of symptoms would be a breakthrough in the management of the disease. Current vaccine candidates are mostly based on the delivery of single antigens or a few different antigens. Nevertheless, due to the high biological complexity of the parasite, targeting as many antigens as possible would be desirable. In this regard, an epitope-based vaccine design could be a well-suited approach. With this aim, we have gone through publicly available databases to identify T. cruzi epitopes from several antigens. By means of a computer-aided strategy, we have prioritized a set of epitopes based on sequence conservation criteria, projected population coverage of Latin American population, and biological features of their antigens of origin. Fruit of this analysis, we provide a selection of CD8+ T cell, CD4+ T cell, and B cell epitopes that have <70% identity to human or human microbiome protein sequences and represent the basis toward the development of an epitope-based vaccine against T. cruzi.
Collapse
Affiliation(s)
- Lucas Michel-Todó
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Pedro Antonio Reche
- Laboratory of Immunomedicine, Faculty of Medicine, University Complutense of Madrid, Madrid, Spain
| | - Pascal Bigey
- Université de Paris, UTCBS, CNRS, INSERM, Paris, France.,PSL University, ChimieParisTech, Paris, France
| | - Maria-Jesus Pinazo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Joaquim Gascón
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Julio Alonso-Padilla
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Magalhães LMD, Passos LSA, Chiari E, Galvão LMC, Koh CC, Rodrigues-Alves ML, Giunchetti RC, Gollob K, Dutra WO. Co-infection with distinct Trypanosoma cruzi strains induces an activated immune response in human monocytes. Parasite Immunol 2019; 41:e12668. [PMID: 31494949 DOI: 10.1111/pim.12668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 08/22/2019] [Accepted: 08/31/2019] [Indexed: 12/15/2022]
Abstract
AIMS The aim of the study was to evaluate the immune response triggered by the first contact of human monocytes with two T cruzi strains from distinct discrete typing units (DTUs) IV and V, and whether co-infection with these strains leads to changes in monocyte immune profiles, which could in turn influence the subsequent infection outcome. METHODS AND RESULTS We evaluated the influence of in vitro single- and co-infection with AM64 and 3253 strains on immunological characteristics of human monocytes. Single infection of monocytes with AM64 or 3253 induced opposing anti-inflammatory and inflammatory responses, respectively. Co-infection was observed in over 50% of monocytes after 15 hours of culture, but this percentage dropped ten-fold after 72 hours. Co-infection led to high monocyte activation and an increased percentage of both IL-10 and TNF. The decreased percentage of co-infected cells observed after 72 hours was associated with a decreased frequency of TNF-expressing cells. CONCLUSION Our results show that the exacerbated response observed in co-infection with immune-polarizing strains is associated with a decreased frequency of co-infected cells, suggesting that the activated response favours parasite control. These findings may have implications for designing new Chagas disease preventive strategies.
Collapse
Affiliation(s)
- Luísa M D Magalhães
- Departamento de Morfologia, Laboratório de Biologia das Interações Celulares, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lívia S A Passos
- Departamento de Morfologia, Laboratório de Biologia das Interações Celulares, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Egler Chiari
- Departamento de Parasitologia, Laboratório de Biologia do Trypanosoma cruzi e doença de Chagas, Instituto de Ciências Biológicas, Belo Horizonte, Brazil
| | - Lúcia M C Galvão
- Departamento de Parasitologia, Laboratório de Biologia do Trypanosoma cruzi e doença de Chagas, Instituto de Ciências Biológicas, Belo Horizonte, Brazil
| | - Carolina C Koh
- Departamento de Morfologia, Laboratório de Biologia das Interações Celulares, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marina L Rodrigues-Alves
- Departamento de Morfologia, Laboratório de Biologia das Interações Celulares, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodolfo C Giunchetti
- Departamento de Morfologia, Laboratório de Biologia das Interações Celulares, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Kenneth Gollob
- International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil.,Instituto Nacional de Doenças Tropicais (INCT-DT), Salvador, Brazil
| | - Walderez O Dutra
- Departamento de Morfologia, Laboratório de Biologia das Interações Celulares, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Instituto Nacional de Doenças Tropicais (INCT-DT), Salvador, Brazil
| |
Collapse
|
20
|
Elucidating diversity in the class composition of the minicircle hypervariable region of Trypanosoma cruzi: New perspectives on typing and kDNA inheritance. PLoS Negl Trop Dis 2019; 13:e0007536. [PMID: 31247047 PMCID: PMC6619836 DOI: 10.1371/journal.pntd.0007536] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/10/2019] [Accepted: 06/10/2019] [Indexed: 12/18/2022] Open
Abstract
Background Trypanosoma cruzi, the protozoan causative of Chagas disease, is classified into six main Discrete Typing Units (DTUs): TcI-TcVI. This parasite has around 105 copies of the minicircle hypervariable region (mHVR) in their kinetoplastic DNA (kDNA). The genetic diversity of the mHVR is virtually unknown. However, cross-hybridization assays using mHVRs showed hybridization only between isolates belonging to the same genetic group. Nowadays there is no methodologic approach with a good sensibility, specificity and reproducibility for direct typing on biological samples. Due to its high copy number and apparently high diversity, mHVR becomes a good target for typing. Methodology/Principal findings Around 22 million reads, obtained by amplicon sequencing of the mHVR, were analyzed for nine strains belonging to six T. cruzi DTUs. The number and diversity of mHVR clusters was variable among DTUs and even within a DTU. However, strains of the same DTU shared more mHVR clusters than strains of different DTUs and clustered together. In addition, hybrid DTUs (TcV and TcVI) shared similar percentages (1.9–3.4%) of mHVR clusters with their parentals (TcII and TcIII). Conversely, just 0.2% of clusters were shared between TcII and TcIII suggesting biparental inheritance of the kDNA in hybrids. Sequencing at low depth (20,000–40,000 reads) also revealed 95% of the mHVR clusters for each of the analyzed strains. Finally, the method revealed good correlation in cluster identity and abundance between different replications of the experiment (r = 0.999). Conclusions/Significance Our work sheds light on the sequence diversity of mHVRs at intra and inter-DTU level. The mHVR amplicon sequencing workflow described here is a reproducible technique, that allows multiplexed analysis of hundreds of strains and results promissory for direct typing on biological samples in a future. In addition, such approach may help to gain knowledge on the mechanisms of the minicircle evolution and phylogenetic relationships among strains. Chagas disease is an important public health problem in Latin America showing a wide diversity of clinical manifestations and epidemiological patterns. It is caused by the parasite Trypanosoma cruzi. This parasite is genetically diverse and classified into six main lineages. However, the relationship between intra-specific genetic diversity and clinical or epidemiological features is not clear, mainly because low sensitivity for direct typing on biological samples. For this reason, genetic markers with high copy number are required to achieve sensitivity. Here, we deep sequenced and analyzed a DNA region present in the large mitochondria of the parasite (named as mHVR, 105 copies per parasite) from strains belonging to the six main lineages in order to analyze mHVR diversity and to evaluate its usefulness for typing. Despite the high sequence diversity, strains of the same lineage shared more sequences than strains of different lineages. Curiously, hybrid lineages shared mHVR sequences with both parents suggesting that mHVR (and DNA minicircles from the mitochondria) are inherited from both parentals. The mHVR amplicon sequencing workflow proposed here is reproducible and, potentially, it would be useful for typing hundreds of biological samples at time. It also provides a valuable approach to perform evolutionary and functional studies.
Collapse
|
21
|
Maggi RG, Krämer F. A review on the occurrence of companion vector-borne diseases in pet animals in Latin America. Parasit Vectors 2019; 12:145. [PMID: 30917860 PMCID: PMC6438007 DOI: 10.1186/s13071-019-3407-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023] Open
Abstract
Companion vector-borne diseases (CVBDs) are an important threat for pet life, but may also have an impact on human health, due to their often zoonotic character. The importance and awareness of CVBDs continuously increased during the last years. However, information on their occurrence is often limited in several parts of the world, which are often especially affected. Latin America (LATAM), a region with large biodiversity, is one of these regions, where information on CVBDs for pet owners, veterinarians, medical doctors and health workers is often obsolete, limited or non-existent. In the present review, a comprehensive literature search for CVBDs in companion animals (dogs and cats) was performed for several countries in Central America (Belize, Caribbean Islands, Costa Rica, Cuba, Dominican Republic, El Salvador, Guatemala, Honduras, Mexico, Nicaragua, Panama, Puerto Rico) as well as in South America (Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, French Guiana, Guyana (British Guyana), Paraguay, Peru, Suriname, Uruguay, Venezuela) regarding the occurrence of the following parasitic and bacterial diseases: babesiosis, heartworm disease, subcutaneous dirofilariosis, hepatozoonosis, leishmaniosis, trypanosomosis, anaplasmosis, bartonellosis, borreliosis, ehrlichiosis, mycoplasmosis and rickettsiosis. An overview on the specific diseases, followed by a short summary on their occurrence per country is given. Additionally, a tabular listing on positive or non-reported occurrence is presented. None of the countries is completely free from CVBDs. The data presented in the review confirm a wide distribution of the CVBDs in focus in LATAM. This wide occurrence and the fact that most of the CVBDs can have a quite severe clinical outcome and their diagnostic as well as therapeutic options in the region are often difficult to access and to afford, demands a strong call for the prevention of pathogen transmission by the use of ectoparasiticidal and anti-feeding products as well as by performing behavioural changes.
Collapse
Affiliation(s)
- Ricardo G. Maggi
- Department of Clinical Sciences and the Intracellular Pathogens Research Laboratory, College of Veterinary Medicine, North Carolina State University, Raleigh, NC USA
| | - Friederike Krämer
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| |
Collapse
|
22
|
Villanueva-Lizama L, Teh-Poot C, Majeau A, Herrera C, Dumonteil E. Molecular Genotyping of Trypanosoma cruzi by Next-Generation Sequencing of the Mini-Exon Gene Reveals Infections With Multiple Parasite Discrete Typing Units in Chagasic Patients From Yucatan, Mexico. J Infect Dis 2019; 219:1980-1988. [DOI: 10.1093/infdis/jiz047] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/25/2019] [Indexed: 12/19/2022] Open
Affiliation(s)
- Liliana Villanueva-Lizama
- Laboratorio de Parasitologia, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi,” Universidad Autonoma de Yucatan, Merida, Mexico
| | - Christian Teh-Poot
- Laboratorio de Parasitologia, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi,” Universidad Autonoma de Yucatan, Merida, Mexico
| | - Alicia Majeau
- Department of Tropical Medicine, School of Public Health and Tropical Medicine
- Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, Louisiana
| | - Claudia Herrera
- Department of Tropical Medicine, School of Public Health and Tropical Medicine
- Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, Louisiana
| | - Eric Dumonteil
- Department of Tropical Medicine, School of Public Health and Tropical Medicine
- Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, Louisiana
| |
Collapse
|
23
|
Gabrielli S, Spinicci M, Macchioni F, Rojo D, Totino V, Rojas P, Roselli M, Gamboa H, Cancrini G, Bartoloni A. Canine Trypanosoma cruzi infection in the Bolivian Chaco. Parasit Vectors 2018; 11:632. [PMID: 30541629 PMCID: PMC6292100 DOI: 10.1186/s13071-018-3247-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 11/29/2018] [Indexed: 01/21/2023] Open
Abstract
A cross-sectional study on Trypanosoma cruzi was carried out in 2013 to evaluate the role of dogs as possible source of infection for humans in two rural communities of the highly endemic Bolivian Chaco (Bartolo, Chuquisaca Department, n = 57 dogs; and Ivamirapinta, Santa Cruz Department, n = 48 dogs). Giemsa-stained thick and thin smears, rapid immunochromatographic test (ICT) (Chagas Quick test, Cypress Diagnostic, Belgium) and polymerase chain reaction for T. cruzi on dried blood spots were performed. All smears proved negative by microscopic examination, whereas 23/103 (22%) were positive by ICT and 5/105 (5%) blood samples contained T. cruzi DNA, evidencing the potential role of dogs in the domestic transmission of the parasite.
Collapse
Affiliation(s)
- Simona Gabrielli
- Dipartimento di Sanità Pubblica e Malattie Infettive, Università di Roma Sapienza, Rome, Italy
| | - Michele Spinicci
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Firenze, Florence, Italy
| | - Fabio Macchioni
- Dipartimento di Scienze Veterinarie, Università degli Studi di Pisa, Pisa, Italy
| | - David Rojo
- Escuela de Salud del Chaco Tekove Katu, Gutierrez, Plurinational State of Bolivia
| | - Valentina Totino
- Dipartimento di Sanità Pubblica e Malattie Infettive, Università di Roma Sapienza, Rome, Italy
| | - Patricia Rojas
- Distrito de Salud Cordillera Santa Cruz, Camiri, Plurinational State of Bolivia
| | - Mimmo Roselli
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Firenze, Florence, Italy
| | - Herlan Gamboa
- Facultad Integral del Chaco, Universidad Autónoma Gabriel René Moreno, Camiri, Plurinational State of Bolivia
| | - Gabriella Cancrini
- Dipartimento di Sanità Pubblica e Malattie Infettive, Università di Roma Sapienza, Rome, Italy
| | - Alessandro Bartoloni
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Firenze, Florence, Italy.
| |
Collapse
|
24
|
Rodrigues-dos-Santos Í, Melo MF, de Castro L, Hasslocher-Moreno AM, do Brasil PEAA, Silvestre de Sousa A, Britto C, Moreira OC. Exploring the parasite load and molecular diversity of Trypanosoma cruzi in patients with chronic Chagas disease from different regions of Brazil. PLoS Negl Trop Dis 2018; 12:e0006939. [PMID: 30418976 PMCID: PMC6258420 DOI: 10.1371/journal.pntd.0006939] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 11/26/2018] [Accepted: 10/23/2018] [Indexed: 11/29/2022] Open
Abstract
Chagas disease is still a major public health issue in many Latin American countries. One of the current major challenges is to find an association between Trypanosoma cruzi discrete typing units (DTUs) and clinical manifestations of the disease. In this study, we used a multilocus conventional PCR and quantitative real time PCR (qPCR) approaches to perform the molecular typing and parasite load quantification directly from blood specimens of 65 chronic Chagas disease patients. All patients were recruited at the same health center, but their place of birth were widely distributed in different geographic regions of Brazil. Of the 65 patients, 35 (53.8%) presented positive amplification by real time qPCR, being 20 (30.7%) with the clinical indeterminate form and 15 (23.1%) with the cardiac form of the disease. The parasite load median for all positive patients was 2.54 [1.43-11.14] parasite equivalents/mL (par. Eq./mL), with the load ranging from 0.12 to 153.66 par. Eq./mL. Noteworthy, the parasite load was significantly higher in patients over 70 years old (median 20.05 [18.29-86.86] par. Eq./mL). Using guanidine-EDTA blood samples spiked with reference T. cruzi strains, belonging to the six DTUs, it was possible to genotype the parasite up to 0.5 par. Eq./mL, with high specificity. Of the patients with positive qPCR, it was possible to identify the T. cruzi DTU in 28 patients (80%). For the remaining patients (20%), at least a partial result was obtained. Analysis of specimens showed prevalences of TcVI, TcII and mixed infection TcVI+TcII equal to 40%, 17.1% and 14.3%, respectively. In addition, two patients were infected by TcV, and one patient was coinfected by TcIII+TcVI, These last three patients were in stage A of chronic chagasic cardiomyopathy (CCC), and they were born at the Bahia State (northeast region of Brazil). When T. cruzi genotypes were compared with the parasite load, more elevated parasite loads were observed in patients infected by TcII in general (parasite load median of 7.56 par. Eq./mL) in comparison to patients infected by TcVI (median of 2.35 par. Eq./mL). However, while the frequency of CCC was 50% in patients infected by TcVI and TcV, only 16.7% of patients infected by TcII evolved to CCC. Taking together, our results contribute to update the epidemiological knowledge of T. cruzi DTUs in Brazil, and highlight the age of patient and infection by TcII as important features that lead to the observation of higher parasitemia levels.
Collapse
Affiliation(s)
| | - Myllena F. Melo
- Laboratório de Biologia Molecular e Doenças Endêmicas, IOC /Fiocruz, Rio de Janeiro, Brazil
| | - Liane de Castro
- Laboratório de Pesquisa Clínica em Doença de Chagas, INI/ Fiocruz, Rio de Janeiro, Brazil
| | | | | | | | - Constança Britto
- Laboratório de Biologia Molecular e Doenças Endêmicas, IOC /Fiocruz, Rio de Janeiro, Brazil
| | - Otacilio C. Moreira
- Laboratório de Biologia Molecular e Doenças Endêmicas, IOC /Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
25
|
Maintenance of Trypanosoma cruzi, T. evansi and Leishmania spp. by domestic dogs and wild mammals in a rural settlement in Brazil-Bolivian border. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2018; 7:398-404. [PMID: 30370220 PMCID: PMC6199764 DOI: 10.1016/j.ijppaw.2018.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/30/2018] [Accepted: 10/13/2018] [Indexed: 11/05/2022]
Abstract
Domestic dogs are considered reservoirs hosts for several vector-borne parasites. This study aimed to evaluate the role of domestic dogs as hosts for Trypanosoma cruzi, Trypanosoma evansi and Leishmania spp. in single and co-infections in the Urucum settlement, near the Brazil-Bolivian border. Additionally, we evaluated the involvement of wild mammals’ in the maintenance of these parasites in the study area. Blood samples of dogs (n = 62) and six species of wild mammals (n = 36) were collected in July and August of 2015. The infections were assessed using parasitological, serological and molecular tests. Clinical examination of dogs was performed and their feeding habits were noted. Overall, 87% (54/62) of sampled dogs were positive for at least one trypanosomatid species, in single (n = 9) and co-infections (n = 45). We found that 76% of dogs were positive for T. cruzi, four of them displayed high parasitemias demonstrated by hemoculture, including one strain types TcI, two TcIII and one TcIII/TcV. Around 73% (45/62) of dogs were positive to T. evansi, three with high parasitemias as seen by positive microhematocrit centrifuge technique. Of dogs sampled, 50% (31/62) were positive for Leishmania spp. by PCR or serology. We found a positive influence of (i) T. evansi on mucous pallor, (ii) co-infection by T. cruzi and Leishmania with onychogryphosis, and (iii) all parasites to skin lesions of sampled dogs. Finally, feeding on wild mammals had a positive influence in the Leishmania spp. infection in dogs. We found that 28% (5/18) coati Nasua nasua was co-infected for all three trypanosamatids, demonstrating that it might play a key role in maintenance of these parasites. Our results showed the importance of Urucum region as a hotspot for T. cruzi, T. evansi and Leishmania spp. and demonstrated that dogs can be considered as incidental hosts. Observation of high occurrence of dogs co-infected by trypanosomatids. Dogs infected by TcI, TcIII and TcIII/TcV. Nasua nasua is a key species in the sylvatic cycles of trypanosomatids. Direct effect of trypanosomatids' infection in clinical signs of dogs. Dogs as sentinels to human infection in the Brazil-Bolivian border.
Collapse
|
26
|
Macchiaverna NP, Enriquez GF, Buscaglia CA, Balouz V, Gürtler RE, Cardinal MV. New human isolates of Trypanosoma cruzi confirm the predominance of hybrid lineages in domestic transmission cycle of the Argentinean Chaco. INFECTION GENETICS AND EVOLUTION 2018; 66:229-235. [PMID: 30296602 DOI: 10.1016/j.meegid.2018.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 12/20/2022]
Abstract
Trypanosoma cruzi, the etiological agent of Chagas disease, was initially classified into 6 Discrete Typing Units (DTUs). The hybrid DTUs TcV and TcVI are the most frequent in domestic transmission cycles throughout the Southern Cone countries of South America. Here, we genotyped parasite isolates from human residents in Pampa del Indio municipality, Chaco, to further characterize the structure of T. cruzi populations, and to assess the degree of overlapping between the domestic and sylvatic transmission cycles. Artificial xenodiagnostic tests were performed to blood samples from 125 T. cruzi-seropositive people (age range, 3-70 years) who represented 14.3% of all seropositive residents identified. Parasites were obtained from feces of T. cruzi-infected Triatoma infestans examined 30 or 60 days after blood-feeding, and grown in vitro. The cultured parasites were genotyped by means of two PCR-based protocols. DTUs were determined from 39 (31%) patients residing in 28 dwellings. The only DTUs identified were TcV (92%) and TcVI (8-36%). Households with more than one parasite isolate consistently displayed the same DTU. Further sequencing of a fragment of the TcMK gene from selected samples argue against the occurrence of mixed TcV-TcVI infections in the study population. Sequencing data revealed an unexpected degree of genetic variability within TcV including two apparently robust subgroups of isolates. Our results for human residents confirm the predominance of hybrid lineages (TcV and to a much lesser extent TcVI) and the absence of sylvatic genotypes (TcI and TcIII) in (peri)domestic transmission cycles in the Argentinean Chaco area. 245 words.
Collapse
Affiliation(s)
- Natalia Paula Macchiaverna
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), UBA-CONICET, Capital Federal, Argentina
| | - Gustavo Fabián Enriquez
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), UBA-CONICET, Capital Federal, Argentina
| | - Carlos Andrés Buscaglia
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Virginia Balouz
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ricardo Esteban Gürtler
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), UBA-CONICET, Capital Federal, Argentina
| | - Marta Victoria Cardinal
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), UBA-CONICET, Capital Federal, Argentina.
| |
Collapse
|
27
|
Quebrada Palacio LP, González MN, Hernandez-Vasquez Y, Perrone AE, Parodi-Talice A, Bua J, Postan M. Phenotypic diversity and drug susceptibility of Trypanosoma cruzi TcV clinical isolates. PLoS One 2018; 13:e0203462. [PMID: 30183775 PMCID: PMC6124804 DOI: 10.1371/journal.pone.0203462] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 08/21/2018] [Indexed: 12/24/2022] Open
Abstract
Trypanosoma cruzi is a genetically heterogeneous group of organisms that cause Chagas disease. It has been long suspected that the clinical outcome of the disease and response to therapeutic agents are, at least in part, related to the genetic characteristics of the parasite. Herein, we sought to validate the significance of the genotype of T. cruzi isolates recovered from patients with different clinical forms of Chagas disease living in Argentina on their biological behaviour and susceptibility to drugs. Genotype identification of the newly established isolates confirmed the reported predominance of TcV, with a minor frequency of TcI. Epimastigote sensitivity assays demonstrated marked dissimilar responses to benznidazole, nifurtimox, pentamidine and dihydroartemisinin in vitro. Two TcV isolates exhibiting divergent response to benznidazole in epimastigote assays were further tested for the expression of anti-oxidant proteins. Benznidazole-resistant BOL-FC10A epimastigotes had decreased expression of Old Yellow Enzyme and cytosolic superoxide dismutase, and overexpression of mitochondrial superoxide dismutase and tryparedoxin- 1, compared to benznidazole-susceptible AR-SE23C parasites. Drug sensitivity assays on intracellular amastigotes and trypomastigotes reproduced the higher susceptibility of AR-SE23C over BOL-FC10A parasites to benznidazole observed in epimastigotes assays. However, the susceptibility/resistance profile of amastigotes and trypomastigotes to nifurtimox, pentamidine and dihydroartemisinin varied markedly with respect to that of epimastigotes. C3H/He mice infected with AR-SE23C trypomastigotes had higher levels of parasitemia and mortality rate during the acute phase of infection compared to mice infected with BOL-FC10A trypomastigotes. Treatment of infected mice with benznidazole or nifurtimox was efficient to reduce patent parasitemia induced by either isolate. Nevertheless, qPCR performed at 70 dpi revealed parasite DNA in the blood of mice infected with AR-SE23C but not in BOL-FC10A infected mice. These results demonstrate high level of intra-type diversity which may represent an important obstacle for the testing of chemotherapeutic agents.
Collapse
Affiliation(s)
- Luz P. Quebrada Palacio
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Investigación, Instituto Nacional de Parasitología “Dr. Mario Fatala Chabén”, Buenos Aires, Argentina
| | - Mariela N. González
- Departamento de Investigación, Instituto Nacional de Parasitología “Dr. Mario Fatala Chabén”, Buenos Aires, Argentina
| | - Yolanda Hernandez-Vasquez
- Departamento de Investigación, Instituto Nacional de Parasitología “Dr. Mario Fatala Chabén”, Buenos Aires, Argentina
| | - Alina E. Perrone
- Departamento de Investigación, Instituto Nacional de Parasitología “Dr. Mario Fatala Chabén”, Buenos Aires, Argentina
| | - Adriana Parodi-Talice
- Unidad de Biología Molecular, Institut Pasteur de Montevideo, Sección Genética, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Jacqueline Bua
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Investigación, Instituto Nacional de Parasitología “Dr. Mario Fatala Chabén”, Buenos Aires, Argentina
| | - Miriam Postan
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Investigación, Instituto Nacional de Parasitología “Dr. Mario Fatala Chabén”, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
28
|
Muñoz-San Martín C, Zulantay I, Saavedra M, Fuentealba C, Muñoz G, Apt W. Discrete typing units of Trypanosoma cruzi detected by real-time PCR in Chilean patients with chronic Chagas cardiomyopathy. Acta Trop 2018; 185:280-284. [PMID: 29746871 DOI: 10.1016/j.actatropica.2018.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/13/2018] [Accepted: 05/06/2018] [Indexed: 12/19/2022]
Abstract
Chagas disease is a major public health problem in Latin America and has spread to other countries due to immigration of infected persons. 10-30% of patients with chronic Chagas disease will develop cardiomyopathy. Chagas cardiomyopathy is the worst form of the disease, due to its high morbidity and mortality. Because of its prognostic value and adequate medical monitoring, it is very important to identify infected people who could develop Chagas cardiomyopathy. The aim of this study was to determine if discrete typing units (DTUs) of Trypanosoma cruzi are related to the presence of heart disease in patients with chronic Chagas disease. A total of 86 untreated patients, 41 with cardiomyopathy and 45 without heart involvement were submitted to clinical study. Electrocardiograms and echocardiograms were performed on the group of cardiopaths, in which all important known causes of cardiomyopathy were discarded. Sinus bradycardia and prolonged QTc interval were the most frequent electrocardiographic alterations and patients were classified in group I (46%) and group II (54%) of New York Hearth Association. In all cases real-time PCR genotyping assays were performed. In the group with cardiomyopathy, the most frequent DTU was TcI (56.1%), followed by TcII (19.5%). Mixed infections TcI + TcII were observed in 7.3% of the patients. In the group without cardiac pathologies, TcI and TcII were found at similar rates (28.9 and 31.1%, respectively) and mixed infections TcI + TcII in 17.8% of the cases. TcIII and TcIV were not detected in any sample. Taken together, our data indicate that chronic Chagas cardiomyopathy in Chile can be caused by strains belonging to TcI and TcII.
Collapse
|
29
|
Alessio GD, de Araújo FF, Sales Júnior PA, Gomes MDS, do Amaral LR, Pascoal Xavier MA, Teixeira-Carvalho A, de Lana M, Martins-Filho OA. Accomplishing the genotype-specific serodiagnosis of single and dual Trypanosoma cruzi infections by flow cytometry Chagas-Flow ATE-IgG2a. PLoS Negl Trop Dis 2018; 12:e0006140. [PMID: 29462135 PMCID: PMC5843347 DOI: 10.1371/journal.pntd.0006140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 03/08/2018] [Accepted: 11/28/2017] [Indexed: 01/04/2023] Open
Abstract
The methods currently available for genotype-specific diagnosis of T. cruzi infection still present relevant limitations, especially to identify mixed infection. In the present investigation, we have evaluated the performance of Chagas-Flow ATE-IgG2a test for early and late differential diagnosis of single and dual genotype-specific T. cruzi infections. Serum samples from Swiss mice at early and late stages of T. cruzi infection were assayed in parallel batches for genotype-specific diagnosis of single (TcI, TcVI or TcII) and dual (TcI+TcVI, TcVI+TcII or TcII+TcI) infections. The intrinsic reactivity to TcI, TcVI and TcII target antigens, including amastigote (AI/AVI/AII), trypomastigote-(TI/TVI/TII) and epimastigote (EI/EVI/EII), at specific reverse of serum dilutions (500 to 64,000), was employed to provide reliable decision-trees for "early" vs "late", "single vs "dual" and "genotype-specific" serology. The results demonstrated that selective set of attributes "EII 500/EI 2,000/AII 500" were able to provide high-quality accuracy (81%) to segregate early and late stages of T. cruzi infection. The sets "TI 2,000/AI 1,000/EII 1,000" and "TI 8,000/AII 32,000" presented expressive scores to discriminate single from dual T. cruzi infections at early (85%) and late stages (84%), respectively. Moreover, the attributes "TI 4,000/TVI 500/TII 1,000", "TI 16,000/EI 2,000/EII 2,000/AI 500/TVI 500" showed good performance for genotype-specific diagnosis at early stage of single (72%) and dual (80%) T. cruzi infections, respectively. In addition, the attributes "TI 4,000/AII 1,000/EVI 1,000", "TI 64,000/AVI 500/AI 2,000/AII 1,000/EII 4,000" showed moderate performance for genotype-specific diagnosis at late stage of single (69%) and dual (76%) T. cruzi infections, respectively. The sets of decision-trees were assembled to construct a sequential algorithm with expressive accuracy (81%) for serological diagnosis of T. cruzi infection. These findings engender new perspectives for the application of Chagas-Flow ATE-IgG2a method for genotype-specific diagnosis in humans, with relevant contributions for epidemiological surveys as well as clinical and post-therapeutic monitoring of Chagas disease.
Collapse
Affiliation(s)
- Glaucia Diniz Alessio
- Laboratório de Doença de Chagas, Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Instituto de Ciências Exatas e Biológicas (ICEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou (FIOCRUZ-Minas), Belo Horizonte, MG, Brazil
| | - Fernanda Fortes de Araújo
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou (FIOCRUZ-Minas), Belo Horizonte, MG, Brazil
- Programa de Pós-graduação em Sanidade e Produção Animal nos Trópicos, Universidade de Uberaba, Uberaba, Brazil
| | - Policarpo Ademar Sales Júnior
- Grupo de Genômica Funcional e Proteômica de Leishmania spp e Trypanosoma cruzi, Instituto René Rachou (FIOCRUZ-Minas), Belo Horizonte, MG, Brazil
| | - Matheus de Souza Gomes
- Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, INGEB/FACOM, Campus Patos de Minas, Patos de Minas, MG, Brazil
| | - Laurence Rodrigues do Amaral
- Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, INGEB/FACOM, Campus Patos de Minas, Patos de Minas, MG, Brazil
| | - Marcelo Antônio Pascoal Xavier
- Grupo de Pesquisas Clínicas e Políticas Públicas em Doenças Infecciosas e Parasitárias, Instituto René Rachou (FIOCRUZ-Minas), Belo Horizonte, MG, Brazil
| | - Andréa Teixeira-Carvalho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou (FIOCRUZ-Minas), Belo Horizonte, MG, Brazil
| | - Marta de Lana
- Laboratório de Doença de Chagas, Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Instituto de Ciências Exatas e Biológicas (ICEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Olindo Assis Martins-Filho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou (FIOCRUZ-Minas), Belo Horizonte, MG, Brazil
- * E-mail:
| |
Collapse
|
30
|
Flores-Ferrer A, Marcou O, Waleckx E, Dumonteil E, Gourbière S. Evolutionary ecology of Chagas disease; what do we know and what do we need? Evol Appl 2017; 11:470-487. [PMID: 29636800 PMCID: PMC5891055 DOI: 10.1111/eva.12582] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 11/19/2017] [Indexed: 01/02/2023] Open
Abstract
The aetiological agent of Chagas disease, Trypanosoma cruzi, is a key human pathogen afflicting most populations of Latin America. This vectorborne parasite is transmitted by haematophageous triatomines, whose control by large‐scale insecticide spraying has been the main strategy to limit the impact of the disease for over 25 years. While those international initiatives have been successful in highly endemic areas, this systematic approach is now challenged by the emergence of insecticide resistance and by its low efficacy in controlling species that are only partially adapted to human habitat. In this contribution, we review evidences that Chagas disease control shall now be entering a second stage that will rely on a better understanding of triatomines adaptive potential, which requires promoting microevolutionary studies and –omic approaches. Concomitantly, we show that our knowledge of the determinants of the evolution of T. cruzi high diversity and low virulence remains too limiting to design evolution‐proof strategies, while such attributes may be part of the future of Chagas disease control after the 2020 WHO's target of regional elimination of intradomiciliary transmission has been reached. We should then aim at developing a theory of T. cruzi virulence evolution that we anticipate to provide an interesting enrichment of the general theory according to the specificities of transmission of this very generalist stercorarian trypanosome. We stress that many ecological data required to better understand selective pressures acting on vector and parasite populations are already available as they have been meticulously accumulated in the last century of field research. Although more specific information will surely be needed, an effective research strategy would be to integrate data into the conceptual and theoretical framework of evolutionary ecology and life‐history evolution that provide the quantitative backgrounds necessary to understand and possibly anticipate adaptive responses to public health interventions.
Collapse
Affiliation(s)
- Alheli Flores-Ferrer
- UMR 228, ESPACE-DEV-IMAGES, 'Institut de Modélisation et d'Analyses en Géo-Environnement et Santé'Université de Perpignan Via Domitia Perpignan France.,UMR 5096 'Laboratoire Génome et Développement des Plantes' Université de Perpignan Via Domitia Perpignan France
| | - Olivier Marcou
- UMR 228, ESPACE-DEV-IMAGES, 'Institut de Modélisation et d'Analyses en Géo-Environnement et Santé'Université de Perpignan Via Domitia Perpignan France
| | - Etienne Waleckx
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi" Universidad Autónoma de Yucatán Mérida Mexico
| | - Eric Dumonteil
- Department of Tropical Medicine School of Public Health and Tropical Medicine Tulane University New Orleans LA USA
| | - Sébastien Gourbière
- UMR 228, ESPACE-DEV-IMAGES, 'Institut de Modélisation et d'Analyses en Géo-Environnement et Santé'Université de Perpignan Via Domitia Perpignan France.,UMR 5096 'Laboratoire Génome et Développement des Plantes' Université de Perpignan Via Domitia Perpignan France
| |
Collapse
|
31
|
Marti GA, Ragone P, Balsalobre A, Ceccarelli S, Susevich ML, Diosque P, Echeverría MG, Rabinovich JE. Can Triatoma virus inhibit infection of Trypanosoma cruzi (Chagas, 1909) in Triatoma infestans (Klug)? A cross infection and co-infection study. J Invertebr Pathol 2017; 150:101-105. [PMID: 28962837 DOI: 10.1016/j.jip.2017.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/20/2017] [Accepted: 09/25/2017] [Indexed: 10/18/2022]
Abstract
Triatoma virus occurs infecting Triatominae in the wild (Argentina) and in insectaries (Brazil). Pathogenicity of Triatoma virus has been demonstrated in laboratory; accidental infections in insectaries produce high insect mortality. When more than one microorganism enters the same host, the biological interaction among them differs greatly depending on the nature and the infection order of the co-existing species of microorganisms. We studied the possible interactions between Triatoma virus (TrV) and Trypanosoma cruzi (the etiological agent of Chagas disease) in three different situations: (i) when Triatoma virus is inoculated into an insect host (Triatoma infestans) previously infected with T. cruzi, (ii) when T. cruzi is inoculated into T. infestans previously infected with TrV, and (iii) when TrV and T. cruzi are inoculated simultaneously into the same T. infestans individual. Trypanosoma cruzi infection was found in 57% of insects in the control group for T. cruzi, whereas 85% of insects with previous TrV infection were infected with T. cruzi. TrV infection was found in 78.7% of insects in the control group for TrV, whereas insects previously infected with T. cruzi showed 90% infection with TrV. A total of 67.9% of insects presented simultaneous infection with both types of microorganism. Our results suggest that TrV infection could increase adhesion of T. cruzi to the intestinal cells of triatomines, but presence of T. cruzi in intestinal cells would not increase the possibility of entry of TrV into cells. Although this study cannot explain the mechanism through which TrV facilitates the infection of triatomines with T. cruzi, we conclude that after TrV replication, changes at cellular level should occur that increase the adhesion of T. cruzi.
Collapse
Affiliation(s)
- Gerardo Aníbal Marti
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT-La Plata-CONICET-UNLP), Boulevard 120 e/61 y 62, 1900 La Plata, Argentina; CCT-La Plata, 8#1467, 1900 La Plata, Argentina.
| | - Paula Ragone
- Unidad de Epidemiología Molecular del Instituto de Patología Experimental, Facultad de Ciencias de la Salud, Universidad Nacional de Salta, Salta, Argentina
| | - Agustín Balsalobre
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT-La Plata-CONICET-UNLP), Boulevard 120 e/61 y 62, 1900 La Plata, Argentina; CCT-La Plata, 8#1467, 1900 La Plata, Argentina
| | - Soledad Ceccarelli
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT-La Plata-CONICET-UNLP), Boulevard 120 e/61 y 62, 1900 La Plata, Argentina; CCT-La Plata, 8#1467, 1900 La Plata, Argentina
| | - María Laura Susevich
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT-La Plata-CONICET-UNLP), Boulevard 120 e/61 y 62, 1900 La Plata, Argentina; CCT-La Plata, 8#1467, 1900 La Plata, Argentina
| | - Patricio Diosque
- Unidad de Epidemiología Molecular del Instituto de Patología Experimental, Facultad de Ciencias de la Salud, Universidad Nacional de Salta, Salta, Argentina
| | - María Gabriela Echeverría
- Cátedra de Virología, Facultad de Ciencias Veterinarias (UNLP), 60 y 118, 1900 La Plata, Argentina; CCT-La Plata, 8#1467, 1900 La Plata, Argentina
| | - Jorge Eduardo Rabinovich
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT-La Plata-CONICET-UNLP), Boulevard 120 e/61 y 62, 1900 La Plata, Argentina; CCT-La Plata, 8#1467, 1900 La Plata, Argentina
| |
Collapse
|
32
|
A multi-parametric analysis of Trypanosoma cruzi infection: common pathophysiologic patterns beyond extreme heterogeneity of host responses. Sci Rep 2017; 7:8893. [PMID: 28827716 PMCID: PMC5566495 DOI: 10.1038/s41598-017-08086-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/06/2017] [Indexed: 01/12/2023] Open
Abstract
The extreme genetic diversity of the protozoan Trypanosoma cruzi has been proposed to be associated with the clinical outcomes of the disease it provokes: Chagas disease (CD). To address this question, we analysed the similarities and differences in the CD pathophysiogenesis caused by different parasite strains. Using syngeneic mice infected acutely or chronically with 6 distant parasite strains, we integrated simultaneously 66 parameters: parasite tropism (7 parameters), organ and immune responses (local and systemic; 57 parameters), and clinical presentations of CD (2 parameters). While the parasite genetic background consistently impacts most of these parameters, they remain highly variable, as observed in patients, impeding reliable one-dimensional association with phases, strains, and damage. However, multi-dimensional statistics overcame this extreme intra-group variability for each individual parameter and revealed some pathophysiological patterns that accurately allow defining (i) the infection phase, (ii) the infecting parasite strains, and (iii) organ damage type and intensity. Our results demonstrated a greater variability of clinical outcomes and host responses to T. cruzi infection than previously thought, while our multi-parametric analysis defined common pathophysiological patterns linked to clinical outcome of CD, conserved among the genetically diverse infecting strains.
Collapse
|
33
|
Tomasini N, Ragone PG, Gourbière S, Aparicio JP, Diosque P. Epidemiological modeling of Trypanosoma cruzi: Low stercorarian transmission and failure of host adaptive immunity explain the frequency of mixed infections in humans. PLoS Comput Biol 2017; 13:e1005532. [PMID: 28481887 PMCID: PMC5440054 DOI: 10.1371/journal.pcbi.1005532] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 05/22/2017] [Accepted: 04/24/2017] [Indexed: 01/27/2023] Open
Abstract
People living in areas with active vector-borne transmission of Chagas disease have multiple contacts with its causative agent, Trypanosoma cruzi. Reinfections by T. cruzi are possible at least in animal models leading to lower or even hardly detectable parasitaemia. In humans, although reinfections are thought to have major public health implications by increasing the risk of chronic manifestations of the disease, there is little quantitative knowledge about their frequency and the timing of parasite re-inoculation in the course of the disease. Here, we implemented stochastic agent-based models i) to estimate the rate of re-inoculation in humans and ii) to assess how frequent are reinfections during the acute and chronic stages of the disease according to alternative hypotheses on the adaptive immune response following a primary infection. By using a hybrid genetic algorithm, the models were fitted to epidemiological data of Argentinean rural villages where mixed infections by different genotypes of T. cruzi reach 56% in humans. To explain this percentage, the best model predicted 0.032 (0.008-0.042) annual reinfections per individual with 98.4% of them occurring in the chronic phase. In addition, the parasite escapes to the adaptive immune response mounted after the primary infection in at least 20% of the events of re-inoculation. With these low annual rates, the risks of reinfection during the typically long chronic stage of the disease stand around 14% (4%-18%) and 60% (21%-70%) after 5 and 30 years, with most individuals being re-infected 1-3 times overall. These low rates are better explained by the weak efficiency of the stercorarian mode of transmission than a highly efficient adaptive immune response. Those estimates are of particular interest for vaccine development and for our understanding of the higher risk of chronic disease manifestations suffered by infected people living in endemic areas.
Collapse
Affiliation(s)
- Nicolás Tomasini
- Instituto de Patología Experimental, Facultad de Ciencias de la Salud, CONICET, Universidad Nacional de Salta, Salta, Argentina
| | - Paula Gabriela Ragone
- Instituto de Patología Experimental, Facultad de Ciencias de la Salud, CONICET, Universidad Nacional de Salta, Salta, Argentina
| | - Sébastien Gourbière
- UMR 228 ESPACE-DEV-IMAGES, ‘Institut de Modélisation et d'Analyses en Géo-Environnement et Santé’, Université de Perpignan Via Domitia, Perpignan, France
| | - Juan Pablo Aparicio
- Instituto de Investigaciones en Energía no Convencional, CONICET, Universidad Nacional de Salta, Salta, Argentina
| | - Patricio Diosque
- Instituto de Patología Experimental, Facultad de Ciencias de la Salud, CONICET, Universidad Nacional de Salta, Salta, Argentina
| |
Collapse
|
34
|
Jaimes-Dueñez J, Triana-Chávez O, Cantillo-Barraza O, Hernández C, Ramírez JD, Góngora-Orjuela A. Molecular and serological detection of Trypanosoma cruzi in dogs (Canis lupus familiaris) suggests potential transmission risk in areas of recent acute Chagas disease outbreaks in Colombia. Prev Vet Med 2017; 141:1-6. [PMID: 28532988 DOI: 10.1016/j.prevetmed.2017.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/22/2017] [Accepted: 03/28/2017] [Indexed: 02/07/2023]
Abstract
Chagas disease is a zoonotic infection widely distributed in tropical and subtropical regions of America, including more than 50% of the Colombian territory. In the last years, an increase of outbreaks of acute Chagas disease has been observed in the east of the country due to environmental changes and mammal movements toward human settlements. Given the importance of dogs (Canis lupus familiaris) as reservoir hosts and sentinels of Trypanosoma cruzi infection across different regions of America, in this study we reported a serological and molecular detection of T. cruzi infection in 242 dogs from an endemic area of Meta department (East of Colombia), with recent emergence of acute Chagas disease outbreaks. The distribution of T. cruzi infection in dogs was not homogeneous, ranging from 0-41.4% and 0-5.1% in different sampling sectors, through serological (ELISA/IFAT) and molecular methods (conventional and real time PCR), respectively. Statistical analysis indicated that dog infection was associated with specific sampling sectors. Our results show a moderate seroprevalence of infection and active circulation of T. cruzi in dogs from this zone, which suggest areas with potential risk of infection to human that must be taken into consideration when Chagas disease control programs need to be implemented.
Collapse
Affiliation(s)
- Jeiczon Jaimes-Dueñez
- Grupo de Investigación en Reproducción y Genética Animal GIRGA, Programa de Medicina Veterinaria y Zootecnia, Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad de Los Llanos, Villavicencio, Colombia; Grupo de Biología y Control de Enfermedades Infecciosas BCEI, Programa de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, Colombia.
| | - Omar Triana-Chávez
- Grupo de Biología y Control de Enfermedades Infecciosas BCEI, Programa de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, Colombia
| | - Omar Cantillo-Barraza
- Grupo de Biología y Control de Enfermedades Infecciosas BCEI, Programa de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, Colombia
| | - Carolina Hernández
- Grupo de Investigaciones Microbiológicas - UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas - UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| | - Agustín Góngora-Orjuela
- Grupo de Investigación en Reproducción y Genética Animal GIRGA, Programa de Medicina Veterinaria y Zootecnia, Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad de Los Llanos, Villavicencio, Colombia
| |
Collapse
|
35
|
Identifying Trypanosoma cruzi discreet typing units in triatomines collected in different natural regions of Perú. BIOMEDICA 2017; 37:167-179. [PMID: 29161488 DOI: 10.7705/biomedica.v37i0.3559] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 07/14/2017] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Trypanosoma cruzi has been divided by international consensus into six discrete typing units (DTU): TcI, TcII, TcIII, TcIV, TcV y TcVI. The factors determining the dynamics of T. cruzi genotypes vector transmission of Chagas' disease in the different geographical regions of Perú are still unknown. OBJECTIVE To detect and type T. cruzi DTUs from the faeces of seven species of triatomines (Panstrongylus chinai, P. geniculatus, P. herreri, Rhodnius robustus, R. pictipes, Triatoma carrioni and T. infestans) captured in eight departments from different natural regions of Perú. MATERIALS AND METHODS We examined 197 insects for detecting trypanosomes. DNA was extracted from each insect intestinal contents and PCR amplification of kDNA, SL-IR, 24Sα rRNA and 18Sα RNA was performed for detecting T. cruzi DTUs. RESULTS Five T. rangeli and 113 T. cruzi infections were detected; 95 of the latter were identified as TcI (two in P. chinai, one in P. geniculatus, 68 in P. herreri, four in R. pictipes, seven in R. robustus, one in T. carrioni, 12 in T. infestans), five as TcII (four in P. herreri, one in T. infestans), four as TcIII (three in P. herreri, one in R. robustus) and four TcIV infections in P. herreri. CONCLUSIONS This is the first study which has attempted a large-scale characterization of T. cruzi found in the intestine of epidemiologically important vectors in Perú, thus providing basic information that will facilitate a better understanding of the dynamics of T. cruzi vector transmission in Perú.
Collapse
|
36
|
Garcia MN, Burroughs H, Gorchakov R, Gunter SM, Dumonteil E, Murray KO, Herrera CP. Molecular identification and genotyping of Trypanosoma cruzi DNA in autochthonous Chagas disease patients from Texas, USA. INFECTION GENETICS AND EVOLUTION 2017; 49:151-156. [PMID: 28095298 DOI: 10.1016/j.meegid.2017.01.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/12/2017] [Accepted: 01/14/2017] [Indexed: 12/27/2022]
Abstract
The parasitic protozoan Trypanosoma cruzi, the causative agent of Chagas disease, is widely distributed throughout the Americas, from the southern United States (US) to northern Argentina, and infects at least 6 million people in endemic areas. Much remains unknown about the dynamics of T. cruzi transmission among mammals and triatomine vectors in sylvatic and peridomestic eco-epidemiological cycles, as well as of the risk of transmission to humans in the US. Identification of T. cruzi DTUs among locally-acquired cases is necessary for enhancing our diagnostic and clinical prognostic capacities, as well as to understand parasite transmission cycles. Blood samples from a cohort of 15 confirmed locally-acquired Chagas disease patients from Texas were used for genotyping T. cruzi. Conventional PCR using primers specific for the minicircle variable region of the kinetoplastid DNA (kDNA) and the highly repetitive genomic satellite DNA (satDNA) confirmed the presence of T. cruzi in 12/15 patients. Genotyping was based on the amplification of the intergenic region of the miniexon gene of T. cruzi and sequencing. Sequences were analyzed by BLAST and phylogenetic analysis by Maximum Likelihood method allowed the identification of non-TcI DTUs infection in six patients, which corresponded to DTUs TcII, TcV or TcVI, but not to TcIII or TcIV. Two of these six patients were also infected with a TcI DTU, indicating mixed infections in those individuals. Electrocardiographic abnormalities were seen among patients with single non-TcI and mixed infections of non-TcI and TcI DTUs. Our results indicate a greater diversity of T. cruzi DTUs circulating among autochthonous human Chagas disease cases in the southern US, including for the first time DTUs from the TcII-TcV-TcVI group. Furthermore, the DTUs infecting human patients in the US are capable of causing Chagasic cardiac disease, highlighting the importance of parasite detection in the population.
Collapse
Affiliation(s)
- Melissa N Garcia
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Hadley Burroughs
- Department of Tropical Medicine, Vector-Borne Infectious Disease Research Center, Tulane University, School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Rodion Gorchakov
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Sarah M Gunter
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Eric Dumonteil
- Department of Tropical Medicine, Vector-Borne Infectious Disease Research Center, Tulane University, School of Public Health and Tropical Medicine, New Orleans, LA, USA; Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Autonomous University of Yucatan (UADY), Merida, Yucatan, Mexico
| | - Kristy O Murray
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Claudia P Herrera
- Department of Tropical Medicine, Vector-Borne Infectious Disease Research Center, Tulane University, School of Public Health and Tropical Medicine, New Orleans, LA, USA.
| |
Collapse
|
37
|
Ortiz S, Ceballos MJ, González CR, Reyes C, Gómez V, García A, Solari A. Trypanosoma cruzi diversity in infected dogs from areas of the north coast of Chile. VETERINARY PARASITOLOGY- REGIONAL STUDIES AND REPORTS 2016; 5:42-47. [PMID: 31014537 DOI: 10.1016/j.vprsr.2016.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/13/2016] [Accepted: 09/19/2016] [Indexed: 01/10/2023]
Abstract
As part of a multi-site research program on the eco-epidemiology and control of Chagas disease in northern Chile, we sought to identify the Trypanosoma cruzi discrete typing units (DTUs) infecting rural and peridomestic dogs, using direct methods without grown of the parasite in the laboratory and thus to assess the use of this species as a sentinel of the disease in well-defined endemic areas of T. cruzi in Chile. Infected dogs (35) from three villages were included in the study. The studied villages were Caleta Río Seco and Caleta San Marcos, both in the Tarapacá Region, and La Serena in the Coquimbo Region. These villages were selected based on previous evidence of Mepraia infection reports of the Chilean Ministry of Health. Amplicons from nested-PCR positive samples were used as targets to determine the infective T. cruzi DTUs circulating in blood using PCR-DNA blotting and hybridization assays with five specific DNA probes (TcI, TcII, TcIII, TcV and TcVI). Results of hybridization with dog samples from Caleta Rio Seco showed single infections in 2 out of 16 and mixed infections in 14 out of 16. TcVI was the most frequent DTU found in this area. A highlight is that for the first time the presence of TcIII is reported in this area. Samples from Caleta San Marcos showed single infections in 5 out of 9 and mixed infections in 4 out of 9. TcVI was the most frequent DTU found in this area. Samples from La Serena showed single infections in 5 out of 10 and mixed infections in 2 out of 10; we were unable to genotype the other 3 samples. Our results indicate that infection by T. cruzi DTUs in dogs is not homogeneously distributed but rather specific to each region of our country, as demonstrated by the differences in the T. cruzi DTU distribution in some localities.
Collapse
Affiliation(s)
- S Ortiz
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - M J Ceballos
- Escuela de Medicina Veterinaria, Facultad de Ciencias Agropecuarias, Universidad Pedro de Valdivia, La Serena, Chile
| | - C R González
- Instituto de Entomología, Facultad de Ciencias Básicas, Universidad, Metropolitana de Ciencias de la Educación, Santiago, Chile; Laboratorio de Entomología Médica, Sección Parasitología, Instituto de Salud, Pública de, Chile
| | - C Reyes
- Laboratorio de Entomología Médica, Sección Parasitología, Instituto de Salud, Pública de, Chile
| | - V Gómez
- Facultad de Medicina, Universidad Pedro de Valdivia, La Serena, Chile
| | - A García
- Facultad de Medicina, Universidad Pedro de Valdivia, La Serena, Chile
| | - A Solari
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
38
|
Weatherly DB, Peng D, Tarleton RL. Recombination-driven generation of the largest pathogen repository of antigen variants in the protozoan Trypanosoma cruzi. BMC Genomics 2016; 17:729. [PMID: 27619017 PMCID: PMC5020489 DOI: 10.1186/s12864-016-3037-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 08/24/2016] [Indexed: 12/15/2022] Open
Abstract
Background The protozoan parasite Trypanosoma cruzi, causative agent of Chagas disease, depends upon a cell surface-expressed trans-sialidase (ts) to avoid activation of complement-mediated lysis and to enhance intracellular invasion. However these functions alone fail to account for the size of this gene family in T. cruzi, especially considering that most of these genes encode proteins lacking ts enzyme activity. Previous whole genome sequencing of the CL Brener clone of T. cruzi identified ~1400 ts variants, but left many partially assembled sequences unannotated. Results In the current study we reevaluated the trans-sialidase-like sequences in this reference strain, identifying an additional 1779 full-length and partial ts genes with their important features annotated, and confirming the expression of previously annotated “pseudogenes” and newly annotated ts family members. Multiple EM for Motif Elicitation (MEME) analysis allowed us to generate a model T. cruzi ts (TcTS) based upon the most conserved motif patterns and demonstrated that a common motif order is highly conserved among ts family members. Using a newly developed pipeline for the analysis of recombination within large gene families, we further demonstrate that TcTS family members are undergoing frequent recombination, generating new variants from the thousands of functional and non-functional ts gene segments but retaining the overall structure of the core TcTS family members. Conclusions The number and variety as well as high recombination frequency of TcTS family members supports strong evolutionary pressure, probably exerted by immune selection, for continued variation in ts sequences in T. cruzi, and thus for a unique immune evasion mechanism for the large ts gene family. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3037-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- D Brent Weatherly
- Center for Tropical and Emerging Global Diseases, Institute of Bioinformatics and Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA.,Center for Complex Carbohydrate Research, University of Georgia, Athens, GA, 30602, USA
| | - Duo Peng
- Center for Tropical and Emerging Global Diseases, Institute of Bioinformatics and Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Rick L Tarleton
- Center for Tropical and Emerging Global Diseases, Institute of Bioinformatics and Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
39
|
Bontempi IA, Bizai ML, Ortiz S, Manattini S, Fabbro D, Solari A, Diez C. Simple methodology to directly genotype Trypanosoma cruzi discrete typing units in single and mixed infections from human blood samples. INFECTION GENETICS AND EVOLUTION 2016; 43:123-9. [DOI: 10.1016/j.meegid.2016.05.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 11/25/2022]
|
40
|
Dario MA, Rodrigues MS, Barros JHDS, Xavier SCDC, D’Andrea PS, Roque ALR, Jansen AM. Ecological scenario and Trypanosoma cruzi DTU characterization of a fatal acute Chagas disease case transmitted orally (Espírito Santo state, Brazil). Parasit Vectors 2016; 9:477. [PMID: 27580853 PMCID: PMC5006519 DOI: 10.1186/s13071-016-1754-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/12/2016] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Trypanosoma cruzi infection via oral route results in outbreaks or cases of acute Chagas disease (ACD) in different Brazilian regions and poses a novel epidemiological scenario. In the Espírito Santo state (southeastern Brazil), a fatal case of a patient with ACD led us to investigate the enzootic scenario to avoid the development of new cases. At the studied locality, Triatoma vitticeps exhibited high T. cruzi infection rates and frequently invaded residences. METHODS Sylvatic and domestic mammals in the Rio da Prata locality, where the ACD case occurred, and in four surrounding areas (Baia Nova, Buenos Aires, Santa Rita and Todos os Santos) were examined and underwent parasitological and serological tests. Triatomines were collected for a fecal material exam, culturing and mini-exon gene molecular characterization, followed by RFLP-PCR of H3/Alul. Paraffin-embedded cardiac tissue of a patient was washed with xylene to remove paraffin and DNA was extracted using the phenol-chloroform method. For genotype characterization, PCR was performed to amplify the 1f8, GPI and 18S rRNA genes. In the case of V7V8 SSU rRNA, the PCR products were molecularly cloned. PCR products were sequenced and compared to sequences in GenBank. Phylogenetic analysis using maximum likelihood method with 1000 bootstrap replicates was performed. RESULTS None of the animals showed positive hemocultures. Three rodents and two dogs showed signs of infection, as inferred from borderline serological titers. T. vitticeps was the only triatomine species identified and showed T. cruzi infection by DTUs TcI and TcIV. The analysis of cardiac tissue DNA showed mixed infection by T. cruzi (DTUs I, II, III and IV) and Trypanosoma dionisii. CONCLUSIONS Each case or outbreak of ACD should be analyzed as a particular epidemiological occurrence. The results indicated that mixed infections in humans may play a role in pathogenicity and may be more common than is currently recognized. Direct molecular characterization from biological samples is essential because this procedure avoids parasite selection. T. dionisii may under certain and unknown circumstances infect humans. The distribution of T. cruzi DTUS TcIII and TcIV in Brazilian biomes is broader than has been assumed to date.
Collapse
Affiliation(s)
- Maria Augusta Dario
- Laboratory of Trypanosomatid Biology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Rio de Janeiro Brazil
| | - Marina Silva Rodrigues
- Laboratory of Trypanosomatid Biology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Rio de Janeiro Brazil
| | | | | | - Paulo Sérgio D’Andrea
- Laboratory of Biology and Parasitology of Wild Reservoir Mammals, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Rio de Janeiro Brazil
| | - André Luiz Rodrigues Roque
- Laboratory of Trypanosomatid Biology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Rio de Janeiro Brazil
| | - Ana Maria Jansen
- Laboratory of Trypanosomatid Biology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Rio de Janeiro Brazil
| |
Collapse
|
41
|
Lucero R, Brusés B, Cura C, Formichelli L, Juiz N, Fernández G, Bisio M, Deluca G, Besuschio S, Hernández D, Schijman A. Chagas' disease in Aboriginal and Creole communities from the Gran Chaco Region of Argentina: Seroprevalence and molecular parasitological characterization. INFECTION GENETICS AND EVOLUTION 2016; 41:84-92. [DOI: 10.1016/j.meegid.2016.03.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 03/26/2016] [Accepted: 03/28/2016] [Indexed: 12/17/2022]
|
42
|
Morrot A, Villar SR, González FB, Pérez AR. Evasion and Immuno-Endocrine Regulation in Parasite Infection: Two Sides of the Same Coin in Chagas Disease? Front Microbiol 2016; 7:704. [PMID: 27242726 PMCID: PMC4876113 DOI: 10.3389/fmicb.2016.00704] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/28/2016] [Indexed: 12/16/2022] Open
Abstract
Chagas disease is a serious illness caused by the protozoan parasite Trypanosoma cruzi. Nearly 30% of chronically infected people develop cardiac, digestive, or mixed alterations, suggesting a broad range of host-parasite interactions that finally impact upon chronic disease outcome. The ability of T. cruzi to persist and cause pathology seems to depend on diverse factors like T. cruzi strains, the infective load and the route of infection, presence of virulence factors, the parasite capacity to avoid protective immune response, the strength and type of host defense mechanisms and the genetic background of the host. The host-parasite interaction is subject to a constant neuro-endocrine regulation that is thought to influence the adaptive immune system, and as the infection proceeds it can lead to a broad range of outcomes, ranging from pathogen elimination to its continued persistence in the host. In this context, T. cruzi evasion strategies and host defense mechanisms can be envisioned as two sides of the same coin, influencing parasite persistence and different outcomes observed in Chagas disease. Understanding how T. cruzi evade host's innate and adaptive immune response will provide important clues to better dissect mechanisms underlying the pathophysiology of Chagas disease.
Collapse
Affiliation(s)
- Alexandre Morrot
- Institute of Microbiology, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Silvina R Villar
- Institute of Clinical and Experimental Immunology of Rosario, CONICET, National University of RosarioRosario, Argentina; Faculty of Medical Sciences, National University of RosarioRosario, Argentina
| | - Florencia B González
- Institute of Clinical and Experimental Immunology of Rosario, CONICET, National University of RosarioRosario, Argentina; Faculty of Medical Sciences, National University of RosarioRosario, Argentina
| | - Ana R Pérez
- Institute of Clinical and Experimental Immunology of Rosario, CONICET, National University of RosarioRosario, Argentina; Faculty of Medical Sciences, National University of RosarioRosario, Argentina
| |
Collapse
|
43
|
The TcTASV proteins are novel promising antigens to detect active Trypanosoma cruzi infection in dogs. Parasitology 2016; 143:1382-9. [PMID: 27173912 DOI: 10.1017/s0031182016000822] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In regions where Chagas disease is endemic, canine Trypanosoma cruzi infection is highly correlated with the risk of transmission of the parasite to humans. Herein we evaluated the novel TcTASV protein family (subfamilies A, B, C), differentially expressed in bloodstream trypomastigotes, for the detection of naturally infected dogs. A gene of each TcTASV subfamily was cloned and expressed. Indirect enzyme-linked immunosorbent assays (ELISA) were developed using recombinant antigens individually or mixed together. Our results showed that dogs with active T. cruzi infection differentially reacted against the TcTASV-C subfamily. The use of both TcTASV-C plus TcTASV-A proteins (Mix A+C-ELISA) enhanced the reactivity of sera from dogs with active infection, detecting 94% of the evaluated samples. These findings agree with our previous observations, where the infected animals exhibited a quick anti-TcTASV-C antibody response, coincident with the beginning of parasitaemia, in a murine model of the disease. Results obtained in the present work prove that the Mix A+C-ELISA is a specific, simple and cheap technique to be applied in endemic areas in screening studies. The Mix A+C-ELISA could help to differentially detect canine hosts with active infection and therefore with high impact in the risk of transmission to humans.
Collapse
|
44
|
Cecere MC, Leporace M, Fernández MP, Zárate JE, Moreno C, Gürtler RE, Cardinal MV. Host-Feeding Sources and Infection With Trypanosoma cruzi of Triatoma infestans and Triatoma eratyrusiformis (Hemiptera: Reduviidae) From the Calchaqui Valleys in Northwestern Argentina. JOURNAL OF MEDICAL ENTOMOLOGY 2016; 53:666-673. [PMID: 26849898 DOI: 10.1093/jme/tjw002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/11/2016] [Indexed: 06/05/2023]
Abstract
We assessed the prevalence of infection with Trypanosoma cruzi, parasite genotypes (discrete typing units, DTUs), and the host-feeding sources of domestic and peridomestic Triatoma infestans Klug and Triatoma eratyrusiformis Del Ponte in eight rural communities of the subandean Calchaqui valleys in northwestern Argentina. We sought to analyze their epidemiological role in the context of routine vector surveillance and control actions. Infection with T. cruzi was determined by optic microscopy or polymerase chain reaction (PCR) amplification of the hypervariable region of kinetoplast DNA minicircles. Parasite genotypes were identified through a multi PCR-based strategy. Bloodmeal contents were tested with a direct ELISA assay against nine antisera. Human sleeping quarters (domiciles) and peridomestic dry-shrub fences concentrated most of the T. infestans and T. eratyrusiformis infected with T. cruzi, respectively. The most frequent host-feeding sources of T. infestans were chickens (73.1%) in peridomiciles and humans (73.3%) in domiciles, whereas T. eratyrusiformis fed more often on cavid rodents (92.6%), which thrived in the dry-shrub fences. The main T. cruzi DTU identified in both vectors was T. cruzi I (TcI). Triatoma eratyrusiformis was implicated in the local circulation of TcI among cavies and perhaps mice, but infection with other typically domestic DTUs (TcVI and TcII/TcV/TcVI) indicated overlap between (peri)domestic transmission cycles in both vector species. Because dry-shrub fences were not targeted for routine insecticide spraying, they may act as sources of (peri)domestic reinfestation. Triatoma eratyrusiformis is an emergent secondary vector of T. cruzi and plays a significant role in the local transmission of T. cruzi.
Collapse
Affiliation(s)
- M C Cecere
- Laboratorio de Eco-Epidemiología, Departamento de Ecología, Genética y Evolución, Universidad de Buenos Aires-Instituto de Ecología, Genética y Evolución (IEGEBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET),Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina (; ; ; ; ),
| | - M Leporace
- Laboratorio de Eco-Epidemiología, Departamento de Ecología, Genética y Evolución, Universidad de Buenos Aires-Instituto de Ecología, Genética y Evolución (IEGEBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET),Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina (; ; ; ; )
- Laboratorio de Control de Vectores Entomológicos de Importancia Sanitaria (LaCVEIS), Fundación Barceló, Centeno y Rivadavia. Santo Tomé, Corrientes, Argentina, and
| | - M P Fernández
- Laboratorio de Eco-Epidemiología, Departamento de Ecología, Genética y Evolución, Universidad de Buenos Aires-Instituto de Ecología, Genética y Evolución (IEGEBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET),Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina (; ; ; ; )
| | - J E Zárate
- Coordinación Nacional de Control de Vectores (CNCV), Italia 1971, San Miguel de Tucumán, Tucumán, Argentina (; )
| | - C Moreno
- Coordinación Nacional de Control de Vectores (CNCV), Italia 1971, San Miguel de Tucumán, Tucumán, Argentina (; )
| | - R E Gürtler
- Laboratorio de Eco-Epidemiología, Departamento de Ecología, Genética y Evolución, Universidad de Buenos Aires-Instituto de Ecología, Genética y Evolución (IEGEBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET),Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina (; ; ; ; )
| | - M V Cardinal
- Laboratorio de Eco-Epidemiología, Departamento de Ecología, Genética y Evolución, Universidad de Buenos Aires-Instituto de Ecología, Genética y Evolución (IEGEBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET),Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina (; ; ; ; )
| |
Collapse
|
45
|
Enriquez GF, Garbossa G, Macchiaverna NP, Argibay HD, Bua J, Gürtler RE, Cardinal MV. Is the infectiousness of dogs naturally infected with Trypanosoma cruzi associated with poly-parasitism? Vet Parasitol 2016; 223:186-94. [PMID: 27198799 DOI: 10.1016/j.vetpar.2016.04.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 04/23/2016] [Accepted: 04/26/2016] [Indexed: 12/11/2022]
Abstract
Interactions among different species of parasites co-infecting the same host could be synergistic or antagonistic. These interactions may modify both the frequency of infected hosts and their infectiousness, and therefore impact on transmission dynamics. This study determined the infectiousness of Trypanosoma cruzi-seropositive dogs (using xenodiagnosis) and their parasite load (quantified by qPCR), and tested the association between both variables and the presence of concomitant endoparasites. A cross-sectional serosurvey conducted in eight rural villages from Pampa del Indio and neighboring municipalities (northeastern Argentina) detected 32 T. cruzi-seropositive dogs out of 217 individuals examined for infection. Both the infectiousness to the vector Triatoma infestans and parasite load of T. cruzi-seropositive dogs examined were heterogeneous. A statistically significant, nine-fold higher mean infectiousness was registered in T. cruzi-seropositive dogs co-infected with Ancylostoma caninum and a trematode than in T. cruzi-seropositive dogs without these infections. The median parasite load of T. cruzi was also significantly higher in dogs co-infected with these helminths. An opposite trend was observed in T. cruzi-seropositive dogs that were serologically positive to Toxoplasma gondii or Neospora caninum relative to dogs seronegative for these parasites. Using multiple logistic regression analysis with random effects, we found a positive and significant association between the infectiousness of T. cruzi-seropositive dogs and co-infections with A. caninum and a trematode. Our results suggest that co-infections may be a modifier of host infectiousness in dogs naturally infected with T. cruzi.
Collapse
Affiliation(s)
- G F Enriquez
- Laboratory of Eco-Epidemiology, Faculty of Exact and Natural Sciences, University of Buenos Aires, Argentina; Institute of Ecology, Genetics and Evolution of Buenos Aires (UBA-CONICET), Argentina
| | - G Garbossa
- Laboratory of Clinical and Environmental Parasitology, Faculty of Exact and Natural Sciences, University of Buenos Aires, (IQUIBICEN-CONICET-UBA), Public Health Research Institute, Argentina
| | - N P Macchiaverna
- Laboratory of Eco-Epidemiology, Faculty of Exact and Natural Sciences, University of Buenos Aires, Argentina; Institute of Ecology, Genetics and Evolution of Buenos Aires (UBA-CONICET), Argentina
| | - H D Argibay
- Laboratory of Eco-Epidemiology, Faculty of Exact and Natural Sciences, University of Buenos Aires, Argentina; Institute of Ecology, Genetics and Evolution of Buenos Aires (UBA-CONICET), Argentina
| | - J Bua
- National Institute of Parasitology Dr. M. Fatala Chaben, National Administration of Laboratories and Institutes of Health Dr. C.G. Malbrán, Buenos Aires, Argentina
| | - R E Gürtler
- Laboratory of Eco-Epidemiology, Faculty of Exact and Natural Sciences, University of Buenos Aires, Argentina; Institute of Ecology, Genetics and Evolution of Buenos Aires (UBA-CONICET), Argentina
| | - M V Cardinal
- Laboratory of Eco-Epidemiology, Faculty of Exact and Natural Sciences, University of Buenos Aires, Argentina; Institute of Ecology, Genetics and Evolution of Buenos Aires (UBA-CONICET), Argentina.
| |
Collapse
|
46
|
Molecular Approaches for Diagnosis of Chagas' Disease and Genotyping of Trypanosoma cruzi. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Gürtler RE, Cardinal MV. Reservoir host competence and the role of domestic and commensal hosts in the transmission of Trypanosoma cruzi. Acta Trop 2015; 151:32-50. [PMID: 26051910 DOI: 10.1016/j.actatropica.2015.05.029] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/25/2015] [Accepted: 05/31/2015] [Indexed: 12/30/2022]
Abstract
We review the epidemiological role of domestic and commensal hosts of Trypanosoma cruzi using a quantitative approach, and compiled >400 reports on their natural infection. We link the theory underlying simple mathematical models of vector-borne parasite transmission to the types of evidence used for reservoir host identification: mean duration of infectious life; host infection and infectiousness; and host-vector contact. The infectiousness of dogs or cats most frequently exceeded that of humans. The host-feeding patterns of major vectors showed wide variability among and within triatomine species related to their opportunistic behavior and variable ecological, biological and social contexts. The evidence shows that dogs, cats, commensal rodents and domesticated guinea pigs are able to maintain T. cruzi in the absence of any other host species. They play key roles as amplifying hosts and sources of T. cruzi in many (peri)domestic transmission cycles covering a broad diversity of ecoregions, ecotopes and triatomine species: no other domestic animal plays that role. Dogs comply with the desirable attributes of natural sentinels and sometimes were a point of entry of sylvatic parasite strains. The controversies on the role of cats and other hosts illustrate the issues that hamper assessing the relative importance of reservoir hosts on the basis of fragmentary evidence. We provide various study cases of how eco-epidemiological and genetic-marker evidence helped to unravel transmission cycles and identify the implicated hosts. Keeping dogs, cats and rodents out of human sleeping quarters and reducing their exposure to triatomine bugs are predicted to strongly reduce transmission risks.
Collapse
Affiliation(s)
- Ricardo E Gürtler
- Laboratory of Eco-Epidemiology, Department of Ecology, Genetics and Evolution, Universidad de Buenos Aires-IEGEBA (CONICET-UBA), Buenos Aires, Argentina.
| | - M V Cardinal
- Laboratory of Eco-Epidemiology, Department of Ecology, Genetics and Evolution, Universidad de Buenos Aires-IEGEBA (CONICET-UBA), Buenos Aires, Argentina
| |
Collapse
|
48
|
Jansen AM, Xavier SC, Roque ALR. The multiple and complex and changeable scenarios of the Trypanosoma cruzi transmission cycle in the sylvatic environment. Acta Trop 2015. [PMID: 26200785 DOI: 10.1016/j.actatropica.2015.07.018] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this study, we report and discuss the results generated from over 20 years of studies of the Trypanosoma cruzi sylvatic transmission cycle. Our results have uncovered new aspects and reviewed old concepts on issues including reservoirs, true generalist species, association of mammalian species with distinct discrete typing units - DTUs, distribution of T. cruzi genotypes in the wild, mixed infections, and T. cruzi transmission ecology. Using parasitological and serological tests, we examined T. cruzi infection in 7,285 mammalian specimens from nine mammalian orders dispersed all over the Brazilian biomes. The obtained T. cruzi isolates were characterized by mini-exon gene sequence polymorphism and PCR RFLP to identify DTUs. Infection by T. cruzi was detected by serological methods in 20% of the examined animals and isolated from 41% of those infected, corresponding to 8% of all the examined mammals. Each mammal taxon responded uniquely to T. cruzi infection. Didelphis spp. are able to maintain high and long-lasting parasitemias (positive hemocultures) caused by TcI but maintain and rapidly control parasitemias caused by TcII to almost undetectable levels. In contrast, the tamarin species Leontopithecus rosalia and L. chrysomelas maintain long-lasting and high parasitemias caused by TcII similarly to Philander sp. The coati Nasua nasua maintains high parasitemias by both parental T. cruzi DTUs TcI or TcII and by TcII/TcIV (formerly Z3) at detectable levels. Wild and domestic canidae seem to display only a short period of reservoir competence. T. cruzi infection was demonstrated in the wild canid species Cerdocyon thous and Chrysocyon brachyurus, and positive hemoculture was obtained in one hyper carnivore species (Leopardus pardalis), demonstrating that T. cruzi transmission is deeply immersed in the trophic net. T. cruzi DTU distribution in nature did not exhibit any association with a particular biome or habitat. TcI predominates throughout (58% of the T. cruzi isolates); however, in spite of being significantly less frequent (17%), TcII is also widely distributed. Concomitant DTU infection occurred in 16% of infected mammals of all biomes and included arboreal and terrestrial species, as well as bats. TcI/TcII concomitant infection was the most common and widely dispersed, with mixed TcI/TcII infections especially common in coatis and in Didelphimorphia. The second most common pattern of concomitant infection was TcI/TcIV, observed in Chiroptera, Didelphimorphia and Primates. Taken together, our results demonstrate the complexity of T. cruzi reservoir system and its transmission strategies, indicating that there is considerably more to be learned regarding ecology of T. cruzi.
Collapse
|
49
|
Messenger LA, Miles MA, Bern C. Between a bug and a hard place: Trypanosoma cruzi genetic diversity and the clinical outcomes of Chagas disease. Expert Rev Anti Infect Ther 2015; 13:995-1029. [PMID: 26162928 PMCID: PMC4784490 DOI: 10.1586/14787210.2015.1056158] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Over the last 30 years, concomitant with successful transnational disease control programs across Latin America, Chagas disease has expanded from a neglected, endemic parasitic infection of the rural poor to an urbanized chronic disease, and now a potentially emergent global health problem. Trypanosoma cruzi infection has a highly variable clinical course, ranging from complete absence of symptoms to severe and often fatal cardiovascular and/or gastrointestinal manifestations. To date, few correlates of clinical disease progression have been identified. Elucidating a putative role for T. cruzi strain diversity in Chagas disease pathogenesis is complicated by the scarcity of parasites in clinical specimens and the limitations of our contemporary genotyping techniques. This article systematically reviews the historical literature, given our current understanding of parasite genetic diversity, to evaluate the evidence for any association between T. cruzi genotype and chronic clinical outcome, risk of congenital transmission or reactivation and orally transmitted outbreaks.
Collapse
Affiliation(s)
- Louisa A Messenger
- Department of Pathogen Molecular Biology, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Michael A Miles
- Department of Pathogen Molecular Biology, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Caryn Bern
- Global Health Sciences, Department of Epidemiology and Biostatistics, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
50
|
Cura CI, Duffy T, Lucero RH, Bisio M, Péneau J, Jimenez-Coello M, Calabuig E, Gimenez MJ, Valencia Ayala E, Kjos SA, Santalla J, Mahaney SM, Cayo NM, Nagel C, Barcán L, Málaga Machaca ES, Acosta Viana KY, Brutus L, Ocampo SB, Aznar C, Cuba Cuba CA, Gürtler RE, Ramsey JM, Ribeiro I, VandeBerg JL, Yadon ZE, Osuna A, Schijman AG. Multiplex Real-Time PCR Assay Using TaqMan Probes for the Identification of Trypanosoma cruzi DTUs in Biological and Clinical Samples. PLoS Negl Trop Dis 2015; 9:e0003765. [PMID: 25993316 PMCID: PMC4437652 DOI: 10.1371/journal.pntd.0003765] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/16/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Trypanosoma cruzi has been classified into six Discrete Typing Units (DTUs), designated as TcI-TcVI. In order to effectively use this standardized nomenclature, a reproducible genotyping strategy is imperative. Several typing schemes have been developed with variable levels of complexity, selectivity and analytical sensitivity. Most of them can be only applied to cultured stocks. In this context, we aimed to develop a multiplex Real-Time PCR method to identify the six T. cruzi DTUs using TaqMan probes (MTq-PCR). METHODS/PRINCIPAL FINDINGS The MTq-PCR has been evaluated in 39 cultured stocks and 307 biological samples from vectors, reservoirs and patients from different geographical regions and transmission cycles in comparison with a multi-locus conventional PCR algorithm. The MTq-PCR was inclusive for laboratory stocks and natural isolates and sensitive for direct typing of different biological samples from vectors, reservoirs and patients with acute, congenital infection or Chagas reactivation. The first round SL-IR MTq-PCR detected 1 fg DNA/reaction tube of TcI, TcII and TcIII and 1 pg DNA/reaction tube of TcIV, TcV and TcVI reference strains. The MTq-PCR was able to characterize DTUs in 83% of triatomine and 96% of reservoir samples that had been typed by conventional PCR methods. Regarding clinical samples, 100% of those derived from acute infected patients, 62.5% from congenitally infected children and 50% from patients with clinical reactivation could be genotyped. Sensitivity for direct typing of blood samples from chronic Chagas disease patients (32.8% from asymptomatic and 22.2% from symptomatic patients) and mixed infections was lower than that of the conventional PCR algorithm. CONCLUSIONS/SIGNIFICANCE Typing is resolved after a single or a second round of Real-Time PCR, depending on the DTU. This format reduces carryover contamination and is amenable to quantification, automation and kit production.
Collapse
Affiliation(s)
- Carolina I. Cura
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres”—INGEBI-CONICET, Buenos Aires, Argentina
| | - Tomas Duffy
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres”—INGEBI-CONICET, Buenos Aires, Argentina
| | - Raúl H. Lucero
- Instituto de Medicina Regional, Universidad Nacional del Nordeste, Resistencia, Chaco, Argentina
| | - Margarita Bisio
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres”—INGEBI-CONICET, Buenos Aires, Argentina
| | - Julie Péneau
- Laboratoire Hospitalier et Universitaire-CH Andrée Rosemon, Cayenne, French Guiana, France
| | - Matilde Jimenez-Coello
- Laboratorio Biología Celular, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Eva Calabuig
- Servicio de Medicina Interna, Hospital Politécnico LA FE, Valencia, Spain
| | - María J. Gimenez
- Servicio de Microbiología, Hospital Universitario y Politécnico LA FE, Valencia, Spain
| | - Edward Valencia Ayala
- Laboratorio de Investigación en Enfermedades Infecciosas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Sonia A. Kjos
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, United States of America
| | - José Santalla
- Laboratorio de Parasitología, Instituto Nacional de Laboratorios en Salud, Ministerio de Salud y Deportes de Bolivia, La Paz, Bolivia
| | - Susan M. Mahaney
- Southwest National Primate Research Center and Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Nelly M. Cayo
- Instituto de Biología de la Altura, Universidad Nacional de Jujuy, Jujuy, Argentina
| | - Claudia Nagel
- Epidemiología e Infectología Clínica, Hospital Universitario Fundación Favaloro, Buenos Aires, Argentina
| | - Laura Barcán
- Sección Infectología, Servicio de Clínica Médica, Hospital Italiano, Buenos Aires, Argentina
| | - Edith S. Málaga Machaca
- Laboratorio de Investigación en Enfermedades Infecciosas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Karla Y. Acosta Viana
- Laboratorio Biología Celular, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Laurent Brutus
- Institut de Recherche pour le Développement and University Paris Descartes, UMR 216, Mother and Child Facing Tropical Diseases, Paris, France
| | - Susana B. Ocampo
- Instituto de Biología de la Altura, Universidad Nacional de Jujuy, Jujuy, Argentina
| | - Christine Aznar
- Laboratoire Hospitalier et Universitaire-CH Andrée Rosemon, Cayenne, French Guiana, France
| | - Cesar A. Cuba Cuba
- Parasitologia Médica e Biologia de Vetores, Área de Patologia, Faculdade de Medicina, Universidade de Brasilia, Brasilia DF, Brazil
| | - Ricardo E. Gürtler
- Laboratorio de Eco-Epidemiología, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Janine M. Ramsey
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, Mexico
| | - Isabela Ribeiro
- Drugs and Neglected Diseases Initiative, Genève, Switzerland
| | - John L. VandeBerg
- Southwest National Primate Research Center and Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Zaida E. Yadon
- Pan American Health Organization (PAHO), World Health Organization (WHO), Washington, D.C., United States of America
| | - Antonio Osuna
- Institute of Biotechnology, Molecular Parasitology Group, University of Granada, Granada, Spain
| | - Alejandro G. Schijman
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres”—INGEBI-CONICET, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|