1
|
Rodrigo MB, De Min A, Jorch SK, Martin-Higueras C, Baumgart AK, Goldyn B, Becker S, Garbi N, Lemmermann NA, Kurts C. Dual fluorescence reporter mice for Ccl3 transcription, translation, and intercellular communication. J Exp Med 2024; 221:e20231814. [PMID: 38661718 PMCID: PMC11044946 DOI: 10.1084/jem.20231814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/21/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Chemokines guide immune cells during their response against pathogens and tumors. Various techniques exist to determine chemokine production, but none to identify cells that directly sense chemokines in vivo. We have generated CCL3-EASER (ErAse, SEnd, Receive) mice that simultaneously report for Ccl3 transcription and translation, allow identifying Ccl3-sensing cells, and permit inducible deletion of Ccl3-producing cells. We infected these mice with murine cytomegalovirus (mCMV), where Ccl3 and NK cells are critical defense mediators. We found that NK cells transcribed Ccl3 already in homeostasis, but Ccl3 translation required type I interferon signaling in infected organs during early infection. NK cells were both the principal Ccl3 producers and sensors of Ccl3, indicating auto/paracrine communication that amplified NK cell response, and this was essential for the early defense against mCMV. CCL3-EASER mice represent the prototype of a new class of dual fluorescence reporter mice for analyzing cellular communication via chemokines, which may be applied also to other chemokines and disease models.
Collapse
Affiliation(s)
- Maria Belen Rodrigo
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University Hospital of Bonn University, Bonn, Germany
| | - Anna De Min
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University Hospital of Bonn University, Bonn, Germany
| | - Selina Kathleen Jorch
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University Hospital of Bonn University, Bonn, Germany
| | - Cristina Martin-Higueras
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University Hospital of Bonn University, Bonn, Germany
| | - Ann-Kathrin Baumgart
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University Hospital of Bonn University, Bonn, Germany
| | - Beata Goldyn
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University Hospital of Bonn University, Bonn, Germany
| | - Sara Becker
- Institute of Virology, Faculty of Medicine, University Hospital of Bonn University, Bonn, Germany
| | - Natalio Garbi
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University Hospital of Bonn University, Bonn, Germany
| | - Niels A. Lemmermann
- Institute of Virology, Faculty of Medicine, University Hospital of Bonn University, Bonn, Germany
- Institute for Virology, University Medical Center Mainz, Mainz, Germany
| | - Christian Kurts
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University Hospital of Bonn University, Bonn, Germany
| |
Collapse
|
2
|
Yan T, Pang X, Liang B, Meng Q, Wei H, Li W, Liu D, Hu Y. Comprehensive bioinformatics analysis of human cytomegalovirus pathway genes in pan-cancer. Hum Genomics 2024; 18:65. [PMID: 38886862 PMCID: PMC11181644 DOI: 10.1186/s40246-024-00633-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Human cytomegalovirus (HCMV) is a herpesvirus that can infect various cell types and modulate host gene expression and immune response. It has been associated with the pathogenesis of various cancers, but its molecular mechanisms remain elusive. METHODS We comprehensively analyzed the expression of HCMV pathway genes across 26 cancer types using the Cancer Genome Atlas (TCGA) and The Genotype-Tissue Expression (GTEx) databases. We also used bioinformatics tools to study immune invasion and tumor microenvironment in pan-cancer. Cox regression and machine learning were used to analyze prognostic genes and their relationship with drug sensitivity. RESULTS We found that HCMV pathway genes are widely expressed in various cancers. Immune infiltration and the tumor microenvironment revealed that HCMV is involved in complex immune processes. We obtained prognostic genes for 25 cancers and significantly found 23 key genes in the HCMV pathway, which are significantly enriched in cellular chemotaxis and synaptic function and may be involved in disease progression. Notably, CaM family genes were up-regulated and AC family genes were down-regulated in most tumors. These hub genes correlate with sensitivity or resistance to various drugs, suggesting their potential as therapeutic targets. CONCLUSIONS Our study has revealed the role of the HCMV pathway in various cancers and provided insights into its molecular mechanism and therapeutic significance. It is worth noting that the key genes of the HCMV pathway may open up new doors for cancer prevention and treatment.
Collapse
Affiliation(s)
- Tengyue Yan
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xianwu Pang
- Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, 530028, China
| | - Boying Liang
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Qiuxia Meng
- School of Information and Managent, Guangxi Medical University, Nanning, China
| | - Huilin Wei
- School of Institute of Life Sciences, Guangxi Medical University, Nanning, China
| | - Wen Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangxi Medical University, Nanning, China
| | - Dahai Liu
- School of Medicine, Foshan University, Foshan, Guangdong, 528000, People's Republic of China.
| | - Yanling Hu
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, 530021, China.
- School of Institute of Life Sciences, Guangxi Medical University, Nanning, China.
| |
Collapse
|
3
|
de Pablo N, Meana C, Martínez‐García J, Martínez‐Vicente P, Albert M, Guerra S, Angulo A, Balsinde J, Balboa MA. Lipin-2 regulates the antiviral and anti-inflammatory responses to interferon. EMBO Rep 2023; 24:e57238. [PMID: 37929625 PMCID: PMC10702840 DOI: 10.15252/embr.202357238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023] Open
Abstract
Interferons (IFN) are crucial antiviral and immunomodulatory cytokines that exert their function through the regulation of a myriad of genes, many of which are not yet characterized. Here, we reveal that lipin-2, a phosphatidic acid phosphatase whose mutations produce an autoinflammatory syndrome known as Majeed syndrome in humans, is regulated by IFN in a STAT-1-dependent manner. Lipin-2 inhibits viral replication both in vitro and in vivo. Moreover, lipin-2 also acts as a regulator of inflammation in a viral context by reducing the signaling through TLR3 and the generation of ROS and release of mtDNA that ultimately activate the NLRP3 inflammasome. Inhibitors of mtDNA release from mitochondria restrict IL-1β production in lipin-2-deficient animals in a model of viral infection. Finally, analyses of databases from COVID-19 patients show that LPIN2 expression levels negatively correlate with the severity of the disease. Overall, these results uncover novel regulatory mechanisms of the IFN response driven by lipin-2 and open new perspectives for the future management of patients with LPIN2 mutations.
Collapse
Affiliation(s)
- Nagore de Pablo
- Instituto de Biología y Genética MolecularConsejo Superior de Investigaciones Científicas (CSIC)ValladolidSpain
| | - Clara Meana
- Instituto de Biología y Genética MolecularConsejo Superior de Investigaciones Científicas (CSIC)ValladolidSpain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)Instituto de Salud Carlos IIIMadridSpain
| | - Javier Martínez‐García
- Instituto de Biología y Genética MolecularConsejo Superior de Investigaciones Científicas (CSIC)ValladolidSpain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)Instituto de Salud Carlos IIIMadridSpain
| | - Pablo Martínez‐Vicente
- Immunology Unit, Department of Biomedical Sciences, Faculty of Medicine and Health SciencesUniversity of BarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
| | - Manuel Albert
- Departamento de Medicina Preventiva y Salud Pública, Facultad de MedicinaUniversidad Autónoma de MadridMadridSpain
| | - Susana Guerra
- Departamento de Medicina Preventiva y Salud Pública, Facultad de MedicinaUniversidad Autónoma de MadridMadridSpain
| | - Ana Angulo
- Immunology Unit, Department of Biomedical Sciences, Faculty of Medicine and Health SciencesUniversity of BarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
| | - Jesús Balsinde
- Instituto de Biología y Genética MolecularConsejo Superior de Investigaciones Científicas (CSIC)ValladolidSpain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)Instituto de Salud Carlos IIIMadridSpain
| | - María A Balboa
- Instituto de Biología y Genética MolecularConsejo Superior de Investigaciones Científicas (CSIC)ValladolidSpain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
4
|
Fanunza E, Cheng AZ, Auerbach AA, Stefanovska B, Moraes SN, Lokensgard JR, Biolatti M, Dell'Oste V, Bierle CJ, Bresnahan WA, Harris RS. Human cytomegalovirus mediates APOBEC3B relocalization early during infection through a ribonucleotide reductase-independent mechanism. J Virol 2023; 97:e0078123. [PMID: 37565748 PMCID: PMC10506462 DOI: 10.1128/jvi.00781-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/21/2023] [Indexed: 08/12/2023] Open
Abstract
The APOBEC3 family of DNA cytosine deaminases comprises an important arm of the innate antiviral defense system. The gamma-herpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus and the alpha-herpesviruses herpes simplex virus (HSV)-1 and HSV-2 have evolved an efficient mechanism to avoid APOBEC3 restriction by directly binding to APOBEC3B and facilitating its exclusion from the nuclear compartment. The only viral protein required for APOBEC3B relocalization is the large subunit of the ribonucleotide reductase (RNR). Here, we ask whether this APOBEC3B relocalization mechanism is conserved with the beta-herpesvirus human cytomegalovirus (HCMV). Although HCMV infection causes APOBEC3B relocalization from the nucleus to the cytoplasm in multiple cell types, the viral RNR (UL45) is not required. APOBEC3B relocalization occurs rapidly following infection suggesting the involvement of an immediate early or early (IE/E) viral protein. In support of this possibility, genetic (IE1 mutant) and pharmacologic (cycloheximide) strategies that prevent the expression of IE/E viral proteins also block APOBEC3B relocalization. In comparison, the treatment of infected cells with phosphonoacetic acid, which interferes with viral late protein expression, still permits A3B relocalization. These results combine to indicate that the beta-herpesvirus HCMV uses an RNR-independent, yet phenotypically similar, molecular mechanism to antagonize APOBEC3B. IMPORTANCE Human cytomegalovirus (HCMV) infections can range from asymptomatic to severe, particularly in neonates and immunocompromised patients. HCMV has evolved strategies to overcome host-encoded antiviral defenses to achieve lytic viral DNA replication and dissemination and, under some conditions, latency and long-term persistence. Here, we show that HCMV infection causes the antiviral factor, APOBEC3B, to relocalize from the nuclear compartment to the cytoplasm. This overall strategy resembles that used by related herpesviruses. However, the HCMV relocalization mechanism utilizes a different viral factor(s) and available evidence suggests the involvement of at least one protein expressed at the early stages of infection. This knowledge is important because a greater understanding of this mechanism could lead to novel antiviral strategies that enable APOBEC3B to naturally restrict HCMV infection.
Collapse
Affiliation(s)
- Elisa Fanunza
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Cagilari, Italy
| | - Adam Z. Cheng
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ashley A. Auerbach
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Bojana Stefanovska
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Sofia N. Moraes
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - James R. Lokensgard
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Matteo Biolatti
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Valentina Dell'Oste
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Craig J. Bierle
- Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Wade A. Bresnahan
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Reuben S. Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
5
|
Penner I, Büscher N, Krauter S, Plachter B. Subviral Dense Bodies of Human Cytomegalovirus Enhance Interferon-Beta Responses in Infected Cells and Impair Progeny Production. Viruses 2023; 15:1333. [PMID: 37376632 DOI: 10.3390/v15061333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 04/18/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
(1) Background: Infection with human cytomegalovirus (HCMV) leads to the production and release of subviral particles, termed Dense Bodies (DB). They are enclosed by a membrane resembling the viral envelope. This membrane mediates the entrance of DBs into cells in a way that is comparable to virus infection. HCMV attachment and entry trigger the induction of interferon synthesis and secretion, and the subsequent expression of interferon-regulated genes (IRGs) that might inhibit replication of the virus. Recently, we demonstrated that DBs induce a robust interferon response in the absence of infection. Little is known thus far, including how DBs influence HCMV infection and virus-host interaction. (2) Methods: Purified DBs were used to study the impact on virus replication and on the innate defense mechanisms of the cell. (3) Results: The incubation of cells with DBs at the time of infection had little effect on viral genome replication. Preincubation of DBs, however, led to a marked reduction in viral release from infected cells. These cells showed an enhancement of the cytopathic effect, associated with a moderate increase in early apoptosis. Despite virus-induced mechanisms to limit the interferon response, the induction of interferon-regulated genes (IRGs) was upregulated by DB treatment. (4) Conclusions: DBs sensitize cells against viral infection, comparable to the effects of interferons. The activities of these particles need to be considered when studying viral-host interaction.
Collapse
Affiliation(s)
- Inessa Penner
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany
| | - Nicole Büscher
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany
| | - Steffi Krauter
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany
| | - Bodo Plachter
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany
| |
Collapse
|
6
|
Zarrella K, Longmire P, Zeltzer S, Collins-McMillen D, Hancock M, Buehler J, Reitsma JM, Terhune SS, Nelson JA, Goodrum F. Human cytomegalovirus UL138 interaction with USP1 activates STAT1 in infection. PLoS Pathog 2023; 19:e1011185. [PMID: 37289831 PMCID: PMC10284425 DOI: 10.1371/journal.ppat.1011185] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/21/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023] Open
Abstract
Innate immune responses are crucial for limiting virus infection. However, viruses often hijack our best defenses for viral objectives. Human Cytomegalovirus (HCMV) is a beta herpesvirus which establishes a life-long latent infection. Defining the virus-host interactions controlling latency and reactivation is vital to the control of viral disease risk posed by virus reactivation. We defined an interaction between UL138, a pro-latency HCMV gene, and the host deubiquitinating complex, UAF1-USP1. UAF1 is a scaffold protein pivotal for the activity of ubiquitin specific peptidases (USP), including USP1. UAF1-USP1 sustains an innate immune response through the phosphorylation and activation of signal transducer and activator of transcription-1 (pSTAT1), as well as regulates the DNA damage response. After the onset of viral DNA synthesis, pSTAT1 levels are elevated in infection and this depends upon UL138 and USP1. pSTAT1 localizes to viral centers of replication, binds to the viral genome, and influences UL138 expression. Inhibition of USP1 results in a failure to establish latency, marked by increased viral genome replication and production of viral progeny. Inhibition of Jak-STAT signaling also results in increased viral genome synthesis in hematopoietic cells, consistent with a role for USP1-mediated regulation of STAT1 signaling in the establishment of latency. These findings demonstrate the importance of the UL138-UAF1-USP1 virus-host interaction in regulating HCMV latency establishment through the control of innate immune signaling. It will be important going forward to distinguish roles of UAF1-USP1 in regulating pSTAT1 relative to its role in the DNA damage response in HCMV infection.
Collapse
Affiliation(s)
- Kristen Zarrella
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Pierce Longmire
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Sebastian Zeltzer
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | | | - Meaghan Hancock
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Jason Buehler
- Imanis Life Sciences, Rochester, Minnesota, United States of America
| | - Justin M. Reitsma
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Abbvie, Chicago, Illinois, United States of America
| | - Scott S. Terhune
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Jay A. Nelson
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Felicia Goodrum
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
7
|
Zarrella K, Longmire P, Zeltzer S, Collins-McMillen D, Hancock M, Buehler J, Reitsma JM, Terhune SS, Nelson JA, Goodrum F. Human Cytomegalovirus UL138 Interaction with USP1 Activates STAT1 in infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527452. [PMID: 36798153 PMCID: PMC9934528 DOI: 10.1101/2023.02.07.527452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Innate immune responses are crucial for limiting virus infection. However, viruses often hijack our best defenses for viral objectives. Human Cytomegalovirus (HCMV) is a beta herpesvirus which establishes a life-long latent infection. Defining the virus-host interactions controlling latency and reactivation is vital to the control of viral disease risk posed by virus reactivation. We defined an interaction between UL138, a pro-latency HCMV gene, and the host deubiquintase complex, UAF1-USP1. UAF1 is a scaffold protein pivotal for the activity of ubiquitin specific peptidases (USP), including USP1. UAF1-USP1 sustains an innate immune response through the phosphorylation and activation of signal transducer and activator of transcription-1 (pSTAT1), as well as regulates the DNA damage response. After the onset of viral DNA synthesis, pSTAT1 levels are elevated and this depends upon UL138 and USP1. pSTAT1 localizes to viral centers of replication, binds to the viral genome, and influences UL138 expression. Inhibition of USP1 results in a failure to establish latency, marked by increased viral genome replication and production of viral progeny. Inhibition of Jak-STAT signaling also results in increased viral genome synthesis in hematopoietic cells, consistent with a role for USP1-mediated regulation of STAT1 signaling in the establishment of latency. These findings demonstrate the importance of the UL138-UAF1-USP1 virus-host interaction in regulating HCMV latency establishment through the control of innate immune signaling. It will be important going forward to distinguish roles of UAF1-USP1 in regulating pSTAT1 relative to its role in the DNA damage response in HCMV infection. Importance Human cytomegalovirus (HCMV) is one of nine herpesviruses that infect humans. Following a primary infection, HCMV establishes a life-long latent infection that is marked by sporadic, and likely frequent reactivation events. While these reactivation events are asymptomatic in the immune competent host, they pose important disease risks for the immune compromised, including solid organ or stem cell transplant recipients. Its complex interactions with host biology and deep coding capacity make it an excellent model for defining mechanisms important for viral latency and reactivation. Here we define an interaction with host proteins that commandeer typically antiviral innate immune signaling for the establishment of latency.
Collapse
Affiliation(s)
- Kristen Zarrella
- Department of Immunobiology, University of Arizona, Tucson, AZ 85721
| | - Pierce Longmire
- Department of Immunobiology, University of Arizona, Tucson, AZ 85721
| | | | | | - Meaghan Hancock
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006
| | - Jason Buehler
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006
| | - Justin M Reitsma
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
- Abbvie, 1 N Waukegan Rd, North Chicago, IL 60064
| | - Scott S Terhune
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Jay A Nelson
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006
| | - Felicia Goodrum
- Department of Immunobiology, University of Arizona, Tucson, AZ 85721
- BIO5 Institute, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
8
|
Fanunza E, Cheng AZ, Auerbach AA, Stefanovska B, Moraes SN, Lokensgard JR, Biolatti M, Dell’Oste V, Bierle CJ, Bresnahan WA, Harris RS. Human cytomegalovirus mediates APOBEC3B relocalization early during infection through a ribonucleotide reductase-independent mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526383. [PMID: 36778493 PMCID: PMC9915650 DOI: 10.1101/2023.01.30.526383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The APOBEC3 family of DNA cytosine deaminases comprises an important arm of the innate antiviral defense system. The gamma-herpesviruses EBV and KSHV and the alpha-herpesviruses HSV-1 and HSV-2 have evolved an efficient mechanism to avoid APOBEC3 restriction by directly binding to APOBEC3B and facilitating its exclusion from the nuclear compartment. The only viral protein required for APOBEC3B relocalization is the large subunit of the ribonucleotide reductase (RNR). Here, we ask whether this APOBEC3B relocalization mechanism is conserved with the beta-herpesvirus human cytomegalovirus (HCMV). Although HCMV infection causes APOBEC3B relocalization from the nucleus to the cytoplasm in multiple cell types, the viral RNR (UL45) is not required. APOBEC3B relocalization occurs rapidly following infection suggesting involvement of an immediate early or early (IE-E) viral protein. In support of this mechanism, cycloheximide treatment of HCMV-infected cells prevents the expression of viral proteins and simultaneously blocks APOBEC3B relocalization. In comparison, the treatment of infected cells with phosphonoacetic acid, which is a viral DNA synthesis inhibitor affecting late protein expression, still permits A3B relocalization. These results combine to show that the beta-herpesvirus HCMV uses a fundamentally different, RNR-independent molecular mechanism to antagonize APOBEC3B. Importance Human cytomegalovirus (HCMV) infections can range from asymptomatic to severe, particularly in neonates and immunocompromised patients. HCMV has evolved strategies to overcome host-encoded antiviral defenses in order to achieve lytic viral DNA replication and dissemination and, under some conditions, latency and long-term persistence. Here, we show that HCMV infection causes the antiviral factor, APOBEC3B, to relocalize from the nuclear compartment to the cytoplasm. This overall strategy resembles that used by related herpesviruses. However, the HCMV relocalization mechanism utilizes a different viral factor(s) and available evidence suggests the involvement of at least one protein expressed at the early stages of infection. This knowledge is important because a greater understanding of this mechanism could lead to novel antiviral strategies that enable APOBEC3B to naturally restrict HCMV infection.
Collapse
Affiliation(s)
- Elisa Fanunza
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Adam Z. Cheng
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ashley A. Auerbach
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Bojana Stefanovska
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Sofia N. Moraes
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - James R. Lokensgard
- Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Matteo Biolatti
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, 10126, Italy
| | - Valentina Dell’Oste
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, 10126, Italy
| | - Craig J. Bierle
- Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wade A. Bresnahan
- Department of Microbiology and Immunology, University of Minnesota, MN 55455, USA
| | - Reuben S. Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
9
|
Penner I, Büscher N, Dejung M, Freiwald A, Butter F, Plachter B. Subviral Dense Bodies of Human Cytomegalovirus Induce an Antiviral Type I Interferon Response. Cells 2022; 11:cells11244028. [PMID: 36552792 PMCID: PMC9777239 DOI: 10.3390/cells11244028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
(1) Background: Cells infected with the human cytomegalovirus (HCMV) produce subviral particles, termed dense bodies (DBs), both in-vitro and in-vivo. They are released from cells, comparable to infectious virions, and are enclosed by a membrane that resembles the viral envelope and mediates the entry into cells. To date, little is known about how the DB uptake influences the gene expression in target cells. The purpose of this study was to investigate the impact of DBs on cells, in the absence of a viral infection. (2) Methods: Mass spectrometry, immunoblot analyses, siRNA knockdown, and a CRISPR-CAS9 knockout, were used to investigate the changes in cellular gene expression following a DB exposure; (3) Results: A number of interferon-regulated genes (IRGs) were upregulated after the fibroblasts and endothelial cells were exposed to DBs. This upregulation was dependent on the DB entry and mediated by the type I interferon signaling through the JAK-STAT pathway. The induction of IRGs was mediated by the sensing of the DB-introduced DNA by the pattern recognition receptor cGAS. (4) Conclusions: The induction of a strong type I IFN response by DBs is a unique feature of the HCMV infection. The release of DBs may serve as a danger signal and concomitantly contribute to the induction of a strong, antiviral immune response.
Collapse
Affiliation(s)
- Inessa Penner
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Nicole Büscher
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Mario Dejung
- Institute for Molecular Biology, 55128 Mainz, Germany
| | - Anja Freiwald
- Institute for Molecular Biology, 55128 Mainz, Germany
| | - Falk Butter
- Institute for Molecular Biology, 55128 Mainz, Germany
| | - Bodo Plachter
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
- Correspondence:
| |
Collapse
|
10
|
Ma XH, Yao YX, Wang XZ, Zhou YP, Huang SN, Li D, Mei MJ, Wu JP, Pan YT, Cheng S, Jiang X, Sun JY, Zeng WB, Gong S, Cheng H, Luo MH, Yang B. MORC3 restricts human cytomegalovirus infection by suppressing the major immediate-early promoter activity. J Med Virol 2022; 94:5492-5506. [PMID: 35879101 DOI: 10.1002/jmv.28025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 12/15/2022]
Abstract
During the long coevolution of human cytomegalovirus (HCMV) and humans, the host has formed a defense system of multiple layers to eradicate the invader, and the virus has developed various strategies to evade host surveillance programs. The intrinsic immunity primarily orchestrated by promyelocytic leukemia (PML) nuclear bodies (PML-NBs) represents the first line of defense against HCMV infection. Here, we demonstrate that microrchidia family CW-type zinc finger 3 (MORC3), a PML-NBs component, is a restriction factor targeting HCMV infection. We show that depletion of MORC3 through knockdown by RNA interference or knockout by CRISPR-Cas9 augmented immediate-early protein 1 (IE1) gene expression and subsequent viral replication, and overexpressing MORC3 inhibited HCMV replication by suppressing IE1 gene expression. To relief the restriction, HCMV induces transient reduction of MORC3 protein level via the ubiquitin-proteasome pathway during the immediate-early to early stage. However, MORC3 transcription is upregulated, and the protein level recovers in the late stages. Further analyses with temporal-controlled MORC3 expression and the major immediate-early promoter (MIEP)-based reporters show that MORC3 suppresses MIEP activity and consequent IE1 expression with the assistance of PML. Taken together, our data reveal that HCMV enforces temporary loss of MORC3 to evade its repression against the initiation of immediate-early gene expression.
Collapse
Affiliation(s)
- Xue-Hui Ma
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Yong-Xuan Yao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xian-Zhang Wang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yue-Peng Zhou
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Sheng-Nan Huang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dong Li
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Meng-Jie Mei
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jing-Peng Wu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Ting Pan
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shuang Cheng
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Xuan Jiang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jin-Yan Sun
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Wen-Bo Zeng
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Sitang Gong
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Han Cheng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Min-Hua Luo
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Bo Yang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
11
|
microRNA, a Subtle Indicator of Human Cytomegalovirus against Host Immune Cells. Vaccines (Basel) 2022; 10:vaccines10020144. [PMID: 35214602 PMCID: PMC8874957 DOI: 10.3390/vaccines10020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/17/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a double-stranded DNA virus that belongs to the β-herpesvirus family and infects 40–90% of the adult population worldwide. HCMV infection is usually asymptomatic in healthy individuals but causes serious problems in immunocompromised people. We restricted this narrative review (PubMed, January 2022) to demonstrate the interaction and molecular mechanisms between the virus and host immune cells with a focus on HCMV-encoded miRNAs. We found a series of HCMV-encoded miRNAs (e.g., miR-UL112 and miR-UL148D) are explicitly involved in the regulation of viral DNA replication, immune evasion, as well as host cell fate. MiRNA-targeted therapies have been explored for the treatment of atherosclerosis, cardiovascular disease, cancer, diabetes, and hepatitis C virus infection. It is feasible to develop an alternative vaccine to restart peripheral immunity or to inhibit HCMV activity, which may contribute to the antiviral intervention for serious HCMV-related diseases.
Collapse
|
12
|
Albright ER, Mickelson CK, Kalejta RF. Human Cytomegalovirus UL138 Protein Inhibits the STING Pathway and Reduces Interferon Beta mRNA Accumulation during Lytic and Latent Infections. mBio 2021; 12:e0226721. [PMID: 34903048 PMCID: PMC8669494 DOI: 10.1128/mbio.02267-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/05/2021] [Indexed: 11/20/2022] Open
Abstract
The cGAS/STING/TBK1 (cyclic guanine monophosphate-AMP synthase/stimulator of interferon genes/Tank-binding kinase 1) innate immunity pathway is activated during human cytomegalovirus (HCMV) productive (lytic) replication in fully differentiated cells and during latency within incompletely differentiated myeloid cells. While multiple lytic-phase HCMV proteins neutralize steps along this pathway, none of them are expressed during latency. Here, we show that the latency-associated protein UL138 inhibits the cGAS/STING/TBK1 innate immunity pathway during transfections and infections, in fully differentiated cells and incompletely differentiated myeloid cells, and with loss of function and restoration of function approaches. UL138 inhibits the pathway downstream of STING but upstream of interferon regulatory factor 3 (IRF3) phosphorylation and NF-κB function and reduces the accumulation of interferon beta mRNA during both lytic and latent infections. IMPORTANCE While a cellular restriction versus viral countermeasure arms race between innate immunity and viral latency is expected, few examples have been documented. Our identification of the first HCMV latency protein that inactivates the cGAS/STING/TBK1 innate immune pathway opens the door to understanding how innate immunity, or its neutralization, impacts long-term persistence by HCMV and other latent viruses.
Collapse
Affiliation(s)
- Emily R. Albright
- Institute for Molecular Virology, University of Wisconsin—Madison, Madison, Wisconsin, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Clayton K. Mickelson
- Institute for Molecular Virology, University of Wisconsin—Madison, Madison, Wisconsin, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Robert F. Kalejta
- Institute for Molecular Virology, University of Wisconsin—Madison, Madison, Wisconsin, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
13
|
Comprehensive Analysis of Human Cytomegalovirus- and HIV-Mediated Plasma Membrane Remodeling in Macrophages. mBio 2021; 12:e0177021. [PMID: 34399625 PMCID: PMC8406226 DOI: 10.1128/mbio.01770-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The plasma membrane (PM) must be overcome by viruses during entry and release. Furthermore, the PM represents the cellular communication compartment and the immune system interface. Hence, viruses have evolved sophisticated strategies to remodel the PM, for instance to avoid immune sensing and clearance of infected cells. We performed a comprehensive analysis of cell surface dysregulation by two human-pathogenic viruses, human cytomegalovirus (HCMV) and human immunodeficiency virus type 1 (HIV-1), in primary macrophages, which are classical antigen-presenting cells and orchestrators of the immune system. Scanning ion conductance microscopy revealed a loss of roughness and an overall smooth phenotype of HCMV-infected macrophages, in contrast to HIV-1 infection. This phenotype was also evident on the molecular level. When we screened for cell surface receptors modulated by HCMV, 42 of 332 receptors tested were up- or downregulated, whereas HIV-1 affected only 7 receptors. In particular CD164, CD84, and CD180 were targeted by HCMV. Mechanistically, HCMV induced transcriptional silencing of these receptors in an interferon (IFN)-independent manner, and expression was reduced not only by lab-adapted HCMV but also by clinical HCMV isolates. Altogether, our plasma membrane profiling of human macrophages provides clues to understand how viruses evade the immune system and identified novel cell surface receptors targeted by HCMV. IMPORTANCE The PM is a key component that viruses have to cope with. It is a barrier for infection and egress and is critically involved in antiviral immune signaling. We hence asked the question how two immunomodulatory viruses, HIV-1 and HCMV, dysregulate this compartment in infected macrophages, relevant in vivo targets of both viruses. We employed a contact-free microscopic technique to image the PM of infected cells and performed a phenotypic flow cytometry-based screen to identify receptor modulations on a molecular level. Our results show that HIV-1 and HCMV differentially manipulate the PM of macrophages. While HIV-1-mediated changes are relatively subtle, HCMV induces major alterations of the PM. We identify novel immune receptors manipulated by HCMV and define mechanisms of how HCMV interferes with receptor expression. Altogether, our study reveals differential strategies of how two human-pathogenic viruses manipulate infected cells and identifies potential novel pathways of HCMV immune evasion.
Collapse
|
14
|
Zhang Q, Song X, Ma P, Lv L, Zhang Y, Deng J, Zhang Y. Human Cytomegalovirus miR-US33as-5p Targets IFNAR1 to Achieve Immune Evasion During Both Lytic and Latent Infection. Front Immunol 2021; 12:628364. [PMID: 33746965 PMCID: PMC7973039 DOI: 10.3389/fimmu.2021.628364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/04/2021] [Indexed: 11/21/2022] Open
Abstract
As the first line of antiviral defense, type I interferon (IFN) binds IFN receptor 1 (IFNAR1) and IFNAR2 to activate the Jak-STAT signal transduction pathway, producing IFN-stimulated genes (ISGs) to control viral infection. The mechanisms by which human cytomegalovirus (HCMV) counteracts the IFN pathway are only partially defined. We show that miR-US33as-5p encoded by HCMV is expressed in both lytic and latent infection. By analysis with RNA hybrid and screening with luciferase reporter assays, we identified IFNAR1 as a target of hcmv-miR-US33as-5p, which was further verified by examining the expression of two IFNAR1 mutants and the binding of IFNAR1 to miR-US33as-5p/miR-US33as-5p-M1/miR-US33as-5p-M2. We found that after the transfection of miR-US33as-5p mimics into different cell lines, the phosphorylation of downstream proteins and ISG expression were downregulated. Immunofluorescence showed that the miR-US33as-5p mimics also inhibited STAT1 translocation into the nucleus. Furthermore, we constructed HCMV with mutant miR-US33as-5p and determined that the mutation did not affect HCMV replication. We found that MRC-5/human foreskin fibroblast (HFF) cells infected with ΔmiRNA HCMV exhibited higher IFNAR1 and ISG expression and a reduced viral load in the presence of exogenous IFN than cells infected with WT HCMV did, confirming that the knockout of miR-US33as-5p impaired viral resistance to IFN. Finally, we tested the effect of ΔmiRNA HCMV on THP-1 and d-THP-1 cells, common in vitro models of latent infection and reactivation, respectively. Again, we found that cells infected with ΔmiRNA HCMV showed a reduced viral load in the presence of IFN than the control cells did, confirming that miR-US33as-5p also affects IFN resistance during both latency and reactivation. These results indicate a new microRNA (miRNA)-based immune evasion mechanism employed by HCMV to achieve lifelong infection.
Collapse
Affiliation(s)
- Qian Zhang
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China.,Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, China
| | - Xin Song
- Department of Otolaryngology Head and Neck Surgery, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Ping Ma
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China.,Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, China
| | - Liping Lv
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China.,Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, China
| | - Yangyang Zhang
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China.,Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, China
| | - Jiang Deng
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China.,Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, China
| | - Yanyu Zhang
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China.,Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, China
| |
Collapse
|
15
|
Begnel ER, Drake AL, Kinuthia J, Matemo D, Huang M, Ásbjörnsdóttir KH, Chohan V, Beima‐Sofie K, John‐Stewart G, Lehman D, Slyker J. Cervical cytomegalovirus reactivation, cytokines and spontaneous preterm birth in Kenyan women. Clin Exp Immunol 2021; 203:472-479. [PMID: 33270222 PMCID: PMC7874830 DOI: 10.1111/cei.13558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/12/2020] [Accepted: 11/20/2020] [Indexed: 11/30/2022] Open
Abstract
Genital cytomegalovirus (CMV) reactivation is common during the third trimester of pregnancy. We hypothesized that cervical CMV shedding may increase risk of spontaneous preterm birth (sPTB) through the release of inflammatory cytokines in the cervix. We conducted a nested case-control analysis to determine the relationship between CMV shedding and sPTB using data and samples from a prospective cohort study in western Kenya. Women who delivered between 28 + 0 and 33 + 6 weeks gestation were matched by gestational age at sample collection to controls who delivered ≥ 37 + 0 weeks. Levels of CMV DNA and interleukin (IL)-1 beta (β), IL-6, IL-8 and tumor necrosis factor (TNF)-α were measured in cervical swabs. We used conditional logistic regression to assess relationships between CMV shedding, cervical cytokine levels and sPTB. Among 86 cases and 86 matched controls, cervical CMV levels were not significantly associated with sPTB [odds ratio (OR) = 1·23, 95% confidence interval (CI) = 0·59-2·56], but were significantly associated with higher levels of cervical IL-6 (β = 0·15, 95% CI = 0·02-0·29) and TNF-α (β = 0·14, 95% CI = 0·01-0·27). In univariate analysis, higher odds of sPTB was associated with higher cervical IL-6 levels (OR = 1·54, 95% CI = 1·00-2·38), but not with other cervical cytokines. In this cohort of Kenyan women, we did not find a significant association between cervical CMV shedding and sPTB before 34 weeks.
Collapse
Affiliation(s)
- E. R. Begnel
- Department of Global HealthUniversity of WashingtonSeattleWAUSA
| | - A. L. Drake
- Department of Global HealthUniversity of WashingtonSeattleWAUSA
- Department of EpidemiologyUniversity of WashingtonSeattleWAUSA
| | - J. Kinuthia
- Department of Global HealthUniversity of WashingtonSeattleWAUSA
- Department of Obstetrics/GynecologyKenyatta National HospitalNairobiKenya
| | - D. Matemo
- Department of Research and ProgramsKenyatta National HospitalNairobiKenya
| | - M.‐L. Huang
- Department of VirologyUniversity of WashingtonSeattleWAUSA
| | | | - V. Chohan
- Department of MedicineUniversity of WashingtonSeattleWAUSA
| | - K. Beima‐Sofie
- Department of Global HealthUniversity of WashingtonSeattleWAUSA
| | - G. John‐Stewart
- Department of Global HealthUniversity of WashingtonSeattleWAUSA
- Department of EpidemiologyUniversity of WashingtonSeattleWAUSA
- Department of MedicineUniversity of WashingtonSeattleWAUSA
- Department of PediatricsUniversity of WashingtonSeattleWAUSA
| | - D. Lehman
- Department of Global HealthUniversity of WashingtonSeattleWAUSA
- Division of Human BiologyFred Hutchinson Cancer Research CenterSeattleWAUSA
| | - J. Slyker
- Department of Global HealthUniversity of WashingtonSeattleWAUSA
- Department of EpidemiologyUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
16
|
Gugliesi F, Pasquero S, Griffante G, Scutera S, Albano C, Pacheco SFC, Riva G, Dell’Oste V, Biolatti M. Human Cytomegalovirus and Autoimmune Diseases: Where Are We? Viruses 2021; 13:260. [PMID: 33567734 PMCID: PMC7914970 DOI: 10.3390/v13020260] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/14/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous double-stranded DNA virus belonging to the β-subgroup of the herpesvirus family. After the initial infection, the virus establishes latency in poorly differentiated myeloid precursors from where it can reactivate at later times to cause recurrences. In immunocompetent subjects, primary HCMV infection is usually asymptomatic, while in immunocompromised patients, HCMV infection can lead to severe, life-threatening diseases, whose clinical severity parallels the degree of immunosuppression. The existence of a strict interplay between HCMV and the immune system has led many to hypothesize that HCMV could also be involved in autoimmune diseases (ADs). Indeed, signs of active viral infection were later found in a variety of different ADs, such as rheumatological, neurological, enteric disorders, and metabolic diseases. In addition, HCMV infection has been frequently linked to increased production of autoantibodies, which play a driving role in AD progression, as observed in systemic lupus erythematosus (SLE) patients. Documented mechanisms of HCMV-associated autoimmunity include molecular mimicry, inflammation, and nonspecific B-cell activation. In this review, we summarize the available literature on the various ADs arising from or exacerbating upon HCMV infection, focusing on the potential role of HCMV-mediated immune activation at disease onset.
Collapse
Affiliation(s)
- Francesca Gugliesi
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| | - Selina Pasquero
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| | - Gloria Griffante
- Department of Translational Medicine, Molecular Virology Unit, University of Piemonte Orientale Medical School, 28100 Novara, Italy;
| | - Sara Scutera
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| | - Camilla Albano
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| | - Sergio Fernando Castillo Pacheco
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| | - Giuseppe Riva
- Otorhinolaryngology Division, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy;
| | - Valentina Dell’Oste
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| | - Matteo Biolatti
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| |
Collapse
|
17
|
Long X, Yang J, Zhang X, Yang Z, Li Y, Wang F, Li X, Kuang E. BRLF1 suppresses RNA Pol III-mediated RIG-I inflammasome activation in the early EBV lytic lifecycle. EMBO Rep 2021; 22:e50714. [PMID: 33225563 PMCID: PMC7788446 DOI: 10.15252/embr.202050714] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/29/2020] [Accepted: 10/19/2020] [Indexed: 11/09/2022] Open
Abstract
Latent infection with herpesviruses constitutively activates inflammasomes, while lytic replication suppresses their activation through distinct mechanisms. However, how Epstein-Barr virus (EBV) lytic replication inhibits the activation of inflammasomes remains unknown. Here, we reveal that the EBV immediate-early protein BRLF1 inhibits inflammasome activation, and BRLF1 deficiency significantly increases the activation of inflammasomes and pyroptosis during early lytic lifecycle. BRLF1 interacts with RNA polymerase III subunits to suppress immunostimulatory small RNA transcription, RIG-I inflammasome activation, and antiviral responses. Consequently, BRLF1-deficient EBV primary infection induces robust T-cell and NK cell activation and killing through IL-1β and IL-18. A BRLF1-derived peptide that inhibits inflammasome activation is sufficient to suppress T-cell and NK cell responses during BRLF1-deficient EBV primary infection in lymphocytes. These results reveal a novel mechanism involved in the evasion of inflammasome activation and antiviral responses during EBV early lytic infection and provide a promising approach for the manipulation of inflammasomes against infection of oncogenic herpesviruses.
Collapse
Affiliation(s)
- Xubing Long
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Jing Yang
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Xiaolin Zhang
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Ziwei Yang
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Yang Li
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Fan Wang
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Xiaojuan Li
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Ersheng Kuang
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control (Sun Yat‐Sen University)Ministry of EducationGuangzhouGuangdongChina
| |
Collapse
|
18
|
De Meo S, Dell'Oste V, Molfetta R, Tassinari V, Lotti LV, Vespa S, Pignoloni B, Covino DA, Fantuzzi L, Bona R, Zingoni A, Nardone I, Biolatti M, Coscia A, Paolini R, Benkirane M, Edfors F, Sandalova T, Achour A, Hiscott J, Landolfo S, Santoni A, Cerboni C. SAMHD1 phosphorylation and cytoplasmic relocalization after human cytomegalovirus infection limits its antiviral activity. PLoS Pathog 2020; 16:e1008855. [PMID: 32986788 PMCID: PMC7544099 DOI: 10.1371/journal.ppat.1008855] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 10/08/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
SAMHD1 is a host restriction factor that functions to restrict both retroviruses and DNA viruses, based on its nuclear deoxynucleotide triphosphate (dNTP) hydrolase activity that limits availability of intracellular dNTP pools. In the present study, we demonstrate that SAMHD1 expression was increased following human cytomegalovirus (HCMV) infection, with only a modest effect on infectious virus production. SAMHD1 was rapidly phosphorylated at residue T592 after infection by cellular cyclin-dependent kinases, especially Cdk2, and by the viral kinase pUL97, resulting in a significant fraction of phosho-SAMHD1 being relocalized to the cytoplasm of infected fibroblasts, in association with viral particles and dense bodies. Thus, our findings indicate that HCMV-dependent SAMHD1 cytoplasmic delocalization and inactivation may represent a potential novel mechanism of HCMV evasion from host antiviral restriction activities.
Collapse
Affiliation(s)
- Simone De Meo
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Valentina Dell'Oste
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Rosa Molfetta
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Valentina Tassinari
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | | | - Simone Vespa
- Laboratory of General Pathology, Center of Aging Science and Translational Medicine (CeSI-MeT) and Department of Medical, Oral and Biotechnological Sciences G. d'Annunzio University, Chieti, Italy
| | - Benedetta Pignoloni
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | | | - Laura Fantuzzi
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Roberta Bona
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Zingoni
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Ilaria Nardone
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Matteo Biolatti
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Alessandra Coscia
- Neonatal Unit, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Rossella Paolini
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Monsef Benkirane
- Institut de Génétique Humaine, Laboratoire de Virologie Moléculaire, CNRS-Université de Montpellier, Montpellier, France
| | - Fredrik Edfors
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Tatyana Sandalova
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - John Hiscott
- Istituto Pasteur Italia-Cenci Bolognetti Foundation, Rome, Italy
| | - Santo Landolfo
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Angela Santoni
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
- IRCCS, Neuromed, Pozzilli, Isernia, Italy
| | - Cristina Cerboni
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
19
|
Cagliani R, Forni D, Mozzi A, Sironi M. Evolution and Genetic Diversity of Primate Cytomegaloviruses. Microorganisms 2020; 8:E624. [PMID: 32344906 PMCID: PMC7285053 DOI: 10.3390/microorganisms8050624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 12/30/2022] Open
Abstract
Cytomegaloviruses (CMVs) infect many mammals, including humans and non-human primates (NHPs). Human cytomegalovirus (HCMV) is an important opportunistic pathogen among immunocompromised patients and represents the most common infectious cause of birth defects. HCMV possesses a large genome and very high genetic diversity. NHP-infecting CMVs share with HCMV a similar genomic organization and coding content, as well as the course of viral infection. Recent technological advances have allowed the sequencing of several HCMV strains from clinical samples and provided insight into the diversity of NHP-infecting CMVs. The emerging picture indicates that, with the exclusion of core genes (genes that have orthologs in all herpesviruses), CMV genomes are relatively plastic and diverse in terms of gene content, both at the inter- and at the intra-species level. Such variability most likely underlies the strict species-specificity of these viruses, as well as their ability to persist lifelong and with relatively little damage to their hosts. However, core genes, despite their strong conservation, also represented a target of adaptive evolution and subtle changes in their coding sequence contributed to CMV adaptation to different hosts. Indubitably, important knowledge gaps remain, the most relevant of which concerns the role of viral genetics in HCMV-associated human disease.
Collapse
Affiliation(s)
| | | | | | - Manuela Sironi
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, 23842 Bosisio Parini, Italy
| |
Collapse
|
20
|
Dell'Oste V, Biolatti M, Galitska G, Griffante G, Gugliesi F, Pasquero S, Zingoni A, Cerboni C, De Andrea M. Tuning the Orchestra: HCMV vs. Innate Immunity. Front Microbiol 2020; 11:661. [PMID: 32351486 PMCID: PMC7174589 DOI: 10.3389/fmicb.2020.00661] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/23/2020] [Indexed: 12/20/2022] Open
Abstract
Understanding how the innate immune system keeps human cytomegalovirus (HCMV) in check has recently become a critical issue in light of the global clinical burden of HCMV infection in newborns and immunodeficient patients. Innate immunity constitutes the first line of host defense against HCMV as it involves a complex array of cooperating effectors – e.g., inflammatory cytokines, type I interferon (IFN-I), natural killer (NK) cells, professional antigen-presenting cells (APCs) and phagocytes – all capable of disrupting HCMV replication. These factors are known to trigger a highly efficient adaptive immune response, where cellular restriction factors (RFs) play a major gatekeeping role. Unlike other innate immunity components, RFs are constitutively expressed in many cell types, ready to act before pathogen exposure. Nonetheless, the existence of a positive regulatory feedback loop between RFs and IFNs is clear evidence of an intimate cooperation between intrinsic and innate immunity. In the course of virus-host coevolution, HCMV has, however, learned how to manipulate the functions of multiple cellular players of the host innate immune response to achieve latency and persistence. Thus, HCMV acts like an orchestra conductor able to piece together and rearrange parts of a musical score (i.e., innate immunity) to obtain the best live performance (i.e., viral fitness). It is therefore unquestionable that innovative therapeutic solutions able to prevent HCMV immune evasion in congenitally infected infants and immunocompromised individuals are urgently needed. Here, we provide an up-to-date review of the mechanisms regulating the interplay between HCMV and innate immunity, focusing on the various strategies of immune escape evolved by this virus to gain a fitness advantage.
Collapse
Affiliation(s)
- Valentina Dell'Oste
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Matteo Biolatti
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Ganna Galitska
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Gloria Griffante
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Francesca Gugliesi
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Selina Pasquero
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Alessandra Zingoni
- Department of Molecular Immunology and Immunopathology, "Sapienza" University of Rome, Rome, Italy
| | - Cristina Cerboni
- Department of Molecular Immunology and Immunopathology, "Sapienza" University of Rome, Rome, Italy
| | - Marco De Andrea
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy.,Center for Translational Research on Autoimmune and Allergic Disease - CAAD, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
21
|
Prophylactic Anti-Cytomegalovirus Hyperimmunoglobulin in Critically Ill Liver Transplant Patients: Impact on Early Immunology and Survival. J Clin Med 2020; 9:jcm9030656. [PMID: 32121313 PMCID: PMC7141244 DOI: 10.3390/jcm9030656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/15/2020] [Accepted: 02/28/2020] [Indexed: 12/22/2022] Open
Abstract
Background: Anti-cytomegalovirus hyperimmunoglobulin (CMVIg) was shown to provide beneficial immunodulatory properties beyond antiviral efficacies. The aim of this retrospective study was to assess the impact of prophylactic CMVIg treatment on early outcome following liver transplantation (LT) in critically ill patients. Methods: Forty-three cirrhotic patients requiring pre-LT intensive care due to multiorgan failure were analyzed. Twenty-eight patients with enhanced CMV risk (D+/R+; D+/R−; D−/R+) received prophylactic CMVIg for a minimum of 7 days, while 15 patients (D−/R−) did not. Results: Post-transplantation rates of intra-abdominal infections (28% vs. 61.1%; p = 0.03), Epstein–Barr virus infections (0% vs. 33.3%; p = 0.034), allograft rejections (0% vs. 22.2%; p = 0.013) and sepsis-related mortality (4% vs. 27.8%; p = 0.026) were significantly lower, whereas incidence of CMV infections (4% vs. 22.2%; p = 0.066) tended to be lower in the CMVIg subset. In multivariate analysis, only pretransplant elevated serum lactate level (hazard ratio = 34.63; p = 0.009) and absence of CMVIg therapy (hazard ratio = 21.76; p = 0.023) were identified as independent promoters of 3-month mortality. Conclusion: Prophylactic treatment with CMVIg reduces predisposition for severe immunological and septic events and, thereby, early mortality in critically ill liver recipients.
Collapse
|
22
|
Mullane KM. Human Cytomegalovirus Prophylaxis and Treatment in Lung Transplantation in the Current Era. CURRENT PULMONOLOGY REPORTS 2020. [DOI: 10.1007/s13665-020-00246-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Adamson CS, Nevels MM. Bright and Early: Inhibiting Human Cytomegalovirus by Targeting Major Immediate-Early Gene Expression or Protein Function. Viruses 2020; 12:v12010110. [PMID: 31963209 PMCID: PMC7019229 DOI: 10.3390/v12010110] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
The human cytomegalovirus (HCMV), one of eight human herpesviruses, establishes lifelong latent infections in most people worldwide. Primary or reactivated HCMV infections cause severe disease in immunosuppressed patients and congenital defects in children. There is no vaccine for HCMV, and the currently approved antivirals come with major limitations. Most approved HCMV antivirals target late molecular processes in the viral replication cycle including DNA replication and packaging. “Bright and early” events in HCMV infection have not been exploited for systemic prevention or treatment of disease. Initiation of HCMV replication depends on transcription from the viral major immediate-early (IE) gene. Alternative transcripts produced from this gene give rise to the IE1 and IE2 families of viral proteins, which localize to the host cell nucleus. The IE1 and IE2 proteins are believed to control all subsequent early and late events in HCMV replication, including reactivation from latency, in part by antagonizing intrinsic and innate immune responses. Here we provide an update on the regulation of major IE gene expression and the functions of IE1 and IE2 proteins. We will relate this insight to experimental approaches that target IE gene expression or protein function via molecular gene silencing and editing or small chemical inhibitors.
Collapse
|
24
|
Dons’koi BV, Tutchenko TM, Chernyshov VP, Stepaniuk KS. HCMV seropositivity is associated with specific proinflammatory immune phenotype in women with implantation failure. Immunol Lett 2020; 217:84-90. [DOI: 10.1016/j.imlet.2019.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/07/2019] [Accepted: 11/17/2019] [Indexed: 01/06/2023]
|
25
|
Ashley CL, Abendroth A, McSharry BP, Slobedman B. Interferon-Independent Innate Responses to Cytomegalovirus. Front Immunol 2019; 10:2751. [PMID: 31921100 PMCID: PMC6917592 DOI: 10.3389/fimmu.2019.02751] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/11/2019] [Indexed: 12/28/2022] Open
Abstract
The critical role of interferons (IFNs) in mediating the innate immune response to cytomegalovirus (CMV) infection is well established. However, in recent years the functional importance of the IFN-independent antiviral response has become clearer. IFN-independent, IFN regulatory factor 3 (IRF3)-dependent interferon-stimulated gene (ISG) regulation in the context of CMV infection was first documented 20 years ago. Since then several IFN-independent, IRF3-dependent ISGs have been characterized and found to be among the most influential in the innate response to CMV. These include virus inhibitory protein, endoplasmic reticulum-associated IFN-inducible (viperin), ISG15, members of the interferon inducible protein with tetratricopeptide repeats (IFIT) family, interferon-inducible transmembrane (IFITM) proteins and myxovirus resistance proteins A and B (MxA, MxB). IRF3-independent, IFN-independent activation of canonically IFN-dependent signaling pathways has also been documented, such as IFN-independent biphasic activation of signal transducer and activator of transcription 1 (STAT1) during infection of monocytes, differential roles of mitochondrial and peroxisomal mitochondrial antiviral-signaling protein (MAVS), and the ability of human CMV (HCMV) immediate early protein 1 (IE1) protein to reroute IL-6 signaling and activation of STAT1 and its associated ISGs. This review examines the role of identified IFN-independent ISGs in the antiviral response to CMV and describes pathways of IFN-independent innate immune response induction by CMV.
Collapse
Affiliation(s)
- Caroline L Ashley
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| | - Allison Abendroth
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| | - Brian P McSharry
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia.,School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Barry Slobedman
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
26
|
Yilmaz Karadag F, Arslan F, Caskurlu H, Cag Y, Vahaboglu H. Efficacy of antiviral treatment in cytomegalovirus detected ulcerative colitis: meta-analysis of available data. Scand J Gastroenterol 2019; 54:1346-1352. [PMID: 31718340 DOI: 10.1080/00365521.2019.1688860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aim: This meta-analysis aimed to pool available data regarding the efficacy of ganciclovir treatment among cytomegalovirus-detected ulcerative colitis patients.Methods: We screened PubMed, Ovid, Web of Science and Cochrane databases for relevant studies, and four investigators independently evaluated the studies for eligibility. The primary outcome was surgical resection or death from ulcerative colitis. The data were then pooled via DerSimonian-Laird estimator and Mantel-Haenszel (MH) method, two points added for continuity correction and random-effects model fitted in the Bayesian framework. We first constructed a Bugs model with Student t-distribution as prior for between-study heterogeneity. The model was fitted by Gibbs sampler (JAGS) to produce a marginal posterior distribution.Results: Our screening identified 15 eligible studies for final data synthesis and combined data from 191 ganciclovir-treated and 166 non-treated patients. Effect estimates from the fixed-effects meta-analysis model did not encourage ganciclovir treatment (OR, 1.43; 95% CIs [0-95, 2.16]), with a negligible unaccounted heterogeneity (I2 = 0%). The Bayesian random-effects model generated high-density credible intervals, suggesting a high probability, that future studies will also not encourage ganciclovir treatment (mu, 1.028; 95% credible intervals [0.054, 2.238]; 80% credible intervals [0.401, 1.703]) which indicates that future studies will favor non-treatment of ulcerative colitis with ganciclovir.Conclusions: Data produced in this study do not encourage ganciclovir treatment for UC patients. However, studies included in this analysis were observational, and thus, inherited severe selection bias. We suggest randomized controlled studies be conducted to make firm recommendations in this context.
Collapse
Affiliation(s)
- Fatma Yilmaz Karadag
- Enfeksiyon Hastalıkları ve Klinik Mikrobiyoloji, Istanbul Medeniyet Universitesi, Istanbul, Turkey
| | - Ferhat Arslan
- Enfeksiyon Hastalıkları ve Klinik Mikrobiyoloji, Istanbul Medeniyet Universitesi, Istanbul, Turkey
| | - Hulya Caskurlu
- Enfeksiyon Hastalıkları ve Klinik Mikrobiyoloji, Istanbul Medeniyet Universitesi, Istanbul, Turkey
| | - Yasemin Cag
- Enfeksiyon Hastalıkları ve Klinik Mikrobiyoloji, Istanbul Medeniyet Universitesi, Istanbul, Turkey
| | - Haluk Vahaboglu
- Enfeksiyon Hastalıkları ve Klinik Mikrobiyoloji, Istanbul Medeniyet Universitesi, Istanbul, Turkey
| |
Collapse
|
27
|
Galitska G, Biolatti M, Griffante G, Gugliesi F, Pasquero S, Dell'Oste V, Landolfo S. Catch me if you can: the arms race between human cytomegalovirus and the innate immune system. Future Virol 2019. [DOI: 10.2217/fvl-2018-0189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human cytomegalovirus (HCMV), a common opportunistic pathogen of significant clinical importance, targets immunocompromised individuals of the human population worldwide. The absence of a licensed vaccine and the low efficacy of currently available drugs remain a barrier to combating the global infection. The HCMV's ability to modulate and escape innate immune responses remains a critical step in the ongoing search for potential drug targets. Here, we describe the complex interplay between HCMV and the host immune system, focusing on different evasion strategies that the virus has employed to subvert innate immune responses. We especially highlight the mechanisms and role of host antiviral restriction factors and provide insights into viral modulation of pro-inflammatory NF-κB and interferon signaling pathways.
Collapse
Affiliation(s)
- Ganna Galitska
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| | - Matteo Biolatti
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| | - Gloria Griffante
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| | - Francesca Gugliesi
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| | - Selina Pasquero
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| | - Valentina Dell'Oste
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| | - Santo Landolfo
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| |
Collapse
|