1
|
Rashid F, Xie Z, Wei Y, Xie Z, Xie L, Li M, Luo S. Biological features of fowl adenovirus serotype-4. Front Cell Infect Microbiol 2024; 14:1370414. [PMID: 38915924 PMCID: PMC11194357 DOI: 10.3389/fcimb.2024.1370414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/27/2024] [Indexed: 06/26/2024] Open
Abstract
Fowl adenovirus serotype 4 (FAdV-4) is highly pathogenic to broilers aged 3 to 5 weeks and has caused considerable economic loss in the poultry industry worldwide. FAdV-4 is the causative agent of hydropericardium-hepatitis syndrome (HHS) or hydropericardium syndrome (HPS). The virus targets mainly the liver, and HPS symptoms are observed in infected chickens. This disease was first reported in Pakistan but has now spread worldwide, and over time, various deletions in the FAdV genome and mutations in its major structural proteins have been detected. This review provides detailed information about FAdV-4 genome organization, physiological features, epidemiology, coinfection with other viruses, and host immune suppression. Moreover, we investigated the role and functions of important structural proteins in FAdV-4 pathogenesis. Finally, the potential regulatory effects of FAdV-4 infection on ncRNAs are also discussed.
Collapse
Affiliation(s)
- Farooq Rashid
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Zhixun Xie
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - You Wei
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Zhiqin Xie
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Liji Xie
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Meng Li
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Sisi Luo
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| |
Collapse
|
2
|
Lai J, He X, Zhang R, Zhang L, Chen L, He F, Li L, Yang L, Ren T, Xiang B. Chicken Interferon-Alpha and -Lambda Exhibit Antiviral Effects against Fowl Adenovirus Serotype 4 in Leghorn Male Hepatocellular Cells. Int J Mol Sci 2024; 25:1681. [PMID: 38338959 PMCID: PMC10855402 DOI: 10.3390/ijms25031681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/14/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Hydropericardium hepatitis syndrome (HHS) is primarily caused by fowl adenovirus serotype 4 (FAdV-4), causing high mortality in chickens. Although vaccination strategies against FAdV-4 have been adopted, HHS still occurs sporadically. Furthermore, no effective drugs are available for controlling FAdV-4 infection. However, type I and III interferon (IFN) are crucial therapeutic agents against viral infection. The following experiments were conducted to investigate the inhibitory effect of chicken IFN against FadV-4. We expressed recombinant chicken type I IFN-α (ChIFN-α) and type III IFN-λ (ChIFN-λ) in Escherichia coli and systemically investigated their antiviral activity against FAdV-4 infection in Leghorn male hepatocellular (LMH) cells. ChIFN-α and ChIFN-λ dose dependently inhibited FAdV-4 replication in LMH cells. Compared with ChIFN-λ, ChIFN-α more significantly inhibited viral genome transcription but less significantly suppressed FAdV-4 release. ChIFN-α- and ChIFN-λ-induced IFN-stimulated gene (ISG) expression, such as PKR, ZAP, IRF7, MX1, Viperin, IFIT5, OASL, and IFI6, in LMH cells; however, ChIFN-α induced a stronger expression level than ChIFN-λ. Thus, our data revealed that ChIFN-α and ChIFN-λ might trigger different ISG expression levels, inhibiting FAdV-4 replication via different steps of the FAdV-4 lifecycle, which furthers the potential applications of IFN antiviral drugs in chickens.
Collapse
Affiliation(s)
- Jinyu Lai
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China (L.Z.); (L.Y.)
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xingchen He
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China (L.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Rongjie Zhang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China (L.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Limei Zhang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China (L.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Libin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Fengping He
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China (L.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Lei Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China (L.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Liangyu Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China (L.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Tao Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Bin Xiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China (L.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
3
|
Gao S, Li R, Zhang X, Wang Z. Identification of ORF1B as a unique nonstructural protein for fowl adenovirus serotype 4. Microb Pathog 2024; 186:106508. [PMID: 38141742 DOI: 10.1016/j.micpath.2023.106508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
Fowl adenovirus serotype 4 (FAdV-4), the causative agent of hepatitis-hydropericardium syndrome (HHS), is a double-stranded DNA virus. Although many structural proteins have been deeply studied, the coding potential of some other open reading frames (ORFs) and the biological functions of their products during virus infection have not been fully elucidated. Here, a unique nonstructural protein ORF1B of FAdV-4 was identified and its expression kinetics along infection was analyzed. Except that of FAdV-10, a member of the same genus as FAdV-4, FAdV-4 ORF1B shared as low homologous identity as 29.2% in amino acid sequence with the other ten counterparts. Structurally, ORF1B was mapped on the N-terminal region of the genome between 1485 nt to 1808 nt and predicted to only contain two α-helix. Confocal immunofluorescence assay with homemade rabbit polyclonal antibody demonstrated that ORF1B could be simultaneously observed with structural protein Fiber 1 in FAdV-4-infected cells. Western blot further showed that ORF1B could only be detected in the infected cells but not mature virions, suggesting ORF1B was a nonstructural protein. Subsequently, the expression level of ORF1B detected by qRT-PCR and IFA was gradually decreased along with FAdV-4 infection, suggesting ORF1B was an early gene transcript. These results will lay a solid foundation to further study the biological effect of ORF1B on the replication and pathogenicity of FAdV-4.
Collapse
Affiliation(s)
- Shenyan Gao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Ruixue Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Xiaozhan Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, PR China
| | - Zeng Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China.
| |
Collapse
|
4
|
Lai J, Yang L, Chen F, He X, Zhang R, Zhao Y, Gao G, Mu W, Chen X, Luo S, Ren T, Xiang B. Prevalence and Molecular Characteristics of FAdV-4 from Indigenous Chicken Breeds in Yunnan Province, Southwestern China. Microorganisms 2023; 11:2631. [PMID: 38004643 PMCID: PMC10673041 DOI: 10.3390/microorganisms11112631] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Fowl adenovirus-induced hepatitis-pericardial effusion syndrome outbreaks have been increasingly reported in China since 2015, resulting in substantial economic losses to the poultry industry. The genetic diversity of indigenous chicken results in different immune traits, affecting the evolution of these viruses. Although the molecular epidemiology of fowl adenovirus serotype 4 (FAdV-4) has been well studied in commercial broiler and layer chickens, the prevalence and genetic characteristics of FAdV-4 in indigenous chickens remain largely unknown. In this study, samples were collected from six indigenous chicken breeds in Yunnan province, China. FAdV-positive samples were identified in five of the six indigenous chicken populations via PCR and 10 isolates were obtained. All FAdVs belonged to serotype FAdV-4 and species FAdV-C. The hexon, fiber, and penton gene sequence comparison analysis demonstrated that the prevalence of FAdV-4 isolates in these chickens might have originated from other provinces that exported chicks and poultry products to Yunnan province. Moreover, several distinct amino acid mutations were firstly identified in the major structural proteins. Our findings highlighted the need to decrease inter-regional movements of live poultry to protect indigenous chicken genetic resources and that the immune traits of these indigenous chickens might result in new mutations of FAdV-4 strains.
Collapse
Affiliation(s)
- Jinyu Lai
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Liangyu Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Fashun Chen
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Xingchen He
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Rongjie Zhang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Yong Zhao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Gan Gao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Weiwu Mu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Xi Chen
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Shiyu Luo
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Tao Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Bin Xiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
5
|
Chen X, Wei Q, Si F, Wang F, Lu Q, Guo Z, Chai Y, Zhu R, Xing G, Jin Q, Zhang G. Design and Identification of a Novel Antiviral Affinity Peptide against Fowl Adenovirus Serotype 4 (FAdV-4) by Targeting Fiber2 Protein. Viruses 2023; 15:v15040821. [PMID: 37112802 PMCID: PMC10146638 DOI: 10.3390/v15040821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Outbreaks of hydropericardium hepatitis syndrome caused by fowl adenovirus serotype 4 (FAdV-4) with a novel genotype have been reported in China since 2015, with significant economic losses to the poultry industry. Fiber2 is one of the important structural proteins on FAdV-4 virions. In this study, the C-terminal knob domain of the FAdV-4 Fiber2 protein was expressed and purified, and its trimer structure (PDB ID: 7W83) was determined for the first time. A series of affinity peptides targeting the knob domain of the Fiber2 protein were designed and synthesized on the basis of the crystal structure using computer virtual screening technology. A total of eight peptides were screened using an immunoperoxidase monolayer assay and RT-qPCR, and they exhibited strong binding affinities to the knob domain of the FAdV-4 Fiber2 protein in a surface plasmon resonance assay. Treatment with peptide number 15 (P15; WWHEKE) at different concentrations (10, 25, and 50 μM) significantly reduced the expression level of the Fiber2 protein and the viral titer during FAdV-4 infection. P15 was found to be an optimal peptide with antiviral activity against FAdV-4 in vitro with no cytotoxic effect on LMH cells up to 200 μM. This study led to the identification of a class of affinity peptides designed using computer virtual screening technology that targeted the knob domain of the FAdV-4 Fiber2 protein and may be developed as a novel potential and effective antiviral strategy in the prevention and control of FAdV-4.
Collapse
Affiliation(s)
- Xiao Chen
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qiang Wei
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Fusheng Si
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Fangyu Wang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qingxia Lu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Zhenhua Guo
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yongxiao Chai
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Rongfang Zhu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Guangxu Xing
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qianyue Jin
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
6
|
Guo X, Chang J, Lu S, Hu P, Zou D, Li Y, Li F, Liu J, Cao Q, Zhang K, Zhan J, Liu Y, Yang X, Ren H. Multiantigen epitope fusion recombinant proteins from capsids of serotype 4 fowl adenovirus induce chicken immunity against avian Angara disease. Vet Microbiol 2023; 278:109661. [PMID: 36758262 DOI: 10.1016/j.vetmic.2023.109661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
Avian Angara disease caused by fowl adenovirus serotype 4 (FAdV-4) has spread widely and brought economic losses to the poultry industry in some countries. Effective vaccines for Angara disease control are currently lacking. In this study, four capsid proteins (hexon, penton, fiber1 and fiber2) from FAdV-4 were selected, and their optimal efficient antigenic epitopes predicted by bioinformatics software were tandemly linked with the flexible linker GGGGS. Based on their amino acid sequences, the DNA sequences for the genes encoding the multiantigen epitope tandem proteins (MAETPs) FAdV4:F1, FAdV4:P, FAdV4:F2 and FAdV4:H were chemosynthesized and then ligated by T4 ligases at the cleavage sites of restriction endonucleases to construct DNAs encoding the multilinked fusion recombinant proteins (MLFRPs) used as protective antigens from avian Angara disease. These genes ligated into the expression vector pET-28a were successfully expressed using the Escherichia coli prokaryotic expression system to prepare five kinds of MLFRPs (FAdV4:F1-P-F2-H, FAdV4:F1-F2-P-H, FAdV4:F1-F2-H-P, FAdV4:F1-P-H-F2 and FAdV4:F1-H-F2-P) for use to immunize chicks. FAdV-4 was injected into MLFRP-immunized chickens, and the challenge protection rate was evaluated. FAdV4:F1-P-F2-H produced the best protection against FAdV-4, with a single immunization resulting in a 100 % protection rate, followed by FAdV4:F1-F2-P-H (83.33 %) and FAdV4:F1-F2-H-P (66.67 %). FAdV4:F1-P-H-F2 and FAdV4:F1-H-F2-P were not able to induce a good immune protection effect after one immunization. However, all of the MLFRPs were capable of protecting the host from FAdV-4 infection after two immunizations. In conclusion, these MLFRPs generated based on capsid proteins of FAdV-4 are promising candidate subunit vaccines against Angara disease.
Collapse
Affiliation(s)
- Xun Guo
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jiang Chang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shiying Lu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Pan Hu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Deying Zou
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China; Panjin Center for Inspection and Testing, Panjin 124000, China
| | - Yansong Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Feng Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China; Shandong Binzhou Animal Science & Veterinary Medicine Academy, Binzhou 256600, China
| | - Jishan Liu
- Shandong Binzhou Animal Science & Veterinary Medicine Academy, Binzhou 256600, China
| | - Qi Cao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Kai Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Junpeng Zhan
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yixin Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xin Yang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Honglin Ren
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
7
|
Li S, Zhao R, Yang Q, Wu M, Ma J, Wei Y, Pang Z, Wu C, Liu Y, Gu Y, Liao M, Sun H. Phylogenetic and pathogenic characterization of current fowl adenoviruses in China. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 105:105366. [PMID: 36115642 DOI: 10.1016/j.meegid.2022.105366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
In recent years, fowl adenoviruses (FAdVs) continue to outbreak and cause huge economic losses to the poultry industry in China. The homologous recombination accounts for the diversity serotypes of adenovirus. However, the prevalence, recombination and pathogenicity of current FAdVs remain unclear. Herein, the prevalence, phylogenetic feature and pathogenicity of FAdVs in China in 2019 were characterized. Our findings showed that multiple species and serotypes of FAdVs currently circulate in China, including A, C, D and E species, and 1, 2, 4, 8a and 8b serotypes. Notably, the recombination occurred between FAdV-8a and FAdV-8b, and the recombination regions included Hexon, Fiber, ORF19 and ORF20. All five FAdVs replicated effectively in various chicken tissues, and viral shedding peaked at 4-8 dpi. Except CH/GDSZ/1905(FAdV-1/A), the remaining FAdVs caused obvious inclusion body hepatitis (IBH) in 3-week-old specific-pathogen-free (SPF) chickens, of which CH/JSXZ/1905(FAdV-4/C) caused hydropericardium-hepatitis syndrome (HHS) with a mortality rate of 62.5%. Taken together, our findings illustrate the prevalence, recombination and pathogenicity of current FAdVs in China and strengthen surveillance and further pathogenicity studies of FAdVs are extremely urgent.
Collapse
Affiliation(s)
- Shuo Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China
| | - Rui Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China
| | - Qingzhou Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China
| | - Meihua Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China
| | - Jinhuan Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China
| | - Yifan Wei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China
| | - Zifeng Pang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China
| | - Changrong Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China
| | - Yanwei Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China
| | - Yongxia Gu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China
| | - Ming Liao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, PR China.
| | - Hailiang Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China.
| |
Collapse
|
8
|
Sahindokuyucu I, Yazici Z, Barry G. A retrospective molecular investigation of selected pigeon viruses between 2018–2021 in Turkey. PLoS One 2022; 17:e0268052. [PMID: 36037167 PMCID: PMC9423643 DOI: 10.1371/journal.pone.0268052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/15/2022] [Indexed: 11/27/2022] Open
Abstract
A recent first detection of pigeon aviadenovirus-1 and pigeon circovirus co-infection associated with Young Pigeon Disease Syndrome (YPDS) in a pigeon flock in Turkey, prompted a study focused on documenting the distribution of Pigeon aviadenovirus (PiAdV-1 and PiAdV-2), Pigeon circovirus (PiCV), Columbid alphaherpesvirus 1 (pigeon herpesvirus (PiHV)) and Fowl aviadenovirus (FAdV) in the country. These viruses were selected as they are associated with severe disease in pigeons across the world. A total of 192 cloacal swabs were collected from young (<1 year old) pigeons from 16 different private pigeon flocks across Turkey, between 2018 and 2021 as part of routine diagnostic sampling. PiCV genetic material was the most frequently detected 4/16 (25%), PiAdV-1 and CoHV-1 DNA were both found in one flock each, while neither PiAdV-2 and FAdV were detected in any of the studied pigeon flocks. PiCV and PiHV genetic material were both detected in the same pigeon flock’s cloacal samples as a co-infection with the identification of PiHV being a first in Turkey.
Collapse
Affiliation(s)
- Ismail Sahindokuyucu
- Bornova Veterinary Control Institute, Poultry Diseases Diagnostic Laboratory, Ministry of Agriculture and Forestry, Izmir, Turkey
- Now at Eville&Jones (GB) Limited Century House, Leeds, United Kingdom
| | - Zafer Yazici
- Department of Veterinary Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Gerald Barry
- Veterinary Science Center, School of Veterinary Medicine, University College of Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
9
|
Jia Z, Pan X, Zhi W, Chen H, Bai B, Ma C, Ma D. Probiotics Surface-Delivering Fiber2 Protein of Fowl Adenovirus 4 Stimulate Protective Immunity Against Hepatitis-Hydropericardium Syndrome in Chickens. Front Immunol 2022; 13:919100. [PMID: 35837390 PMCID: PMC9273852 DOI: 10.3389/fimmu.2022.919100] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/27/2022] [Indexed: 12/19/2022] Open
Abstract
Background and ObjectivesHepatitis-hydropericardium syndrome (HHS) caused by Fowl adenoviruses serotype 4 (FAdV-4) leads to severe economic losses to the poultry industry. Although various vaccines are available, vaccines that effectively stimulate intestinal mucosal immunity are still deficient. In the present study, novel probiotics that surface-deliver Fiber2 protein, the major virulence determiner and efficient immunogen for FAdV-4, were explored to prevent this fecal–oral-transmitted virus, and the induced protective immunity was evaluated after oral immunization.MethodsThe probiotic Enterococcus faecalis strain MDXEF-1 and Lactococcus lactis NZ9000 were used as host strains to deliver surface-anchoring Fiber2 protein of FAdV-4. Then the constructed live recombinant bacteria were orally vaccinated thrice with chickens at intervals of 2 weeks. Following each immunization, immunoglobulin G (IgG) in sera, secretory immunoglobulin A (sIgA) in jejunum lavage, immune-related cytokines, and T-cell proliferation were detected. Following challenge with the highly virulent FAdV-4, the protective effects of the probiotics surface-delivering Fiber2 protein were evaluated by verifying inflammatory factors, viral load, liver function, and survival rate.ResultsThe results demonstrated that probiotics surface-delivering Fiber2 protein stimulated humoral and intestinal mucosal immune responses in chickens, shown by high levels of sIgA and IgG antibodies, substantial rise in mRNA levels of cytokines, increased proliferative ability of T cells in peripheral blood, improved liver function, and reduced viral load in liver. Accordingly, adequate protection against homologous challenges and a significant increase in the overall survival rate were observed. Notably, chickens orally immunized with E. faecalis/DCpep-Fiber2-CWA were completely protected from the FAdV-4 challenge, which is better than L. lactis/DCpep-Fiber2-CWA.ConclusionThe recombinant probiotics surface-expressing Fiber2 protein could evoke remarkable humoral and cellular immune responses, relieve injury, and functionally damage target organs. The current study indicates a promising method used for preventing FAdV-4 infection in chickens.
Collapse
Affiliation(s)
- Zhipeng Jia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xinghui Pan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wenjing Zhi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hang Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Bingrong Bai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chunli Ma
- College of Food Science, Northeast Agricultural University, Harbin, China
- *Correspondence: Chunli Ma, ; Dexing Ma,
| | - Dexing Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Experimental Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
- *Correspondence: Chunli Ma, ; Dexing Ma,
| |
Collapse
|
10
|
Wang XP, Wen B, Zhang XJ, Ma L, Liang XL, Zhang ML. Transcriptome Analysis of Genes Responding to Infection of Leghorn Male Hepatocellular Cells With Fowl Adenovirus Serotype 4. Front Vet Sci 2022; 9:871038. [PMID: 35774982 PMCID: PMC9237548 DOI: 10.3389/fvets.2022.871038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/13/2022] [Indexed: 12/29/2022] Open
Abstract
Fowl adenovirus serotype 4 (FAdV-4) is a highly pathogenic virus with a broad host range that causes huge economic losses for the poultry industry worldwide. RNA sequencing has provided valuable and important mechanistic clues regarding FAdV-4–host interactions. However, the pathogenic mechanism and host's responses after FAdV-4 infection remains limited. In this study, we used transcriptome analysis to identify dynamic changes in differentially expressed genes (DEGs) at five characteristic stages (12, 24, 36, 48, and 60 h) post infection (hpi) with FAdV-4. A total of 8,242 DEGs were identified based on comparison of five infection stages: 0 and 12, 12 and 24, 24 and 36, 36 and 48, and 48 and 60 hpi. In addition, at these five important time points, we found 37 common upregulated or downregulated DEGs, suggesting a common role for these genes in host response to viral infection. The predicted function of these DEGs using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that these DEGs were associated with viral invasion, host metabolic pathways and host immunosuppression. Interestingly, genes involved in viral invasion, probably EGR1, SOCS3, and THBS1, were related to FAdV-4 infection. Validation of nine randomly selected DEGs using quantitative reverse-transcription PCR produced results that were highly consistent with those of RNA sequencing. This transcriptomic profiling provides valuable information for investigating the molecular mechanisms underlying host–FAdV-4 interactions. These data support the current molecular knowledge regarding FAdV-4 infection and chicken defense mechanisms.
Collapse
Affiliation(s)
- Xueping P. Wang
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
- *Correspondence: Xueping P. Wang
| | - Bo Wen
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Xiao J. Zhang
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| | - Lei Ma
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| | - Xiu L. Liang
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| | - Ming L. Zhang
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| |
Collapse
|
11
|
Pathogenicity and virus shedding ability of fowl adenovirus serotype 4 to ducks. Vet Microbiol 2021; 264:109302. [PMID: 34922147 DOI: 10.1016/j.vetmic.2021.109302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/16/2021] [Accepted: 12/05/2021] [Indexed: 11/20/2022]
Abstract
Fowl adenovirus serotype 4 (FAdV-4) is the pathogen causing hepatitis-hydropericardium syndrome (HHS) in broilers. Since June 2015, it has emerged as one of the leading causes of economic losses in the poultry industry in China. Although most studies on FAdV-4 have focused on its pathogenicity to broilers, limited studies have been performed on other natural hosts such as ducks and geese. In this study, we assessed the pathogenicity of FAdV-4 to ducks of different ages through intramuscular injection and found that infected ducks showed severe growth depression. The infected ducks also suffered from extensive organ damage and had histopathological changes in the liver, spleen, and kidney. Although the virus infection caused lymphocyte necrosis of immune organs and the development of the bursa of Fabricius (bursa) was inhibited, the humoral immune response of infected ducks to FAdV-4 remained strong. The infected ducks also had high viral load in tissues and shed virus after the challenge. Overall, our research demonstrates that FAdV-4 can infect ducks and adversely affect the productivity of animals. And the viruses shed by infected ducks can pose a potential risk to the same or other poultry flocks.
Collapse
|
12
|
Shi X, Zhang X, Sun H, Wei C, Liu Y, Luo J, Wang X, Chen Z, Chen H. Isolation and pathogenic characterization of duck adenovirus 3 mutant circulating in China. Poult Sci 2021; 101:101564. [PMID: 34823175 PMCID: PMC8628010 DOI: 10.1016/j.psj.2021.101564] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 10/26/2022] Open
Abstract
Duck adenoviruses (DAdVs) include serotype 1 (DAdV-1) in the genus Atadenovirus and serotypes 2-4 (DAdV-2, 3, and 4) in the genus Aviadenovirus. DAdV-3 was initially isolated from Chinese Muscovy ducks in 2014, whereby the infected ducks exhibited yellowing and hemorrhaging in the liver, along with slight pericardial effusion, swelling, and hemorrhaging in the kidneys. In recent years, duck adenovirus infections have appeared in Muscovy duck farms in Fujian, Zhejiang, Anhui, Guangdong, and other places in China. They have an incidence rate of 40 to 55% and a mortality rate of 35 to 43%, resulting in great losses to the duck breeding industry. In this study, 7 DAdV-3 strains, designated as TZ193, FJPT20161124, GX20170519, FJZZ, GDMM, AHAQ, and GDHS were isolated from Muscovy ducks in different provinces of China during 2016-2019, and their complete genomics were sequenced. Their genomes all exhibited significant deletions in ORF67, which also had G to A transitions at the 41st and 977th nt positions, resulting in a stop codon. The pathogenicity of TZ193, a novel isolate of DAdV-3, was investigated in Muscovy ducks. TZ193 caused characteristic lesions of swelling as well as hemorrhagic liver and kidney in the infected ducklings. Moreover, the mortality rate of TZ193 in 5-day-old domestic ducks was 100%. Our data provide concrete evidence for the identification of the DAdV-3 novel variant mutant in China, which effects increased mortality in ducks. This highlights the necessity for monitoring the specific molecular epidemiology of novel DAdV-3 mutants and the development of new vaccines in the future.
Collapse
Affiliation(s)
- Xinjin Shi
- Shanghai Veterinary Research Institute, CAAS, Shanghai 200241, China
| | - Xinyu Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 200295, China
| | - Haiwei Sun
- Shanghai Veterinary Research Institute, CAAS, Shanghai 200241, China
| | - Changqing Wei
- Shanghai Veterinary Research Institute, CAAS, Shanghai 200241, China
| | - Yingnan Liu
- Shanghai Veterinary Research Institute, CAAS, Shanghai 200241, China
| | - Jiguan Luo
- Shandong Sinder Biotechnology Company, Zhucheng, 262200 China
| | - Xuebo Wang
- Shandong Sinder Biotechnology Company, Zhucheng, 262200 China
| | - Zongyan Chen
- Shanghai Veterinary Research Institute, CAAS, Shanghai 200241, China.
| | - Hongjun Chen
- Shanghai Veterinary Research Institute, CAAS, Shanghai 200241, China
| |
Collapse
|
13
|
Wang L, Zheng L, Jiang S, Li X, Lu C, Zhang L, Ren W, Li C, Tian X, Li F, Yan M. Isolation, identification and genetic characterization analysis of a fowl aviadenovirus serotype 4 strain from Tianjin, China. INFECTION GENETICS AND EVOLUTION 2021; 96:105078. [PMID: 34508884 DOI: 10.1016/j.meegid.2021.105078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/19/2021] [Accepted: 09/05/2021] [Indexed: 11/19/2022]
Abstract
A fowl aviadenovirus serotype 4 (FAdV-4), Y17215-1, was isolated from the liver of chickens with Hydropericardium-hepatitissyndrome(HHS) in a chicken farm of Tianjin, China. Obvious cytopathic effects were observed in the infected chicken liver hepatocellular carcinoma cell line (LMH cells) at 24 h post infection (hpi), which consisted of enlarger and rounder shape of cells. The typical and specific green fluorescence was observed by indirect immunofluorescence assay (IFA). Tissue Culture Infectious Dose50 (TCID50) of it measured after five stable passage in LMH cells reached 106.5TCID50/0.1 mL. The strain was inoculated through allantoic membrane of 10-day specific pathogen free(SPF) Chick embryos, the thicker allantoic membranes were observed at 120 hpi. 7-day-old SPF chickens were inoculated with the strain via intramuscular (i.m.) or intranasal (i.n.) injection which resulted in 100% mortality of test chickens. Additionally, the sickness and death of cohabitation chickens in the test group were observed which indicated that the virus can infect healthy chickens by horizontal transmission. The sick chickens showed depression, anorexia and diarrhea with green watery feces. Y17215-1-inoculated chickens mainly presented swollen liver with blood spot, and the enhancement of effusion or yellow gel like effusion that were observed in the pericardium through necropsy. Histopathological examination showed focal necrosis of hepatocytes and characteristic eosinophilic inclusion bodies in the cytoplasm. The results showed that the Y17215-1 isolate had high pathogenicity to SPF chickens. The phylogenetic analysis of the major structural proteins including hexon, fiber-1 and fiber-2 revealed that Y17215-1 strain belongs to C species of fowl aviadenovirus of aviadenovirus family, and has high homology with other Chinese strains isolated in recent years, but was distinct from ON1、MX-SHP95、KR5 and other foreign isolates. This study laid a foundation for further study of epidemiological investigation, pathogenic mechanism as well as the diagnosis and control technology of FAdV-4.
Collapse
Affiliation(s)
- Lili Wang
- Animal Husbandry and Veterinary Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; Tianjin Scientific Observation Experiment Station for Veterinary Medicine and Diagnosis Technology, the Ministry of Agriculture and Rural Affairs of China, Tianjin 300381, China; Tianjin Engineering Research Center for Livestock and Poultry Health Breeding, Tianjin, China
| | - Li Zheng
- Animal Husbandry and Veterinary Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; Tianjin Scientific Observation Experiment Station for Veterinary Medicine and Diagnosis Technology, the Ministry of Agriculture and Rural Affairs of China, Tianjin 300381, China; Tianjin Engineering Research Center for Livestock and Poultry Health Breeding, Tianjin, China
| | - Shan Jiang
- Animal Husbandry and Veterinary Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; Tianjin Scientific Observation Experiment Station for Veterinary Medicine and Diagnosis Technology, the Ministry of Agriculture and Rural Affairs of China, Tianjin 300381, China; Tianjin Engineering Research Center for Livestock and Poultry Health Breeding, Tianjin, China
| | - Xiuli Li
- Animal Husbandry and Veterinary Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; Tianjin Scientific Observation Experiment Station for Veterinary Medicine and Diagnosis Technology, the Ministry of Agriculture and Rural Affairs of China, Tianjin 300381, China; Tianjin Engineering Research Center for Livestock and Poultry Health Breeding, Tianjin, China
| | - Chao Lu
- Animal Husbandry and Veterinary Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; Tianjin Scientific Observation Experiment Station for Veterinary Medicine and Diagnosis Technology, the Ministry of Agriculture and Rural Affairs of China, Tianjin 300381, China; Tianjin Engineering Research Center for Livestock and Poultry Health Breeding, Tianjin, China
| | - Li Zhang
- Animal Husbandry and Veterinary Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; Tianjin Scientific Observation Experiment Station for Veterinary Medicine and Diagnosis Technology, the Ministry of Agriculture and Rural Affairs of China, Tianjin 300381, China; Tianjin Engineering Research Center for Livestock and Poultry Health Breeding, Tianjin, China
| | - Weike Ren
- Animal Husbandry and Veterinary Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; Tianjin Scientific Observation Experiment Station for Veterinary Medicine and Diagnosis Technology, the Ministry of Agriculture and Rural Affairs of China, Tianjin 300381, China; Tianjin Engineering Research Center for Livestock and Poultry Health Breeding, Tianjin, China
| | - Cheng Li
- Animal Husbandry and Veterinary Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; Tianjin Scientific Observation Experiment Station for Veterinary Medicine and Diagnosis Technology, the Ministry of Agriculture and Rural Affairs of China, Tianjin 300381, China; Tianjin Engineering Research Center for Livestock and Poultry Health Breeding, Tianjin, China
| | - Xiangxue Tian
- Animal Husbandry and Veterinary Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; Tianjin Scientific Observation Experiment Station for Veterinary Medicine and Diagnosis Technology, the Ministry of Agriculture and Rural Affairs of China, Tianjin 300381, China; Tianjin Engineering Research Center for Livestock and Poultry Health Breeding, Tianjin, China
| | - Fuqiang Li
- Animal Husbandry and Veterinary Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; Tianjin Scientific Observation Experiment Station for Veterinary Medicine and Diagnosis Technology, the Ministry of Agriculture and Rural Affairs of China, Tianjin 300381, China; Tianjin Engineering Research Center for Livestock and Poultry Health Breeding, Tianjin, China
| | - Minghua Yan
- Animal Husbandry and Veterinary Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; Tianjin Scientific Observation Experiment Station for Veterinary Medicine and Diagnosis Technology, the Ministry of Agriculture and Rural Affairs of China, Tianjin 300381, China; Tianjin Engineering Research Center for Livestock and Poultry Health Breeding, Tianjin, China.
| |
Collapse
|
14
|
The fowl adenovirus serotype 4 (FAdV-4) induce cellular pathway in chickens to produce interferon and antigen-presented molecules (MHCI/II). Poult Sci 2021; 100:101406. [PMID: 34428643 PMCID: PMC8385439 DOI: 10.1016/j.psj.2021.101406] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/12/2021] [Accepted: 07/21/2021] [Indexed: 11/28/2022] Open
Abstract
FAdV-4 is the major strain of adenovirus that responsible for hydro-pericardial syndrome (HPS) in poultry. In this study, the virus's specific gene fragments were isolated from clinically suspected cases and amplified by PCR. Finally, after a viral infection to investigate the immune response of the host, the gene expression of MHC (major histo-compatible) molecules (MHCIα, MHCIIβ), Ii (Invariant Chain) gene, inflammatory cytokines (IFN-β, IFN-γ, and IL-1β), and transcription factors (MDA5, STING, IRF7, and NF-kB) were detected by real-time PCR (fluorescence technology). The results of sequence comparison showed that the clinically isolated virus was 100% homologous to a virulent strain of avian adenovirus group C serotype 4 (FAdV-4), which were named AH-FAdV-4. The TCID50 and pathogenicity of the virus were determined that was 106.52/0.1 mL with a mortality rate of 100% in chickens and 0% in ducks. Furthermore, results showed that the expression level of MHCIα, MHCIIβ, and Ii genes in chicken embryo kidney cells significantly (P < 0.01) upregulated (increased) after infection, which was 43, 5.2, and 2.5 times higher than the control group. With the addition of PDTC, an inhibitor of NF-kB, then the expression level of MHCIα, MHCIIβ, and Ii was decreased significantly (P < 0.01) than the control group. The transcription levels of these genes were decreased 0.64, 0.27, and 0.26 respectively. Simultaneously, the expression levels of IFN-β, IFN-γ, and IL-1β were also significantly (P < 0.01) up-regulated (increased) 7.8, 22.7, and 5 times higher than the control group. It was found that up-regulation of STING and NF-κB pathways are directly involved in the regulation of inflammatory cytokines (IFN-β, IFN-γ, and IL-1β), MHC molecules (MHCIα, MHCIIβ), and Ii gene. The results also showed that the gene regulation pathways consecutively increased the expression levels of MDA5, STING, IRF7, and NF-kB. It is conducted that the expression levels of cytokines, MHC molecules, and li gene were increased by STING and NF-kB pathways.
Collapse
|
15
|
Zhao M, Duan X, Wang Y, Gao L, Cao H, Li X, Zheng SJ. A Novel Role for PX, a Structural Protein of Fowl Adenovirus Serotype 4 (FAdV4), as an Apoptosis-Inducer in Leghorn Male Hepatocellular Cell. Viruses 2020; 12:E228. [PMID: 32085479 PMCID: PMC7077197 DOI: 10.3390/v12020228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 02/06/2023] Open
Abstract
Hydropericardium-Hepatitis Syndrome (HHS) caused by Fowl Adenovirus Serotype 4 (FAdV4) infection is a severe threat to the poultry industry worldwide, especially in China since 2015. Recent studies show that FAdV4 induces liver injury through apoptosis. However, the underlying molecular mechanism is still unclear. We report here that FAdV4 infection caused apoptosis in Leghorn male hepatocellular (LMH) cells and that PX, a structural protein of FAdV4, acted as a major viral factor inducing apoptosis. Furthermore, the nuclear localization of PX is determined by the R/K regions of PX and required for PX-induced apoptosis. Moreover, alanines 11 and 129 of PX are crucial to PX-induced apoptosis. Inhibition of FAdV4-induced apoptosis by caspase inhibitors retarded viral replication, suggesting that PX serves as a virulence factor for FAdV4 infection, which may further our understandings of the pathogenesis of FAdV4 infection.
Collapse
Affiliation(s)
- Mingliang Zhao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.); (X.D.); (Y.W.); (L.G.); (H.C.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xueyan Duan
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.); (X.D.); (Y.W.); (L.G.); (H.C.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongqiang Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.); (X.D.); (Y.W.); (L.G.); (H.C.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Li Gao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.); (X.D.); (Y.W.); (L.G.); (H.C.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hong Cao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.); (X.D.); (Y.W.); (L.G.); (H.C.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoqi Li
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun J. Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.); (X.D.); (Y.W.); (L.G.); (H.C.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
16
|
Wang Z, Zhao J. Pathogenesis of Hypervirulent Fowl Adenovirus Serotype 4: The Contributions of Viral and Host Factors. Viruses 2019; 11:E741. [PMID: 31408986 PMCID: PMC6723092 DOI: 10.3390/v11080741] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 02/06/2023] Open
Abstract
Since 2015, severe outbreaks of hepatitis-hydropericardium syndrome (HHS), caused by hypervirulent fowl adenovirus serotype 4 (FAdV-4), have emerged in several provinces in China, posing a great threat to poultry industry. So far, factors contributing to the pathogenesis of hypervirulent FAdV-4 have not been fully uncovered. Elucidation of the pathogenesis of FAdV-4 will facilitate the development of effective FAdV-4 vaccine candidates for the control of HHS and vaccine vector. The interaction between pathogen and host defense system determines the pathogenicity of the pathogen. Therefore, the present review highlights the knowledge of both viral and host factors contributing to the pathogenesis of hypervirulent FAdV-4 strains to facilitate the related further studies.
Collapse
Affiliation(s)
- Zeng Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Jun Zhao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China.
| |
Collapse
|