1
|
Mondal AH, Khare K, Saxena P, Debnath P, Mukhopadhyay K, Yadav D. A Review on Colistin Resistance: An Antibiotic of Last Resort. Microorganisms 2024; 12:772. [PMID: 38674716 PMCID: PMC11051878 DOI: 10.3390/microorganisms12040772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Antibiotic resistance has emerged as a significant global public health issue, driven by the rapid adaptation of microorganisms to commonly prescribed antibiotics. Colistin, previously regarded as a last-resort antibiotic for treating infections caused by Gram-negative bacteria, is increasingly becoming resistant due to chromosomal mutations and the acquisition of resistance genes carried by plasmids, particularly the mcr genes. The mobile colistin resistance gene (mcr-1) was first discovered in E. coli from China in 2016. Since that time, studies have reported different variants of mcr genes ranging from mcr-1 to mcr-10, mainly in Enterobacteriaceae from various parts of the world, which is a major concern for public health. The co-presence of colistin-resistant genes with other antibiotic resistance determinants further complicates treatment strategies and underscores the urgent need for enhanced surveillance and antimicrobial stewardship efforts. Therefore, understanding the mechanisms driving colistin resistance and monitoring its global prevalence are essential steps in addressing the growing threat of antimicrobial resistance and preserving the efficacy of existing antibiotics. This review underscores the critical role of colistin as a last-choice antibiotic, elucidates the mechanisms of colistin resistance and the dissemination of resistant genes, explores the global prevalence of mcr genes, and evaluates the current detection methods for colistin-resistant bacteria. The objective is to shed light on these key aspects with strategies for combating the growing threat of resistance to antibiotics.
Collapse
Affiliation(s)
- Aftab Hossain Mondal
- Department of Microbiology, Faculty of Allied Health Sciences, Shree Guru Gobind Singh Tricentenary University, Gurugram 122505, Haryana, India; (A.H.M.); (P.D.)
| | - Kriti Khare
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (K.K.); (P.S.); (K.M.)
| | - Prachika Saxena
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (K.K.); (P.S.); (K.M.)
| | - Parbati Debnath
- Department of Microbiology, Faculty of Allied Health Sciences, Shree Guru Gobind Singh Tricentenary University, Gurugram 122505, Haryana, India; (A.H.M.); (P.D.)
| | - Kasturi Mukhopadhyay
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (K.K.); (P.S.); (K.M.)
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| |
Collapse
|
2
|
C SK, Khanal S, Joshi TP, Khadka D, Tuladhar R, Joshi DR. Antibiotic resistance determinants among carbapenemase producing bacteria isolated from wastewaters of Kathmandu, Nepal. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123155. [PMID: 38114055 DOI: 10.1016/j.envpol.2023.123155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
The emergence of carbapenem resistant bacteria (CRB) possesses a remarkable threat to the health of humans. CRB and carbapenem resistance genes (CRGs) have frequently been reported in clinical isolates from hospitals, however, their occurrence and distribution in wastewaters from various sources and river water have not been emphasized in Nepal. So, this study aimed to detect carbapenem resistant bacterial isolates and their resistance determinants in river water and different types of wastewaters. River water and both untreated and treated wastewater samples from hospitals, pharmaceutical industries, and municipal sewage were collected in summer and winter seasons. From 68 grab wastewater samples, CRB were detected only in 16 samples, which included eight hospital wastewater, and four each from untreated municipal sewage and river water. A total of 25 CRB isolates were detected with dominance of E. coli (44.0%) and K. pneumoniae (24.0%). The majority of the isolates harbored blaNDM-1 (76.0%), followed by blaOXA (36.0%) and blaKPC (20.0%) genes. Hospital wastewater majorly contributed to the presence of blaNDM-1, blaKPC, and blaOXA along with intI1 genes compared to river water and untreated municipal sewage, especially during the winter season. However, CRB were not detected in treated effluents of hospitals and municipal sewage, and both influents and effluents from pharmaceutical industries. The combined presence of each blaNDM-1 & blaOXA and blaKPC & blaOXA occurred in 16.0% of the bacterial isolates. The increased minimum inhibitory concentration (MIC) of meropenem was significantly associated with the presence of CRGs. The results of this study highlight the significance of carbapenem resistance in bacteria isolated from wastewater and river water, and underscore the necessity for efficient monitoring and control strategies to prevent the dispersion of carbapenem resistance in the environment and its potential consequences on human health.
Collapse
Affiliation(s)
- Sudeep K C
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Nepal; Environment Research Laboratory, Faculty of Science, Nepal Academy of Science and Technology (NAST), Lalitpur, Nepal
| | - Santosh Khanal
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Nepal; Environment Research Laboratory, Faculty of Science, Nepal Academy of Science and Technology (NAST), Lalitpur, Nepal; Department of Microbiology, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal
| | - Tista Prasai Joshi
- Environment Research Laboratory, Faculty of Science, Nepal Academy of Science and Technology (NAST), Lalitpur, Nepal
| | - Deegendra Khadka
- Molecular Biotechnology, Faculty of Science, Nepal Academy of Science and Technology (NAST), Lalitpur, Nepal
| | - Reshma Tuladhar
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Nepal
| | - Dev Raj Joshi
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Nepal.
| |
Collapse
|
3
|
Bansal K, Saroha T, Patil PP, Kumar S, Kumar S, Singhal L, Gautam V, Patil PB. Evolutionary trends of carbapenem-resistant and susceptible Acinetobacter baumannii isolates in a major tertiary care setting from North India. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 117:105542. [PMID: 38122920 DOI: 10.1016/j.meegid.2023.105542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/09/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Emergence of carbapenem-resistant A. baumannii (CRAB) is a global, ongoing healthcare concern. CRAB is among the topmost priority pathogens, with various studies focusing on its global population structure and resistant allelic profiles. However, carbapenem-susceptible A. baumannii (CSAB) isolates are often overlooked due to their sensitivity to beta-lactams, which can provide important insights into origin of CRAB lineages and isolates. In the present study, we report genomic investigation of CRAB and CSAB coexisting in Indian hospital setting. MLST based population structure and phylogenomics suggest they mainly follow distinct evolutionary routes forming two phylogroups. PG-I exclusively for a successful clone (ST2) of CRAB and PG-II comprises diversified CSAB isolates except PG3373, which is CRAB. Additionally, there are few CRAB isolates not belonging to PG-I and sharing clonal relationship with CSAB isolates indicating role of genome plasticity towards extensive drug resistance in the nosocomial environment. Further, genealogical analysis depicts prominent role of recombination in emergence and evolution of a major CRAB lineage. Further, CRAB isolates are enriched in resistomes as compared to CSAB isolates, which were encoded on the genomic island. Such comparative genomic insights will aid in our understanding and localized management of rapidly evolving pandrug resistant nosocomial pathogens.
Collapse
Affiliation(s)
- Kanika Bansal
- CSIR- Institute of Microbial Technology, Chandigarh- 160036, India
| | - Tanu Saroha
- CSIR- Institute of Microbial Technology, Chandigarh- 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Prashant P Patil
- CSIR- Institute of Microbial Technology, Chandigarh- 160036, India
| | - Sanjeet Kumar
- CSIR- Institute of Microbial Technology, Chandigarh- 160036, India
| | - Sunil Kumar
- Postgraduate Institute of Medical Education and Research, Chandigarh- 160012, India; Department of Microbiology, Graphic Era Deemed to be University, Dehradun, Uttarakhand- 248002, India
| | - Lipika Singhal
- Government Medical College & Hospital, Chandigarh- 160047, India
| | - Vikas Gautam
- Postgraduate Institute of Medical Education and Research, Chandigarh- 160012, India.
| | - Prabhu B Patil
- CSIR- Institute of Microbial Technology, Chandigarh- 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.
| |
Collapse
|
4
|
Baleivanualala SC, Isaia L, Devi SV, Howden B, Gorrie CL, Matanitobua S, Sharma S, Wilson D, Kumar S, Maharaj K, Beatson S, Boseiwaqa LV, Dyet K, Crump JA, Hill PC, Ussher JE. Molecular and clinical epidemiology of carbapenem resistant Acinetobacter baumannii ST2 in Oceania: a multicountry cohort study. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2023; 40:100896. [PMID: 38116498 PMCID: PMC10730321 DOI: 10.1016/j.lanwpc.2023.100896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/22/2023] [Indexed: 12/21/2023]
Abstract
Background Carbapenem resistant Acinetobacter baumannii (CRAb) is categorised by the World Health Organization (WHO) as a pathogen of critical concern. However, little is known about CRAb transmission within the Oceania region. This study addresses this knowledge gap by using molecular epidemiology to characterise the phylogenetic relationships of CRAb isolated in hospitals in Fiji, Samoa, and other countries within the Oceania region including Australia and New Zealand, and India from South Asia. Methods In this multicountry cohort study, we analysed clinical isolates of CRAb collected from the Colonial War Memorial Hospital (CWMH) in Fiji from January through December 2019 (n = 64) and Tupua Tamasese Mea'ole Hospital (TTMH) in Samoa from November 2017 through June 2021 (n = 32). All isolates were characterised using mass spectrometry, antimicrobial susceptibility testing, and whole-genome sequencing. For CWMH, data were collected on clinical and demographic characteristics of patients with CRAb, duration of hospital stay, mortality and assessing the appropriateness of meropenem use from the treated patients who had CRAb infections. To provide a broader geographical context, CRAb strains from Fiji and Samoa were compared with CRAb sequences from Australia collected in 2016-2018 (n = 22), New Zealand in 2018-2021 (n = 13), and India in 2019 (n = 58), a country which has close medical links with Fiji. Phylogenetic relationships of all these CRAb isolates were determined using differences in core genome SNPs. Findings Of CRAb isolates, 49 (77%) of 64 from Fiji and all 32 (100%) from Samoa belonged to CRAb sequence type 2 (ST2). All ST2 isolates from both countries harboured blaOXA-23, blaOXA-66 and ampC-2 genes, mediating resistance to β-lactam antimicrobials, including cephalosporins and carbapenems. The blaOXA-23 gene was associated with two copies of ISAba1 insertion element, forming the composite transposon Tn2006, on the chromosome. Two distinct clusters (group 1 and group 2) of CRAb ST2 were detected in Fiji. The first group shared common ancestral linkage to all CRAb ST2 collected from Fiji's historic outbreak in 2016/2017, Samoa, Australia and 54% of total New Zealand isolates; they formed a single cluster with a median (range) SNP difference of 13 (0-102). The second group shared common ancestral linkage to 3% of the total CRAb ST2 isolated from India. Fifty eight of the 64 patients with CRAb infections at the CWMH had their first positive CRAb sample collected 72 h or more following admission. Meropenem use was deemed inappropriate in 15 (48%) of the 31 patients that received treatment with meropenem in Fiji. Other strains of CRAb ST1, ST25, ST107, and ST1112 were also detected in Fiji. Interpretation We identified unrecognised outbreaks of CRAb ST2 in Fiji and Samoa that linked to strains in other parts of Oceania and South Asia. The existence of Tn2006, containing the blaOXA-23 and ISAba1 insertion element, within CRAb ST2 from Fiji and Samoa indicates the potential for high mobility and dissemination. This raises concerns about unmitigated prolonged outbreaks of CRAb ST2 in the two major hospitals in Fiji and Samoa. Given the magnitude of this problem, there is a need to re-evaluate the current strategies used for infection prevention and control, antimicrobial stewardship, and public health measures locally and internationally. Moreover, a collaborative approach to AMR surveillance within the Oceania region with technical, management and budgetary support systems is required to prevent introduction and control transmission of these highly problematic strains within the island nation health systems. Funding This project was funded by an Otago Global Health Institute seed grant and Maurice Wilkins Centre of Research Excellence (CoREs) grant (SC0000169653, RO0000002300).
Collapse
Affiliation(s)
- Sakiusa C. Baleivanualala
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- College of Medicine, Nursing and Health Science, Fiji National University, Suva, Fiji
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 92019, New Zealand
| | - Lupeoletalalelei Isaia
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 92019, New Zealand
- Tupua Tamasese Mea'ole Hospital, Apia, Samoa
| | - Swastika V. Devi
- College of Medicine, Nursing and Health Science, Fiji National University, Suva, Fiji
| | - Benjamin Howden
- Microbiological Diagnostic Unit, Peter Doherty Institute for Infection & Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection & Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Claire L. Gorrie
- Microbiological Diagnostic Unit, Peter Doherty Institute for Infection & Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection & Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | | | | | - Donald Wilson
- College of Medicine, Nursing and Health Science, Fiji National University, Suva, Fiji
| | | | | | - Scott Beatson
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - Kristin Dyet
- Institute of Environmental Science and Research Ltd., Porirua 5022, New Zealand
| | - John A. Crump
- Otago Global Health Institute, University of Otago, Dunedin 9054, New Zealand
| | - Philip C. Hill
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 92019, New Zealand
- Otago Global Health Institute, University of Otago, Dunedin 9054, New Zealand
| | - James E. Ussher
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 92019, New Zealand
- Southern Community Laboratories, Dunedin Hospital, Dunedin 9016, New Zealand
| |
Collapse
|
5
|
Paneri M, Sevta P, Yagnik VD. Burden of Carbapenem Resistant Acinetobacter baumannii Harboring blaOXA Genes in the Indian Intensive Care Unit. GLOBAL JOURNAL OF MEDICAL, PHARMACEUTICAL, AND BIOMEDICAL UPDATE 2023; 18:12. [DOI: 10.25259/gjmpbu_18_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2023]
Abstract
Objectives:
The World Health Organization (WHO) mentioned Acinetobacter baumannii as a “priority of concern” in 2017. Acinetobacter baumannii generally infects immunocompromised patients and causes various nosocomial infections in the intensive care unit (ICU) such as bacteremia, meningitis, ventilator-associated pneumonia, other respiratory infections, and surgical site infections. As oxacillinase has weak hydrolysis activity, more work was needed on this class-D beta-lactamase. Hence, the current Systematic review focuses on the A. baumannii’s oxacillinase (Class-D beta-lactamases) enzyme and its variants collected during 2013–2020 in India for complete genome sequencing.
Method:
This Systematic review has been done according to PRISMA guideline 2020. We have used the Bacterial and Viral Bioinformatic Resource Centre (bv-brc.org) system for comparative genome analysis. The protein Basic Local Alignment Search Tool (BLAST) was used to identify similarities between sequences, in which BLOSUM62 was used as a scoring matrix. Clustal-W was used for multiple sequence alignment. A phylogenetic tree of the blaOXA gene family has been constructed using MEGA version 11.
Result:
In India during 2013–2020, for genome sequencing of A. baumannii, the highest number of samples was collected from blood (36%), following the ETA (30%). The average G+C % content was 38.95%. Among the 339 A. baumannii isolates, a maximum of 189 (55.75%) strains caused pneumonia, whereas 113 (33.33%) strains were involved in bacteremia. Carbapenems seemed effective, but resistance against them was higher. Among all A. baumannii genomes, bla-OXA-23 had the highest frequency (314; 92.62%), followed by bla-OXA-66 (241; 71.09%) in India.
Conclusion:
Our findings indicated that a high percentage of A. baumannii strains that produce oxacillinases exist in India, emphasizing the necessity for indigenous molecular surveillance to assist effective management and preventative initiatives. Comparative genomics and next-generation sequencing will offer tremendous potential for tracking and regulating the spread of this dangerous bacterium.
Collapse
Affiliation(s)
- Manita Paneri
- Department of Medical Microbiology, Centre for Interdisciplinary Biomedical Research, Adesh University, Bathinda, Punjab, India
| | - Prashant Sevta
- Department of Surgery, Adesh Institute of Medical Sciences and Research, Bathinda, Punjab, India
| | - Vipul D. Yagnik
- Department of Surgery, Banas Medical College and Research Institute, Palanpur, Gujarat, India,
| |
Collapse
|
6
|
Hajikhani B, Sameni F, Ghazanfari K, Abdolali B, Yazdanparast A, Asarehzadegan Dezfuli A, Nasiri MJ, Goudarzi M, Dadashi M. Prevalence of blaNDM-producing Acinetobacter baumannii strains isolated from clinical samples around the world; a systematic review. GENE REPORTS 2023. [DOI: 10.1016/j.genrep.2022.101728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Liu H, Hu D, Wang D, Wu H, Pan Y, Chen X, Qi L, Li L, Liang R. In vitro analysis of synergistic combination of polymyxin B with 12 other antibiotics against MDR Acinetobacter baumannii isolated from a Chinese tertiary hospital. J Antibiot (Tokyo) 2023; 76:20-26. [PMID: 36307731 DOI: 10.1038/s41429-022-00573-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 12/15/2022]
Abstract
In clinical practice, polymyxins are suggested to be used in combination with other antibiotics for improving their antibacterial efficacy and preventing the emergency of antibiotic-resistant strains. However, even though synergistic combination of polymyxin B with many antibiotics have been confirmed in various studies with different bacterial species and analyzing methods, which antibiotic is the best option for combination therapy of polymyxin B against MDR A. baumannii remains uncertain. In this study, we systematically analyzed the synergistic combination of polymyxin B with 12 other antibiotics against MDR A. baumannii isolated from a Chinese tertiary hospital using the checkerboard assay. The results suggest that, for polymyxin B-based combination therapy against MDR A. baumannii as characterized in this hospital, cefperazone-sulbactam may be the best partner, since it has the highest synergistic rate and the best synergistic effect with polymyxin B. Minocycline, imipenem, meropenem, ceftazidime, cefepime, amikacin and sulfamethoxazole also have some synergistic effects with polymyxin B, but piperacillin-tazobactam, ciprofloxacin, levofloxacin and tobramycin show no synergism. None of these 12 antibiotics has an antagonistic effect when combined with polymyxin B.
Collapse
Affiliation(s)
- Hui Liu
- Department of Clinical Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, PR China
| | - Dan Hu
- Department of Clinical Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, PR China
| | - Dongxin Wang
- Department of Clinical Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, PR China
| | - Han Wu
- Department of Clinical Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, PR China
| | - Yunjun Pan
- Department of Clinical Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, PR China
| | - Xin Chen
- Department of Clinical Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, PR China
| | - Lin Qi
- Department of Clinical Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, PR China.,Department of Clinical Laboratory, Jinzhou Medical University Graduate Training Base, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, PR China
| | - Lian Li
- Department of Clinical Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, PR China.,Department of Clinical Laboratory, Jinzhou Medical University Graduate Training Base, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, PR China
| | - Rongxin Liang
- Department of Clinical Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, PR China.
| |
Collapse
|
8
|
Kumar S, Anwer R, Azzi A. Molecular typing methods & resistance mechanisms of MDR Klebsiella pneumoniae. AIMS Microbiol 2023; 9:112-130. [PMID: 36891535 PMCID: PMC9988409 DOI: 10.3934/microbiol.2023008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
The emergence and transmission of carbapenem-resistant Klebsiella pneumoniae (CRKP) have been recognized as a major public health concern. Here, we investigated the molecular epidemiology and its correlation with the mechanisms of resistance in CRKP isolates by compiling studies on the molecular epidemiology of CRKP strains worldwide. CRKP is increasing worldwide, with poorly characterized epidemiology in many parts of the world. Biofilm formation, high efflux pump gene expression, elevated rates of resistance, and the presence of different virulence factors in various clones of K. pneumoniae strains are important health concerns in clinical settings. A wide range of techniques has been implemented to study the global epidemiology of CRKP, such as conjugation assays, 16S-23S rDNA, string tests, capsular genotyping, multilocus sequence typing, whole-genome sequencing-based surveys, sequence-based PCR, and pulsed-field gel electrophoresis. There is an urgent need to conduct global epidemiological studies on multidrug-resistant infections of K. pneumoniae across all healthcare institutions worldwide to develop infection prevention and control strategies. In this review, we discuss different typing methods and resistance mechanisms to explore the epidemiology of K. pneumoniae pertaining to human infections.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Microbiology, Kampala International University, Western Campus, Ishaka, Uganda
| | - Razique Anwer
- Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Arezki Azzi
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Kumkar SN, Kamble EE, Chavan NS, Dhotre DP, Pardesi KR. Diversity of resistant determinants, virulence factors, and mobile genetic elements in Acinetobacter baumannii from India: A comprehensive in silico genome analysis. Front Cell Infect Microbiol 2022; 12:997897. [PMID: 36519127 PMCID: PMC9742364 DOI: 10.3389/fcimb.2022.997897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/07/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction The frequency of infections associated with multidrug resistant A. baumannii has risen substantially in India. The use of next-generation sequencing (NGS) techniques combined with comparative genomics has great potential for tracking, monitoring, and ultimately controlling the spread of this troublesome pathogen. Here, we investigated the whole genome sequences of 47 A. baumannii from India. Methods In brief, A. baumannii genomes were analyzed for the presence of antibiotic resistance genes (ARGs), virulence factors genes (VFGs), and mobile genetic elements (MGEs) using various in silico tools. The AbaR-type resistance islands (AbaRIs) were detected by examining the genetic environment of the chromosomal comM gene. Multilocus sequence types were determined using the Pasteur scheme. The eBURST and whole genome SNPs-based phylogenetic analysis were performed to analyze genetic diversity between A. baumannii genomes. Results and discussion A larger number of A. baumannii isolates belonging to the ST2 genotype was observed. The SNPs-based phylogenetic analysis showed a diversity between compared genomes. The predicted resistome showed the presence of intrinsic and acquired ARGs. The presence of plasmids, insertion sequences, and resistance islands carrying putative ARGs conferring resistance to antibiotics, quaternary ammonium compounds, and heavy metals was predicted in 43 (91%) genomes. The presence of putative VFGs related to adherence, biofilm formation and iron uptake was observed in the study. Overall, the comprehensive genome analysis in this study provides an essential insight into the resistome, virulome and mobilome of A. baumannii isolates from India.
Collapse
Affiliation(s)
- Shital N. Kumkar
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra State, India
| | - Ekta E. Kamble
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra State, India
| | - Nikeeta S. Chavan
- National Centre for Cell Science, Savitribai Phule Pune University Pune, Maharashtra State, India
| | - Dhiraj P. Dhotre
- National Centre for Cell Science, Savitribai Phule Pune University Pune, Maharashtra State, India,*Correspondence: Dhiraj P. Dhotre, ; Karishma R. Pardesi,
| | - Karishma R. Pardesi
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra State, India,*Correspondence: Dhiraj P. Dhotre, ; Karishma R. Pardesi,
| |
Collapse
|
10
|
Djahanschiri B, Di Venanzio G, Distel JS, Breisch J, Dieckmann MA, Goesmann A, Averhoff B, Göttig S, Wilharm G, Feldman MF, Ebersberger I. Evolutionarily stable gene clusters shed light on the common grounds of pathogenicity in the Acinetobacter calcoaceticus-baumannii complex. PLoS Genet 2022; 18:e1010020. [PMID: 35653398 PMCID: PMC9162365 DOI: 10.1371/journal.pgen.1010020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/04/2022] [Indexed: 11/19/2022] Open
Abstract
Nosocomial pathogens of the Acinetobacter calcoaceticus-baumannii (ACB) complex are a cautionary example for the world-wide spread of multi- and pan-drug resistant bacteria. Aiding the urgent demand for novel therapeutic targets, comparative genomics studies between pathogens and their apathogenic relatives shed light on the genetic basis of human-pathogen interaction. Yet, existing studies are limited in taxonomic scope, sensing of the phylogenetic signal, and resolution by largely analyzing genes independent of their organization in functional gene clusters. Here, we explored more than 3,000 Acinetobacter genomes in a phylogenomic framework integrating orthology-based phylogenetic profiling and microsynteny conservation analyses. We delineate gene clusters in the type strain A. baumannii ATCC 19606 whose evolutionary conservation indicates a functional integration of the subsumed genes. These evolutionarily stable gene clusters (ESGCs) reveal metabolic pathways, transcriptional regulators residing next to their targets but also tie together sub-clusters with distinct functions to form higher-order functional modules. We shortlisted 150 ESGCs that either co-emerged with the pathogenic ACB clade or are preferentially found therein. They provide a high-resolution picture of genetic and functional changes that coincide with the manifestation of the pathogenic phenotype in the ACB clade. Key innovations are the remodeling of the regulatory-effector cascade connecting LuxR/LuxI quorum sensing via an intermediate messenger to biofilm formation, the extension of micronutrient scavenging systems, and the increase of metabolic flexibility by exploiting carbon sources that are provided by the human host. We could show experimentally that only members of the ACB clade use kynurenine as a sole carbon and energy source, a substance produced by humans to fine-tune the antimicrobial innate immune response. In summary, this study provides a rich and unbiased set of novel testable hypotheses on how pathogenic Acinetobacter interact with and ultimately infect their human host. It is a comprehensive resource for future research into novel therapeutic strategies. The spread of multi- and pan-drug resistant bacterial pathogens is a worldwide threat to human health. Understanding the genetics of host colonization and infection can substantially help in devising novel ways of treatment. Acinetobacter baumannii, a nosocomial pathogen ranked top by the World Health Organization in the list of bacteria for which novel therapeutic approaches are needed, is a prime example. Here, we have carved out the genetic make-up that distinguishes A. baumannii and its pathogenic next relatives from other and mostly apathogenic Acinetobacter species. We found a rich spectrum of pathways and regulatory modules that reveal how the pathogens have modified biofilm formation, iron scavenging, and their carbohydrate metabolism to adapt to their human host. Among these, the capability to metabolize kynurenine is particularly intriguing. Humans produce this substance to contain bacterial invaders and to fine-tune the innate immune response. But A. baumannii and closely related pathogens found a way to feed on kynurenine. This suggests that the pathogens might be able to dysregulate the human immune response. In summary, our study substantially deepens the understanding of how a highly critical pathogen interacts with its host, which substantially eases the identification of novel targets for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Bardya Djahanschiri
- Applied Bioinformatics Group, Inst. of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Gisela Di Venanzio
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Jesus S. Distel
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Jennifer Breisch
- Inst. of Molecular Biosciences, Department of Molecular Microbiology and Bioenergetics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus Liebig University Gießen, Gießen, Germany
| | - Beate Averhoff
- Inst. of Molecular Biosciences, Department of Molecular Microbiology and Bioenergetics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Stephan Göttig
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| | | | - Mario F. Feldman
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Ingo Ebersberger
- Applied Bioinformatics Group, Inst. of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre (S-BIKF), Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
- * E-mail:
| |
Collapse
|
11
|
Differential Gene Expression of Efflux Pumps and Porins in Clinical Isolates of MDR Acinetobacter baumannii. Life (Basel) 2022; 12:life12030419. [PMID: 35330171 PMCID: PMC8948634 DOI: 10.3390/life12030419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Acinetobacter baumannii is an opportunistic pathogen associated with healthcare infections and high mortality rates in intensive care units all over the globe. Porins and efflux pumps over-expression have been reported as contributing factors in escalating drug resistance and rendering treatment ineffective. In this study, we investigated the mechanisms of multidrug resistance (MDR) in A. baumannii clinical isolates. Methods: A total of 30 A. baumannii isolates were included in the present study from Nehru Hospital (PGIMER-Chandigarh) located in North India. Kirby Bauer disk diffusion assay and MIC were performed to determine the antimicrobial susceptibility pattern. Screening of beta-lactamases was performed using PCR. Relative gene expression of four RND, one MATE efflux pump, and two outer membrane proteins were determined using RT-PCR. Molecular typing of 22 isolates was carried out using MLST Oxford scheme. Results: CarO porin genes showed over-expression in 63% isolates followed by adeGandabeM efflux pump downregulation/underexpression (<0.5 fold), suggesting the carbapenem-susceptible phenotypic nature of the isolates. High prevalence of VIM-2, NDM-1, and OXA-23 genes was observed in A. baumannii isolates. Interestingly, NDM-1 and OXA-58 were traced in 10 and3 A. baumannii isolates respectively; 13 of 22 (59%) isolates showed novel Sequence Types (STs) in the Multi-Locus Sequence Typing (MLST) analysis. ST 1087 was most commonly found ST among all others (16 STs). Conclusions: This study indicated a possible role of carO porin genes and adeG (RND) andabeM (MATE) efflux pumps in carbapenem susceptibility of A. baumannii. New STs were also reported in the majority of the isolates.
Collapse
|
12
|
Chandra P, V R, M S, Cs S, Mk U. Multidrug-resistant Acinetobacter baumannii infections: looming threat in the Indian clinical setting. Expert Rev Anti Infect Ther 2021; 20:721-732. [PMID: 34878345 DOI: 10.1080/14787210.2022.2016393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The recent increase in multidrug-resistant strains of A. baumannii has increased the incidences of ventilator-associated pneumoniae, catheter-associated urinary tract infections, and central line-associated blood stream infections, together increasing hospital stay, treatment cost, and mortality. Resistance genes blaOXA and blaNDM are dominant in India. Carbapenem-resistant A. baumannii (CRAB) International clone-2 (IC-2) are rising in India. High dependency on carbapenems and last-resort combination of tigecycline and polymyxins have aggravated outcomes. Despite nursing barriers, ward closure, environmental disinfections etc for detecting and controlling transmission, MDR isolates and CRAB nosocomial outbreaks continue. Treatment cost overruns by AMR adversely affect 80% of Indians without insurance cover. AREA COVERED This narrative review will cover epidemiology, resistance pattern, genetic diversity, device-related infection, cost, and mortality due to multidrug-resistant and CRAB in India. A comprehensive literature search in PubMed and Google Scholar using appropriate keywords at different time points yielded relevant articles. EXPERT OPINION It is challenging to enforce policies to control MDR A. baumannii in India. Government and hospitals should enforce stringent infection control measures, surveillance, and antimicrobial stewardship to prevent further spread and emergence of more virulent and resistant strains. Knowledge on antibiotic resistance mechanisms can help design novel antibiotics that can evade, resistance.
Collapse
Affiliation(s)
- Prashant Chandra
- Department of Pharmacy Practice, Centre for Pharmaceutical care, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Rajesh V
- Department of Pharmacy Practice, Centre for Pharmaceutical care, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India.,Department of Pharmacy Practice, Nitte Gulabi Shetty Memorial Institute of Pharmaceutical Sciences, Nitte University, Mangaluru, India
| | - Surulivelrajan M
- Department of Pharmacy Practice, Centre for Pharmaceutical care, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Shastry Cs
- Department of Pharmacy Practice, Nitte Gulabi Shetty Memorial Institute of Pharmaceutical Sciences, Nitte University, Mangaluru, India
| | - Unnikrishnan Mk
- Department of Pharmacy Practice, Nitte Gulabi Shetty Memorial Institute of Pharmaceutical Sciences, Nitte University, Mangaluru, India
| |
Collapse
|
13
|
Kumar S, Anwer R, Azzi A. Virulence Potential and Treatment Options of Multidrug-Resistant (MDR) Acinetobacter baumannii. Microorganisms 2021; 9:microorganisms9102104. [PMID: 34683425 PMCID: PMC8541637 DOI: 10.3390/microorganisms9102104] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen which is undoubtedly known for a high rate of morbidity and mortality in hospital-acquired infections. A. baumannii causes life-threatening infections, including; ventilator-associated pneumonia (VAP), meningitis, bacteremia, and wound and urinary tract infections (UTI). In 2017, the World Health Organization listed A. baumannii as a priority-1 pathogen. The prevalence of A. baumannii infections and outbreaks emphasizes the direct need for the use of effective therapeutic agents for treating such infections. Available antimicrobials, such as; carbapenems, tigecycline, and colistins have insufficient effectiveness due to the appearance of multidrug-resistant strains, accentuating the need for alternative and novel therapeutic remedies. To understand and overcome this menace, the knowledge of recent discoveries on the virulence factors of A. baumannii is needed. Herein, we summarized the role of various virulence factors, including; outer membrane proteins, efflux pumps, biofilm, penicillin-binding proteins, and siderophores/iron acquisition systems. We reviewed the recent scientific literature on different A. baumannii virulence factors and the effective antimicrobial agents for the treatment and management of bacterial infections.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133207, India;
| | - Razique Anwer
- Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317-4233, Saudi Arabia;
| | - Arezki Azzi
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317-4233, Saudi Arabia
- Correspondence:
| |
Collapse
|
14
|
Gandham N, Gupta N, Vyawahare C, Mirza SB, Misra RN. Molecular Characterization Identifies Upstream Presence of ISAba1 to OXA Carbapenemase Genes in Carbapenem-Resistant Acinetobacter baumannii Isolated from a Tertiary Care Hospital in Western Maharashtra. J Lab Physicians 2021; 14:6-10. [PMID: 36186260 PMCID: PMC9525184 DOI: 10.1055/s-0041-1732809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Background
Evaluating the expression pattern of oxacillinases (OXA) carbapenemases is essential to understand the prevalence and spread of carbapenem resistance
Acinetobacter baumannii
.
Objectives
The aim of the study is to evaluate the presence of OXA carbapenemase genes and IS
Aba1
upstream to these genes in carbapenem-resistant
A. baumannii
clinical isolates.
Materials and Methods
A. baumannii
isolated from clinical samples were phenotypically identified and antibiotics sensitivity was performed. Multiplex polymerase chain reaction (PCR) was used to detect OXA51-like gene, OXA carbapenemases genes (OXA-23-like, OXA-24-like, and OXA-58-like), and IS
Aba1
in carbapenem-resistant isolates.
Results
Out of 55
Acinetobacter
isolates, 54 were confirmed as
A. baumannii
by PCR.
BlaOXA-23
-like gene was observed in 51 isolates of
A. baumannii
and none of the isolates showed the presence of
blaOXA-24
-like and
blaOXA-58
-like genes. Presence of IS
Aba1
upstream to OXA-23-like gene, OXA-51-like gene, and both OXA-51-like/OXA-23-like genes was observed in 51, 7, and 4
A. baumannii
isolates, respectively.
Conclusion
The genetic pattern of carbapenem-resistant
A. baumannii
isolated in this study was unique, which should be factored for clinical protocols to manage infections caused by emerging resistant strains of
A. baumannii
.
Collapse
Affiliation(s)
- Nageswari Gandham
- Department of Microbiology, Dr. D.Y. Patil Medical College, Hospital and Research Center (Dr. D.Y. Patil Vidyapeeth, Pune) Pimpri, Maharashtra, India
| | - Neetu Gupta
- Department of Microbiology, Dr. D.Y. Patil Medical College, Hospital and Research Center (Dr. D.Y. Patil Vidyapeeth, Pune) Pimpri, Maharashtra, India
| | - Chanda Vyawahare
- Department of Microbiology, Dr. D.Y. Patil Medical College, Hospital and Research Center (Dr. D.Y. Patil Vidyapeeth, Pune) Pimpri, Maharashtra, India
| | - Shahzad Beg Mirza
- Department of Microbiology, Dr. D.Y. Patil Medical College, Hospital and Research Center (Dr. D.Y. Patil Vidyapeeth, Pune) Pimpri, Maharashtra, India
| | - Rabindra Nath Misra
- Department of Microbiology, Dr. D.Y. Patil Medical College, Hospital and Research Center (Dr. D.Y. Patil Vidyapeeth, Pune) Pimpri, Maharashtra, India
| |
Collapse
|
15
|
Zhang Y, Fan B, Luo Y, Tao Z, Nie Y, Wang Y, Ding F, Li Y, Gu D. Comparative analysis of carbapenemases, RND family efflux pumps and biofilm formation potential among Acinetobacter baumannii strains with different carbapenem susceptibility. BMC Infect Dis 2021; 21:841. [PMID: 34416851 PMCID: PMC8377947 DOI: 10.1186/s12879-021-06529-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/02/2021] [Indexed: 01/01/2023] Open
Abstract
Aim This study has conducted a comparative analysis of common carbapenemases harboring, the expression of resistance-nodulation-cell division (RND) family efflux pumps, and biofilm formation potential associated with carbapenem resistance among Acinetobacter baumannii (A. baumannii) strains with different carbapenem susceptibility. Methods: A total of 90 isolates of A. baumannii from two tertiary hospitals of China were identified and grouped as carbapenem susceptible A. baumannii (CSAB) strains and carbapenem non-susceptible A. baumannii (CnSAB) strains based on the susceptibility to imipenem. Harboring of carbapenemase genes, relative expression of RND family efflux pumps and biofilm formation potential were compared between the two groups. Result: Among these strains, 12 (13.3 %) strains were divided into the CSAB group, and 78 (86.7 %) strains into the CnSAB group. Compared with CSAB strains, CnSAB strains increased distribution of blaOXA−23 (p < 0.001) and ISAba1/blaOXA−51−like (p = 0.034) carbapenemase genes, and a 6.1-fold relative expression of adeB (p = 0.002), while CSAB strains led to biofilm formation by 1.3-fold than CnSAB strains (p = 0.021). Conclusions Clinically, harboring more blaOXA−23−like and ISAba1/blaOXA−51−like complex genes and overproduction of adeABC are relevant with carbapenem resistance, while carbapenem susceptible strains might survive the stress of antibiotic through their ability of higher biofilm formation.
Collapse
Affiliation(s)
- Yanpeng Zhang
- Department of Clinical Laboratory, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, No. 3002, Sungang Xi Road, Shenzhen, 518035, China.
| | - Bing Fan
- Department of Clinical Laboratory, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, No. 3002, Sungang Xi Road, Shenzhen, 518035, China
| | - Yong Luo
- Department of Clinical Laboratory, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, No. 3002, Sungang Xi Road, Shenzhen, 518035, China
| | - Zhiyuan Tao
- Department of Clinical Laboratory, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, No. 3002, Sungang Xi Road, Shenzhen, 518035, China
| | - Yongbo Nie
- Department of Clinical Laboratory, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, No. 3002, Sungang Xi Road, Shenzhen, 518035, China
| | - Yongtao Wang
- Department of Clinical Laboratory, Wuhan No.1 Hospital, Zhongshan Road, Wuhan, China
| | - Fanglin Ding
- Department of Clinical Laboratory, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, No. 3002, Sungang Xi Road, Shenzhen, 518035, China
| | - Yanwu Li
- Department of Clinical Laboratory, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, No. 3002, Sungang Xi Road, Shenzhen, 518035, China.
| | - Dayong Gu
- Department of Clinical Laboratory, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, No. 3002, Sungang Xi Road, Shenzhen, 518035, China.
| |
Collapse
|
16
|
Sharma A, Gaind R. Development of Loop-Mediated Isothermal Amplification Assay for Detection of Clinically Significant Members of Acinetobacter calcoaceticus-baumannii Complex and Associated Carbapenem Resistance. Front Mol Biosci 2021; 8:659256. [PMID: 34250011 PMCID: PMC8260673 DOI: 10.3389/fmolb.2021.659256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Background:Acinetobacter calcoaceticus–baumannii (ACB) complex has emerged as an important nosocomial pathogen and is associated with life-threatening infections, especially among ICU patients, including neonates. Carbapenem resistance in Acinetobacter baumannii has emerged globally and is commonly mediated by blaOXA-23. Clinically significant infections with carbapenem-resistant Acinetobacter baumannii (CRAB) are a major concern since therapeutic options are limited and associated mortality is high. Early diagnosis of both the pathogen and resistance is important to initiate the optimal therapy and prevent selection of resistance. In the current study, a loop-mediated isothermal amplification (LAMP) assay was developed for rapid detection of the ACB complex and carbapenem resistance mediated by blaOXA-23. Methodology: Universal LAMP primers were designed for the detection of significant members of the ACB complex and carbapenem resistance targeting the ITS 16S–23S rRNA and blaOXA-23 gene respectively. The optimal conditions for the LAMP assay were standardized for each primer set using standard ATCC strains. The sensitivity of the LAMP assay was assessed based on the limit of detection (LOD) using different DNA concentrations and colony counts. The specificity of LAMP was determined using the non-ACB complex and non-Acinetobacter species. The results of the LAMP assay were compared with those of polymerase chain reaction (PCR). Results: The optimal temperature for the LAMP assay was 65°C, and the detection time varied with various primers designed. Using the ITS Ab1 primer, LODs of LAMP and PCR assays were 100 pg/μl and 1 ng/μl of DNA concentration and 104 cfu/ml and 108 cfu/ml of colony count, respectively. The LAMP assay was 10- and 104-fold more sensitive than PCR using DNA concentration and colony count, respectively. The LAMP assay was found to be specific for clinically important ACB complex species. Significance of the study: The LAMP assay can be applied for early detection of significant species of the ACB complex from clinical samples and their carbapenem-resistant variants. Depending on the emerging pathogen and locally prevalent resistance genes, the LAMP assay can be modified for detection of colonization or infection by various resistant bugs.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Microbiology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.,University School of Medicine and Paramedical Health Sciences, Guru Gobind Singh Indraprastha University, Dwarka, India
| | - Rajni Gaind
- Department of Microbiology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
17
|
Ashwath P, Sannejal AD. A quest to the therapeutic arsenal: Novel strategies to combat multidrug-resistant bacteria. Curr Gene Ther 2021; 22:79-88. [PMID: 33874870 DOI: 10.2174/1566523221666210419084836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/24/2021] [Accepted: 03/09/2021] [Indexed: 11/22/2022]
Abstract
The increasing resistance of the disease-causing pathogens to antimicrobial drugs is a public health concern and a socio-economic burden. The emergence of multi-drug resistant strains has made it harder to treat and combat infectious diseases with available conventional antibiotics. There are currently few effective therapeutic regimens for the successful prevention of infections caused by drug-resistant microbes. The various alternative strategies used in the recent past to decrease and limit antibiotic resistance in pathogens include bacteriophages, vaccines, anti-biofilm peptides, and antimicrobial peptides. However, in this review, we focus on the novel and robust molecular approach of antisense RNA (asRNA) technology and the clustered regulatory interspaced short palindromic repeat (CRISPR)-based antibiotic therapy, which can be exploited to selectively eradicate the drug-resistant bacterial strain in a sequence-specific fashion establishing opportunities in the treatment of multi-drug resistant related infections.
Collapse
Affiliation(s)
- Priyanka Ashwath
- Nitte (Deemed to be University), Nitte University Centre for Science Education & Research (NUCSER), Mangaluru. India
| | - Akhila Dharnappa Sannejal
- Nitte (Deemed to be University), Nitte University Centre for Science Education & Research (NUCSER), Mangaluru. India
| |
Collapse
|
18
|
Prevalence of OXA-Type β-Lactamase Genes among Carbapenem-Resistant Acinetobacter baumannii Clinical Isolates in Thailand. Antibiotics (Basel) 2020; 9:antibiotics9120864. [PMID: 33287443 PMCID: PMC7761801 DOI: 10.3390/antibiotics9120864] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/22/2020] [Accepted: 12/02/2020] [Indexed: 11/16/2022] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) is a critical health concern for the treatment of infectious diseases. The aim of this study was to investigate the molecular epidemiology of CRAB emphasizing the presence of oxacillinase (OXA)-type β-lactamase-encoding genes, one of the most important carbapenem resistance mechanisms. In this study, a total of 183 non-repetitive CRAB isolates collected from 11 tertiary care hospitals across Thailand were investigated. As a result, the blaoxa-51-like gene, an intrinsic enzyme marker, was detected in all clinical isolates. The blaoxa-23-like gene was presented in the majority of isolates (68.31%). In contrast, the prevalence rates of blaoxa-40/24-like and blaoxa-58-like gene occurrences in CRAB isolates were only 4.92% and 1.09%, respectively. All isolates were resistant to carbapenems, with 100% resistance to imipenem, followed by meropenem (98.91%) and doripenem (94.54%). Most isolates showed high resistance rates to ciprofloxacin (97.81%), ceftazidime (96.72%), gentamicin (91.26%), and amikacin (80.87%). Interestingly, colistin was found to be a potential drug of choice due to the high susceptibility of the tested isolates to this antimicrobial (87.98%). Most CRAB isolates in Thailand were of ST2 lineage, but some belonged to ST25, ST98, ST129, ST164, ST215, ST338, and ST745. Further studies to monitor the spread of carbapenem-resistant OXA-type β-lactamase genes from A. baumannii in hospital settings are warranted.
Collapse
|
19
|
Evaluating the antimicrobial resistance patterns and molecular frequency of bla oxa-48 and bla GES-2 genes in Pseudomonas aeruginosa and Acinetobacter baumannii strains isolated from burn wound infection in Tehran, Iran. New Microbes New Infect 2020; 37:100686. [PMID: 32774866 PMCID: PMC7394744 DOI: 10.1016/j.nmni.2020.100686] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 02/23/2020] [Accepted: 04/16/2020] [Indexed: 02/08/2023] Open
Abstract
The aim of this study is to evaluate the antimicrobial resistance patterns and molecular frequency of blaGES-2 and blaoxa-48 genes in Pseudomonas aeruginosa and Acinetobacter baumannii strains isolated from burn wound infection in Tehran, Iran. In this study, 50 isolates of A. baumannii and 48 isolates of P. aeruginosa were collected from the Burn Unit of Shahid Motahari Hospital at Tehran, Iran. Antibiotic susceptibility tests of all isolates were carried out using the disc diffusion method, and the production of extended-spectrum β-lactamases (ESBLs) in isolates was surveyed by the double disc synergy method and based on CLSI (2019 AST M100) criteria. Finally, the frequency of blaGES-2 and blaoxa-48 genes was surveyed by PCR. Antibiotic susceptibility tests showed that 48/48 (100%) of P. aeruginosa isolates and 49/50 (98%) of A. baumannii isolates were resistant to ceftriaxone and cefotaxime, respectively. Ceftazidime exhibited the lowest (26/48; 54.1%) resistance rates against P. aeruginosa isolates. The production of ESBLs was seen in 8/48 (16.6%) and 3/50 (6%) of P. aeruginosa and A. baumannii isolates, respectively. On the basis of conventional PCR and sequencing, the frequencies of the blaGES-2 gene among P. aeruginosa and A. baumannii was 87.5% and 58%, respectively. Moreover, blaoxa-48 gene was detected in 70.83% and 92% of P. aeruginosa and A. baumannii isolates, respectively. Results suggest that antibiotic-resistant A. baumannii and P. aeruginosa strains isolated from burn patients are frequently found; therefore, it is absolutely necessary to implement continuous screening and follow-up programmes for detecting antimicrobial resistance.
Collapse
|
20
|
Ayoub Moubareck C, Hammoudi Halat D. Insights into Acinetobacter baumannii: A Review of Microbiological, Virulence, and Resistance Traits in a Threatening Nosocomial Pathogen. Antibiotics (Basel) 2020; 9:antibiotics9030119. [PMID: 32178356 PMCID: PMC7148516 DOI: 10.3390/antibiotics9030119] [Citation(s) in RCA: 258] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Being a multidrug-resistant and an invasive pathogen, Acinetobacter baumannii is one of the major causes of nosocomial infections in the current healthcare system. It has been recognized as an agent of pneumonia, septicemia, meningitis, urinary tract and wound infections, and is associated with high mortality. Pathogenesis in A. baumannii infections is an outcome of multiple virulence factors, including porins, capsules, and cell wall lipopolysaccharide, enzymes, biofilm production, motility, and iron-acquisition systems, among others. Such virulence factors help the organism to resist stressful environmental conditions and enable development of severe infections. Parallel to increased prevalence of infections caused by A. baumannii, challenging and diverse resistance mechanisms in this pathogen are well recognized, with major classes of antibiotics becoming minimally effective. Through a wide array of antibiotic-hydrolyzing enzymes, efflux pump changes, impermeability, and antibiotic target mutations, A. baumannii models a unique ability to maintain a multidrug-resistant phenotype, further complicating treatment. Understanding mechanisms behind diseases, virulence, and resistance acquisition are central to infectious disease knowledge about A. baumannii. The aims of this review are to highlight infections and disease-producing factors in A. baumannii and to touch base on mechanisms of resistance to various antibiotic classes.
Collapse
Affiliation(s)
- Carole Ayoub Moubareck
- College of Natural and Health Sciences, Zayed University, Dubai P.O. Box 144534, UAE
- Correspondence: ; Tel.: +971-4-402-1745
| | - Dalal Hammoudi Halat
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Beirut, Bekaa Campuses 1103, Lebanon;
| |
Collapse
|
21
|
Kumar S, Singhal L, Ray P, Gautam V. In vitro and in vivo fitness of clinical isolates of carbapenem-resistant and -susceptible Acinetobacter baumannii. Indian J Med Microbiol 2020; 38:52-57. [PMID: 32719209 DOI: 10.4103/ijmm.ijmm_19_468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Context Acinetobacter baumannii is one among the leading nosocomial pathogens in the healthcare settings worldwide. Limited data on relative fitness and virulence of carbapenem-resistant A. baumannii (CRAB) are known. New methods are required to curb the rapidly rising antimicrobial resistance of this bug. Aims We aimed to study the comparative in vitro and in vivo fitness of clinical isolates of CRAB and carbapenem-susceptible A. baumannii (CSAB). Settings and Design A total of nine A. baumannii isolates were included in this study. CSAB ATCC-19606 was taken as a reference control strain. Subjects and Methods Matrix-assisted laser desorption ionisation-time of flight mass spectrometry and gyrB and blaOXA-51PCR were used for species identification. Antimicrobial susceptibility was performed using Kirby-Bauer disk-diffusion method. Minimum inhibitory concentration for carbapenems (imipenem, meropenem and doripenem) was determined using agar dilution method. End point analysis, competitive index (CI), growth kinetics and generation time were determined for CRAB and CSAB isolates. In vivo fitness of CRAB and CSAB was determined using Caenorhabditis elegans host model. Multilocus sequence typing was performed to see the genetic relatedness of the isolates under study. Results End point analysis, in vitro CI and growth kinetics experiments showed better fitness of clinical isolates of CRAB over CSAB ones. In vivo'nematode fertility assay' using C. elegans also supported the in vitro results. Conclusions To the best of our knowledge, this is the first study of its kind from India showing difference in fitness of clinical isolates of CRAB and CSAB.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh; Department of Biotechnology, Maharishi Markandeshwar Deemed to be University, Mullana (Ambala), Haryana, India
| | - Lipika Singhal
- Department of Microbiology, Government Medical College and Hospital, Sector -12, Chandigarh, India
| | - Pallab Ray
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vikas Gautam
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|