1
|
Bhowmik D, Bhuyan A, Gunalan S, Kothandan G, Kumar D. In silico and immunoinformatics based multiepitope subunit vaccine design for protection against visceral leishmaniasis. J Biomol Struct Dyn 2024; 42:9731-9752. [PMID: 37655736 DOI: 10.1080/07391102.2023.2252901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
Visceral leishmaniasis (VL) is a vector-borne neglected tropical protozoan disease with high fatality and no certified vaccine. Conventional vaccine preparation is challenging and tedious. Here in this work, we created a global multiepitope subunit vaccination against VL utilizing innovative immunoinformatics technique based on the extensively conserved epitopic regions of the PrimPol protein of Leishmania donovani consisting of four subunits which were analyzed and studied, out of which DNA primase large subunit and DNA polymerase α subunit B were evaluated as antigens by Vaxijen 2.0. The multiepitope vaccine design includes a single adjuvant β-defensins, eight CTL epitopes, eight HTL epitopes, seven linear BCL epitopes and one discontinuous BCL epitope to induce innate, cellular and humoral immune responses against VL. The Expasy ProtParam tool characterized the physiochemical parameters of the vaccine. At the same time, SOLpro evaluated our vaccine constructs to be soluble upon expression. We also modeled the stable tertiary structure of our vaccine construct through Robetta modeling for molecular docking studies with toll-like receptor proteins through HADDOCK 2.4. Simulations based on molecular dynamics revealed an intact vaccine and TLR8 complex, supporting our vaccine design's immunogenicity. Also, the immune simulation of our vaccine by the C-ImmSim server demonstrated the potency of the multiepitope vaccine construct to induce proper immune response for host defense. Codon optimization and in silico cloning of our vaccine further assured high expression. The outcomes of our study on multiepitope vaccine design significantly produced a potential candidate against VL and can potentially eradicate the disease in the future after clinical investigations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Deep Bhowmik
- Deparment of Microbiology, Assam University, Silchar, Assam, India
| | - Achyut Bhuyan
- Deparment of Microbiology, Assam University, Silchar, Assam, India
| | - Seshan Gunalan
- Biopolymer Modelling Laboratory, Centre of Advanced Study in Crystallography and Biophysics, Guindy Campus, University of Madras, Chennai, India
| | - Gugan Kothandan
- Biopolymer Modelling Laboratory, Centre of Advanced Study in Crystallography and Biophysics, Guindy Campus, University of Madras, Chennai, India
| | - Diwakar Kumar
- Deparment of Microbiology, Assam University, Silchar, Assam, India
| |
Collapse
|
2
|
Nafian F, Soleymani G, Pourmanouchehri Z, Kiyanjam M, Nafian S, Mohammadi SM, Jeyroudi H, Berenji Jalaei S, Sabzpoushan F. In Silico Design of a Trans-Amplifying RNA-Based Vaccine against SARS-CoV-2 Structural Proteins. Adv Virol 2024; 2024:3418062. [PMID: 39380944 PMCID: PMC11459942 DOI: 10.1155/2024/3418062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 10/10/2024] Open
Abstract
Nucleic acid-based vaccines allow scalable, rapid, and cell-free vaccine production in response to an emerging disease such as the current COVID-19 pandemic. Here, we objected to the design of a multiepitope mRNA vaccine against the structural proteins of SARS-CoV-2. Through an immunoinformatic approach, promising epitopes were predicted for the spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins. Fragments rich in overlapping epitopes were selected based on binding affinities with HLA classes I and II for the specific presentation to B and T lymphocytes. Two constructs were designed by fusing the fragments in different arrangements via GG linkers. Construct 1 showed better structural properties and interactions with toll-like receptor 2 (TLR-2), TLR-3, and TLR-4 during molecular docking and dynamic simulation. A 50S ribosomal L7/L12 adjuvant was added to its N-terminus to improve stability and immunogenicity. The final RNA sequence was used to design a trans-amplifying RNA (taRNA) vaccine in a split-vector system. It consists of two molecules: a nonreplicating RNA encoding a trans-acting replicase to amplify the second one, a trans-replicon (TR) RNA encoding the vaccine protein. Overall, the immune response simulation detected that activated B and T lymphocytes and increased memory cell formation. Macrophages and dendritic cells proliferated continuously, and IFN-γ and cytokines like IL-2 were released highly.
Collapse
Affiliation(s)
- Fatemeh Nafian
- Department of Medical Laboratory SciencesFaculty of ParamedicsTehran Medical SciencesIslamic Azad University, Tehran, Iran
| | - Ghazal Soleymani
- Department of Biological SciencesVirginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Zahra Pourmanouchehri
- Department of BiologyTechnical University of Kaiserslautern, Kaiserslautern Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Mahnaz Kiyanjam
- Department of Cellular and Molecular BiologyFaculty of Advanced Sciences and TechnologyTehran Medical SciencesIslamic Azad University, Tehran, Iran
| | - Simin Nafian
- Department of Stem Cell and Regenerative MedicineNational Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Sayed Mohammad Mohammadi
- Department of BiotechnologyFaculty of Converging Sciences and TechnologiesScience and Research BranchIslamic Azad University, Tehran, Iran
| | - Hanie Jeyroudi
- Department of Cellular and Molecular BiologyFaculty of Advanced Sciences and TechnologyTehran Medical SciencesIslamic Azad University, Tehran, Iran
| | - Sharareh Berenji Jalaei
- Department of BiochemistryFaculty of Converging Sciences and TechnologiesScience and Research BranchIslamic Azad University, Tehran, Iran
| | - Fatemeh Sabzpoushan
- Department of Cellular and Molecular BiologyFaculty of Advanced Sciences and TechnologyTehran Medical SciencesIslamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Alnuqaydan AM, Eisa AA. Targeting Polyprotein to Design Potential Multiepitope Vaccine against Omsk Hemorrhagic Fever Virus (OHFV) by Evaluating Allergenicity, Antigenicity, and Toxicity Using Immunoinformatic Approaches. BIOLOGY 2024; 13:738. [PMID: 39336165 PMCID: PMC11429342 DOI: 10.3390/biology13090738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
Omsk Hemorrhagic Fever Virus (OHFV) is an RNA virus with a single-stranded, positive-sense genome. It is classified under the Flaviviridae family. The genome of this virus is 98% similar to the Alkhurma hemorrhagic fever virus (AHFV), which belongs to the same family. Cases of the virus have been reported in various regions of Saudi Arabia. Both OHFV and AHFV have similarities in pathogenic polyprotein targets. No effective and licensed vaccines are available to manage OHFV infections. Therefore, an effective and safe vaccine is required that can activate protective immunity against OHFV. The current study aimed to design a multiepitope subunit vaccine against the OHFV utilizing several immunoinformatic tools. The polyprotein of OHFV was selected and potent antigenic, non-allergenic, and nontoxic cytotoxic T-lymphocyte (CTL), helper T-lymphocyte (HTL), and linear B-lymphocyte (LBL) epitopes were chosen. After screening, eight (8) CTL, five (5) HTL, and six (6) B cell epitopes were joined with each other using different linkers. Adjuvant human beta defensin-2 was also linked to the epitopes to increase vaccine antigenic and immunogenic efficiency. The designed vaccine was docked with Toll-like receptor 4 (TLR4) as it activates and induces primary and secondary immune responses against OHFV. Codon optimization was carried out, which resulted in a CAI value of 0.99 and 53.4% GC contents. In addition, the construct was blindly docked to the TLR4 immune receptor and subjected to conformational dynamics simulation analysis to interpret the intricate affinity and comprehend the time-dependent behavior. Moreover, it was predicted that immune responses to the developed vaccine construct reported formation of strong humoral and cellular immune cells. Therefore, the proposed vaccine may be considered in experimental assays to combat OHFV infections. Laboratory experiments for the above predictions are essential in order to evaluate the effectiveness, safety, and protective properties of the subject in question.
Collapse
Affiliation(s)
- Abdullah M Alnuqaydan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraidah 51452, Saudi Arabia
| | - Alaa Abdulaziz Eisa
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Meddina 30002, Saudi Arabia
| |
Collapse
|
4
|
Chakraborty A, Midde A, Chakraborty P, Adhikary S, Kumar S, Arri N, Chandra Das N, Sen Gupta PS, Banerjee A, Mukherjee S. Revisiting Luteolin Against the Mediators of Human Metastatic Colorectal Carcinoma: A Biomolecular Approach. J Cell Biochem 2024:e30654. [PMID: 39300917 DOI: 10.1002/jcb.30654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Metastatic colorectal carcinoma (mCRC) is one of the prevalent subtypes of human cancers and is caused by the alterations of various lifestyle and diet-associated factors. β-catenin, GSK-3β, PI3K-α, AKT1, and NF-κB p50 are known to be the critical regulators of tumorigenesis and immunopathogenesis of mCRC. Unfortunately, current drugs have limited efficacy, side effects and can lead to chemoresistance. Therefore, searching for a nontoxic, efficacious anti-mCRC agent is crucial and of utmost interest. The present study demonstrates the identification of a productive and nontoxic anti-mCRC agent through a five-targets (β-catenin, GSK-3β, PI3K-α, AKT1, and p50)-based and three-tier (binding affinity, pharmacokinetics, and pharmacophore) screening strategy involving a series of 30 phytocompounds having a background of anti-inflammatory/anti-mCRC efficacy alongside 5-fluorouracil (FU), a reference drug. Luteolin (a phyto-flavonoid) was eventually rendered as the most potent and safe phytocompound. This inference was verified through three rounds of validation. Firstly, luteolin was found to be effective against the different mCRC cell lines (HCT-15, HCT-116, DLD-1, and HT-29) without hampering the viability of non-tumorigenic ones (RWPE-1). Secondly, luteolin was found to curtail the clonogenicity of CRC cells, and finally, it also disrupted the formation of colospheroids, a characteristic of metastasis. While studying the mechanistic insights, luteolin was found to inhibit β-catenin activity (a key regulator of mCRC) through direct physical interactions, promoting its degradation by activating GSK3-β and ceasing its activation by inactivating AKT1 and PI3K-α. Luteolin also inhibited p50 activity, which could be useful in mitigating mCRC-associated proinflammatory milieu. In conclusion, our study provides evidence on the efficacy of luteolin against the critical key regulators of immunopathogenesis of mCRC and recommends further studies in animal models to determine the effectiveness efficacy of this natural compound for treating mCRC in the future.
Collapse
Affiliation(s)
- Ankita Chakraborty
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Advaitha Midde
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Pritha Chakraborty
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Sourin Adhikary
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
- Food Toxicology Laboratory, Food, Drug, and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Simran Kumar
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Navpreet Arri
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nabarun Chandra Das
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Parth Sarthi Sen Gupta
- School of Biosciences and Bioengineering, D. Y. Patil International University, Pune, Maharashtra, India
| | - Aditi Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Suprabhat Mukherjee
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| |
Collapse
|
5
|
Parvin R, Habib Ullah Masum M, Ferdous J, Mahdeen AA, Shafiqul Islam Khan M. Designing of a chimeric multiepitope vaccine against bancroftian lymphatic filariasis through immunoinformatics approaches. PLoS One 2024; 19:e0310398. [PMID: 39298468 DOI: 10.1371/journal.pone.0310398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
The filarial worms of Wuchereria bancrofti are the primary cause of lymphatic filariasis (LF), a mosquito-borne disease among the neglected tropical parasitic diseases. Considering the global endemic consequences of the disease, there is a need to develop a successful vaccine candidate against LF. Using advanced immunoinformatics approaches, we designed two multiepitope vaccines targeting W. bancrofti's glutathione S-transferase and thioredoxin. Therefore, we predicted several MHC-1, MHC-2, and B-cell epitopes from these proteins and mapped two vaccine candidates (V1 and V2). The vaccines were subsequently employed for physicochemical analysis, structural prediction and validation, docking and normal mode analysis, codon optimization, and immune simulation. The selected MHC-1, MHC-2, and B-cell epitopes were antigenic without allergenicity or toxicity. The designed vaccines were expected to be soluble, stable proteins under physiological conditions. Compared to V2, V1's secondary and tertiary structures were simultaneously favorable, with Ramachandran plot analysis revealing 95.6% residues in favored areas. Subsequently, the molecular docking analysis indicated that the V1 had a high binding affinity for the TLR-2, TLR-4 and TLR-5, as suggested by the docking scores of -1248.7, -1038.5 and -1562.8, respectively. The NMA of these complexes further indicated their structural flexibility. Molecular dynamics simulations of V1-TLR complexes revealed V1-TLR-4 as the most stable, with the lowest free energy and minimal fluctuations, indicating the strongest binding affinity. The results of the codon optimization showed high levels of expression, with a favorable CAI score (<1.0). A three-dose vaccination analysis showed significant and persistent immunological responses, including adaptive and innate immune responses. The findings emphasize the potential of the V1 against W. bancrofti, but further validation is required through in vitro, in vivo, and clinical trials.
Collapse
Affiliation(s)
- Rehana Parvin
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University (CVASU), Chattogram, Bangladesh
| | - Md Habib Ullah Masum
- Department of Genomics and Bioinformatics, Faculty of Biotechnology and Genetic Engineering, Chattogram Veterinary and Animal Sciences University (CVASU), Chattogram, Bangladesh
| | - Jannatul Ferdous
- Department of Obstetrics and Gynecology, Chittagong Medical College, Chittagong, Bangladesh
| | - Ahmad Abdullah Mahdeen
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md Shafiqul Islam Khan
- Department of Cellular and Molecular Biology, Faculty of Biotechnology and Genetic Engineering, Chattogram Veterinary and Animal Sciences University (CVASU), Chattogram, Bangladesh
| |
Collapse
|
6
|
Pritam M, Dutta S, Medicherla KM, Kumar R, Singh SP. Computational analysis of spike protein of SARS-CoV-2 (Omicron variant) for development of peptide-based therapeutics and diagnostics. J Biomol Struct Dyn 2024; 42:7321-7339. [PMID: 37498146 DOI: 10.1080/07391102.2023.2239932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
In the last few years, the worldwide population has suffered from the SARS-CoV-2 pandemic. The WHO dashboard indicated that around 504,079,039 people were infected and 6,204,155 died from COVID-19 caused by different variants of SARS-CoV-2. Recently, a new variant of SARS-CoV-2 (B.1.1.529) was reported by South Africa known as Omicron. The high transmissibility rate and resistance towards available anti-SARS-CoV-2 drugs/vaccines/monoclonal antibodies, make Omicron a variant of concern. Because of various mutations in spike protein, available diagnostic and therapeutic treatments are not reliable. Therefore, the present study explored the development of some therapeutic peptides that can inhibit the SARS-CoV-2 virus interaction with host ACE2 receptors and can also be used for diagnostic purposes. The screened linear B cell epitopes derived from receptor-binding domain of spike protein of Omicron variant were evaluated as peptide inhibitor/vaccine candidates through different bioinformatics tools including molecular docking and simulation to analyze the interaction between Omicron peptide and human ACE2 receptor. Overall, in-silico studies revealed that Omicron peptides OP1-P12, OP14, OP20, OP23, OP24, OP25, OP26, OP27, OP28, OP29, and OP30 have the potential to inhibit Omicron interaction with ACE2 receptor. Moreover, Omicron peptides OP20, OP22, OP23, OP24, OP25, OP26, OP27, and OP30 have shown potential antigenic and immunogenic properties that can be used in design and development vaccines against Omicron. Although the in-silico validation was performed by comparative analysis with the control peptide inhibitor, further validation through wet lab experimentation is required before its use as therapeutic peptides.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manisha Pritam
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Somenath Dutta
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
- Department of Bioinformatics, Pondicherry Central University, Puducherry, India
| | - Krishna Mohan Medicherla
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | | |
Collapse
|
7
|
Wang D, Shi Y, Cheng Z, Luo L, Cheng K, Gan S, Liu C, Chen Z, Yang B. A Toxoplasma gondii thioredoxin with cell adhesion and antioxidant function. Front Cell Infect Microbiol 2024; 14:1404120. [PMID: 39211799 PMCID: PMC11358088 DOI: 10.3389/fcimb.2024.1404120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Background Toxoplasma gondii (T. gondii) is a widespread, zoonotic protozoan intracellular parasite with a complex life cycle, which can cause toxoplasmosis, a potentially serious disease. During the invasion process, T. gondii proteins first bind to the relevant host cell receptors, such as glycosaminoglycan molecule (GAG-binding motif), which is one of the main receptors for parasites or virus to infect host cells. However, research on TGME49_216510 (T. gondii Trx21), a protein from Toxoplasma gondii, is limited. Methods Bioinformatics analysis of the Trx21 protein was performed firstly. And specific primers were then designed using the conserved domain and GAG-binding motif to amplify, express, and purify a fragment of the Trx21 protein. The purified Trx21-GST protein was used for antioxidant and cell adhesion experiments. Simultaneously, mice were immunized with Trx21-His to generate specific polyclonal antibodies for subcellular localization analysis. Results The Trx21 protein, consisting of 774 amino acids, included a transmembrane region, three GAG-binding motifs, and a Thioredoxin-like domain. The recombinant Trx21-His protein had a molecular mass of about 31 kDa, while the Trx21-GST protein had a molecular mass of about 55 kDa, which was analyzed by SDS-PAGE and Western blot. Subcellular localization analysis by IFA revealed that Trx21 is predominantly distributed in the cytoplasm of T. gondii. Furthermore, Trx21 exhibited a protective effect on supercoiled DNA against metal-catalyzed oxidation (MCO) and demonstrated adhesion abilities to Vero cells. Conclusions These results indicate that Trx21 plays an important role in host cell interaction and oxidative damage.
Collapse
Affiliation(s)
- Dawei Wang
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
- Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yuyi Shi
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
- Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Ziwen Cheng
- Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning, China
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Like Luo
- Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning, China
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Kuo Cheng
- Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning, China
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Shengqi Gan
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
- Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Che Liu
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
- Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Zeliang Chen
- Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Baoling Yang
- Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning, China
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
8
|
Biswas R, Swetha RG, Basu S, Roy A, Ramaiah S, Anbarasu A. Designing multi-epitope vaccine against human cytomegalovirus integrating pan-genome and reverse vaccinology pipelines. Biologicals 2024; 87:101782. [PMID: 39003966 DOI: 10.1016/j.biologicals.2024.101782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/13/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024] Open
Abstract
Human cytomegalovirus (HCMV) is accountable for high morbidity in neonates and immunosuppressed individuals. Due to the high genetic variability of HCMV, current prophylactic measures are insufficient. In this study, we employed a pan-genome and reverse vaccinology approach to screen the target for efficient vaccine candidates. Four proteins, envelope glycoprotein M, UL41A, US23, and US28, were shortlisted based on cellular localization, high solubility, antigenicity, and immunogenicity. A total of 29 B-cell and 44 T-cell highly immunogenic and antigenic epitopes with high global population coverage were finalized using immunoinformatics tools and algorithms. Further, the epitopes that were overlapping among the finalized B-cell and T-cell epitopes were linked with suitable linkers to form various combinations of multi-epitopic vaccine constructs. Among 16 vaccine constructs, Vc12 was selected based on physicochemical and structural properties. The docking and molecular simulations of VC12 were performed, which showed its high binding affinity (-23.35 kcal/mol) towards TLR4 due to intermolecular hydrogen bonds, salt bridges, and hydrophobic interactions, and there were only minimal fluctuations. Furthermore, Vc12 eliciting a good response was checked for its expression in Escherichia coli through in silico cloning and codon optimization, suggesting it to be a potent vaccine candidate.
Collapse
Affiliation(s)
- Rhitam Biswas
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India; Department of Biotechnology, SBST, VIT, Vellore, 632014, Tamil Nadu, India
| | - Rayapadi G Swetha
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India; Department of Biosciences, SBST, VIT, Vellore, 632014, Tamil Nadu, India
| | - Soumya Basu
- Department of Biotechnology, NIST University, Berhampur, 761008, Odisha, India
| | - Aditi Roy
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India; Department of Biotechnology, SBST, VIT, Vellore, 632014, Tamil Nadu, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India; Department of Biosciences, SBST, VIT, Vellore, 632014, Tamil Nadu, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India; Department of Biotechnology, SBST, VIT, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
9
|
Ezzemani W, Ouladlahsen A, Altawalah H, Saile R, Sarih M, Kettani A, Ezzikouri S. Identification of novel T-cell epitopes on monkeypox virus and development of multi-epitopes vaccine using immunoinformatics approaches. J Biomol Struct Dyn 2024; 42:5349-5364. [PMID: 37354141 DOI: 10.1080/07391102.2023.2226733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 06/10/2023] [Indexed: 06/26/2023]
Abstract
Monkeypox virus (MPV) is closely related to the smallpox virus, and previous data from Africa suggest that the smallpox vaccine (VARV) is at least 85% effective in preventing MPV. No multi-epitope vaccine has yet been developed to prevent MPV infection. In this work, we used in silico structural biology and advanced immunoinformatic strategies to design a multi-epitope subunit vaccine against MPV infection. The designed vaccine sequence is adjuvanted with CpG-ODN and includes HTL/CTL epitopes for similar proteins between vaccinia virus (VACV) that induced T-cell production in vaccinated volunteers and the first draft sequence of the MPV genome associated with the suspected outbreak in several countries, May 2022. In addition, the specific binding of the modified vaccine and the immune Toll-like receptor 9 (TLR9) was estimated by molecular interaction studies. Strong interaction in the binding groove as well as good docking scores confirmed the stringency of the modified vaccine. The stability of the interaction was confirmed by a classical molecular dynamics simulation and normal mode analysis. Then, the immune simulation also indicated the ability of this vaccine to induce an effective immune response against MPV. Codon optimization and in silico cloning of the vaccine into the pET-28a (+) vector also showed its expression potential in the E. coli K12 system. The promising data obtained from the various in silico studies indicate that this vaccine is effective against MPV. However, additional in vitro and in vivo studies are still needed to confirm its efficacy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wahiba Ezzemani
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
- Laboratoire de Biologie et Santé (URAC34), Départment de Biologie, Faculté des Sciences Ben Msik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Ahd Ouladlahsen
- Faculté de médecine et de pharmacie, Université Hassan II, Casablanca, Morocco
- Service des maladies infectieuses, CHU Ibn Rochd, Casablanca, Morocco
| | - Haya Altawalah
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
- Virology Unit, Yacoub Behbehani Center, Sabah Hospital, Ministry of Health, Kuwait City, Kuwait
| | - Rachid Saile
- Laboratoire de Biologie et Santé (URAC34), Départment de Biologie, Faculté des Sciences Ben Msik, Hassan II University of Casablanca, Casablanca, Morocco
| | - M'hammed Sarih
- Service de Parasitologie et des Maladies Vectorielles, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Anass Kettani
- Laboratoire de Biologie et Santé (URAC34), Départment de Biologie, Faculté des Sciences Ben Msik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Sayeh Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| |
Collapse
|
10
|
Das NC, Gorai S, Gupta PSS, Panda SK, Rana MK, Mukherjee S. Immune targeting of filarial glutaredoxin through a multi-epitope peptide-based vaccine: A reverse vaccinology approach. Int Immunopharmacol 2024; 133:112120. [PMID: 38657497 DOI: 10.1016/j.intimp.2024.112120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Despite the efforts of global programme to eliminate lymphatic filariasis (GPELF), the threat of lymphatic filariasis (LF) still looms over humanity in terms of long-term disabilities, and morbidities across the globe. In light of this situation, investigators have chosen to focus on the development of immunotherapeutics targeting the physiologically important filarial-specific proteins. Glutaredoxin (16.43 kDa) plays a pivotal role in filarial redox biology, serving as a vital contributor. In the context of the intra-host survival of filarial parasites, this antioxidant helps in mitigating the oxidative stress imposed by the host immune system. Given its significant contribution, the development of a vaccine targeting glutaredoxin holds promise as a new avenue for achieving a filaria-free world. Herein, multi-epitope-based vaccine was designed using advanced immunoinformatics approach. Initially, 4B-cell epitopes and 6 T-cell epitopes (4 MHC I and 2 MHC II) were identified from the 146 amino acid long sequence of glutaredoxin of the human filarid, Wuchereria bancrofti. Subsequent clustering of these epitopes with linker peptides finalized the vaccine structure. To boost TLR-mediated innate immunity, TLR-specific adjuvants were incorporated into the designed vaccine. After that, experimental analyses confirm the designed vaccine, Vac4 as anefficient ligand of human TLR5 to elicit protective innate immunity against filarial glutaredoxin. Immune simulation further demonstrated abundant levels of IgG and IgM as crucial contributors in triggering vaccine-induced adaptive responses in the recipients. Hence, to facilitate the validation of immunogenicity of the designed vaccine, Vac4 was cloned in silico in pET28a(+) expression vector for recombinant production. Taken together, our findings suggest that vaccine-mediated targeting of filarial glutaredoxin could be a future option for intervening LF on a global scale.
Collapse
Affiliation(s)
- Nabarun Chandra Das
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol 713 340, West Bengal, India
| | - Sampa Gorai
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol 713 340, West Bengal, India
| | - Parth Sarthi Sen Gupta
- School of Biosciences & Bioengineering, D. Y. Patil International University, Akurdi, Pune 411044, India
| | - Saroj Kumar Panda
- Department of Chemistry, Indian Institute of Science Education and Research, Berhampur, India
| | - Malay Kumar Rana
- Department of Chemistry, Indian Institute of Science Education and Research, Berhampur, India
| | - Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol 713 340, West Bengal, India.
| |
Collapse
|
11
|
Ghafoor D, Zeb A, Ali SS, Ali M, Akbar F, Ud Din Z, Ur Rehman S, Suleman M, Khan W. Immunoinformatic based designing of potential immunogenic novel mRNA and peptide-based prophylactic vaccines against H5N1 and H7N9 avian influenza viruses. J Biomol Struct Dyn 2024; 42:3641-3658. [PMID: 37222664 DOI: 10.1080/07391102.2023.2214228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/10/2023] [Indexed: 05/25/2023]
Abstract
Influenza viruses are the most common cause of serious respiratory illnesses worldwide and are responsible for a significant number of annual fatalities. Therefore, it is crucial to look for new immunogenic sites that might trigger an effective immune response. In the present study, bioinformatics tools were used to design mRNA and multiepitope-based vaccines against H5N1 and H7N9 subtypes of avian influenza viruses. Several Immunoinformatic tools were employed to extrapolate T and B lymphocyte epitopes of HA and NA proteins of both subtypes. The molecular docking approach was used to dock the selected HTL and CTL epitopes with the corresponding MHC molecules. Eight (8) CTL, four (4) HTL, and Six (6) linear B cell epitopes were chosen for the structural arrangement of mRNA and of peptide-based prophylactic vaccine designs. Different physicochemical characteristics of the selected epitopes fitted with suitable linkers were analyzed. High antigenic, non-toxic, and non-allergenic features of the designed vaccines were noted at a neutral physiological pH. Codon optimization tool was used to check the GC content and CAI value of constructed MEVC-Flu vaccine, which were recorded to be 50.42% and 0.97 respectively. the GC content and CAI value verify the stable expression of vaccine in pET28a + vector. In-silico immunological simulation the MEVC-Flu vaccine construct revealed a high level of immune responses. The molecular dynamics simulation and docking results confirmed the stable interaction of TLR-8 and MEVC-Flu vaccine. Based on these parameters, vaccine constructs can be regarded as an optimistic choice against H5N1 and H7N9 strains of the influenza virus. Further experimental testing of these prophylactic vaccine designs against pathogenic avian influenza strains may clarify their safety and efficacy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dawood Ghafoor
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Wuhan, Hubei, China
| | - Adnan Zeb
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Syed Shujait Ali
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Ali
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fazal Akbar
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Khyber Pakhtunkhwa, Pakistan
| | - Zia Ud Din
- Center for Advanced Studies in Vaccinology and Biotechnology, University of Balochistan Quetta, Quetta, Pakistan
| | - Shoaib Ur Rehman
- Department of Biotechnology, University of Science and Technology, Bannu, Pakistan
| | - Muhammad Suleman
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Khyber Pakhtunkhwa, Pakistan
| | - Wajid Khan
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
12
|
Shafiq N, Shakoor B, Yaqoob N, Parveen S, Brogi S, Mohammad Salamatullah A, Rashid M, Bourhia M. A virtual insight into mushroom secondary metabolites: 3D-QSAR, docking, pharmacophore-based analysis and molecular modeling to analyze their anti-breast cancer potential. J Biomol Struct Dyn 2024:1-22. [PMID: 38299565 DOI: 10.1080/07391102.2024.2304137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024]
Abstract
Breast cancer is a major issue of investigation in drug discovery due to its rising frequency and global dominance. Plants are significant natural sources for the development of novel medications and therapies. Medicinal mushrooms have many biological response modifiers and are used for the treatment of many physical illnesses. In this research, a database of 89 macro-molecules with anti-breast cancer activity, which were previously isolated from the mushrooms in literature, has been selected for the three-dimensional quantitative structure-activity relationships (3D-QSAR) studies. The 3D-QSAR model was necessarily used in Pharmacopoeia virtual evaluation of the database to develop novel MCF-7 inhibitors. With the known potential targets of breast cancer, the docking studies were achieved. Using molecular dynamics simulations, the targets' stability with the best-chosen natural product molecule was found. Furthermore, the absorption, distribution, metabolism, excretion, and toxicity of three compounds, resulting after the docking study, were predicted. The compound C1 (Pseudonocardian A) showed the features of effective compounds because it has bioavailability from different coral species and is toxicity-free for the prevention of many dermatological illnesses. C1 is chemically active and possesses charge transfer inside the monomer, as seen by the band gaps of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) electrons. The reactivity descriptors ionization potential, electron affinity, chemical potential (μ), hardness (η), softness (S), electronegativity (χ), and electrophilicity index (ω) have been estimated using the energies of frontier molecular orbitals (HOMO-LUMO). Additionally, molecular electrostatic potential maps were created to show that the C1 is reactive.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nusrat Shafiq
- Synthetic and Natural Products Drug Discovery Lab, Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Bushra Shakoor
- Synthetic and Natural Products Drug Discovery Lab, Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Nazia Yaqoob
- Green Chemistry Lab, Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Shagufta Parveen
- Synthetic and Natural Products Drug Discovery Lab, Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Simone Brogi
- Department of Pharmacy, Pisa University, Pisa, Italy
| | - Ahmad Mohammad Salamatullah
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Maryam Rashid
- Synthetic and Natural Products Drug Discovery Lab, Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune, Morocco
- Laboratory of Chemistry-Biochemistry, Environment, Nutrition, and Health, Faculty of Medicine and Pharmacy, University Hassan II, Casablanca, Morocco
| |
Collapse
|
13
|
Aarthy M, Pandiyan GN, Paramasivan R, Kumar A, Gupta B. Identification and prioritisation of potential vaccine candidates using subtractive proteomics and designing of a multi-epitope vaccine against Wuchereria bancrofti. Sci Rep 2024; 14:1970. [PMID: 38263422 PMCID: PMC10806236 DOI: 10.1038/s41598-024-52457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/18/2024] [Indexed: 01/25/2024] Open
Abstract
This study employed subtractive proteomics and immunoinformatics to analyze the Wuchereria bancrofti proteome and identify potential therapeutic targets, with a focus on designing a vaccine against the parasite species. A comprehensive bioinformatics analysis of the parasite's proteome identified 51 probable therapeutic targets, among which "Kunitz/bovine pancreatic trypsin inhibitor domain-containing protein" was identified as the most promising vaccine candidate. The candidate protein was used to design a multi-epitope vaccine, incorporating B-cell and T-cell epitopes identified through various tools. The vaccine construct underwent extensive analysis of its antigenic, physical, and chemical features, including the determination of secondary and tertiary structures. Docking and molecular dynamics simulations were performed with HLA alleles, Toll-like receptor 4 (TLR4), and TLR3 to assess its potential to elicit the human immune response. Immune simulation analysis confirmed the predicted vaccine's strong binding affinity with immunoglobulins, indicating its potential efficacy in generating an immune response. However, experimental validation and testing of this multi-epitope vaccine construct would be needed to assess its potential against W. bancrofti and even for a broader range of lymphatic filarial infections given the similarities between W. bancrofti and Brugia.
Collapse
Affiliation(s)
- Murali Aarthy
- ICMR-Vector Control Research Centre (VCRC), Field Station, Madurai, Tamil Nadu, 625002, India
| | - G Navaneetha Pandiyan
- ICMR-Vector Control Research Centre (VCRC), Field Station, Madurai, Tamil Nadu, 625002, India
| | - R Paramasivan
- ICMR-Vector Control Research Centre (VCRC), Field Station, Madurai, Tamil Nadu, 625002, India
| | - Ashwani Kumar
- ICMR-Vector Control Research Centre (VCRC), Puducherry, India
- Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Tandhalam, Chennai, Tamil Nadu, 602105, India
| | - Bhavna Gupta
- ICMR-Vector Control Research Centre (VCRC), Field Station, Madurai, Tamil Nadu, 625002, India.
| |
Collapse
|
14
|
Sam S, Ofoghi H, Farahmand B. Developing of SARS-CoV-2 fusion protein expressed in E. coli Shuffle T7 for enhanced ELISA detection sensitivity - an integrated experimental and bioinformatic approach. J Biomol Struct Dyn 2024:1-16. [PMID: 38234051 DOI: 10.1080/07391102.2024.2302941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
In the recent COVID-19 pandemic, developing effective diagnostic assays is crucial for controlling the spread of the SARS-CoV-2 virus. Multi-domain fusion proteins are a promising approach to detecting SARS-CoV-2 antibodies. In this study, we designed an antigen named CoV2-Pro, containing two RBD domains from SARS-CoV-2 Omicron and Delta variants and one CTD domain of the nucleoprotein in the order of RBD-RBD-N, linked by a super flexible glycine linker. We evaluated the suitability of E. coli Shuffle T7 and BL21 (DE3) strain for expressing CoV2-Pro. Moreover, Bioinformatic studies were conducted first to analyze the tertiary structure of CoV2-Pro. The CoV2-Pro sequences were cloned into a pET-32b (+) vector for expression in E. coli Shuffle T7 and BL21 (DE3). SDS-PAGE and western blot confirmed the protein expression and folding structure. The CoV2-Pro-TRX was purified by Ni-NTA affinity chromatography. Dot blot analysis was performed to evaluate the antigenic characterization of the CoV2-Pro. A molecular docking simulation was conducted to assess the binding affinity of CoV2-Pro with LY-COV555 (Bamlanivimab) monoclonal antibody. A molecular dynamic was performed to analyze the stability of the structure. Bioinformatic and experimental studies revealed a stable conformational 3D structure of the CoV2-Pro. The CoV2-Pro interacted with SARS-CoV-2 antibodies, confirming the correct antigenic structure. We assert with confidence that CoV2-Pro is ideal for developing an ELISA assay for precise diagnosis and rigorous vaccine evaluation during the COVID-19 prevalence.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sohrab Sam
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Hamideh Ofoghi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Behrokh Farahmand
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
15
|
Peng L, Yu F, Shen R, Zhou W, Wang D, Jiang Q, Meng T, Wang J, Hu F, Yuan H. Glutathione Consumptive Dual-Sensitive Lipid-Composite Nanoparticles Induce Immunogenic Cell Death for Enhanced Breast Tumor Therapy. Mol Pharm 2024; 21:113-125. [PMID: 38081040 DOI: 10.1021/acs.molpharmaceut.3c00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2024]
Abstract
Although chemotherapy remains the standard therapy for tumor treatment, serious side effects can occur because of nontargeted distribution and damage to healthy tissues. Hollow mesoporous silica nanoparticles (HMSNs) modified with lipids offer potential as delivery systems to improve therapeutic outcomes and reduce adverse effects. Herein, we synthesized HMSNs with integrated disulfide bonds (HMSN) for loading with the chemotherapeutic agent oxaliplatin (OXP) which were then covered with the synthesized hypoxia-sensitive lipid (Lip) on the surface to prepare the dual-sensitive lipid-composite nanoparticles (HMSN-OXP-Lip). The empty lipid-composite nanoparticles (HMSN-Lip) would consume glutathione (GSH) in cells because of the reduction of disulfide bonds in HMSN and would also inhibit GSH production because of NADPH depletion driven by Lip cleavage. These actions contribute to increased levels of ROS that induce the immunogenic cell death (ICD) effect. Simultaneously, HMSN-Lip would disintegrate in the presence of high concentrations of GSH. The lipid in HMSN-OXP-Lip could evade payload leakage during blood circulation and accelerate the release of the OXP in the tumor region in the hypoxic microenvironment, which could significantly induce the ICD effect to activate an immune response for an enhanced therapeutic effect. The tumor inhibitory rate of HMSN-OXP-Lip was almost twice that of free OXP, and no apparent side effects were observed. This design provides a dual-sensitive and efficient strategy for tumor therapy by using lipid-composite nanoparticles that can undergo sensitive drug release and biodegradation.
Collapse
Affiliation(s)
- Lijun Peng
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang 550025, China
| | - Fangying Yu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
| | - Ruoyu Shen
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
| | - Wentao Zhou
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
| | - Ding Wang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
| | - Qi Jiang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
| | - Tingting Meng
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| | - Jianwei Wang
- The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Fuqiang Hu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| | - Hong Yuan
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| |
Collapse
|
16
|
Singh P, Shaikh S, Gupta S, Gupta R. In-silico development of multi-epitope subunit vaccine against lymphatic filariasis. J Biomol Struct Dyn 2023:1-15. [PMID: 38117103 DOI: 10.1080/07391102.2023.2294838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023]
Abstract
The World Health Organization in 2022 reported that more than 863 million people in 50 countries are at risk of developing lymphatic filariasis (LF), a disease caused by parasitic infection. Immune responses to parasites suggest that the development of a prophylactic vaccine against LF is possible. Using a reverse vaccinology approach, the current study identified Trehalose-6-phosphatase (TPP) as a potential vaccine candidate among 15 reported vaccine antigens for B. malayi. High-ranking B and T-cell epitopes in the Trehalose-6-phosphatase (TPP) were shortlisted using online servers for subsequent analysis. We selected these peptides to construct a vaccine model using I-TASSER and GalaxyRefine server. The vaccine construct showed favorable physicochemical properties, high antigenicity, no allergenicity, no toxicity, and high stability. Structural validation using the Ramachandran plot showed that 98% of the residues were in favorable or mostly allowed regions. Molecular docking and simulation showed a strong binding affinity and stability of the subunit vaccine with toll-like receptor 4 (TLR4). Furthermore, the subunit vaccine showed a strong IgG/IgM response, with the disappearance of the antigen. We propose that our vaccine construct should be further evaluated using cellular and animal models to develop a vaccine that is safe and effective against LF.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pratik Singh
- Centre of Research for Development, Parul University, Vadodara, India
| | - Samir Shaikh
- Centre of Research for Development, Parul University, Vadodara, India
| | - Sakshi Gupta
- Centre of Research for Development, Parul University, Vadodara, India
| | - Reeshu Gupta
- Centre of Research for Development, Parul University, Vadodara, India
| |
Collapse
|
17
|
Zhang C, Liu Z, Wang F, Zhang B, Zhang X, Guo P, Li T, Tai S, Zhang C. Nanomicelles for GLUT1-targeting hepatocellular carcinoma therapy based on NADPH depletion. Drug Deliv 2023; 30:2162160. [PMID: 36579634 PMCID: PMC9809347 DOI: 10.1080/10717544.2022.2162160] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor leading cancer-associated high mortality worldwide. Unfortunately, the most commonly used drug therapeutics not only lack of target ability and efficiency, but also exhibit severe systemic toxicity to normal tissues. Thus, effective and targeted nanodrug of HCC therapy is emerging as a more important issue. Here, we design and develop the novel nanomicelles, namely Mannose-polyethylene glycol 600-Nitroimidazole (Man-NIT). This micelle compound with high purity comprise two parts, which can self-assemble into nanoscale micelle. The outer shell is selected mannose as hydrophilic moiety, while the inner core is nitroimidazole as hydrophobic moiety. In the cell experiment, Man-NIT was more cellular uptake by HCCLM3 cells due to the mannose modification. Mannose as a kind of glucose transporter 1 (GLUT1) substrate, can specifically recognize and bind to over-expressed GLUT1 on carcinoma cytomembrane. The nitroimidazole moiety of Man-NIT was reduced by the over-expressed nitroreductase with reduced nicotinamide adenine dinucleotide phosphate (NADPH) as the cofactor, resulting in transient deletion of NADPH and glutathione (GSH). The increase of reactive oxygen species (ROS) in HCCLM3 cells disturbed the balance of redox, and finally caused the death of tumor cells. Additional in vivo experiment was conducted using twenty-four male BALB/c nude mice to build the tumor model. The results showed that nanomicelles were accumulated in the liver of mice. The tumor size and pathological features were obviously improved after nanomicelles treatment. It indicates that namomicelles have a tumor inhibition effect, especially Man-NIT, which may be a potential nanodrug of chemotherapeutics for HCC therapy.
Collapse
Affiliation(s)
- Congyi Zhang
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zehui Liu
- Department of Children’s and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China
| | - Feng Wang
- Department of Children’s and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China
| | - Bin Zhang
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xirui Zhang
- Department of Children’s and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China
| | - Peiwen Guo
- Department of Children’s and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China
| | - Tianwei Li
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sheng Tai
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China,CONTACT Sheng Tai
| | - Changmei Zhang
- Department of Children’s and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China,Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Daqing, China,Changmei Zhang Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Daqing, China
| |
Collapse
|
18
|
Das NC, Chakraborty P, Nandy S, Dey A, Malik T, Mukherjee S. Programmed cell death pathways as targets for developing antifilarial drugs: Lessons from the recent findings. J Cell Mol Med 2023; 27:2819-2840. [PMID: 37605891 PMCID: PMC10538269 DOI: 10.1111/jcmm.17913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/17/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023] Open
Abstract
More than half a century has passed since the introduction of the National Filariasis Control Program; however, as of 2023, lymphatic filariasis (LF) still prevails globally, particularly in the tropical and subtropical regions, posing a substantial challenge to the objective of worldwide elimination. LF is affecting human beings and its economically important livestock leading to a crucial contributor to morbidities and disabilities. The current scenario has been blowing up alarms of attention to develop potent therapeutics and strategies having efficiency against the adult stage of filarial nematodes. In this context, the exploration of a suitable drug target that ensures lethality to macro and microfilariae is now our first goal to achieve. Apoptosis has been the potential target across all three stages of filarial nematodes viz. oocytes, microfilariae (mf) and adults resulting in filarial death after receiving the signal from the reactive oxygen species (ROS) and executed through intrinsic and extrinsic pathways. Hence, it is considered a leading target for developing antifilarial drugs. Herein, we have shown the efficacy of several natural and synthetic compounds/nanoformulations in triggering the apoptotic death of filarial parasites with little or no toxicity to the host body system.
Collapse
Affiliation(s)
- Nabarun Chandra Das
- Integrative Biochemistry & Immunology Laboratory, Department of Animal ScienceKazi Nazrul UniversityAsansolIndia
| | - Pritha Chakraborty
- Integrative Biochemistry & Immunology Laboratory, Department of Animal ScienceKazi Nazrul UniversityAsansolIndia
| | - Samapika Nandy
- Department of Life SciencePresidency UniversityKolkataIndia
- School of PharmacyGraphic Era Hill UniversityDehradunIndia
| | - Abhijit Dey
- Department of Life SciencePresidency UniversityKolkataIndia
| | | | - Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal ScienceKazi Nazrul UniversityAsansolIndia
| |
Collapse
|
19
|
Ahmad S, Nazarian S, Alizadeh A, Pashapour Hajialilou M, Tahmasebian S, Alharbi M, Alasmari AF, Shojaeian A, Ghatrehsamani M, Irfan M, Pazoki-Toroudi H, Sanami S. Computational design of a multi-epitope vaccine candidate against Langya henipavirus using surface proteins. J Biomol Struct Dyn 2023; 42:10617-10634. [PMID: 37713338 DOI: 10.1080/07391102.2023.2258403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
In July 2022, Langya henipavirus (LayV) was identified in febrile patients in China. There is currently no approved vaccine against this virus. Therefore, this research aimed to design a multi-epitope vaccine against LayV using reverse vaccinology. The best epitopes were selected from LayV's fusion protein (F) and glycoprotein (G), and a multi-epitope vaccine was designed using these epitopes, adjuvant, and appropriate linkers. The physicochemical properties, antigenicity, allergenicity, toxicity, and solubility of the vaccine were evaluated. The vaccine's secondary and 3D structures were predicted, and molecular docking and molecular dynamics (MD) simulations were used to assess the vaccine's interaction and stability with toll-like receptor 4 (TLR4). Immune simulation, codon optimization, and in silico cloning of the vaccine were also performed. The vaccine candidate showed good physicochemical properties, as well as being antigenic, non-allergenic, and non-toxic, with acceptable solubility. Molecular docking and MD simulation revealed that the vaccine and TLR4 have stable interactions. Furthermore, immunological simulation of the vaccine indicated its ability to elicit immune responses against LayV. The vaccine's increased expression was also ensured using codon optimization. This study's findings were encouraging, but in vitro and in vivo tests are needed to confirm the vaccine's protective effect.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
- Department of Computer Sciences, Virginia Tech, Blacksburg, VA, USA
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Department of Natural Sciences, Lebanese American University, Beirut, Lebanon
| | - Shahin Nazarian
- Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
| | - Akram Alizadeh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Maryam Pashapour Hajialilou
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Shahram Tahmasebian
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahdi Ghatrehsamani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Sanami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
20
|
Puzari U, Goswami M, Rani K, Patra A, Mukherjee AK. Computational and in vitro analyses to identify the anticoagulant regions of Echicetin, a snake venom anticoagulant C-type lectin (snaclec): possibility to develop anticoagulant peptide therapeutics? J Biomol Struct Dyn 2023; 41:15569-15583. [PMID: 36994880 DOI: 10.1080/07391102.2023.2191138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/05/2023] [Indexed: 03/31/2023]
Abstract
Snake venom C-type lectins (Snaclecs) display anticoagulant and platelet-modulating activities; however, their interaction with the critical components of blood coagulation factors was unknown. Computational analysis revealed that Echicetin (Snaclec from Echis carinatus venom) interacted with heavy chain of thrombin, and heavy and light chains of factor Xa (FXa). Based on FXa and thrombin binding regions of Echicetin, the two synthetic peptides (1A and 1B) were designed. The in silico binding studies of the peptides with thrombin and FXa showed that peptide 1B interacted with both heavy and light chains of thrombin and, peptide 1A interacted with only heavy chain of thrombin. Similarly, peptide 1B interacted with both heavy and light chains of FXa; however, peptide 1A interacted only with heavy chain of FXa. Alanine screening predicted the hot-spots residues for peptide 1A (Aspartic acid6, Valine8, Valine9, and Tyrosine17 with FXa, and Isoleucine14, Lysine15 with thrombin) and peptide 1B (Valine16 with FXa). Spectrofluorometric interaction study showed a lower Kd value for peptide 1B binding with both FXa and thrombin than peptide 1A, indicating higher binding strength of the former peptide. The circular dichroism spectroscopy also established the interaction between thrombin and the custom peptides. The in vitro study demonstrated higher anticoagulant activity of peptide 1B than peptide 1A due to higher inhibition of thrombin and FXa. Inhibition of anticoagulant activity of the peptides by respective anti-peptide antibodies corroborates our hypothesis that peptides 1A and 1B represent the anticoagulant regions of Echicetin and may be developed as antithrombotic peptide drug prototypes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Upasana Puzari
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Mahasweta Goswami
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Komal Rani
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Aparup Patra
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| | - Ashis K Mukherjee
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| |
Collapse
|
21
|
Madanagopal P, Muthusamy S, Pradhan SN, Prince PR. Construction and validation of a multi-epitope in silico vaccine model for lymphatic filariasis by targeting Brugia malayi: a reverse vaccinology approach. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2023; 47:47. [PMID: 36987521 PMCID: PMC10037386 DOI: 10.1186/s42269-023-01013-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Lymphatic filariasis (LF), often referred to as elephantiasis, has been identified as one of the 17 neglected tropical diseases by the World Health Organization. Currently, there are no vaccines available to treat this infection in humans. Therefore, with the objective of devising a novel preventive measure, we exploited an immunoinformatics approach to design a multi-epitope-based subunit vaccine for LF, that can elicit a variety of immune responses within the host. In this study, different B cell, TC cell, and TH cell-binding epitopes were screened from the antigenic proteins of Brugia malayi and they were passed through several immunological filters to determine the optimal epitopes. RESULTS As a result, 15 CD8+, 3 CD4+, and 3 B cell epitopes were found to be prominent, antigenic, non-toxic, immunogenic and non-allergenic. The presence of conformational B cell epitopes and cytokine-inducing epitopes confirmed the humoral and cell-mediated immune response that would be triggered by the constructed vaccine model. Following that, the selected epitopes and TLR-4-specific adjuvant were ligated by appropriate peptide linkers to finalize the vaccine construct. Protein-protein docking of the vaccine structure with the TLR4 receptor predicted strong binding affinity and hence putatively confirms its ability to elicit an immune response. Further, the efficiency of the vaccine candidate to provide a long-lasting protective immunity was assessed by in silico immune simulation. The reverse translated vaccine sequence was also virtually cloned in the pET28a (+) plasmid after the optimization of the gene sequence. CONCLUSION So taken together, by monitoring the overall in silico assessment, we hypothesize that our engineered peptide vaccine could be a viable prophylactic approach in the development of vaccines against the threat of human lymphatic filariasis. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s42269-023-01013-0.
Collapse
Affiliation(s)
| | | | | | - Prabhu Rajaiah Prince
- Department of Biotechnology, Anna University, Chennai, India
- The Hamburg Centre for Ultrafast Imaging (CUI), University of Hamburg, Hamburg, Germany
- Institute for Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Infammation, University of Hamburg, c/o DESY, 22603, Hamburg, Germany
| |
Collapse
|
22
|
Gaiya DD, Muhammad A, Aimola IA, Udu SK, Balarabe SA, Auta R, Ekpa E, Sheyin A. Potential of Onchocerca ochengi inosine-5'-monophosphate dehydrogenase (IMPDH) and guanosine-5'-monophosphate oxidoreductase (GMPR) as druggable and vaccine candidates: immunoinformatics screening. J Biomol Struct Dyn 2023; 41:14832-14848. [PMID: 36866624 DOI: 10.1080/07391102.2023.2184171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/18/2023] [Indexed: 03/04/2023]
Abstract
Onchocerciasis is a vector-borne disease caused by the filarial nematode Onchocerca volvulus, which is responsible for most of the visual impairments recorded in Africa, Asia and the Americas. It is known that O. volvulus has similar molecular and biological characteristics as Onchocerca ochengi in cattle. This study was designed to screen for immunogenic epitopes and binding pockets of O. ochengi IMPDH and GMPR ligands using immunoinformatic approaches. In this study, a total of 23 B cell epitopes for IMPDH and 7 B cell epitopes for GMPR were predicted using ABCpred tool, Bepipred 2.0 and Kolaskar and Tongaonkar methods. The CD4+ Th computational results showed 16 antigenic epitopes from IMPDH with strong binding affinity for DRB1_0301, DRB3_0101, DRB1_0103 and DRB1_1501 MHC II alleles while 8 antigenic epitopes from GMPR were predicted to bind DRB1_0101 and DRB1_0401 MHC II alleles, respectively. For the CD8+ CTLs analysis, 8 antigenic epitopes from IMPDH showed strong binding affinity to human leukocyte antigen HLA-A*26:01, HLA-A*03:01, HLA-A*24:02 and HLA-A*01:01 MHC I alleles while 2 antigenic epitopes from GMPR showed strong binding affinity to HLA-A*01:01 allele, respectively. The immunogenic B cell and T cell epitopes were further evaluated for antigenicity, non-alllergernicity, toxicity, IFN-gamma, IL4 and IL10. The docking score revealed favorable binding free energy with IMP and MYD scoring the highest binding affinity at -6.6 kcal/mol with IMPDH and -8.3 kcal/mol with GMPR. This study provides valuable insight on IMPDH and GMPR as potential drug targets and for the development of multiple epitope vaccine candidates.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Daniel Danladi Gaiya
- Biology Unit, Faculty of Science, Air Force Institute of Technology, Nigerian Air Force Base, Kawo, Kaduna State, Nigeria
| | - Aliyu Muhammad
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Samaru Zaria, Kaduna State, Nigeria
| | - Idowu Asegame Aimola
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Samaru Zaria, Kaduna State, Nigeria
| | - Stella Kuyet Udu
- Biology Unit, Faculty of Science, Air Force Institute of Technology, Nigerian Air Force Base, Kawo, Kaduna State, Nigeria
| | - Sallau Abdullahi Balarabe
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Samaru Zaria, Kaduna State, Nigeria
| | - Richard Auta
- Department of Biochemistry, Faculty of Science, Kaduna State University, Kaduna, Kaduna State, Nigeria
| | - Emmanuel Ekpa
- Biology Unit, Faculty of Science, Air Force Institute of Technology, Nigerian Air Force Base, Kawo, Kaduna State, Nigeria
| | - Abraham Sheyin
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Samaru Zaria, Kaduna State, Nigeria
| |
Collapse
|
23
|
Reverse vaccinology assisted design of a novel multi-epitope vaccine to target Wuchereria bancrofti cystatin: An immunoinformatics approach. Int Immunopharmacol 2023; 115:109639. [PMID: 36586276 DOI: 10.1016/j.intimp.2022.109639] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
Proteases are the critical mediators of immunomodulation exerted by the filarial parasites to bypass and divert host immunity. Cystatin is a small (∼15 kDa) immunomodulatory filarial protein and known to contribute in the immunomodulation strategy by inducing anti-inflammatory response through alternative activation of macrophages. Recently, Wuchereria bancrofti cystatin has been discovered as a ligand of human toll-like receptor 4 which is key behind the cystatin-induced anti-inflammatory response in major human antigen-presenting cells. Considering the pivotal role of cystatin in the immunobiology of filariasis, cystatin could be an efficacious target for developing vaccine. Herein, we present the design and in-silico analyses of a multi-epitope-based peptide vaccine to target W. bancrofti cystatin through immune-informatics approaches. The 262 amino acid long antigen construct comprises 9 MHC-I epitopes and MHC-II epitopes linked together by GPGPG peptide alongside an adjuvant (50S ribosomal protein L7/L12) at N terminus and 6 His tags at C terminus. Molecular docking study reveals that the peptide could trigger TLR4-MD2 to induce protective innate immune responses while the induced adaptive responses were found to be mediated by IgG, IgM and Th1 mediated responses. Notably, the designed vaccine exhibits high stability and no allergenicity in-silico. Furthermore, the muti epitope-vaccine was also predicted for its RNA structure and cloned in pET30ax for further experimental validation. Taken together, this study presents a novel multi-epitope peptide vaccine for triggering efficient innate and adaptive immune responses against W. bancrofti to intervene LF through immunotherapy.
Collapse
|
24
|
Afshari E, Cohan RA, Sotoodehnejadnematalahi F, Mousavi SF. In-silico design and evaluation of an epitope-based serotype-independent promising vaccine candidate for highly cross-reactive regions of pneumococcal surface protein A. J Transl Med 2023; 21:13. [PMID: 36627666 PMCID: PMC9830136 DOI: 10.1186/s12967-022-03864-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/29/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The pathogenicity of pneumococcus with high morbidity, mortality, and multi-drug resistance patterns has been increasing. The limited coverage of the licensed polysaccharide-based vaccines and the replacement of the non-vaccine serotypes are the main reasons for producing a successful serotype-independent vaccine. Pneumococcal surface protein A (PspA) is an extremely important virulence factor and an interesting candidate for conserved protein-based pneumococcal vaccine classified into two prominent families containing five clades. PspA family-elicited immunity is clade-dependent, and the level of the PspA cross-reactivity is restricted to the same family. METHODS To cover and overcome the clade-dependent immunity of the PspAs in this study, we designed and tested a PspA1-5c+p vaccine candidate composed of the highest immunodominant coverage of B- and T-cell epitope truncated domain of each clade focusing on two cross-reactive B and C regions of the PspAs. The antigenicity, toxicity, physicochemical properties, 3D structure prediction, stability and flexibility of the designed protein using molecular dynamic (MD) simulation, molecular docking of the construct withHLADRB1*(01:01) and human lactoferrin N-lop, and immune simulation were assessed using immunoinformatics tools. In the experimental section, after intraperitoneal immunization of the mice with Alum adjuvanted recombinant PspA1-5c+p, we evaluated the immune response, cross-reactivity, and functionality of the Anti-PspA1-5c+p antibody using ELISA, Opsonophagocytic killing activity, and serum bactericidal assay. RESULTS For the first time, this work suggested a novel PspA-based vaccine candidate using immunoinformatics tools. The designed PspA1-5c+p protein is predicted to be highly antigenic, non-toxic, soluble, stable with low flexibility in MD simulation, and able to stimulate both humoral and cellular immune responses. The designed protein also could interact strongly with HLADRB1*(01:01) and human lactoferrin N-lop in the docking study. Our immunoinformatics predictions were validated using experimental data. Results showed that the anti-PspA1-5c+p IgG not only had a high titer with strong and same cross-reactivity coverage against all pneumococcal serotypes used but also had high and effective bioactivity for pneumococcal clearance using complement system and phagocytic cells. CONCLUSION Our findings elucidated the potential application of the PspA1-5c+p vaccine candidate as a serotype-independent pneumococcal vaccine with a strong cross-reactivity feature. Further in-vitro and in-vivo investigations against other PspA clades should be performed to confirm the full protection of the PspA1-5c+p vaccine candidate.
Collapse
Affiliation(s)
- Elnaz Afshari
- grid.411463.50000 0001 0706 2472Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Reza Ahangari Cohan
- grid.420169.80000 0000 9562 2611Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Fattah Sotoodehnejadnematalahi
- grid.411463.50000 0001 0706 2472Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Fazlollah Mousavi
- grid.420169.80000 0000 9562 2611Department of Microbiology, Pasteur Institute of Iran, 69 Pasteur Ave., Tehran, 13164 Iran
| |
Collapse
|
25
|
Chakraborty A, Bayry J, Mukherjee S. Immunoinformatics Approaches in Designing Vaccines Against COVID-19. Methods Mol Biol 2023; 2673:431-452. [PMID: 37258931 DOI: 10.1007/978-1-0716-3239-0_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Since the onset of the COVID-19 pandemic, a number of approaches have been adopted by the scientific communities for developing efficient vaccine candidate against SARS-CoV-2. Conventional approaches of developing a vaccine require a long time and a series of trials and errors which indeed limit the feasibility of such approaches for developing a dependable vaccine in an emergency situation like the COVID-19 pandemic. Hitherto, most of the available vaccines have been developed against a particular antigen of SARS-CoV, spike protein in most of the cases, and intriguingly, these vaccines are not effective against all the pathogenic coronaviruses. In this context, immunoinformatics-based reverse vaccinology approaches enable a robust design of efficacious peptide-based vaccines against all the infectious strains of coronaviruses within a short frame of time. In this chapter, we enumerate the methodological trajectory of developing a universal anti-SARS-CoV-2 vaccine, namely, "AbhiSCoVac," through advanced computational biology-based immunoinformatics approach and its in-silico validation using molecular dynamics simulations.
Collapse
Affiliation(s)
- Ankita Chakraborty
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Jagadeesh Bayry
- Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala, India.
| | - Suprabhat Mukherjee
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| |
Collapse
|
26
|
Ishwarlall TZ, Adeleke VT, Maharaj L, Okpeku M, Adeniyi AA, Adeleke MA. Identification of potential candidate vaccines against Mycobacterium ulcerans based on the major facilitator superfamily transporter protein. Front Immunol 2022; 13:1023558. [PMID: 36426350 PMCID: PMC9679648 DOI: 10.3389/fimmu.2022.1023558] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2023] Open
Abstract
Buruli ulcer is a neglected tropical disease that is characterized by non-fatal lesion development. The causative agent is Mycobacterium ulcerans (M. ulcerans). There are no known vectors or transmission methods, preventing the development of control methods. There are effective diagnostic techniques and treatment routines; however, several socioeconomic factors may limit patients' abilities to receive these treatments. The Bacillus Calmette-Guérin vaccine developed against tuberculosis has shown limited efficacy, and no conventionally designed vaccines have passed clinical trials. This study aimed to generate a multi-epitope vaccine against M. ulcerans from the major facilitator superfamily transporter protein using an immunoinformatics approach. Twelve M. ulcerans genome assemblies were analyzed, resulting in the identification of 11 CD8+ and 7 CD4+ T-cell epitopes and 2 B-cell epitopes. These conserved epitopes were computationally predicted to be antigenic, immunogenic, non-allergenic, and non-toxic. The CD4+ T-cell epitopes were capable of inducing interferon-gamma and interleukin-4. They successfully bound to their respective human leukocyte antigens alleles in in silico docking studies. The expected global population coverage of the T-cell epitopes and their restricted human leukocyte antigens alleles was 99.90%. The population coverage of endemic regions ranged from 99.99% (Papua New Guinea) to 21.81% (Liberia). Two vaccine constructs were generated using the Toll-like receptors 2 and 4 agonists, LprG and RpfE, respectively. Both constructs were antigenic, non-allergenic, non-toxic, thermostable, basic, and hydrophilic. The DNA sequences of the vaccine constructs underwent optimization and were successfully in-silico cloned with the pET-28a(+) plasmid. The vaccine constructs were successfully docked to their respective toll-like receptors. Molecular dynamics simulations were carried out to analyze the binding interactions within the complex. The generated binding energies indicate the stability of both complexes. The constructs generated in this study display severable favorable properties, with construct one displaying a greater range of favorable properties. However, further analysis and laboratory validation are required.
Collapse
Affiliation(s)
- Tamara Z. Ishwarlall
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Victoria T. Adeleke
- Department of Chemical Engineering, Mangosuthu University of Technology, Durban, South Africa
| | - Leah Maharaj
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Adebayo A. Adeniyi
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
- Department of Industrial Chemistry, Federal University Oye Ekiti, Oye-Ekiti, Ekiti State, Nigeria
| | - Matthew A. Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
27
|
Hasan M, Mia M. Exploratory Algorithm of a Multi-epitope-based Subunit Vaccine Candidate Against Cryptosporidium hominis: Reverse Vaccinology-Based Immunoinformatic Approach. Int J Pept Res Ther 2022; 28:134. [PMID: 35911179 PMCID: PMC9315849 DOI: 10.1007/s10989-022-10438-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 12/03/2022]
Abstract
Cryptosporidiosis is the leading protozoan-induced cause of diarrheal illness in children, and it has been linked to childhood mortality, malnutrition, cognitive development, with retardation of growth. Cryptosporidium hominis, the anthroponotically transmitted species within the Cryptosporidium genus, contributes significantly to the global burden of infection, accounting for the majority of clinical cases in numerous nations, as well as its emergence in the last decade is largely due to detections obtained through noteworthy epidemiologic research. Nevertheless, there is no vaccine available, and the only licensed medication, nitazoxanide, has been demonstrated to have efficacy limitations in a number of patient groups recognized to be at high risk of complications. Therefore, current study delineates the computational vaccine design for Cryptosporidium hominis, the notable pathogen for enteric diarrhea. Firstly, a comprehensive literature search was conducted to identify six proteins based on their toxigenicity, allergenicity, antigenicity, and prediction of transmembrane helices to make up a multi-epitope-based subunit vaccine. Following that, antigenic non-toxic HTL epitope, CTL epitope with B cell epitope were predicted from the selected proteins and construct a vaccine candidate with adding an adjuvant and some linkers with immunologically superior epitopes. Afterwards, the constructed vaccine candidates and TLR2 receptor were put into the ClusPro server for molecular dynamic simulation to know the binding stability of the vaccine-TLR2 complex. Following that, Escherichia coli strain K12 was used as a cloning host for the chosen vaccine construct via the JCat server. As a result of the findings, it was resolute that the proposed chimeric peptide vaccine could improve the immune response to Cryptosporidium hominis.
Collapse
Affiliation(s)
- Mahamudul Hasan
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, 3100 Bangladesh
| | - Mukthar Mia
- Department of Poultry Science, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, 3100 Bangladesh.,Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, 3100 Bangladesh
| |
Collapse
|