1
|
Sathiyaseelan A, Lu Y, Ryu S, Zhang L, Wang MH. Synthesis of cytocompatible gum Arabic-encapsulated silver nitroprusside nanocomposites for inhibition of bacterial pathogens and food safety applications. ENVIRONMENTAL RESEARCH 2024; 263:120246. [PMID: 39481791 DOI: 10.1016/j.envres.2024.120246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/18/2024] [Accepted: 10/26/2024] [Indexed: 11/02/2024]
Abstract
Silver nitroprusside (AgN) exhibits significant antibacterial activity; however, its inherent toxicity poses a major concern. This study synthesized AgN with enhanced antibacterial properties while minimizing toxicity. Gum Arabic (GA), a natural polysaccharide widely utilized in food and biomedical applications owing to its exceptional cytocompatibility, was selected for encapsulating AgN to mitigate toxicity while preserving or enhancing its biological activity. The resulting composite material, GA-AgN nanocomposites (NCs), was systematically characterized using various analytical techniques. Transmission electron microscopy analysis revealed that GA-AgN NCs exhibited a rectangular morphology, with an average size of 230.13 ± 62.8 nm. The zeta potential of GA-AgN NCs was measured at -29.3 ± 0.70 mV. Furthermore, GA-AgN NCs demonstrated stability over diverse storage durations, incubation periods, and pH conditions by maintaining its size and surface charge. X-ray diffraction results indicated a reduction in the crystallinity of AgN when incorporated into the amorphous GA matrix, while Fourier-transform infrared spectroscopy analysis confirmed that the functional properties of both AgN and GA were preserved in the NCs. The release of Ag and Fe ions from the NCs was observed to be time- and pH-dependent. Importantly, the incorporation of GA did not compromise the antibacterial or antibiofilm efficacy of AgN against bacterial pathogens. Additionally, GA significantly mitigated the cytotoxic effects of AgN on NIH3T3 cells and red blood cells. Furthermore, GA-AgN NCs effectively extended the shelf-life of Salmonella enterica-infected green grapes. Thus, this study illustrates that GA-fabricated AgN NCs exhibit potential as an antibacterial agent in food preservation applications.
Collapse
Affiliation(s)
- Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Yuting Lu
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Suji Ryu
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Lina Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
2
|
da Veiga Dutra ML, de Souza DM, Santos HMCC, Neto JPRC, Soares NL, Vieira ACA, Costa IKC, Rolim TBB, de Magalhães Cordeiro ÂMT, de Vasconcelos DAA, Lira EC, Alves AF, Aquino JDS. Effects of maternal preconception high-fat diet on the fertility of dams and on the somatic parameters and reflex ontogeny of their male offspring. Physiol Behav 2024:114723. [PMID: 39481508 DOI: 10.1016/j.physbeh.2024.114723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Female consumption of a high-fat diet (HFD) may cause fertility issues and affects offspring development. OBJECTIVE Evaluate the acute maternal preconception intake of a HFD on the fertility and reproduction parameters of breeding females; and on the somatic parameters and reflex ontogeny of male offspring. METHODS Twenty-four rats were randomized into control (PC; n=12) and high-fat diet group (PHF; n=12) that consumed their respective diets during the 23-day preconception period. After that, 6 rats per group underwent oral glucose tolerance and insulin tolerance tests and were euthanized. The remaining rats were mated, during gestation and lactation, both groups ate a control diet. After birth, the male offspring's somatic parameters and reflexes were assessed. RESULTS The preconception diet caused dyslipidemia in the PHF. The PHF uterus exhibited a higher SFA (50.74 ± 0.32%), a lower PUFA concentration (35.59 ± 0.33%), and an increase in arachidonic acid (2.48 ± 0.03%). PHF rats had hypertrophy in the endometrium, and ovaries with a higher quantity of corpora albicans and immature primordial follicles. The offspring of PHF rats had greater weight (6.70 ± 0.82 g), nasal-anal length (4.93± 0.27 cm), and tail length (1.74 ± 0.12 cm) on the first day of life, and had improved righting reflex, but delayed negative geotaxis reflex. CONCLUSIONS An acute maternal preconception HFD induced a pro-inflammatory fatty acid profile and changed structure in uterus, altered ovarian follicle profile. Also, potential interference in the size of the pups at birth and in brain development of male offspring.
Collapse
Affiliation(s)
- Maria Letícia da Veiga Dutra
- Laboratory of Experimental Nutrition, Department of Nutrition, Health Sciences Centre, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil; Post Graduate Program in Nutrition Sciences, Health Sciences Centre, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Danielle Melo de Souza
- Laboratory of Experimental Nutrition, Department of Nutrition, Health Sciences Centre, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil; Post Graduate Program in Nutrition Sciences, Health Sciences Centre, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Harley Mateus Coutinho Correia Santos
- Laboratory of Experimental Nutrition, Department of Nutrition, Health Sciences Centre, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - José Patrocínio Ribeiro Cruz Neto
- Post Graduate Program in Nutrition Sciences, Health Sciences Centre, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Naís Lira Soares
- Laboratory of Experimental Nutrition, Department of Nutrition, Health Sciences Centre, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil; Post Graduate Program in Nutrition Sciences, Health Sciences Centre, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Anne Caroline Alves Vieira
- Laboratory of Experimental Nutrition, Department of Nutrition, Health Sciences Centre, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil; Post Graduate Program in Nutrition Sciences, Health Sciences Centre, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Isabelle Karoline Carvalho Costa
- Laboratory of Experimental Nutrition, Department of Nutrition, Health Sciences Centre, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Thaís Bayma Barbosa Rolim
- Laboratory of Experimental Nutrition, Department of Nutrition, Health Sciences Centre, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | | | - Diogo Antônio Alves de Vasconcelos
- Phisiology Laboratory, Department of Nutrition, Health Sciences Centre, Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | - Eduardo Carvalho Lira
- Neuroendocrinology and Metabolism Laboratory, Department of Physiology and Pharmacology, Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | - Adriano Francisco Alves
- Laboratory of General pathology, Health Sciences Centre, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Jailane de Souza Aquino
- Laboratory of Experimental Nutrition, Department of Nutrition, Health Sciences Centre, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil; Post Graduate Program in Nutrition Sciences, Health Sciences Centre, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil.
| |
Collapse
|
3
|
Alobaidi S. Therapeutic Potential of Gum Arabic ( Acacia senegal) in Chronic Kidney Disease Management: A Narrative Review. J Clin Med 2024; 13:5778. [PMID: 39407837 PMCID: PMC11477033 DOI: 10.3390/jcm13195778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Chronic kidney disease (CKD) poses significant health challenges globally, particularly in regions like the Middle East. This review evaluates the potential efficacy and safety of Gum Arabic (Acacia senegal), a traditional remedy, in managing CKD. A comprehensive literature review was conducted using databases including PubMed and Scopus, focusing on the biochemical, physiological, and therapeutic impacts of Gum Arabic on renal health. Gum Arabic has demonstrated antioxidative and anti-inflammatory properties that may benefit renal function, as shown in animal studies. Clinical trials suggest improvements in renal biomarkers, though these are limited by scope and methodology. While promising, the clinical application of Gum Arabic requires cautious interpretation due to gaps in understanding its mechanisms of action. Gum Arabic shows potential as an adjunct treatment for CKD, reflecting both traditional use and preliminary scientific evidence. Future research should focus on its long-term efficacy, safety, and underlying biochemical pathways to better guide its therapeutic use.
Collapse
Affiliation(s)
- Sami Alobaidi
- Department of Internal Medicine, University of Jeddah, Jeddah 21493, Saudi Arabia
| |
Collapse
|
4
|
Di Berardino C, Barceviciute U, Camerano Spelta Rapini C, Peserico A, Capacchietti G, Bernabò N, Russo V, Gatta V, Konstantinidou F, Donato M, Barboni B. High-fat diet-negative impact on female fertility: from mechanisms to protective actions of antioxidant matrices. Front Nutr 2024; 11:1415455. [PMID: 38915855 PMCID: PMC11194403 DOI: 10.3389/fnut.2024.1415455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/27/2024] [Indexed: 06/26/2024] Open
Abstract
Introduction Excessive calorie intake poses a significant threat to female fertility, leading to hormonal imbalances and reproductive challenges. Overconsumption of unhealthy fats exacerbates ovarian dysfunction, with an overproduction of reactive oxygen species causing oxidative stress, impairing ovarian follicle development and leading to irregular ovulation and premature ovarian failure. Interest in biological matrices with high antioxidant properties to combat diet-related oxidative stress has grown, as they contain various bioactive factors crucial for neutralizing free radicals potentially preventing female reproductive health. This systematic review evaluates the female reproductive impact of biological matrices in mitigating oxidative damages induced by over calory habits and, in particular, high fat diets. Methods A comparative approach among mammalian models was utilized to interpret literature available data. This approach specifically investigates the antioxidant mechanisms of biological matrices on early and late ovarian folliculogenesis, under physiological and hormone-induced female reproductive cycle. Adhering to the PRISMA 2020 guidelines, only English-language publications from peer-reviewed international indexes were considered. Results The analysis of 121 publications meeting the inclusion criteria facilitated the identification of crucial components of biological matrices. These components, including carbocyclic sugars, phytonutrients, organosulfur compounds, and vitamins, were evaluated for their impact on ovarian follicle resilience, oocyte quality, and reproductive lifespan. The detrimental effects of oxidative stress on female fertility, particularly exacerbated by high saturated fat diets, are well-documented. In vivo studies across mammalian preclinical models have underscored the potential of antioxidants derived from biological matrices to mitigate diet-induced conditions. These antioxidants enhance steroidogenesis and ovarian follicle development, thereby improving oocyte quality. Additionally, discussions within these publications emphasized the clinical significance of these biological matrices, translating research findings into practical applications for female health. Conclusion Further research is essential to fully exploit the potential of these matrices in enhancing female reproduction and mitigating the effects of diets rich in fatty acids. This requires intensified in vitro studies and comprehensive collection of in vivo data before clinical trials. The promotion of ovarian resilience offers promising avenues for enhancing understanding and advancing female reproductive health world-wide.
Collapse
Affiliation(s)
- Chiara Di Berardino
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Urte Barceviciute
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | | | - Alessia Peserico
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Giulia Capacchietti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Nicola Bernabò
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Rome, Italy
| | - Valentina Russo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Valentina Gatta
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Fani Konstantinidou
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Marisa Donato
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Barbara Barboni
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
5
|
Uddandrao VVS, Brahma Naidu P, Chandrasekaran P, Saravanan G. Pathophysiology of obesity-related infertility and its prevention and treatment by potential phytotherapeutics. Int J Obes (Lond) 2024; 48:147-165. [PMID: 37963998 DOI: 10.1038/s41366-023-01411-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Obesity is a complex multifactorial disease in which the accumulation of excess body fat has adverse health effects, as it can increase the risk of several problems, including infertility, in both men and women. Obesity and infertility have risen together in recent years. Against this background, the present review aims to highlight the impact of obesity on infertility and the underlying pathophysiology of obesity-related infertility (ORI) in men and women, and to provide readers with knowledge of current trends in the effective development of phytotherapeutics for its treatment. METHODS We thoroughly searched in PubMed, MEDLINE, Scopus, EMBASE, and Google Scholar to find all relevant papers on ORI and the therapeutic effects of phytotherapeutics on ORI in men and women. RESULTS The extensive search of the available literature revealed that obesity affects reproductive function through several complex mechanisms such as hyperlipidaemia, hyperinsulinaemia, hyperandrogenism, increased body mass index, disruption of the hormonal milieu, systemic inflammation, oxidative stress, alterations in epigenetics and dysbiosis. On the other hand, several studies reported that phytotherapeutics has a broad therapeutic spectrum of action by improving sex hormone homeostasis, ovarian dysfunction, menstrual cycle and inhibiting ovarian hyperplasia, as well as down-regulating ovarian apoptosis, inflammation and oxidative stress, and controlling metabolic dysfunction in obese women. Male infertility is also addressed by phytotherapeutics by suppressing lipogenesis, increasing testosterone, 3β-HSD and 17β-HSD levels, improving sperm parameters and attenuating testicular dyslipidaemia, oxidative stress, inflammation and germ cell apoptosis. CONCLUSIONS In the present review, we discussed the effects of obesity on reproductive dysfunction in men and women and the underlying pathophysiology of ORI. In addition, the therapeutic effect of phytotherapeutics against ORI was highlighted.
Collapse
Affiliation(s)
- V V Sathibabu Uddandrao
- Centre for Biological Sciences, Department of Biochemistry, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, Namakkal District, 637215, Tamilnadu, India.
| | - Parim Brahma Naidu
- Department of Animal Physiology and Biochemistry, National Animal Resource Facility for Biomedical Research (ICMR-NARFBR), Hyderabad, Telangana, 500078, India
| | - P Chandrasekaran
- Centre for Biological Sciences, Department of Biochemistry, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, Namakkal District, 637215, Tamilnadu, India
| | - G Saravanan
- Centre for Biological Sciences, Department of Biochemistry, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, Namakkal District, 637215, Tamilnadu, India
| |
Collapse
|
6
|
Satpathy S, Panigrahi LL, Arakha M. The Role of Selenium Nanoparticles in Addressing Diabetic Complications: A Comprehensive Study. Curr Top Med Chem 2024; 24:1327-1342. [PMID: 38561614 DOI: 10.2174/0115680266299494240326083936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Diabetes, as an emerging epidemic, has put forward a significant spotlight on the evolving population worldwide grounded upon the remarkable affliction of healthcare along with economical conflict. Various studies suggested that, in modern society, lack of maintenance of a healthy life style leads to the occurrence of diabetes as insulin resistant, later having a damaging effect on the pancreatic β-cells, suggesting various complications. Furthermore, diabetes management is controversial owing to different opinions based on the prevention of complications. For this purpose, nanostructured materials (NSM) like selenium nanoparticles (SeNPs) have proved their efficiency in the therapeutic management of such serious diseases. This review offers an in- -depth idea regarding the pathophysiology, diagnosis and various conventional therapeutics of type 1 and type 2 diabetes, shedding light on Diabetic Nephropathy (DN), a case study of type 1 diabetes. Moreover, this review provides an exhaustive study by highlighting the economic and healthcare burdens associated with diabetes along with the controversies associated with conventional therapeutic management and the promising role of NSM like selenium nanoparticles (SeNPs), as a novel weapon for encountering such fatal diseases.
Collapse
Affiliation(s)
- Siddharth Satpathy
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Lipsa Leena Panigrahi
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Manoranjan Arakha
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| |
Collapse
|
7
|
Ibrahim RM, Abdelhafez HM, El-Shamy SAEM, Eid FA, Mashaal A. Arabic gum ameliorates systemic modulation in Alloxan monohydrate-induced diabetic rats. Sci Rep 2023; 13:5005. [PMID: 36973339 PMCID: PMC10042862 DOI: 10.1038/s41598-023-31897-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Medicinal plants are considered an alternative therapy for diabetes mellitus as they regulate glucose levels. Moreover, a variety of plants offer a rich source of bioactive compounds that have potent pharmacological effects without any negative side effects. The present study aimed to clarify the effects of Arabic gum/Gum Acacia (GA) on the biochemical, histopathological, and immunohistochemical changes observed in diabetic rats. Further, the anti-inflammatory activity of GA in response to diabetes, through inflammatory mediators analysis. Male rats were divided into four groups: untreated control, diabetic, Arabic gum-treated, and Arabic gum-treated diabetic rats. Diabetes was induced using alloxan. Animals were sacrificed after 7 and 21 days of treatment with Arabic gum. Body weight, blood and pancreas tissue samples were collected for analysis. Alloxan injection significantly decreased body weight, increased glucose levels, decreased insulin levels, and caused depletion of islets of Langerhans and β-cell damage in the pancreas. Arabic gum treatment of diabetic rats significantly increased body weight, decreased serum glucose levels, increased insulin levels, exerts anti-inflammatory effect, and improved the pancreas tissue structure. Arabic gum has beneficial pharmacological effects in diabetic rats; therefore, it might be employed as diabetic therapy to reduce the hyperglycemic damage and may be applicable for many autoimmune and inflammatory diseases treatment. Further, the new bioactive substances, such as medications made from plants, have larger safety margins, and can be used for a longer period of time.
Collapse
Affiliation(s)
- Rasha Mohammed Ibrahim
- Cytochemistry and Histology, Zoology and Entomology Department, Faculty of Science (for Girls), Al-Azhar University, Nasr City, Cairo, 11865, Egypt
| | - Hemmat Mansour Abdelhafez
- Cytochemistry and Histology, Zoology and Entomology Department, Faculty of Science (for Girls), Al-Azhar University, Nasr City, Cairo, 11865, Egypt
| | | | - Fatma Ahmed Eid
- Cytochemistry and Histology, Zoology and Entomology Department, Faculty of Science (for Girls), Al-Azhar University, Nasr City, Cairo, 11865, Egypt
| | - Alya Mashaal
- Immunology, Zoology and Entomology Department, Faculty of Science (for Girls), Al-Azhar University, Cairo, 11865, Egypt.
| |
Collapse
|
8
|
Antimicrobial Effects of Gum Arabic-Silver Nanoparticles against Oral Pathogens. Bioinorg Chem Appl 2022; 2022:9602325. [PMID: 36561898 PMCID: PMC9767746 DOI: 10.1155/2022/9602325] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/07/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022] Open
Abstract
Dental caries is considered one of the most prevalent oral diseases worldwide, with a high rate of morbidity among populations. It is a chronic infectious disease with a multifactorial etiology that leads to the destruction of the dental tissues. Due to their antimicrobial, anti-inflammatory, antifungal, and antioxidant properties; silver nanoparticles (AgNPs) are incorporated in dental products to help prevent infectious oral diseases. In this study, the antimicrobial effects of AgNPs synthesized using Gum Arabic extracts (GAE) were examined. The GA-AgNPs were synthesized and characterized using ultraviolet-visible (UV-Vis) spectrophotometer, dynamic light scattering (DLS), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. The antimicrobial activity of the GA-AgNPs was evaluated on Streptococcus sanguinis (S. sanguinis), Streptococcus mutans (S. mutans), Lactobacillus acidophilus (L. acidophilus), and Candida albicans (C. albicans) using agar disc diffusion and microdilution assays. The antibiofilm of GA-AgNPs was evaluated on the surface of human tooth enamel that had been exposed to S. mutans with and without the GA-AgNPs using scanning electron microscopy (SEM). GA-AgNPs were spherical in shape with a particle size distribution between 4 and 26 nm. The GA-AgNPs exhibited antimicrobial activity against all the tested oral microbes, with GA-AgNPs_0.4g having higher antimicrobial activity. The GA-AgNPs_0.4g inhibited S. mutans adhesion and biofilm formation on the surface of the tooth enamel. Therefore, this study supports the prospective implementation of the plant extract-mediated AgNPs in dental healthcare.
Collapse
|
9
|
Gum Arabic nanoformulation rescues neuronal lesions in bromobenzene-challenged rats by its antioxidant, anti-apoptotic and cytoprotective potentials. Sci Rep 2022; 12:21213. [PMID: 36481816 PMCID: PMC9731957 DOI: 10.1038/s41598-022-24556-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
Bromobenzene (BB) is a hazardous environmental contaminant because of its multiple routes of exposure and the toxicity of its bio-derivates. It could elicit neuronal alterations by stimulating redox imbalance and apoptotic pathways. Gum Arabic (GA) protected the hippocampus of a type 2 diabetic rat model from cognitive decline. Whether gum Arabic nanoemulsion (GANE) can increase the neuroprotectant potency of GA in fighting BB-associated neurological lesions is the question to be answered. To accomplish this objective, 25 adult male Wistar rats were randomly and equally assigned into five groups. Control received olive oil (vehicle of BB). BB group received BB at a dose of 460 mg/kg BW. Blank nanoemulsion (BNE) group supplemented with BNE at 2 mL of 10% w/v aqueous suspension/kg BW. GANE group received GANE at a dose of 2 mL of 10% w/v aqueous suspension/kg BW. BB + GANE group exposed to BB in concomitant with GANE at the same previous doses. All interventions were carried out daily by oral gavage for ten consecutive days. BB caused a marked increase in malondialdehyde and succinate dehydrogenase together with a marked decrease in reduced glutathione, glutathione peroxidase, glutathione reductase, superoxide dismutase, catalase, and lactate dehydrogenase in the brain. BB was accompanied by pathological deteriorations, amyloidosis, and reduced immuno-expression of integrase interactor 1 in the hippocampal region. Administration of GANE was beneficial in reversing the aforementioned abnormalities. These results pave the road for further discovery of nano-formulated natural products to counter the threats of BB.
Collapse
|
10
|
Ahmed AA, Musa HH, Essa MEA, Mollica A, Zengin G, Ahmad H, Adam SY. Inhibition of obesity through alterations of C/EBP- α gene expression by gum Arabic in mice with a high-fat feed diet. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
11
|
Al-Baadani HH, Alhotan RA, Al-Abdullatif AA, Alhidary IA, Alharthi AS, Al-Mufarrej SI, Al-Garadi MA, Qaid MM, Al-Sagan AA, Ibrahim KE, Azzam MM. The Effect of Gum Arabic Supplementation on Growth Performance, Blood Indicators, Immune Response, Cecal Microbiota, and the Duodenal Morphology of Broiler Chickens. Animals (Basel) 2022; 12:2809. [PMID: 36290194 PMCID: PMC9597837 DOI: 10.3390/ani12202809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/09/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022] Open
Abstract
Gum Arabic (GA) belongs to the Fabaceae family and contains indigestible soluble fibers (80-85%) that could be fermented by commensal bacteria to enhance performance, immune response, and intestinal integrity. This study aimed to investigate the effects of GA on performance, serum biochemical indicators, microbiota, immune-related gene expression, and histological changes in chickens. Six GA levels (0.0, 0.12, 0.25, 0.5, 0.75, 1.0%) were allocated using a total of 432 1-day-old male chickens (12 replicates with 6 chickens each). Growth performance was evaluated on days 10 and 24 of age. Blood parameters, organ pH levels, and intestinal health were determined on day 10 of age. Results showed that GA at 0.12% increased weight gain and 0.12 to 1.0% decreased feed intake but was best in feed conversion ratio and production efficiency except for 1.0% on day 1-10 of age. There was an increase in the thymus weight at GA level 0.25 to 0.75%. GA decreased the pH value of the proventriculus (at 0.50 and 1.0%) as well as the duodenum and cecum (at 0.12 and 1.0%). Chickens fed GA between 0.25 to 1.0% had higher protein and HDL, but lower cholesterol, LDL, and creatinine. Globulin was increased at 0.50% GA, while glucose and triglycerides were decreased (at 0.25 and 0.75% GA, respectively). The immune-related gene expression was reduced, except for 0.25% GA, which increased IL-10. Furthermore, chickens fed GA (0.25 to 0.75%) had higher Lactobacillus spp. and lower Salmonella spp. and Escherichia coli. When chickens received GA, the villus length and length to crypt ratio were higher, which also improved the integrity of intestinal epithelial cells and early duodenal development. We conclude that using GA (0.25 to 0.75%) as a natural prebiotic positively affects the performance, microbiota, immune response, morphology, and gut health of post-hatched chickens. More studies are needed to determine the potential mechanism of GA on broiler chickens.
Collapse
Affiliation(s)
- Hani H. Al-Baadani
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Rashed A. Alhotan
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Abdulaziz A. Al-Abdullatif
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Ibrahim A. Alhidary
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Abdulrahman S. Alharthi
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Saud I. Al-Mufarrej
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Maged A. Al-Garadi
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Mohammed M. Qaid
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Ahmed A. Al-Sagan
- King Abdul-Aziz City for Science and Technology, Riyadh 11451, Saudi Arabia
| | - Khalid E. Ibrahim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Mahmoud M. Azzam
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Poultry Production Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
12
|
Al-Baadani HH, Al-Mufarrej SI, Azzam MM, Alharthi AS, Al-Garadi MA, Al-Gabri NA, Al-Abdullatif AA, Al-Sagan AA, Qaid MM, Alhidary IA. Evaluation of gum Arabic (Acacia Senegal) as a natural prebiotic to improve growth performance and health status of broiler chickens. Trop Anim Health Prod 2022; 54:244. [PMID: 35913613 DOI: 10.1007/s11250-022-03245-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/13/2022] [Indexed: 10/16/2022]
Abstract
Gum Arabic (GA) is a natural product containing soluble fiber that is indigestible in the gastrointestinal tract and has been used as a traditional medicine to treat many diseases such as intestinal inflammation, kidney disease, and liver disorders, which may be reflected in the improved performance of broiler chickens when used. Therefore, the main objective of the current study was to evaluate the effects of GA on the performance, immune system, visceral organs, functional tests, and histological changes of the ileum, liver, and kidneys of broilers. A total of 432 1-day-old male broilers were allocated to six dietary treatments (0.0, 0.12, 0.25, 0.5, 0.75, and 1.0% GA) for 35 days. Performance, internal organs, and blood biochemical indices were measured. Morphology and histometry of the intestine were also performed. Meanwhile, tissues of the ileum, liver, and kidney were examined and evaluated microscopically to observe histological changes. All levels of GA (0.12 to 1.0%) had a positive effect on growth performance and feed conversion ratio. In addition, GA had no effect on the relative weight of lymphoid and visceral organs, except for a linear response in the bursa and liver. The levels of GA (0.12 and 0.25%) showed the potential to decrease serum uric acid, creatinine, and alanine aminotransferase. The remarkable increase in small intestinal morphology of chickens fed GA and an increase in all histometric values of the ileum. All histological changes in the intestine, liver, and kidneys improved in chickens fed the basal diet containing 0.12 to 0.50% GA. These results provide useful evidence for the potential use of GA powder (Acacia senegal) as a natural prebiotic to improve performance and intestinal, liver, and kidney health in broiler chickens.
Collapse
Affiliation(s)
- Hani H Al-Baadani
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Saud I Al-Mufarrej
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Mahmoud M Azzam
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia. .,Department of Poultry Production, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt.
| | - Abdulrahman S Alharthi
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Maged A Al-Garadi
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Naif A Al-Gabri
- Department of Pathology, College of Veterinary Medicine, Thamar University, Dhamar, Yemen
| | - Abdulaziz A Al-Abdullatif
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Ahmed A Al-Sagan
- King Abdul-Aziz City for Science and Technology, Riyadh, 11451, Saudi Arabia
| | - Mohammed M Qaid
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Ibrahim A Alhidary
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
13
|
Naiel MA, Abd El-hameed SA, Arisha AH, Negm SS. Gum Arabic-enriched diet modulates growth, antioxidant defenses, innate immune response, intestinal microbiota and immune related genes expression in tilapia fish. AQUACULTURE 2022; 556:738249. [DOI: 10.1016/j.aquaculture.2022.738249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
14
|
Sikiru AB, Arangasamy A, Egena SSA, Veerasamy S, Reddy IJ, Raghavendra B. Elucidation of the liver proteome in response to an antioxidant intake in rabbits. EGYPTIAN LIVER JOURNAL 2021. [DOI: 10.1186/s43066-021-00118-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Antioxidant intakes are one of the most cherished dietary approaches for the management of oxidative stress-induced liver damages. These antioxidants exist as the bioactive compounds present in plants and other natural sources functioning in varieties of ways from acting as direct scavengers of the free radicals to acting as the modifiers of genes and proteins expressions. Chlorella vulgaris is one of such antioxidants; it is a unicellular microalga and a rich source of polyphenols which has been reported for its capacity of reducing oxidative stress by upregulation of antioxidant genes. However, there are scarce reports on its effect on antioxidant protein expressions and functions in the liver. This situation necessitates untargeted proteomic profiling of the liver due to the antioxidant intakes as carried out in this present study. Sixteen laboratory weaner rabbits of 8 weeks old with initial average bodyweight of 1060 ± 29.42 g were randomly divided into two groups (n = 8 per group); the first group served as control while the second served as the treatment group were used for this study.
Results
After a period of 120 days daily consumption of 500 mg of Chlorella vulgaris biomass per kg bodyweight of the rabbit models, the animals were sacrificed and their livers were harvested followed by protein extraction for the untargeted proteomic profiling using LC-MS/Orbitrap Fusion Tribrid™ peptides quantifier and sequencer. Also, there was an assessment of the oxidative stress biomarkers in the liver and serum of the rabbits. Five-hundred and forty-four (544) proteins were identified out of which 204 were unique to the control, 198 were unique to the treatment group, while 142 were common to both groups of the rabbits. Antioxidant proteins commonly found in both groups were upregulated in the treatment group and were significantly associated with oxidative stress-protective activities. There was a reduction in oxidative stress biomarkers of the supplemented group as indicated by the assessment of the liver malondialdehyde concentrations (p < 0.05), total antioxidant capacities (p < 0.05), and antioxidant enzyme activities (p < 0.05). Similarly, these biomarkers were significantly reduced in the serum of the supplemented rabbits (p < 0.05).
Conclusion
The study concluded that Chlorella vulgaris is an antioxidant agent that could be suitable for reducing liver oxidative stress damage and it is a potential drug candidate for protecting the liver against oxidative stress damages as revealed in the rabbit models.
Collapse
|
15
|
Effects of crude Sphallerocarpus gracilis polysaccharides as potential prebiotics on acidifying activity and growth of probiotics in fermented milk. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Avelino ALN, Silva NVRE, Oliveira GBD, Silva AADS, Cavalcanti BC, Jamacaru FVF, Dornelas CA. Antioxidant and Antigenotoxic Actions of Gum Arabic on the Intestinal Mucosa, Liver and Bone Marrow of Swiss Mice Submitted to Colorectal Carcinogenesis. Nutr Cancer 2021; 74:956-964. [PMID: 34085880 DOI: 10.1080/01635581.2021.1931699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Colorectal carcinogenesis is characterized by oxidative stress and the formation of aberrant crypts in its initial stages. Gum arabic (GA) is a natural product with antioxidant properties, and, therefore, supposed antitumor action. The aim of this study was to evaluate the effects of GA on the formation of aberrant crypts, as well as the local, hepatic, and systemic genotoxicity and oxidative stress. We induced colorectal carcinogenesis in Swiss male mice, afterwards treated them with water, 2.5% GA or 5% GA via gavage for twelve weeks and then performed surgery in order to obtain samples to analysis (proximal and distal colon, liver, blood, and bone marrow). The number of aberrant crypts in the GA-treated animals was lower than in the control groups. Likewise, there was a decline of colonic, hepatic, and systemic genotoxicity and oxidative stress. These results reflect the antioxidant role of GA and may lead to the development of treatments that inhibit colorectal carcinogenesis.
Collapse
Affiliation(s)
- André Luís Nunes Avelino
- Postgraduate Program in Medical-Surgical Sciences, School of Medicine, Federal University of Ceará (UFC), Fortaleza-CE, Brazil
| | | | | | - Antônio Adailson De Sousa Silva
- Nucleus for Research and Development of Medicines (NPDM), National Laboratory of Experimental Oncology, UFC, Fortaleza-CE, Brazil
| | - Bruno Coêlho Cavalcanti
- Nucleus for Research and Development of Medicines (NPDM), National Laboratory of Experimental Oncology, UFC, Fortaleza-CE, Brazil
| | - Francisco Vagnaldo Fechine Jamacaru
- Nucleus of Research and Development of Medicines (NPDM), Laboratory of Pharmacology and Preclinical Research, School of Medicine, UFC, Fortaleza-CE, Brazil
| | | |
Collapse
|
17
|
|
18
|
|
19
|
Chen WF, Malacco CMDS, Mehmood R, Johnson KK, Yang JL, Sorrell CC, Koshy P. Impact of morphology and collagen-functionalization on the redox equilibria of nanoceria for cancer therapies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111663. [PMID: 33545829 DOI: 10.1016/j.msec.2020.111663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/29/2020] [Accepted: 10/20/2020] [Indexed: 01/24/2023]
Abstract
The application of nanoparticulate therapies for cancer depends largely on the uptake and redox activity of the particles. The present work reports the fabrication of different morphologies of nanoceria (CeO2-x) as nanooctahedra (NO), nanorods (NR), and nanocubes (NC) by hydrothermal synthesis at different temperatures (100 °C, 180 °C) of solutions of 0.05 M Ce(NO3)3·6H2O and different concentrations of NaOH (0.01 M, 6.00 M). The characteristics of these nanomorphologies are compared in terms of the crystallinity (XRD), grain size (TEM), surface area (BET), tendency to agglomerate, and the oxygen vacancy concentration ([VO••]) as reflected by the [Ce3+]/[Ce4+] ratio (XPS). The effects of these parameters on the potential cellular uptake are canvassed, suggesting that the nonpolarity of the {111} planes of NO and NR facilitate the preferential uptake of these nanomorphologies. These experimental variables then were normalized through the use of NC as a model substrate for the functionalization using gum arabic (GA) and collagen in order to assess their roles in enhancing redox activity. Both the unfunctionalized and functionalized NC were noncytotoxic in in vitro tests with Kuramochi ovarian cancer cells. However, the antioxidant behavior of the collagen-functionalized NC was superior to that of the unfunctionalized NC, which was superior to that of the controls. These results demonstrate that, while the intrinsic VO•• of CeO2-x enhance the destruction of reactive oxygen species (ROS), functionalization by gum arabic and collagen crosslinking as extrinsic additions to the system enhances ROS destruction to an even greater extent. The antioxidant behavior and potential to neutralize superoxide and hydroxyl radicals of these materials offers new potential for the improvement of nanoparticulate cancer therapies.
Collapse
Affiliation(s)
- Wen-Fan Chen
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia; Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | | | - Rashid Mehmood
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia; School of Chemical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Kochurani K Johnson
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Jia-Lin Yang
- Prince of Wales Clinical School, Lowy Cancer Research Centre, School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | | | - Pramod Koshy
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia.
| |
Collapse
|
20
|
Comparative efficacy of Gum Arabic ( Acacia senegal) and Tribulus terrestris on male fertility. Saudi Pharm J 2021; 28:1791-1796. [PMID: 33424268 PMCID: PMC7783220 DOI: 10.1016/j.jsps.2020.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/12/2020] [Indexed: 11/24/2022] Open
Abstract
In this study the effect of Gum arabic (Acacia Senegal) was systemically targeted at male fertility with two experiments, the first comparing the effectiveness of Gum arabic (GA) and Tribulus terrestris (TT). For the first experiment, 27 adult mice Balb / c (18 females, 9 males) were divided into 3 in each group, one male and two females, group one had the usual tap water as power, group two had 5% (w / v) GA and group three had 5% (w / v) of TT for 21 days. The results showed, the number of offspring was more with GA treated when compared to TT treated. Blood measurements of testosterone showed significant increase in the GA group as compared to other groups, also Histopathological analysis showed the dose dependent 5% GA had normal seminiferous tubules with increase spermatogenesis. In this study the enhanced fertility in GA-treated mice Balb/c was observed and the experimental studies also show that GA fertility was increased.
Collapse
|
21
|
Polysaccharides from Hemp Seed Protect against Cyclophosphamide-Induced Intestinal Oxidative Damage via Nrf2-Keap1 Signaling Pathway in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1813798. [PMID: 32908623 PMCID: PMC7468657 DOI: 10.1155/2020/1813798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/14/2020] [Indexed: 02/04/2023]
Abstract
Hemp seed has been used as a traditional oriental medicine and health food in China for centuries. Polysaccharides from hemp seed (HSP) exhibit important properties of intestinal protection, but there are limited data on the specific underlying mechanism. The primary objective of this study was to investigate the protective effect of HSP on intestinal oxidative damage induced by cyclophosphamide (Cy) in mice. The results showed that pretreatment with HSP significantly increased the average daily gain, thymus index, spleen index, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activity in serum and ileal homogenate and significantly reduced malondialdehyde (MDA) content in ileal homogenate. In addition, the expression levels of SOD, GSH-Px, Nrf2, heme oxidase-1 (HO-1), and quinoneoxidoreductase-1 (NQO1) mRNA in ileal homogenate were significantly increased. Western blot results showed that HSP significantly upregulated the expression of Nrf2 protein and downregulated the expression of Keap1 protein in the ileum. Collectively, our findings indicated that HSP had protective effects on intestinal oxidative damage induced by Cy in mice, and its mechanism might be related to the activation of Nrf2-Keap1 signaling pathway.
Collapse
|
22
|
Gum Arabic improves the reproductive capacity through upregulation of testicular glucose transporters (GLUTs) mRNA expression in Alloxan induced diabetic rat. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.bcdf.2020.100218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Synthesis and antidiabetic activity of selenium nanoparticles in the presence of polysaccharides from Catathelasma ventricosum. Int J Biol Macromol 2018; 114:632-639. [PMID: 29601883 DOI: 10.1016/j.ijbiomac.2018.03.161] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/20/2018] [Accepted: 03/26/2018] [Indexed: 12/26/2022]
Abstract
Selenium nanoparticles (SeNPs) were prepared by adding Catathelasma ventricosum polysaccharides (CVPs) to the redox system of selenite and ascorbic acid. Taking particle size as an investigation index, the optimal synthesis conditions of CVPs-SeNPs were obtained by orthogonal test. Herein, the diameter, morphology, and stability of the CVPs-SeNPs were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Moreover, the antidiabetic activities of CVPs-SeNPs were evaluated by STZ (streptozocin)-induced diabetic mice. The obtained results showed that, optimum synthesis conditions of CVPs-SeNPs were: ultrasonic time 60min, concentration of Vc 0.04M, reaction time 2h, pH7.0. Under these conditions, mean diameter of the synthesized CVPs-SeNPs was around 49.73nm. TEM of CVPs-SeNPs prepared in optimal conditions showed individual and spherical nanostructure. CVPs-SeNPs (particle size of about 50nm) could be stable for approximately 3months at 4°C, but only 1month at 25°C. The results on serum profiles and antioxidant enzymes levels revealed that CVPs-SeNPs had a potential antidiabetic effect. In addition, CVPs-SeNPs showed significantly higher antidiabetic activity (p<0.05) than other selenium preparations such as SeNPs, selenocysteine, sodium selenite.
Collapse
|
24
|
Gum arabic improves semen quality and oxidative stress capacity in alloxan induced diabetes rats. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2016. [DOI: 10.1016/j.apjr.2016.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|