1
|
Ramos Gonzalez M, Axler MR, Kaseman KE, Lobene AJ, Farquhar WB, Witman MA, Kirkman DL, Lennon SL. Melatonin supplementation reduces nighttime blood pressure but does not affect blood pressure reactivity in normotensive adults on a high-sodium diet. Am J Physiol Regul Integr Comp Physiol 2023; 325:R465-R473. [PMID: 37642281 PMCID: PMC11178293 DOI: 10.1152/ajpregu.00101.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
High-sodium diets (HSDs) can cause exaggerated increases in blood pressure (BP) during physiological perturbations that cause sympathetic activation, which is related to cardiovascular risk. Melatonin supplementation has been shown to play a role in BP regulation. Our aim was to examine the effects of melatonin taken during an HSD on 24-h BP and BP reactivity during isometric handgrip (IHG) exercise, postexercise ischemia (PEI), and the cold pressor test (CPT). Twenty-two participants (11 men/11 women, 26.5 ± 3.1 yr, BMI: 24.1 ± 1.8 kg/m2, BP: 111 ± 9/67 ± 7 mmHg) were randomized to a 10-day HSD (6,900 mg sodium/day) that was supplemented with either 10 mg/day of melatonin (HSD + MEL) or placebo (HSD + PL). Twenty-four-hour ambulatory BP monitoring was assessed starting on day 9. Mean arterial pressure (MAP) was quantified during the last 30 s of IHG at 40% of maximal voluntary contraction and CPT, and during 3 min of PEI. Melatonin did not change 24-h MAP (HSD + PL: 83 ± 6 mmHg; HSD + MEL: 82 ± 5 mmHg; P = 0.23) but decreased nighttime peripheral (HSD + PL: 105 ± 10 mmHg; HSD + MEL: 100 ± 10 mmHg; P = 0.01) and central systolic BP (HSD + PL: 97 ± 9 mmHg; HSD + MEL: 93 ± 8 mmHg; P = 0.04) on the HSD compared with the HSD + PL. The absolute and percent change in MAP during IHG was not different between conditions (all P > 0.05). In conclusion, melatonin supplementation did not alter BP reactivity to the perturbations tested on an HSD but may be beneficial in lowering BP in young healthy normotensive adults.NEW & NOTEWORTHY BP reactivity was assessed during isometric handgrip (IHG) exercise, postexercise ischemia (PEI), and the cold pressor test (CPT) after 10 days of a high-sodium diet with and without melatonin supplementation. Melatonin did not alter BP reactivity in healthy normotensive men and women. However, melatonin did decrease nighttime peripheral and central systolic BP, suggesting it may be beneficial in lowering BP even in those with a normal BP.
Collapse
Affiliation(s)
- Macarena Ramos Gonzalez
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| | - Michael R Axler
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| | - Kathryn E Kaseman
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| | - Andrea J Lobene
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| | - William B Farquhar
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| | - Melissa A Witman
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| | - Danielle L Kirkman
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Shannon L Lennon
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| |
Collapse
|
2
|
Soler-Botija C, Gálvez-Montón C, Bayés-Genís A. Epigenetic Biomarkers in Cardiovascular Diseases. Front Genet 2019; 10:950. [PMID: 31649728 PMCID: PMC6795132 DOI: 10.3389/fgene.2019.00950] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/05/2019] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular diseases are the number one cause of death worldwide and greatly impact quality of life and medical costs. Enormous effort has been made in research to obtain new tools for efficient and quick diagnosis and predicting the prognosis of these diseases. Discoveries of epigenetic mechanisms have related several pathologies, including cardiovascular diseases, to epigenetic dysregulation. This has implications on disease progression and is the basis for new preventive strategies. Advances in methodology and big data analysis have identified novel mechanisms and targets involved in numerous diseases, allowing more individualized epigenetic maps for personalized diagnosis and treatment. This paves the way for what is called pharmacoepigenetics, which predicts the drug response and develops a tailored therapy based on differences in the epigenetic basis of each patient. Similarly, epigenetic biomarkers have emerged as a promising instrument for the consistent diagnosis and prognosis of cardiovascular diseases. Their good accessibility and feasible methods of detection make them suitable for use in clinical practice. However, multicenter studies with a large sample population are required to determine with certainty which epigenetic biomarkers are reliable for clinical routine. Therefore, this review focuses on current discoveries regarding epigenetic biomarkers and its controversy aiming to improve the diagnosis, prognosis, and therapy in cardiovascular patients.
Collapse
Affiliation(s)
- Carolina Soler-Botija
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina Gálvez-Montón
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Antoni Bayés-Genís
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
- Cardiology Service, HUGTiP, Badalona, Spain
- Department of Medicine, Barcelona Autonomous University (UAB), Badalona, Spain
| |
Collapse
|
3
|
Arif M, Sadayappan S, Becker RC, Martin LJ, Urbina EM. Epigenetic modification: a regulatory mechanism in essential hypertension. Hypertens Res 2019; 42:1099-1113. [PMID: 30867575 DOI: 10.1038/s41440-019-0248-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/26/2019] [Accepted: 02/12/2019] [Indexed: 12/15/2022]
Abstract
Essential hypertension (EH) is a multifactorial disease of the cardiovascular system that is influenced by the interplay of genetic, epigenetic, and environmental factors. The molecular dynamics underlying EH etiopathogenesis is unknown; however, earlier studies have revealed EH-associated genetic variants. Nevertheless, this finding alone is not sufficient to explain the variability in blood pressure, suggesting that other risk factors are involved, such as epigenetic modifications. Therefore, this review highlights the potential contribution of well-defined epigenetic mechanisms in EH, specifically, DNA methylation, post-translational histone modifications, and microRNAs. We further emphasize global and gene-specific DNA methylation as one of the most well-studied hallmarks among all epigenetic modifications in EH. In addition, post-translational histone modifications, such as methylation, acetylation, and phosphorylation, are described as important epigenetic markers associated with EH. Finally, we discuss microRNAs that affect blood pressure by regulating master genes such as those implicated in the renin-angiotensin-aldosterone system. These epigenetic modifications, which appear to contribute to various cardiovascular diseases, including EH, may be a promising research area for the development of novel future strategies for EH prevention and therapeutics.
Collapse
Affiliation(s)
- Mohammed Arif
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, 45267, USA.,Division of Preventive Cardiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Richard C Becker
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Lisa J Martin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Elaine M Urbina
- Division of Preventive Cardiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
4
|
|
5
|
Simko F, Baka T, Paulis L, Reiter RJ. Elevated heart rate and nondipping heart rate as potential targets for melatonin: a review. J Pineal Res 2016; 61:127-37. [PMID: 27264986 DOI: 10.1111/jpi.12348] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/03/2016] [Indexed: 01/08/2023]
Abstract
Elevated heart rate is a risk factor for cardiovascular and all-cause mortalities in the general population and various cardiovascular pathologies. Insufficient heart rate decline during the night, that is, nondipping heart rate, also increases cardiovascular risk. Abnormal heart rate reflects an autonomic nervous system imbalance in terms of relative dominance of sympathetic tone. There are only a few prospective studies concerning the effect of heart rate reduction in coronary heart disease and heart failure. In hypertensive patients, retrospective analyses show no additional benefit of slowing down the heart rate by beta-blockade to blood pressure reduction. Melatonin, a secretory product of the pineal gland, has several attributes, which predict melatonin to be a promising candidate in the struggle against elevated heart rate and its consequences in the hypertensive population. First, melatonin production depends on the sympathetic stimulation of the pineal gland. On the other hand, melatonin inhibits the sympathetic system in several ways representing potentially the counter-regulatory mechanism to normalize excessive sympathetic drive. Second, administration of melatonin reduces heart rate in animals and humans. Third, the chronobiological action of melatonin may normalize the insufficient nocturnal decline of heart rate. Moreover, melatonin reduces the development of endothelial dysfunction and atherosclerosis, which are considered a crucial pathophysiological disorder of increased heart rate and pulsatile blood flow. The antihypertensive and antiremodeling action of melatonin along with its beneficial effects on lipid profile and insulin resistance may be of additional benefit. A clinical trial investigating melatonin actions in hypertensive patients with increased heart rate is warranted.
Collapse
Affiliation(s)
- Fedor Simko
- Department of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
- 3rd Clinic of Medicine, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
- Institute of Experimental Endocrinology BMC, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Tomas Baka
- Department of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| | - Ludovit Paulis
- Department of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| |
Collapse
|
6
|
Martinez SR, Gay MS, Zhang L. Epigenetic mechanisms in heart development and disease. Drug Discov Today 2015; 20:799-811. [PMID: 25572405 PMCID: PMC4492921 DOI: 10.1016/j.drudis.2014.12.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/05/2014] [Accepted: 12/29/2014] [Indexed: 12/11/2022]
Abstract
Suboptimal intrauterine development has been linked to predisposition to cardiovascular disease in adulthood, a concept termed 'developmental origins of health and disease'. Although the exact mechanisms underlying this developmental programming are unknown, a growing body of evidence supports the involvement of epigenetic regulation. Epigenetic mechanisms such as DNA methylation, histone modifications and micro-RNA confer added levels of gene regulation without altering DNA sequences. These modifications are relatively stable signals, offering possible insight into the mechanisms underlying developmental origins of health and disease. This review will discuss the role of epigenetic mechanisms in heart development as well as aberrant epigenetic regulation contributing to cardiovascular disease. Additionally, we will address recent advances targeting epigenetic mechanisms as potential therapeutic approaches to cardiovascular disease.
Collapse
Affiliation(s)
- Shannalee R Martinez
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Maresha S Gay
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Lubo Zhang
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| |
Collapse
|
7
|
Ferreira DS, Liu Y, Fernandes MP, Lagranha CJ. Perinatal low-protein diet alters brainstem antioxidant metabolism in adult offspring. Nutr Neurosci 2015; 19:369-375. [PMID: 26035485 DOI: 10.1179/1476830515y.0000000030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND OBJECTIVES Studies in humans and animal models have established a close relationship between early environment insult and subsequent risk of development of non-communicable diseases, including the cardiovascular. Whereas experimental evidences highlight the early undernutrition and the late cardiovascular disease relation, the central mechanisms linking the two remain unknown. Owing to the oxidative balance influence in several pathologies, the aim of the present study was to evaluate the effects of maternal undernutrition (i.e. a low-protein (LP) diet) on oxidative balance in the brainstem. METHODS AND RESULTS Male rats from mothers fed with an LP diet (8% casein) throughout the perinatal period (i.e. gestation and lactation) showed 10× higher lipid peroxidation levels than animals treated with normoprotein (17% casein) at 100 days of age. In addition, we observed the following reductions in enzymatic activities: superoxide dismutase, 16%; catalase, 30%; glutathione peroxidase, 34%; glutathione-S-transferase, 51%; glutathione reductase, 23%; glucose-6-phosphate dehydrogenase, 31%; and in non-enzymatic glutathione system, 46%. DISCUSSION This study is the first to focus on the role of maternal LP nutrition in oxidative balance in a central nervous system structure responsible for cardiovascular control in adult rats. Our data observed changes in oxidative balance in the offspring, therefore, bring a new concept related to early undernutrition and can help in the development of a new clinical strategy to combat the effects of nutritional insult. Wherein the central oxidative imbalance is a feasible mechanism underlying the hypertension risk in adulthood triggered by maternal LP diet.
Collapse
Affiliation(s)
- Diorginis Soares Ferreira
- a Neuropsychiatry and Behavior Science Graduate Program , Federal University of Pernambuco , Vitória de Santo Antão 50670-901 , Brazil.,b Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science , Federal University of Pernambuco-CAV , Vitória de Santo Antão 55608-680 , Brazil
| | - Yuri Liu
- b Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science , Federal University of Pernambuco-CAV , Vitória de Santo Antão 55608-680 , Brazil
| | - Mariana Pinheiro Fernandes
- b Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science , Federal University of Pernambuco-CAV , Vitória de Santo Antão 55608-680 , Brazil
| | - Claudia Jacques Lagranha
- a Neuropsychiatry and Behavior Science Graduate Program , Federal University of Pernambuco , Vitória de Santo Antão 50670-901 , Brazil.,b Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science , Federal University of Pernambuco-CAV , Vitória de Santo Antão 55608-680 , Brazil
| |
Collapse
|
8
|
Hypertensive epigenetics: from DNA methylation to microRNAs. J Hum Hypertens 2015; 29:575-82. [PMID: 25631220 DOI: 10.1038/jhh.2014.132] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/18/2014] [Accepted: 12/09/2014] [Indexed: 01/13/2023]
Abstract
The major epigenetic features of mammalian cells include DNA methylation, posttranslational histone modifications and RNA-based mechanisms including those controlled by small non-coding RNAs (microRNAs (miRNAs)). An important aspect of epigenetic mechanisms is that they are potentially reversible and may be influenced by nutritional-environmental factors and through gene-environment interactions. Studies on epigenetic modulations could help us understand the mechanisms involved in essential hypertension and further prevent it's progress. This review is focused on new knowledge on the role of epigenetics, from DNA methylation to miRNAs, in essential hypertension.
Collapse
|
9
|
Hardeland R. Melatonin, noncoding RNAs, messenger RNA stability and epigenetics--evidence, hints, gaps and perspectives. Int J Mol Sci 2014; 15:18221-52. [PMID: 25310649 PMCID: PMC4227213 DOI: 10.3390/ijms151018221] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 09/21/2014] [Accepted: 09/24/2014] [Indexed: 02/06/2023] Open
Abstract
Melatonin is a highly pleiotropic regulator molecule, which influences numerous functions in almost every organ and, thus, up- or down-regulates many genes, frequently in a circadian manner. Our understanding of the mechanisms controlling gene expression is actually now expanding to a previously unforeseen extent. In addition to classic actions of transcription factors, gene expression is induced, suppressed or modulated by a number of RNAs and proteins, such as miRNAs, lncRNAs, piRNAs, antisense transcripts, deadenylases, DNA methyltransferases, histone methylation complexes, histone demethylases, histone acetyltransferases and histone deacetylases. Direct or indirect evidence for involvement of melatonin in this network of players has originated in different fields, including studies on central and peripheral circadian oscillators, shift work, cancer, inflammation, oxidative stress, aging, energy expenditure/obesity, diabetes type 2, neuropsychiatric disorders, and neurogenesis. Some of the novel modulators have also been shown to participate in the control of melatonin biosynthesis and melatonin receptor expression. Future work will need to augment the body of evidence on direct epigenetic actions of melatonin and to systematically investigate its role within the network of oscillating epigenetic factors. Moreover, it will be necessary to discriminate between effects observed under conditions of well-operating and deregulated circadian clocks, and to explore the possibilities of correcting epigenetic malprogramming by melatonin.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Berliner Str. 28, Göttingen D-37073, Germany.
| |
Collapse
|
10
|
Pechanova O, Paulis L, Simko F. Peripheral and central effects of melatonin on blood pressure regulation. Int J Mol Sci 2014; 15:17920-37. [PMID: 25299692 PMCID: PMC4227197 DOI: 10.3390/ijms151017920] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/17/2014] [Accepted: 09/17/2014] [Indexed: 01/01/2023] Open
Abstract
The pineal hormone, melatonin (N-acetyl-5-methoxytryptamine), shows potent receptor-dependent and -independent actions, which participate in blood pressure regulation. The antihypertensive effect of melatonin was demonstrated in experimental and clinical hypertension. Receptor-dependent effects are mediated predominantly through MT1 and MT2 G-protein coupled receptors. The pleiotropic receptor-independent effects of melatonin with a possible impact on blood pressure involve the reactive oxygen species (ROS) scavenging nature, activation and over-expression of several antioxidant enzymes or their protection from oxidative damage and the ability to increase the efficiency of the mitochondrial electron transport chain. Besides the interaction with the vascular system, this indolamine may exert part of its antihypertensive action through its interaction with the central nervous system (CNS). The imbalance between the sympathetic and parasympathetic vegetative system is an important pathophysiological disorder and therapeutic target in hypertension. Melatonin is protective in CNS on several different levels: It reduces free radical burden, improves endothelial dysfunction, reduces inflammation and shifts the balance between the sympathetic and parasympathetic system in favor of the parasympathetic system. The increased level of serum melatonin observed in some types of hypertension may be a counter-regulatory adaptive mechanism against the sympathetic overstimulation. Since melatonin acts favorably on different levels of hypertension, including organ protection and with minimal side effects, it could become regularly involved in the struggle against this widespread cardiovascular pathology.
Collapse
Affiliation(s)
- Olga Pechanova
- Institute of Normal and Pathological Physiology and Centre of Excellence for Nitric Oxide Research, Slovak Academy of Sciences, Bratislava 81371, Slovak Republic.
| | - Ludovit Paulis
- Institute of Normal and Pathological Physiology and Centre of Excellence for Nitric Oxide Research, Slovak Academy of Sciences, Bratislava 81371, Slovak Republic.
| | - Fedor Simko
- Department of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava 81371, Slovak Republic.
| |
Collapse
|
11
|
Epigenetics, the missing link in hypertension. Life Sci 2014; 129:22-6. [PMID: 25128856 DOI: 10.1016/j.lfs.2014.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/15/2014] [Accepted: 08/01/2014] [Indexed: 12/11/2022]
Abstract
Epigenetics refers to functional alterations in gene expression or phenotype without any change of the underlying DNA sequence. It is the study of the potential of a cell or organism to express different traits through functional regulation of its gene transcription. Though it is met as a necessary process in biology, epigenetics may often play a crucial part in the development of specific pathologic conditions, including cardiovascular diseases and hypertension.
Collapse
|
12
|
Saco TV, Parthasarathy PT, Cho Y, Lockey RF, Kolliputi N. Role of epigenetics in pulmonary hypertension. Am J Physiol Cell Physiol 2014; 306:C1101-5. [PMID: 24717578 PMCID: PMC4060002 DOI: 10.1152/ajpcell.00314.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 04/06/2014] [Indexed: 11/22/2022]
Abstract
A significant amount of research has been conducted to examine the pathologic processes and epigenetic mechanisms contributing to peripheral hypertension. However, few studies have been carried out to understand the vascular remodeling behind pulmonary hypertension (PH), including peripheral artery muscularization, medial hypertrophy and neointima formation in proximal arteries, and plexiform lesion formation. Similarly, research examining some of the epigenetic principles that may contribute to this vascular remodeling, such as DNA methylation and histone modification, is minimal. The understanding of these principles may be the key to developing new and more effective treatments for PH. The purpose of this review is to summarize epigenetic research conducted in the field of hypertension that could possibly be used to understand the epigenetics of PH. Possible future therapies that could be pursued using information from these studies include selective histone deacetylase inhibitors and targeted DNA methyltransferases. Both of these could potentially be used to silence proproliferative or antiapoptotic genes that lead to decreased smooth muscle cell proliferation. Epigenetics may provide a glimmer of hope for the eventual improved treatment of this highly morbid and debilitating disease.
Collapse
Affiliation(s)
- Tara V Saco
- Division of Allergy and Immunology, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Prasanna Tamarapu Parthasarathy
- Division of Allergy and Immunology, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Young Cho
- Division of Allergy and Immunology, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Richard F Lockey
- Division of Allergy and Immunology, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
13
|
Huber M, Treszl A, Reibis R, Teichmann C, Zergibel I, Bolbrinker J, Scholze J, Wegscheider K, Völler H, Kreutz R. Genetics of melatonin receptor type 2 is associated with left ventricular function in hypertensive patients treated according to guidelines. Eur J Intern Med 2013; 24:650-5. [PMID: 23611530 DOI: 10.1016/j.ejim.2013.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/18/2013] [Accepted: 03/24/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND Melatonin exerts multiple biological effects with potential impact on human diseases. This is underscored by genetic studies that demonstrated associations between melatonin receptor type 2 gene (MTNR1B) polymorphisms and characteristics of type 2 diabetes. We set out to test the hypothesis whether genetic variants at MTNR1B are also relevant for other disease phenotypes within the cardiovascular continuum. We thus investigated single nucleotide polymorphisms (SNPs) of MTNR1B in relation to blood pressure (BP) and cardiac parameters in hypertensive patients. METHODS Patients (n=605, mean age 56.2±9.4years, 82.3% male) with arterial hypertension and cardiac ejection fraction (EF) ≥40% were studied. Cardiac parameters were assessed by echocardiography. RESULTS The cohort comprised subjects with coronary heart disease (73.1%) and myocardial infarction (48.1%) with a mean EF of 63.7±8.9%. Analysis of SNPs rs10830962, rs4753426, rs12804291, rs10830963, and rs3781638 revealed two haplotypes 1 and 2 with frequencies of 0.402 and 0.277, respectively. Carriers with haplotype 1 (CTCCC) showed compared to non-carriers a higher mean 24-hour systolic BP (difference BP: 2.4mmHg, 95% confidence interval (CI): 0.3 to 4.5mmHg, p=0.023). Haplotype 2 (GCCGA) was significantly related to EF with an absolute increase of 1.8% (CI: 0.45 to 3.14%) in carriers versus non-carriers (p=0.009). CONCLUSION Genetics of MTNR1B point to impact of the melatonin signalling pathway for BP and left ventricular function. This may support the importance of the melatonin system as a potential therapeutic target.
Collapse
MESH Headings
- Aged
- Echocardiography
- Female
- Haplotypes
- Humans
- Hypertension/genetics
- Hypertension/metabolism
- Hypertension/therapy
- Male
- Middle Aged
- Polymorphism, Single Nucleotide
- Practice Guidelines as Topic
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT2
- Signal Transduction/physiology
- Ventricular Dysfunction, Left/diagnostic imaging
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/therapy
- Ventricular Function, Left/genetics
Collapse
Affiliation(s)
- Matthias Huber
- Institute of Clinical Pharmacology and Toxicology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Houston MC. The role of nutrition and nutraceutical supplements in the prevention and treatment of hypertension. ACTA ACUST UNITED AC 2013. [DOI: 10.2217/cpr.13.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Campos LA, Cipolla-Neto J, Michelini LC. Melatonin modulates baroreflex control via area postrema. Brain Behav 2013; 3:171-7. [PMID: 23531786 PMCID: PMC3607157 DOI: 10.1002/brb3.123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 12/15/2012] [Accepted: 12/23/2012] [Indexed: 11/12/2022] Open
Abstract
Pineal gland and its hormone melatonin have been implicated in modulation of cardiovascular system. We aimed at studying the effects of melatonin on baroreflex sensitivity and the role of area postrema, as a component modulator of baroreflex arch. Mean arterial pressure (MAP) and heart rate (HR) were recorded in conscious freely moving rats. Baroreceptor reflex sensitivity was assessed by determining the HR responses to ramped infusions of phenylephrine (PE) and sodium nitroprusside (SNP)-induced MAP changes. Melatonin bolus (0.11 mg/kg) immediately followed by its continuous infusion (0.43 × 10(-9) mol/L at a rate of 0.65 mL/h for 30 min) in healthy normotensive rats produced a downward shift of baroreceptor reflex control with a substantial inhibition of reflex tachycardia (-32%) and potentiation of reflex bradycardia (+20%). Ablation of area postrema (APX group) induced a sustained decrease of MAP (101 ± 3 vs. 116 ± 3 mmHg, P < 0.05 in comparison with sham rats, respectively). The melatonin-induced alterations of baroreflex function observed in the sham group were abolished in the APX group. We conclude that circulating melatonin can modulate baroreceptor reflex control of HR, thus resetting it toward lower HR values. The modulatory effects of melatonin may be mediated via melatonin receptors in the area postrema, located outside the blood-brain barrier.
Collapse
Affiliation(s)
- Luciana A Campos
- São José dos Campos Technology Park, University Camilo Castelo Branco (UNICASTELO) São Paulo, Brazil ; Department of Physiology Institute of Biomedical Sciences, University of Sao Paulo Sao Paulo, Brazil
| | | | | |
Collapse
|
16
|
Abstract
Epigenetics refers to mechanisms for environment-gene interactions (mainly by methylation of DNA and modification of histones) that do not alter the underlying base sequence of the gene. This article reviews evidence for epigenetic contributions to hypertension. For example, DNA methylation at CpG islands and histone acetylation pathways are known to limit nephron development, thereby unmasking hypertension associated with exposure to a high-salt diet. Maternal water deprivation and protein deficiency are shown to increase expression of renin-angiotensin system genes in the offspring. The methylation pattern of a serine protease inhibitor gene in human placentas is shown to be a marker for preeclampsia-associated hypertension. Mental stress induces phenylethanolamine n-methyltransferase, which may act as a DNA methylase and mimic the gene-silencing effects of methyl CpG binding protein-2 on the norepinephrine transporter gene, which, in turn, may exaggerate autonomic responsiveness. A disrupter of telomeric silencing (Dot1) is known to modulate the expression of a connective-tissue growth-factor gene associated with blood vessel remodeling, which could alter vascular compliance and elastance. Dot1a also interacts with the Af9 gene to produce high sodium channel permeability and silences the hydroxysteroid dehydrogenase-11β2 gene, thereby preventing metabolism of cortisol to cortisone and overstimulating aldosterone receptors. These findings indicate targets for environment-gene interactions in various hypertensive states and in essential hypertension.
Collapse
Affiliation(s)
- Richard M Millis
- Department of Physiology & Biophysics, Howard University College of Medicine, 520 "W" Street NW, Washington, DC 20059, USA.
| |
Collapse
|
17
|
Multifunctional Merkel cells: Their roles in electromagnetic reception, finger-print formation, Reiki, epigenetic inheritance and hair form. Med Hypotheses 2010; 75:162-8. [DOI: 10.1016/j.mehy.2010.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 02/10/2010] [Indexed: 01/20/2023]
|
18
|
Transcriptome analysis of nicotine-exposed cells from the brainstem of neonate spontaneously hypertensive and Wistar Kyoto rats. THE PHARMACOGENOMICS JOURNAL 2009; 10:134-60. [DOI: 10.1038/tpj.2009.42] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Melatonin and the ovary: physiological and pathophysiological implications. Fertil Steril 2009; 92:328-43. [DOI: 10.1016/j.fertnstert.2008.05.016] [Citation(s) in RCA: 246] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 05/02/2008] [Accepted: 05/05/2008] [Indexed: 10/21/2022]
|
20
|
Ferrari MFR, Reis EM, Matsumoto JPP, Fior-Chadi DR. Gene expression profiling of cultured cells from brainstem of newborn spontaneously hypertensive and Wistar Kyoto rats. Cell Mol Neurobiol 2009; 29:287-308. [PMID: 18949554 DOI: 10.1007/s10571-008-9321-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 09/26/2008] [Indexed: 02/07/2023]
Abstract
The spontaneously hypertensive rat (SHR) is a good model to study several diseases such as the attention-deficit hyperactivity disorder, cardiopulmonary impairment, nephropathy, as well as hypertension, which is a multifactor disease that possibly involves alterations in gene expression in hypertensive relative to normotensive subjects. In this study, we used high-density oligoarrays to compare gene expression profiles in cultured neurons and glia from brainstem of newborn normotensive Wistar Kyoto (WKY) and SHR rats. We found 376 genes differentially expressed between SHR and WKY brainstem cells that preferentially map to 17 metabolic/signaling pathways. Some of the pathways and regulated genes identified herein are obviously related to cardiovascular regulation; in addition there are several genes differentially expressed in SHR not yet associated to hypertension, which may be attributed to other differences between SHR and WKY strains. This constitute a rich resource for the identification and characterization of novel genes associated to phenotypic differences observed in SHR relative to WKY, including hypertension. In conclusion, this study describes for the first time the gene profiling pattern of brainstem cells from SHR and WKY rats, which opens up new possibilities and strategies of investigation and possible therapeutics to hypertension, as well as for the understanding of the brain contribution to phenotypic differences between SHR and WKY rats.
Collapse
Affiliation(s)
- Merari F R Ferrari
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14, n.321 Cidade Universitária, Sao Paulo, SP, 05508-090, Brazil.
| | | | | | | |
Collapse
|
21
|
Li HL, Kang YM, Yu L, Xu HY, Zhao H. MELATONIN REDUCES BLOOD PRESSURE IN RATS WITH STRESS-INDUCED HYPERTENSION VIA GABAARECEPTORS. Clin Exp Pharmacol Physiol 2009; 36:436-40. [DOI: 10.1111/j.1440-1681.2008.05080.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Kedziora-Kornatowska K, Szewczyk-Golec K, Czuczejko J, Pawluk H, van Marke de Lumen K, Kozakiewicz M, Bartosz G, Kedziora J. Antioxidative effects of melatonin administration in elderly primary essential hypertension patients. J Pineal Res 2008; 45:312-7. [PMID: 18363674 DOI: 10.1111/j.1600-079x.2008.00592.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The imbalance of the redox state of the aging organism may be involved in the development of primary essential hypertension. Melatonin, a potent antioxidant agent, was found to exert a hypotensive effect and improve the function of the cardiovascular system. The aim of this study was to determine the influence of melatonin supplementation on oxidative stress parameters in elderly primary essential hypertensive (EH) patients, controlled by a diuretic (indapamide) monotherapy. The levels of malondialdehyde (MDA) and reduced glutathione (GSH), activities of Cu-Zn superoxide dismutase (SOD-1), catalase (CAT) and glutathione peroxidase (GSH-Px) in erythrocytes, the plasma level of nitrate/nitrite, the content of carbonyl groups of plasma proteins and morning melatonin levels in the serum of 17 elderly EH patients were determined at the baseline and after the 15th and 30th days of melatonin supplementation (5 mg daily). Melatonin administration resulted in a significant increase in the morning melatonin concentration, SOD-1 and CAT activities, and a reduction in the MDA level. Statistically significant alterations in the levels of GSH, nitrate/nitrite and carbonyl groups and the activity of GSH-Px were not observed. These results indicate an improvement in the antioxidative defense of the organism by melatonin supplementation in the examined group and may suggest melatonin supplementation as an additional treatment supporting hypotensive therapy in elderly EH patients.
Collapse
|
23
|
Blood pressure changes in young male subjects exposed to a median altitude. Clin Auton Res 2008; 18:84-9. [DOI: 10.1007/s10286-008-0459-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 03/05/2008] [Indexed: 10/22/2022]
|
24
|
Abstract
Epigenetic, modifications of DNA and histones, i.e. heritable alterations in gene expression that do not involve changes in DNA sequences, are known to be involved in disease. Two important epigenetic changes that contribute to disease are abnormal methylation patterns of DNA and modifications of histones in chromatin. Epimutations, such as the hypermethylation and epigenetic silencing of tumor suppressor genes, have revealed a new area for cancer treatment. Studies using DNA methyltransferase inhibitors such as procaine, hydralazine, and RG108 have had promising outcomes against cancer therapy. Melatonin, one of the most versatile molecules in nature, may hypothetically be involved in epigenetic regulation. In this review, the potential role of melatonin in inhibiting DNA methyltransferase and epigenetic regulation is discussed.
Collapse
Affiliation(s)
- Ahmet Korkmaz
- Department of Physiology, School of Medicine, Gulhane Military Medical Academy, Ankara, Turkey.
| | | |
Collapse
|
25
|
Wang YR, Wang J, Li L, Shen LL, Cao YX, Zhu DN. Relationship between the central hypotensive effect of acupuncture or melatonin and the changes of medullary amino acid neurotransmitter. JOURNAL OF ACUPUNCTURE AND TUINA SCIENCE 2007. [DOI: 10.1007/s11726-007-0274-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Abstract
The number of patients with well-controlled hypertension is alarmingly low worldwide and new approaches to treatment of increased blood pressure (BP) are being sought. Melatonin has a role in blood pressure regulation. The nighttime production of melatonin is found to be reduced in hypertensive individuals. Administration of melatonin decreased BP in several animal models of hypertension, in healthy men and women, and in patients with arterial hypertension. Most promising results were achieved in patients with non-dipping nighttime pressure, in which the circadian rhythm of BP variation is disturbed. Several potential mechanisms of BP reduction are considered. Melatonin can, via its scavenging and antioxidant nature, improve endothelial function with increased availability of nitric oxide exerting vasodilatory and hypotensive effects. Melatonin seems to interfere with peripheral and central autonomic system, with a subsequent decrease in the tone of the adrenergic system and an increase of the cholinergic system. Melatonin may act on BP also via specific melatonin receptors localized in peripheral vessels or in parts of central nervous system participating in BP control. With a large clinical trial using melatonin in hypertension treatment, many important questions could be answered, such as the dose of melatonin and regimen of its application, the choice of patients with greatest possible benefit from melatonin treatment, the potential of anti-remodeling effect of melatonin and the interaction of melatonin with other antihypertensive drugs.
Collapse
Affiliation(s)
- Fedor Simko
- Department of Pathophysiology, School of Medicine, Komensdy University, Bratislava, Slovak Republic.
| | | |
Collapse
|