1
|
Dadgar-Zankbar L, Elahi Z, Shariati A, Khaledi A, Razavi S, Khoshbayan A. Exploring the role of Fusobacterium nucleatum in colorectal cancer: implications for tumor proliferation and chemoresistance. Cell Commun Signal 2024; 22:547. [PMID: 39548531 PMCID: PMC11566256 DOI: 10.1186/s12964-024-01909-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/24/2024] [Indexed: 11/18/2024] Open
Abstract
Fusobacterium nucleatum (Fn) has been extensively studied for its connection to colorectal cancer (CRC) and its potential role in chemotherapy resistance. Studies indicate that Fn is commonly found in CRC tissues and is associated with unfavorable prognosis and treatment failure. It has been shown that Fn promotes chemoresistance by affecting autophagy, a cellular process that helps cells survive under stressful conditions. Additionally, Fn targets specific signaling pathways that activate particular microRNAs and modulate the response to chemotherapy. Understanding the current molecular mechanisms and investigating the importance of Fn-inducing chemoresistance could provide valuable insights for developing novel therapies. This review surveys the role of Fn in tumor proliferation, metastasis, and chemoresistance in CRC, focusing on its effects on the tumor microenvironment, gene expression, and resistance to conventional chemotherapy drugs. It also discusses the therapeutic implications of targeting Fn in CRC treatment and highlights the need for further research.
Collapse
Affiliation(s)
- Leila Dadgar-Zankbar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Vice Chancellery of Education and Research, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Aref Shariati
- Infectious Diseases Research Center (IDRC), Arak University of Medical Sciences, Arak, Iran
| | - Azad Khaledi
- Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
- Department of Microbiology and Immunology, School of Medicine, Kashan University of Medical Sciences, P.O. Box: 87155.111, Kashan, 87154, Iran
| | - Shabnam Razavi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Amin Khoshbayan
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Gut Metabolites and Breast Cancer: The Continuum of Dysbiosis, Breast Cancer Risk, and Potential Breast Cancer Therapy. Int J Mol Sci 2022; 23:ijms23169490. [PMID: 36012771 PMCID: PMC9409206 DOI: 10.3390/ijms23169490] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 12/02/2022] Open
Abstract
The complex association between the gut microbiome and cancer development has been an emerging field of study in recent years. The gut microbiome plays a crucial role in the overall maintenance of human health and interacts closely with the host immune system to prevent and fight infection. This review was designed to draw a comprehensive assessment and summary of recent research assessing the anticancer activity of the metabolites (produced by the gut microbiota) specifically against breast cancer. In this review, a total of 2701 articles were screened from different scientific databases (PubMed, Scopus, Embase and Web of Science) with 72 relevant articles included based on the predetermined inclusion and exclusion criteria. Metabolites produced by the gut microbial communities have been researched for their health benefits and potential anticancer activity. For instance, the short-chain fatty acid, butyrate, has been evaluated against multiple cancer types, including breast cancer, and has demonstrated anticancer potential via various molecular pathways. Similarly, nisin, a bacteriocin, has presented with a range of anticancer properties primarily against gastrointestinal cancers, with nominal evidence supporting its use against breast cancer. Comparatively, a natural purine nucleoside, inosine, though it has not been thoroughly investigated as a natural anticancer agent, has shown promise in recent studies. Additionally, recent studies demonstrated that gut microbial metabolites influence the efficacy of standard chemotherapeutics and potentially be implemented as a combination therapy. Despite the promising evidence supporting the anticancer action of gut metabolites on different cancer types, the molecular mechanisms of action of this activity are not well established, especially against breast cancer and warrant further investigation. As such, future research must prioritise determining the dose-response relationship, molecular mechanisms, and conducting animal and clinical studies to validate in vitro findings. This review also highlights the potential future directions of this field.
Collapse
|
3
|
Abstract
Metagenomic analyses have revealed microbial dysbiosis in the gut of patients with colorectal cancer (CRC). The gut microbiota influences CRC via a variety of mechanisms, including microbial-derived factors such as metabolites or genotoxins. Pathogenic drivers and opportunistic passenger bacteria may underlie direct effect of the gut microbiota on carcinogenesis. We posit that metabolites generated by gut microbiota can influence CRC through a multitude of epigenetic or genetic effects on malignant transformation. A closer look at the cross talks between the commensals, epithelial cells, immune regulators etc., needs to be established with more substantiated studies. The recurrence of chemoresistant disease following therapy undoubtedly provides the impetus for morbidity and mortality; yet, the role of gut microbiome in drug resistance remains to be fully investigated. We review the current literature on microbial dysbiosis during CRC and discuss the mechanistic basis of CRC-associated bacteria in tumor initiation, progression and drug resistance.
Collapse
|
4
|
El-Sayed A, Aleya L, Kamel M. Microbiota's role in health and diseases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36967-36983. [PMID: 34043164 PMCID: PMC8155182 DOI: 10.1007/s11356-021-14593-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/24/2021] [Indexed: 05/06/2023]
Abstract
The microbiome is a term that usually refers to the community of various microorganisms that inhabit/live inside human/animal bodies or on their skin. It forms a complex ecosystem that includes trillions of commensals, symbiotics, and even pathogenic microorganisms. The external environment, diet, and lifestyle are the major determinants influencing the microbiome's composition and vitality. Recent studies have indicated the tremendous influence of the microbiome on health and disease. Their number, constitution, variation, and viability are dynamic. All these elements are responsible for the induction, development, and treatment of many health disorders. Serious diseases such as cancer, metabolic disorders, cardiovascular diseases, and even psychological disorders such as schizophrenia are influenced directly or indirectly by microbiota. In addition, in the last few weeks, accumulating data about the link between COVID-19 and the microbiota were published. In the present work, the role of the microbiome in health and disease is discussed. A deep understanding of the exact role of microbiota in disease induction enables the prevention of diseases and the development of new therapeutic concepts for most diseases through the correction of diet and lifestyle. The present review brings together evidence from the most recent works and discusses suggested nutraceutical approaches for the management of COVID-19 pandemic.
Collapse
Affiliation(s)
- Amr El-Sayed
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
5
|
Wang F, Song M, Lu X, Zhu X, Deng J. Gut microbes in gastrointestinal cancers. Semin Cancer Biol 2021; 86:967-975. [PMID: 33812983 DOI: 10.1016/j.semcancer.2021.03.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Gut microbes (GMs), dominated by bacteria, play important roles in many physiological processes. The structures and functions of GMs are closely related to human health, the occurrence and development of diseases and the rapid recovery of the body. Gastrointestinal cancers are the major diseases affecting human health worldwide. With the development of metagenomic technology and the wide application of new generation sequencing technology, a large number of studies suggest that complex GMs are related to the occurrence and development of gastrointestinal cancers. Fecal microbiota transplantation (FMT) and probiotics can treat and prevent the occurrence of gastrointestinal cancers. This article reviews the latest research progress of microbes in gastrointestinal cancers from the perspectives of the correlation, the influence mechanism and the application, so as to provide new directions for the prevention, early diagnosis and treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
- Fei Wang
- Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Meiyi Song
- Department of Gastroenterology and Hepatology, Institution of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiya Lu
- Department of Gastroenterology and Hepatology, Institution of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuefeng Zhu
- University of Shanghai for Science and Technology, Shanghai, China.
| | - Jiali Deng
- Regeneration and Ageing Lab, School of Life Science, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
6
|
Wang C, Gao X, Wang F, Guan W, Dou H, Xu G. Effect of Starvation in Reversing Cancer Chemoresistance Based on Drug-Resistance Detection by Dextran Nanoparticles. Int J Nanomedicine 2020; 15:9255-9264. [PMID: 33244234 PMCID: PMC7685360 DOI: 10.2147/ijn.s283430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/24/2020] [Indexed: 12/22/2022] Open
Abstract
Introduction Chemoresistance leads to chemotherapy failure in patients with cancer. Multidrug resistance (MDR) in cancer is mainly caused by the high expression of P-glycoprotein encoded by the MDR1 gene, which is an ATP-dependent protease. Keeping the stronger invasion and migration abilities of chemoresistant cells in cancer also requires more ATP consumption. Herein, we aimed to reverse resistance by reducing the glucose supply in the cellular environment. Methods A starvation approach in reversing chemoresistance was applied, which was implemented through preparing fluorescent dextran-based nanoparticles to detect the proportion of chemoresistant cells in the chemoresistant/chemosensitive cell mixture after cells cultured in a low-glucose condition. Results Chemoresistant cells had higher glucose consumption with higher ATPase expression and stronger glucose dependence compared to chemosensitive cells. Moreover, cancer cells cultured in a low-glucose condition reduced the proportion of chemoresistant cells. Conclusion Starvation therapy can be used as a new method to reverse drug resistance in cancer.
Collapse
Affiliation(s)
- Chenglong Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| | - Xuzhu Gao
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| | - Fanchen Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| | - Wencai Guan
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| | - Hongjing Dou
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| |
Collapse
|
7
|
Wang G, Yu Y, Wang YZ, Wang JJ, Guan R, Sun Y, Shi F, Gao J, Fu XL. Role of SCFAs in gut microbiome and glycolysis for colorectal cancer therapy. J Cell Physiol 2019; 234:17023-17049. [PMID: 30888065 DOI: 10.1002/jcp.28436] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/02/2019] [Accepted: 02/14/2019] [Indexed: 12/19/2022]
Abstract
Increased risk of colorectal cancer (CRC) is associated with altered intestinal microbiota as well as short-chain fatty acids (SCFAs) reduction of output The energy source of colon cells relies mainly on three SCFAs, namely butyrate (BT), propionate, and acetate, while CRC transformed cells rely mainly on aerobic glycolysis to provide energy. This review summarizes recent research results for dysregulated glucose metabolism of SCFAs, which could be initiated by gut microbiome of CRC. Moreover, the relationship between SCFA transporters and glycolysis, which may correlate with the initiation and progression of CRC, are also discussed. Additionally, this review explores the linkage of BT to transport of SCFAs expressions between normal and cancerous colonocyte cell growth for tumorigenesis inhibition in CRC. Furthermore, the link between gut microbiota and SCFAs in the metabolism of CRC, in addition, the proteins and genes related to SCFAs-mediated signaling pathways, coupled with their correlation with the initiation and progression of CRC are also discussed. Therefore, targeting the SCFA transporters to regulate lactate generation and export of BT, as well as applying SCFAs or gut microbiota and natural compounds for chemoprevention may be clinically useful for CRCs treatment. Future research should focus on the combination these therapeutic agents with metabolic inhibitors to effectively target the tumor SCFAs and regulate the bacterial ecology for activation of potent anticancer effect, which may provide more effective application prospect for CRC therapy.
Collapse
Affiliation(s)
- Gang Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Yang Yu
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yu-Zhu Wang
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jun-Jie Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Rui Guan
- Information Resources Department, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yan Sun
- Information Resources Department, Hubei University of Medicine, Shiyan, Hubei, China
| | - Feng Shi
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jing Gao
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xing-Li Fu
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
8
|
Yuan X, Long Y, Ji Z, Gao J, Fu T, Yan M, Zhang L, Su H, Zhang W, Wen X, Pu Z, Chen H, Wang Y, Gu X, Yan B, Kaliannan K, Shao Z. Green Tea Liquid Consumption Alters the Human Intestinal and Oral Microbiome. Mol Nutr Food Res 2018; 62:e1800178. [PMID: 29750437 PMCID: PMC6033105 DOI: 10.1002/mnfr.201800178] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/12/2018] [Indexed: 12/16/2022]
Abstract
SCOPE GTPs (green tea polyphenols) exert anti-CRC (colorectal cancer) activity. The intestinal microbiota and intestinal colonization by bacteria of oral origin has been implicated in colorectal carcinogenesis. GT modulates the composition of mouse gut microbiota harmonious with anticancer activity. Therefore, the effect of green tea liquid (GTL) consumption on the gut and oral microbiome is investigated in healthy volunteers (n = 12). METHODS AND RESULTS 16S sequencing and phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) analysis of both fecal and saliva samples (collected before intervention, after 2 weeks of GTL (400 mL per day) and after a washout period of one week) in healthy volunteers show changes in microbial diversity and core microbiota and difference in clear classification (partial least squares-discriminant analysis [PLS-DA]). An irreversible, increased FIR:BAC (Firmicutes to Bacteroidetes ratio), elevated SCFA producing genera, and reduction of bacterial LPS synthesis in feces are discovered in response to GTL. GTL alters the salivary microbiota and reduces the functional pathways abundance relevance to carcinogenesis. Similar bacterial networks in fecal and salivary microbiota datasets comprising putative oral bacteria are found and GTL reduces the fecal levels of Fusobacterium. Interestingly, both Lachnospiraceae and B/E (Bifidobacterium to Enterobacteriacea ratio-markers of colonization resistance [CR]) are negatively associated with the presence of oral-like bacterial networks in the feces. CONCLUSION These results suggest that GTL consumption causes both oral and gut microbiome alterations.
Collapse
Affiliation(s)
- Xiaojie Yuan
- Department of EpidemiologySchool of Public HealthFourth Military Medical UniversityXi'anShannxi710032China
| | - Yong Long
- Department of EpidemiologySchool of Public HealthFourth Military Medical UniversityXi'anShannxi710032China
| | - Zhaohua Ji
- Department of EpidemiologySchool of Public HealthFourth Military Medical UniversityXi'anShannxi710032China
| | - Jie Gao
- Department of EpidemiologySchool of Public HealthFourth Military Medical UniversityXi'anShannxi710032China
| | - Ting Fu
- Department of EpidemiologySchool of Public HealthFourth Military Medical UniversityXi'anShannxi710032China
| | - Min Yan
- Department of EpidemiologySchool of Public HealthFourth Military Medical UniversityXi'anShannxi710032China
| | - Lei Zhang
- Department of EpidemiologySchool of Public HealthFourth Military Medical UniversityXi'anShannxi710032China
| | - Haixia Su
- Department of EpidemiologySchool of Public HealthFourth Military Medical UniversityXi'anShannxi710032China
| | - Weilu Zhang
- Department of EpidemiologySchool of Public HealthFourth Military Medical UniversityXi'anShannxi710032China
| | - Xiaohui Wen
- Department of EpidemiologySchool of Public HealthFourth Military Medical UniversityXi'anShannxi710032China
| | - Zhongshu Pu
- Department of EpidemiologySchool of Public HealthFourth Military Medical UniversityXi'anShannxi710032China
| | - Hui Chen
- Department of EpidemiologySchool of Public HealthFourth Military Medical UniversityXi'anShannxi710032China
| | - Yufei Wang
- Department of EpidemiologySchool of Public HealthFourth Military Medical UniversityXi'anShannxi710032China
| | - Xu Gu
- Department of EpidemiologySchool of Public HealthFourth Military Medical UniversityXi'anShannxi710032China
| | - Binyuan Yan
- Department of EpidemiologySchool of Public HealthFourth Military Medical UniversityXi'anShannxi710032China
| | - Kanakaraju Kaliannan
- Laboratory for Lipid Medicine and TechnologyDepartment of Medicine, 149 13th StreetMassachusetts General Hospital and Harvard Medical SchoolBostonMA02129USA
| | - Zhongjun Shao
- Department of EpidemiologySchool of Public HealthFourth Military Medical UniversityXi'anShannxi710032China
| |
Collapse
|
9
|
Bishehsari F, Engen PA, Preite NZ, Tuncil YE, Naqib A, Shaikh M, Rossi M, Wilber S, Green SJ, Hamaker BR, Khazaie K, Voigt RM, Forsyth CB, Keshavarzian A. Dietary Fiber Treatment Corrects the Composition of Gut Microbiota, Promotes SCFA Production, and Suppresses Colon Carcinogenesis. Genes (Basel) 2018; 9:genes9020102. [PMID: 29462896 PMCID: PMC5852598 DOI: 10.3390/genes9020102] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/29/2018] [Accepted: 02/13/2018] [Indexed: 12/26/2022] Open
Abstract
Epidemiological studies propose a protective role for dietary fiber in colon cancer (CRC). One possible mechanism of fiber is its fermentation property in the gut and ability to change microbiota composition and function. Here, we investigate the role of a dietary fiber mixture in polyposis and elucidate potential mechanisms using TS4Cre × cAPCl°x468 mice. Stool microbiota profiling was performed, while functional prediction was done using PICRUSt. Stool short-chain fatty acid (SCFA) metabolites were measured. Histone acetylation and expression of SCFA butyrate receptor were assessed. We found that SCFA-producing bacteria were lower in the polyposis mice, suggesting a decline in the fermentation product of dietary fibers with polyposis. Next, a high fiber diet was given to polyposis mice, which significantly increased SCFA-producing bacteria as well as SCFA levels. This was associated with an increase in SCFA butyrate receptor and a significant decrease in polyposis. In conclusion, we found polyposis to be associated with dysbiotic microbiota characterized by a decline in SCFA-producing bacteria, which was targetable by high fiber treatment, leading to an increase in SCFA levels and amelioration of polyposis. The prebiotic activity of fiber, promoting beneficial bacteria, could be the key mechanism for the protective effects of fiber on colon carcinogenesis. SCFA-promoting fermentable fibers are a promising dietary intervention to prevent CRC.
Collapse
Affiliation(s)
- Faraz Bishehsari
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA.
| | - Phillip A Engen
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA.
| | - Nailliw Z Preite
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA.
| | - Yunus E Tuncil
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN USA.
| | - Ankur Naqib
- DNA Services Facility, Research Resources Center, University of Illinois at Chicago, Chicago, IL USA.
| | - Maliha Shaikh
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA.
| | - Marco Rossi
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA.
| | - Sherry Wilber
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA.
| | - Stefan J Green
- DNA Services Facility, Research Resources Center, University of Illinois at Chicago, Chicago, IL USA.
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL USA.
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN USA.
| | - Khashayarsha Khazaie
- Department of Immunology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | - Robin M Voigt
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA.
| | - Christopher B Forsyth
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA.
| | - Ali Keshavarzian
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA.
- Department of Physiology, Rush University Medical Center, Chicago, IL USA.
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht Netherlands.
- Department of Pharmacology, Rush University Medical Center, Chicago, IL USA.
| |
Collapse
|
10
|
Abstract
Although genes contribute to colorectal cancer, the gut microbiota are an important player. Accumulating evidence suggests that chronic infection and the ensuing inflammation contributes to tumor initiation and tumor progression. A variety of bacterial species and tumor-promoting virulence mechanisms have been investigated. Significant advances have been made in understanding the composition and functional capabilities of the gut microbiota and its roles in cancer. In the current review, we discuss the novel roles of microbiota in the progression of colon cancer. Although microbiota technically include organisms other than bacteria e.g., viruses and fungi, this review will primarily focus on bacteria. We summarize epidemiological studies of human microbiome and colon cancer. We discuss the progress in the scientific understanding of the interplay between the gut microbiota, barrier function, and host responses in experimental models. Further, we discuss the potential application in prevention, diagnosis, and therapy of colon cancer by targeting microbiota. We discuss the challenges lie ahead and the future direction in studying gut microbiome in colon cancer to close the gap between the basic sciences and clinical application.
Collapse
Affiliation(s)
- Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Ikuko Kato
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
11
|
Liu J, Wang F, Luo H, Liu A, Li K, Li C, Jiang Y. Protective effect of butyrate against ethanol-induced gastric ulcers in mice by promoting the anti-inflammatory, anti-oxidant and mucosal defense mechanisms. Int Immunopharmacol 2016; 30:179-187. [DOI: 10.1016/j.intimp.2015.11.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 11/11/2015] [Accepted: 11/13/2015] [Indexed: 12/24/2022]
|
12
|
Belcheva A, Irrazabal T, Martin A. Gut microbial metabolism and colon cancer: Can manipulations of the microbiota be useful in the management of gastrointestinal health? Bioessays 2015; 37:403-12. [DOI: 10.1002/bies.201400204] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Alberto Martin
- Department of Immunology; University of Toronto; ON Canada
| |
Collapse
|
13
|
Gong HL, Shi Y, Zhou L, Wu CP, Cao PY, Tao L, Xu C, Hou DS, Wang YZ. The Composition of Microbiome in Larynx and the Throat Biodiversity between Laryngeal Squamous Cell Carcinoma Patients and Control Population. PLoS One 2013; 8:e66476. [PMID: 23824228 PMCID: PMC3688906 DOI: 10.1371/journal.pone.0066476] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 05/07/2013] [Indexed: 01/13/2023] Open
Abstract
The throat is an ecological assemblage involved human cells and microbiota, and the colonizing bacteria are important factors in balancing this environment. However, this bacterial community profile has thus been poorly investigated. The purpose of this study was to investigate the microbial biology of the larynx and to analyze the throat biodiversity in laryngeal carcinoma patients compared to a control population in a case-control study. Barcoded pyrosequencing analysis of the 16S rRNA gene was used. We collected tissue samples from 29 patients with laryngeal carcinoma and 31 control patients with vocal cord polyps. The findings of high-quality sequence datasets revealed 218 genera from 13 phyla in the laryngeal mucosa. The predominant communities of phyla in the larynx were Firmicutes (54%), Fusobacteria (17%), Bacteroidetes (15%), Proteobacteria (11%), and Actinobacteria (3%). The leading genera were Streptococcus (36%), Fusobacterium (15%), Prevotella (12%), Neisseria (6%), and Gemella (4%). The throat bacterial compositions were highly different between laryngeal carcinoma subjects and control population (p = 0.006). The abundance of the 26 genera was significantly different between the laryngeal cancer and control groups by metastats analysis (p<0.05). Fifteen genera may be associated with laryngeal carcinoma by partial least squares discriminant analysis (p<0.001). In summary, this study revealed the microbiota profiles in laryngeal mucosa from tissue specimens. The compositions of bacteria community in throat were different between laryngeal cancer patients and controls, and probably were related with this carcinoma. The disruption of this bio-ecological niche might be a risk factor for laryngeal carcinoma.
Collapse
Affiliation(s)
- Hong-Li Gong
- Department of Otolaryngology, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Yi Shi
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- * E-mail: (LZ); (YS)
| | - Liang Zhou
- Department of Otolaryngology, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- * E-mail: (LZ); (YS)
| | - Chun-Ping Wu
- Department of Otolaryngology, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Peng-Yu Cao
- Department of Otolaryngology, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Lei Tao
- Department of Otolaryngology, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Chen Xu
- Shanghai Key Laboratory for Reproductive Medicine, Department of Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong-Sheng Hou
- Shanghai Key Laboratory for Reproductive Medicine, Department of Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue-Zhu Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Sequencing Centre, Shanghai, China
| |
Collapse
|