1
|
Frost Z, Bakhit S, Amaefuna CN, Powers RV, Ramana KV. Recent Advances on the Role of B Vitamins in Cancer Prevention and Progression. Int J Mol Sci 2025; 26:1967. [PMID: 40076592 PMCID: PMC11900642 DOI: 10.3390/ijms26051967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 03/14/2025] Open
Abstract
Water-soluble B vitamins, mainly obtained through dietary intake of fruits, vegetables, grains, and dairy products, act as co-factors in various biochemical processes, including DNA synthesis, repair, methylation, and energy metabolism. These vitamins include B1 (Thiamine), B2 (Riboflavin), B3 (Niacin), B5 (Pantothenic Acid), B6 (Pyridoxine), B7 (Biotin), B9 (Folate), and B12 (Cobalamin). Recent studies have shown that besides their fundamental physiological roles, B vitamins influence oncogenic metabolic pathways, including glycolysis (Warburg effect), mitochondrial function, and nucleotide biosynthesis. Although deficiencies in these vitamins are associated with several complications, emerging evidence suggests that excessive intake of specific B vitamins may also contribute to cancer progression and interfere with therapy due to impaired metabolic and genetic functions. This review discusses the tumor-suppressive and tumor-progressive roles of B vitamins in cancer. It also explores the recent evidence on a comprehensive understanding of the relationship between B vitamin metabolism and cancer progression and underscores the need for further research to determine the optimal balance of B vitamin intake for cancer prevention and therapy.
Collapse
Affiliation(s)
| | | | | | | | - Kota V. Ramana
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA
| |
Collapse
|
2
|
Theodosis-Nobelos P, Rekka EA. The Antioxidant Potential of Vitamins and Their Implication in Metabolic Abnormalities. Nutrients 2024; 16:2740. [PMID: 39203876 PMCID: PMC11356998 DOI: 10.3390/nu16162740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Vitamins are micronutrients necessary for the normal function of the body. Although each vitamin has different physicochemical properties and a specific role in maintaining life, they may also possess a common characteristic, i.e., antioxidant activity. Oxidative stress can harm all the main biological structures leading to protein, DNA and lipid oxidation, with concomitant impairment of the cell. It has been established that oxidative stress is implicated in several pathological conditions such as atherosclerosis, diabetes, obesity, inflammation and metabolic syndrome. In this review we investigate the influence of oxidative stress on the above conditions, examine the interrelation between oxidative stress and inflammation and point out the importance of vitamins in these processes, especially in oxidative load manipulation and metabolic abnormalities.
Collapse
Affiliation(s)
| | - Eleni A. Rekka
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
3
|
Sakurai-Yageta M, Suzuki Y. Molecular Mechanisms of Biotin in Modulating Inflammatory Diseases. Nutrients 2024; 16:2444. [PMID: 39125325 PMCID: PMC11314543 DOI: 10.3390/nu16152444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Biotin, also known as vitamin B7 or vitamin H, is a water-soluble B-complex vitamin and serves as an essential co-enzyme for five specific carboxylases. Holocarboxylase synthase (HCS) activates biotin and facilitates its covalent attachment to these enzymes, while biotinidase releases free biotin in the biotin cycle. The transport of biotin, primarily from the intestine, is mediated by the sodium-dependent multi-vitamin transporter (SMVT). Severe biotin deficiency leads to multiple carboxylase deficiency. Moreover, biotin is crucial to glucose and lipid utilization in cellular energy production because it modulates the expression of metabolic enzymes via various signaling pathways and transcription factors. Biotin also modulates the production of proinflammatory cytokines in the immune system through similar molecular mechanisms. These regulatory roles in metabolic and immune homeostasis connect biotin to conditions such as diabetes, dermatologic manifestations, and multiple sclerosis. Furthermore, deficiencies in biotin and SMVT are implicated in inflammatory bowel disease, affecting intestinal inflammation, permeability, and flora. Notably, HCS and probably biotin directly influence gene expression through histone modification. In this review, we summarize the current knowledge on the molecular aspects of biotin and associated molecules in diseases related to both acute inflammatory responses and chronic inflammation, and discuss the potential therapeutic applications of biotin.
Collapse
Affiliation(s)
- Mika Sakurai-Yageta
- Department of Education and Training, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Miyagi, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8573, Miyagi, Japan
| | - Yoichi Suzuki
- Department of Education and Training, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Miyagi, Japan
- Department of Clinical Genetics, Ageo Central General Hospital, Ageo 362-8588, Saitama, Japan
| |
Collapse
|
4
|
Iloki Assanga SB, Lewis Luján LM, McCarty MF. Targeting beta-catenin signaling for prevention of colorectal cancer - Nutraceutical, drug, and dietary options. Eur J Pharmacol 2023; 956:175898. [PMID: 37481200 DOI: 10.1016/j.ejphar.2023.175898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/09/2023] [Accepted: 06/29/2023] [Indexed: 07/24/2023]
Abstract
Progressive up-regulation of β-catenin signaling is very common in the transformation of colorectal epithelium to colorectal cancer (CRC). Practical measures for opposing such signaling hence have potential for preventing or slowing such transformation. cAMP/PKA activity in colon epithelium, as stimulated by COX-2-generated prostaglandins and β2-adrenergic signaling, boosts β-catenin activity, whereas cGMP/PKG signaling has the opposite effect. Bacterial generation of short-chain fatty acids (as supported by unrefined high-carbohydrate diets, berberine, and probiotics), dietary calcium, daily aspirin, antioxidants opposing cox-2 induction, and nicotine avoidance, can suppress cAMP production in colonic epithelium, whereas cGMP can be boosted via linaclotides, PDE5 inhibitors such as sildenafil or icariin, and likely high-dose biotin. Selective activation of estrogen receptor-β by soy isoflavones, support of adequate vitamin D receptor activity with UV exposure or supplemental vitamin D, and inhibition of CK2 activity with flavanols such as quercetin, can also oppose β-catenin signaling in colorectal epithelium. Secondary bile acids, the colonic production of which can be diminished by low-fat diets and berberine, can up-regulate β-catenin activity by down-regulating farnesoid X receptor expression. Stimulation of PI3K/Akt via insulin, IGF-I, TLR4, and EGFR receptors boosts β-catenin levels via inhibition of glycogen synthase-3β; plant-based diets can down-regulate insulin and IGF-I levels, exercise training and leanness can keep insulin low, anthocyanins and their key metabolite ferulic acid have potential for opposing TLR4 signaling, and silibinin is a direct antagonist for EGFR. Partially hydrolyzed phytate can oppose growth factor-mediated down-regulation of β-catenin by inhibiting Akt activation. Multifactorial strategies for safely opposing β-catenin signaling can be complemented with measures that diminish colonic mutagenesis and DNA hypomethylation - such as avoidance of heme-rich meat and charred or processed meats, consumption of phase II-inductive foods and nutraceuticals (e.g., Crucifera), and assurance of adequate folate status.
Collapse
Affiliation(s)
- Simon Bernard Iloki Assanga
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Blvd Luis Encinas y Rosales S/N Col. Centro, Hermosillo, Sonora, C.P. 83000, Mexico.
| | - Lidianys María Lewis Luján
- Technological Institute of Hermosillo (ITH), Ave. Tecnológico y Periférico Poniente S/N, Col. Sahuaro, Hermosillo, Sonora, C.P. 83170, México.
| | | |
Collapse
|
5
|
Yang W, Wu H, Cai X, Lin C, Jiao R, Ji L. Evaluation of efficacy and safety of glucokinase activators-a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2023; 14:1175198. [PMID: 37223016 PMCID: PMC10200948 DOI: 10.3389/fendo.2023.1175198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023] Open
Abstract
Aims Glucokinase activators (GKAs) promote the activity of glucokinase (GK) and is under development for the treatment of diabetes. The efficacy and safety of GKAs require evaluation. Methods This meta-analysis included randomized controlled trials (RCTs) with a duration of at least 12 weeks conducted in patients with diabetes. The primary objective of this meta-analysis was the difference of hemoglobin A1c (HbA1c) change from baseline to study end between GKA groups and placebo groups. Risk of hypoglycemia and laboratory indicators were also evaluated. Weighted mean differences (WMDs) and 95% confidence intervals (CIs) were calculated for the continuous outcomes, and odds ratios (ORs) and 95% CI were calculated for the risk of hypoglycemia. Results Data from 13 RCTs with 2,748 participants treated with GKAs and 2,681 control participants were analyzed. In type 2 diabetes, the level of HbA1c decreased greater in patients with GKA treatment compared with placebo (WMD = -0.339%, 95% CI -0.524 to -0.154%, P < 0.001). The OR comparing GKA versus placebo was 1.448 for risk of hypoglycemia (95% CI 0.808 to 2.596, P = 0.214). The WMD comparing GKA versus placebo was 0.322 mmol/L for triglyceride (TG) levels (95% CI 0.136 to 0.508 mmol/L, P = 0.001). When stratified by drug type, selectivity, and study duration, a significant difference was found between groups. In type 1 diabetes, the result of HbA1c change and lipid indicators showed no significant difference between the TPP399 group and the placebo group. Conclusions In patients with type 2 diabetes, GKA treatment was associated with a better glycemic control but a significant elevation in TG concentration in general. The efficacy and safety varied with drug type and selectivity. Systematic review registration International Prospective Register of Systematic Reviews, identifier CRD42022378342.
Collapse
Affiliation(s)
| | | | | | | | | | - Linong Ji
- *Correspondence: Xiaoling Cai, ; Linong Ji,
| |
Collapse
|
6
|
Wu HHL, McDonnell T, Chinnadurai R. Physiological Associations between Vitamin B Deficiency and Diabetic Kidney Disease. Biomedicines 2023; 11:biomedicines11041153. [PMID: 37189771 DOI: 10.3390/biomedicines11041153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
The number of people living with chronic kidney disease (CKD) is growing as our global population continues to expand. With aging, diabetes, and cardiovascular disease being major harbingers of kidney disease, the number of people diagnosed with diabetic kidney disease (DKD) has grown concurrently. Poor clinical outcomes in DKD could be influenced by an array of factors-inadequate glycemic control, obesity, metabolic acidosis, anemia, cellular senescence, infection and inflammation, cognitive impairment, reduced physical exercise threshold, and, importantly, malnutrition contributing to protein-energy wasting, sarcopenia, and frailty. Amongst the various causes of malnutrition in DKD, the metabolic mechanisms of vitamin B (B1 (Thiamine), B2 (Riboflavin), B3 (Niacin/Nicotinamide), B5 (Pantothenic Acid), B6 (Pyridoxine), B8 (Biotin), B9 (Folate), and B12 (Cobalamin)) deficiency and its clinical impact has garnered greater scientific interest over the past decade. There remains extensive debate on the biochemical intricacies of vitamin B metabolic pathways and how their deficiencies may affect the development of CKD, diabetes, and subsequently DKD, and vice-versa. Our article provides a review of updated evidence on the biochemical and physiological properties of the vitamin B sub-forms in normal states, and how vitamin B deficiency and defects in their metabolic pathways may influence CKD/DKD pathophysiology, and in reverse how CKD/DKD progression may affect vitamin B metabolism. We hope our article increases awareness of vitamin B deficiency in DKD and the complex physiological associations that exist between vitamin B deficiency, diabetes, and CKD. Further research efforts are needed going forward to address the knowledge gaps on this topic.
Collapse
Affiliation(s)
- Henry H L Wu
- Renal Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, The University of Sydney, Sydney, NSW 2065, Australia
| | - Thomas McDonnell
- Department of Renal Medicine, Northern Care Alliance NHS Foundation Trust, Salford M6 8HD, UK
| | - Rajkumar Chinnadurai
- Department of Renal Medicine, Northern Care Alliance NHS Foundation Trust, Salford M6 8HD, UK
- Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M1 7HR, UK
| |
Collapse
|
7
|
Muthuraman N, Vijayselvi R, Sudhakar P Y, Christudoss P, Abraham P. Assessment of serum biotin levels and its association with blood glucose in gestational diabetes mellitus. Eur J Obstet Gynecol Reprod Biol X 2023; 17:100181. [PMID: 36873578 PMCID: PMC9976203 DOI: 10.1016/j.eurox.2023.100181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 02/19/2023] Open
Abstract
Aim The incidence of gestational diabetes mellitus is increasing worldwide. Biotin is shown to improve glycemic status in diabetes mellitus. We wanted to study whether there is a difference in biotin levels between mothers with and without gestational diabetes mellitus (GDM), association of biotin with blood glucose, and with the outcome of GDM. Methods We recruited 27 pregnant mothers with GDM and 27 pregnant mothers without GDM. We measured the biotin levels using enzyme linked immunosorbent assay (ELISA). We measured the blood glucose during OGTT and fasting insulin levels in the study participants. Results We found that biotin levels were slightly decreased in mothers with GDM [271 (250,335)] as compared to control mothers [309 (261,419)], though it was not statistically significant (p = 0.14). Blood glucose levels were found to be significantly higher in GDM mothers as compared to control mothers during fasting, 1 h and 2 h plasma sample obtained during OGTT. Biotin was not significantly associated with blood glucose in pregnant mothers. Logistic regression analysis showed that biotin (OR = 0.99, 95 % CI = 0.99-1.00) has no association with the outcome of GDM. Conclusion Ours is the first study to compare the biotin levels in GDM mothers and control mothers. We found that the biotin levels were not significantly altered in GDM mothers as compared to control mothers and biotin levels have no association with the outcome of GDM.
Collapse
Affiliation(s)
- N Muthuraman
- Department of Biochemistry, Christian Medical College, Vellore, Tamil Nadu, India
| | - Reeta Vijayselvi
- Department of Obstetrics and Gynaecology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Yesudas Sudhakar P
- Department of Clinical Biochemistry, Christian Medical College, Vellore, Tamil Nadu, India
| | - Pamela Christudoss
- Department of Clinical Biochemistry, Christian Medical College, Vellore, Tamil Nadu, India
| | - Premila Abraham
- Department of Biochemistry, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
8
|
Zhang Y, Ding Y, Fan Y, Xu Y, Lu Y, Zhai L, Wang L. Influence of biotin intervention on glycemic control and lipid profile in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Front Nutr 2022; 9:1046800. [PMID: 36386951 PMCID: PMC9659605 DOI: 10.3389/fnut.2022.1046800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/17/2022] [Indexed: 08/09/2023] Open
Abstract
Background Biotin is a water-soluble vitamin acting as a covalently bound coenzyme in regulating energy production. Previous studies have reported that biotin supplementation may influence blood glucose and lipid level in patients with type 2 diabetes mellitus (T2DM). Methods We searched Pubmed, Embase, and Cochrane library databases up to 8th August 2022 for studies examining the effects of biotin supplementation in T2DM patients. Pooled effects were measured by weighted mean differences (WMDs) with 95% confidence intervals (CI) using random effects models. Inter-study heterogeneity was assessed and quantified. Results A total of five random controlled trials (RCT), involving 445 participants were included. It was suggested that biotin supplementation for 28 to 90 days significantly decreased the level of fasting blood glucose (FBG) (MD: -1.21 mmol/L, 95% CI: -2.73 to 0.31), total cholesterol (TC) (MD: -0.22 mmol/L, 95% CI: -0.25 to -0.19) and triglycerides (TG) (MD: -0.59 mmol/L, 95% CI: -1.21 to 0.03). No significant beneficial effects were observed on insulin (MD: 1.88 pmol/L 95% CI: -13.44 to 17.21). Evidence for the impact of biotin supplementation on the levels of glycated hemoglobin (HbA1c), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and very low-density lipoprotein cholesterol (VLDL-C) was limited to draw conclusion. Conclusions Biotin supplementation may decrease FBG, TC and TG levels. However, its influence on insulin is not significant and further studies on the effects of biotin on HbA1c, LDL-C, HDL-C and VLDL-C are expected.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ling Wang
- Faculty of Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| |
Collapse
|
9
|
Nutraceutical Prevention of Diabetic Complications—Focus on Dicarbonyl and Oxidative Stress. Curr Issues Mol Biol 2022; 44:4314-4338. [PMID: 36135209 PMCID: PMC9498143 DOI: 10.3390/cimb44090297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/25/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative and dicarbonyl stress, driven by excess accumulation of glycolytic intermediates in cells that are highly permeable to glucose in the absence of effective insulin activity, appear to be the chief mediators of the complications of diabetes. The most pathogenically significant dicarbonyl stress reflects spontaneous dephosphorylation of glycolytic triose phosphates, giving rise to highly reactive methylglyoxal. This compound can be converted to harmless lactate by the sequential activity of glyoxalase I and II, employing glutathione as a catalyst. The transcription of glyoxalase I, rate-limiting for this process, is promoted by Nrf2, which can be activated by nutraceutical phase 2 inducers such as lipoic acid and sulforaphane. In cells exposed to hyperglycemia, glycine somehow up-regulates Nrf2 activity. Zinc can likewise promote glyoxalase I transcription, via activation of the metal-responsive transcription factor (MTF) that binds to the glyoxalase promoter. Induction of glyoxalase I and metallothionein may explain the protective impact of zinc in rodent models of diabetic complications. With respect to the contribution of oxidative stress to diabetic complications, promoters of mitophagy and mitochondrial biogenesis, UCP2 inducers, inhibitors of NAPDH oxidase, recouplers of eNOS, glutathione precursors, membrane oxidant scavengers, Nrf2 activators, and correction of diabetic thiamine deficiency should help to quell this.
Collapse
|
10
|
Klein KR, Boeder SC, R. Freeman JL, Dunn I, Dvergsten C, Madduri S, Giovannetti ER, Valcarce C, Buse JB, Pettus JH. Impact of the hepatoselective glucokinase activator TTP399 on ketoacidosis during insulin withdrawal in people with type 1 diabetes. Diabetes Obes Metab 2022; 24:1439-1447. [PMID: 35661378 PMCID: PMC9262835 DOI: 10.1111/dom.14697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 11/28/2022]
Abstract
AIMS To determine the effect of TTP399, a hepatoselective glucokinase activator, on the risk of ketoacidosis during insulin withdrawal in individuals with type 1 diabetes (T1D). MATERIALS AND METHODS Twenty-three participants with T1D using insulin pump therapy were randomized to 800 mg TTP399 (n = 12) or placebo (n = 11) for 7 to 10 days. After the treatment period, an insulin withdrawal test (IWT) was performed, during which insulin pumps were removed to induce ketogenesis. The IWT was stopped after 10 hours or if blood glucose reached >399 mg/dL [22.1 mmol/L], if beta-hydroxybutyrate (BHB) was >3.0 mmol/L, or for patient discomfort. The primary endpoint was the proportion of participants who reached BHB concentrations of 1 mmol/L or greater. RESULTS During the 7- to 10-day treatment period, mean fasting plasma glucose was significantly reduced ( -27.6 vs. -4.4 mg/dL [-1.5 vs. -0.2 mmol/L]; P = 0.03) and there were fewer adverse events, including hypoglycaemia, in the TTP399-treated arm. During the IWT, no differences were observed between TTP399 and placebo in mean serum BHB concentration, mean duration of IWT, or BHB at termination of IWT. However, serum bicarbonate was numerically higher and urine acetoacetate was quantitatively lower in the TTP399-treated participants. As a result of higher bicarbonate values, none of the TTP399-treated participants met the prespecified criteria for diabetic ketoacidosis (DKA), defined as BHB >3 mmol/L and serum bicarbonate <18 mEq/L, compared to 42% of placebo-treated participants. CONCLUSIONS When used as an adjunctive therapy to insulin, TTP399 improves glycaemia without increasing hypoglycaemia in individuals with T1D. During acute insulin withdrawal, TTP399 did not increase BHB concentrations and decreased the incidence of DKA.
Collapse
Affiliation(s)
- Klara R. Klein
- Division of Endocrinology and Metabolism, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Schafer C. Boeder
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA
| | | | | | | | - Supradeep Madduri
- Division of Endocrinology and Metabolism, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Erin R. Giovannetti
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA
| | | | - John B. Buse
- Division of Endocrinology and Metabolism, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Jeremy H. Pettus
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
11
|
McCarty MF, DiNicolantonio JJ, Lerner A. Review - Nutraceuticals Can Target Asthmatic Bronchoconstriction: NADPH Oxidase-Dependent Oxidative Stress, RhoA and Calcium Dynamics. J Asthma Allergy 2021; 14:685-701. [PMID: 34163181 PMCID: PMC8214517 DOI: 10.2147/jaa.s307549] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022] Open
Abstract
Activation of various isoforms of NADPH oxidase contributes to the pathogenesis of asthma at multiple levels: promoting hypercontractility, hypertrophy, and proliferation of airway smooth muscle; enabling lung influx of eosinophils via VCAM-1; and mediating allergen-induced mast cell activation. Free bilirubin, which functions physiologically within cells as a feedback inhibitor of NADPH oxidase complexes, has been shown to have a favorable impact on each of these phases of asthma pathogenesis. The spirulina chromophore phycocyanobilin (PhyCB), a homolog of bilirubin’s precursor biliverdin, can mimic the inhibitory impact of biliverdin/bilirubin on NADPH oxidase activity, and spirulina’s versatile and profound anti-inflammatory activity in rodent studies suggests that PhyCB may have potential as a clinical inhibitor of NADPH oxidase. Hence, spirulina or PhyCB-enriched spirulina extracts merit clinical evaluation in asthma. Promoting biosynthesis of glutathione and increasing the expression and activity of various antioxidant enzymes – as by supplementing with N-acetylcysteine, Phase 2 inducers (eg, lipoic acid), selenium, and zinc – may also blunt the contribution of oxidative stress to asthma pathogenesis. Nitric oxide (NO) and hydrogen sulfide (H2S) work in various ways to oppose pathogenic mechanisms in asthma; supplemental citrulline and high-dose folate may aid NO synthesis, high-dose biotin may mimic and possibly potentiate NO’s activating impact on soluble guanylate cyclase, and NAC and taurine may boost H2S synthesis. The amino acid glycine has a hyperpolarizing effect on airway smooth muscle that is bronchodilatory. Insuring optimal intracellular levels of magnesium may modestly blunt the stimulatory impact of intracellular free calcium on bronchoconstriction. Nutraceutical regimens or functional foods incorporating at least several of these agents may have utility as nutraceutical adjuvants to standard clinical management of asthma.
Collapse
Affiliation(s)
| | - James J DiNicolantonio
- Department of Preventive Cardiology, Saint Luke's Mid America Heart Institute, Kansas, MO, USA
| | - Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Tel Hashomer, 5262000, Israel
| |
Collapse
|
12
|
Klein KR, Freeman JLR, Dunn I, Dvergsten C, Kirkman MS, Buse JB, Valcarce C. The SimpliciT1 Study: A Randomized, Double-Blind, Placebo-Controlled Phase 1b/2 Adaptive Study of TTP399, a Hepatoselective Glucokinase Activator, for Adjunctive Treatment of Type 1 Diabetes. Diabetes Care 2021; 44:960-968. [PMID: 33622669 PMCID: PMC7985421 DOI: 10.2337/dc20-2684] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/20/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Despite advances in exogenous insulin therapy, many patients with type 1 diabetes do not achieve acceptable glycemic control and remain at risk for ketosis and insulin-induced hypoglycemia. We conducted a randomized controlled trial to determine whether TTP399, a novel hepatoselective glucokinase activator, improved glycemic control in people with type 1 diabetes without increasing hypoglycemia or ketosis. RESEARCH DESIGN AND METHODS SimpliciT1 was a phase 1b/2 adaptive study. Phase 2 activities were conducted in two parts. Part 1 randomly assigned 20 participants using continuous glucose monitors and continuous subcutaneous insulin infusion (CSII). Part 2 randomly assigned 85 participants receiving multiple daily injections of insulin or CSII. In both parts 1 and 2, participants were randomly assigned to 800 mg TTP399 or matched placebo (fully blinded) and treated for 12 weeks. The primary end point was change in HbA1c from baseline to week 12. RESULTS The difference in change in HbA1c from baseline to week 12 between TTP399 and placebo was -0.7% (95% CI -1.3, -0.07) in part 1 and -0.21% (95% CI -0.39, -0.04) in part 2. Despite a greater decrease in HbA1c with TTP399, the frequency of severe or symptomatic hypoglycemia decreased by 40% relative to placebo in part 2. In both parts 1 and 2, plasma β-hydroxybutyrate and urinary ketones were lower during treatment with TTP399 than placebo. CONCLUSIONS TTP399 lowers HbA1c and reduces hypoglycemia without increasing the risk of ketosis and should be further evaluated as an adjunctive therapy for the treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Klara R Klein
- Division of Endocrinology and Metabolism, University of North Carolina School of Medicine, Chapel Hill, NC
| | | | | | | | - M Sue Kirkman
- Division of Endocrinology and Metabolism, University of North Carolina School of Medicine, Chapel Hill, NC
| | - John B Buse
- Division of Endocrinology and Metabolism, University of North Carolina School of Medicine, Chapel Hill, NC
| | | | | |
Collapse
|
13
|
McCarty MF. Nutraceutical, Dietary, and Lifestyle Options for Prevention and Treatment of Ventricular Hypertrophy and Heart Failure. Int J Mol Sci 2021; 22:ijms22073321. [PMID: 33805039 PMCID: PMC8037104 DOI: 10.3390/ijms22073321] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Although well documented drug therapies are available for the management of ventricular hypertrophy (VH) and heart failure (HF), most patients nonetheless experience a downhill course, and further therapeutic measures are needed. Nutraceutical, dietary, and lifestyle measures may have particular merit in this regard, as they are currently available, relatively safe and inexpensive, and can lend themselves to primary prevention as well. A consideration of the pathogenic mechanisms underlying the VH/HF syndrome suggests that measures which control oxidative and endoplasmic reticulum (ER) stress, that support effective nitric oxide and hydrogen sulfide bioactivity, that prevent a reduction in cardiomyocyte pH, and that boost the production of protective hormones, such as fibroblast growth factor 21 (FGF21), while suppressing fibroblast growth factor 23 (FGF23) and marinobufagenin, may have utility for preventing and controlling this syndrome. Agents considered in this essay include phycocyanobilin, N-acetylcysteine, lipoic acid, ferulic acid, zinc, selenium, ubiquinol, astaxanthin, melatonin, tauroursodeoxycholic acid, berberine, citrulline, high-dose folate, cocoa flavanols, hawthorn extract, dietary nitrate, high-dose biotin, soy isoflavones, taurine, carnitine, magnesium orotate, EPA-rich fish oil, glycine, and copper. The potential advantages of whole-food plant-based diets, moderation in salt intake, avoidance of phosphate additives, and regular exercise training and sauna sessions are also discussed. There should be considerable scope for the development of functional foods and supplements which make it more convenient and affordable for patients to consume complementary combinations of the agents discussed here. Research Strategy: Key word searching of PubMed was employed to locate the research papers whose findings are cited in this essay.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity Foundation, 811 B Nahant Ct., San Diego, CA 92109, USA
| |
Collapse
|
14
|
McCarty MF, DiNicolantonio JJ, Lerner A. A Fundamental Role for Oxidants and Intracellular Calcium Signals in Alzheimer's Pathogenesis-And How a Comprehensive Antioxidant Strategy May Aid Prevention of This Disorder. Int J Mol Sci 2021; 22:2140. [PMID: 33669995 PMCID: PMC7926325 DOI: 10.3390/ijms22042140] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress and increased cytoplasmic calcium are key mediators of the detrimental effects on neuronal function and survival in Alzheimer's disease (AD). Pathways whereby these perturbations arise, and then prevent dendritic spine formation, promote tau hyperphosphorylation, further amplify amyloid β generation, and induce neuronal apoptosis, are described. A comprehensive program of nutraceutical supplementation, comprised of the NADPH oxidase inhibitor phycocyanobilin, phase two inducers, the mitochondrial antioxidant astaxanthin, and the glutathione precursor N-acetylcysteine, may have important potential for antagonizing the toxic effects of amyloid β on neurons and thereby aiding prevention of AD. Moreover, nutraceutical antioxidant strategies may oppose the adverse impact of amyloid β oligomers on astrocyte clearance of glutamate, and on the ability of brain capillaries to export amyloid β monomers/oligomers from the brain. Antioxidants, docosahexaenoic acid (DHA), and vitamin D, have potential for suppressing microglial production of interleukin-1β, which potentiates the neurotoxicity of amyloid β. Epidemiology suggests that a health-promoting lifestyle, incorporating a prudent diet, regular vigorous exercise, and other feasible measures, can cut the high risk for AD among the elderly by up to 60%. Conceivably, complementing such lifestyle measures with long-term adherence to the sort of nutraceutical regimen outlined here may drive down risk for AD even further.
Collapse
Affiliation(s)
| | | | - Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Tel Hashomer 5262000, Israel
| |
Collapse
|
15
|
Mrosewski I, Urbank M, Stauch T, Switkowski R. Interference From High-Dose Biotin Intake in Immunoassays for Potentially Time-Critical Analytes by Roche. Arch Pathol Lab Med 2020; 144:1108-1117. [PMID: 31944861 DOI: 10.5858/arpa.2019-0425-oa] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2019] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Immunoassays using the interaction between streptavidin and biotin are used for clinical chemical analytes on platforms by many different manufacturers. The design can be susceptible to interference from high-dose biotin intake in patients, which remains an often-overlooked confounder despite recently increased awareness. OBJECTIVE.— To evaluate an easily implementable method of in vitro biotin depletion for the removal of biotin interference in immunoassays for potentially time-critical analytes. DESIGN.— A biotin stock solution was made and de-identified patient samples were spiked to reach a biotin concentration of 1.126 × 106 pg/mL, the maximum reported biotin concentration 1 to 2 hours after a single oral dose of 300 mg biotin. Then, the resulting interference in Elecsys immunoassays for cortisol, cyclosporine A, tacrolimus, digitoxin, thyroid-stimulating hormone, free triiodothyronine, free thyroxine, C-peptide, insulin, N-terminal pro-B-type natriuretic peptide, troponin T high sensitive, human immunodeficiency virus, procalcitonin, β human chorionic gonadotropin, toxoplasma immunoglobulin M, and toxoplasma immunoglobulin G was evaluated before and after biotin depletion using streptavidin particles. RESULTS.— All tested immunoassays, with the exception of toxoplasma immunoglobulin M and toxoplasma immunoglobulin G, suffered from significant biotin interference. The depletion protocol removed assay interference due to biotin and produced results that were close or identical to initial prespike measurements. CONCLUSIONS.— Despite an increase in turnaround times, biotin adsorption is a feasible countermeasure for biotin interference in Elecsys immunoassays. Until test kits with an increased resistance to the interference from high-dose biotin intake are distributed, the evaluated protocol can provide results properly reflecting the patient's clinical condition.
Collapse
Affiliation(s)
- Ingo Mrosewski
- Department of Laboratory Medicine, MDI Limbach Berlin GmbH, Berlin, Germany (Mrosewski, Switkowski, Urbank)
| | - Matthias Urbank
- Department of Laboratory Medicine, MDI Limbach Berlin GmbH, Berlin, Germany (Mrosewski, Switkowski, Urbank)
| | - Thomas Stauch
- Department of Toxicology, MVZ Labor PD Dr. Volkmann und Kollegen GbR, Karlsruhe, Germany (Stauch)
| | - Rafael Switkowski
- Department of Laboratory Medicine, MDI Limbach Berlin GmbH, Berlin, Germany (Mrosewski, Switkowski, Urbank)
| |
Collapse
|
16
|
Deshmukh SV, Prabhakar B, Kulkarni YA. Water Soluble Vitamins and their Role in Diabetes and its Complications. Curr Diabetes Rev 2020; 16:649-656. [PMID: 31526351 DOI: 10.2174/1573399815666190916114040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/18/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Diabetes is a metabolic disorder associated with abnormally high levels of glucose in the blood due to inadequate production of insulin or inadequate sensitivity of cells to the action of insulin. Diabetes has become an increasing challenge in the world. The predicted diabetic population according to the World Health Organization is 8.7% between the age group 20-70 years. There are many complications linked to prolonged high blood glucose levels, such as microvascular complications and macrovascular complications. Vitamins play an important role in glucose metabolism and the potential utility of supplementation is relevant for the prevention and/or management of diabetes mellitus and its complications. METHODS Literature search was performed using various dataset like PUBMED, EBSCO, ProQuest, Scopus and selected websites like the National Institute of Health and the World Health Organization. RESULT Water-soluble vitamins have been thoroughly studied for their activity in diabetes and diabetic complications. CONCLUSION Water-soluble vitamins like B1, B3, B6, B7, B9 and B12 have notable effects in diabetes mellitus and its related complications like nephropathy, neuropathy, retinopathy and cardiomyopathy.
Collapse
Affiliation(s)
- Shreeya V Deshmukh
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta road, Vile Parle (W), Mumbai-400056, India
| | - Bala Prabhakar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta road, Vile Parle (W), Mumbai-400056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta road, Vile Parle (W), Mumbai-400056, India
| |
Collapse
|
17
|
DiNicolantonio JJ, McCarty M. Autophagy-induced degradation of Notch1, achieved through intermittent fasting, may promote beta cell neogenesis: implications for reversal of type 2 diabetes. Open Heart 2019; 6:e001028. [PMID: 31218007 PMCID: PMC6546199 DOI: 10.1136/openhrt-2019-001028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/06/2019] [Indexed: 02/06/2023] Open
|
18
|
Cognitive impairment in diabetes and poor glucose utilization in the intracellular neural milieu. Med Hypotheses 2017; 104:160-165. [PMID: 28673577 DOI: 10.1016/j.mehy.2017.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/30/2017] [Accepted: 06/07/2017] [Indexed: 02/01/2023]
|