1
|
Al-Kuraishy HM, Al-Gareeb AI, Alexiou A, Mukerjee N, Al-Hamash SMJ, Al-Maiahy TJ, Batiha GES. 5-HT/CGRP pathway and Sumatriptan role in Covid-19. Biotechnol Genet Eng Rev 2024; 40:3148-3173. [PMID: 36042570 DOI: 10.1080/02648725.2022.2108996] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/21/2022] [Indexed: 12/27/2022]
Abstract
Coronavirus disease 2019 (Covid-19) is a pandemic caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). In Covid-19, there is uncontrolled activation of immune cells with a massive release of pro-inflammatory cytokines and the development of cytokine storm. These inflammatory changes induce impairment of different organ functions, including the central nervous system (CNS), leading to acute brain injury and substantial changes in the neurotransmitters, including serotonin (5-HT) and calcitonin gene-related peptide (CGRP), which have immunomodulatory properties through modulation of central and peripheral immune responses. In Covid-19, 5-HT neurotransmitters and CGRP could contribute to abnormal and atypical vascular reactivity. Sumatriptan is a pre-synaptic 5-HT (5-HT1D and 5-HT1B) agonist and inhibits the release of CGRP. Both 5-HT and CGRP seem to be augmented in Covid-19 due to underlying activation of inflammatory signaling pathways and hyperinflammation. In virtue of its anti-inflammatory and antioxidant properties with inhibition release of 5-HT and CGRP, Sumatriptan may reduce Covid-19 hyperinflammation. Therefore, Sumatriptan might be a novel potential therapeutic strategy in managing Covid-19. In conclusion, Sumatriptan could be an effective therapeutic strategy in managing Covid-19 through modulation of 5-HT neurotransmitters and inhibiting CGRP.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyah University, Baghdad, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
- AFNP Med, Wien, Austria
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | | | - Thabat J Al-Maiahy
- Department of Gynecology and Obstetrics, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
2
|
Imai M, Kawakami F, Uematsu T, Matsumoto T, Kawashima R, Kurosaki Y, Tamaki S, Maehana S, Ichikawa T, Hanaki H, Kitazato H, Kubo M. SARS-CoV-2 propagation to the TPH2-positive neurons in the ventral tegmental area induces cell death via GSK3β-dependent accumulation of phosphorylated tau. PLoS One 2024; 19:e0312834. [PMID: 39475992 PMCID: PMC11524480 DOI: 10.1371/journal.pone.0312834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Abstract
COVID-19, an infectious disease caused by SARS-CoV-2, was declared a pandemic by the WHO in 2020. Psychiatric symptoms including sleep disturbance, memory impairment, and depression are associated with SARS-CoV-2 infection. These symptoms are causes long-term mental and physical distress in recovering patients; however, the underlying mechanism is unclear. In this study, we determined the effects of SARS-CoV-2 infection on brain tissue using k18hACE2 mice. Using brain tissue from 18hACE2 mice infected with SARS-CoV-2 through intranasal administration, SARS-CoV-2 spike protein and RNA were analyzed by immunohistochemical staining and in-situ hybridization. Immunohistochemical analysis revealed that Tryptophan hydroxylase 2 (TPH2)-positive cells and SARS-CoV-2 spike protein were co-localized in the ventral tegmental area of SARS-CoV-2-infected mice. We observed decreased TPH2 expression and increased accumulation of phosphorylated tau protein and Phospho-Histone H2A.X (γH2AX) expression in the ventral tegmental region. In addition, activation of glycogen synthase kinase 3β (GSK3β) was induced by SARS-CoV-2 infection. Overall, our results suggest that SARS-CoV-2 infection of TPH2-positive cells in the ventral tegmental area induces neuronal cell death through increased accumulation of phosphorylated tau. Attenuation of the GSK3β pathway and decreased serotonin synthesis through suppression of TPH2 expression may contribute to the development of neurological symptoms.
Collapse
Affiliation(s)
- Motoki Imai
- Department of Molecular Diagnostics, School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
- Department of Applied Tumor Pathology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Fumitaka Kawakami
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
- Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
- Department of Health Administration, School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Takayuki Uematsu
- Biomedical Laboratory, Division of Biomedical Research, Kitasato University Medical Center, Kitamoto, Saitama, Japan
| | - Toshihide Matsumoto
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
- Department of Pathology, School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Rei Kawashima
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
- Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
- Department of Biochemistry, School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Yoshifumi Kurosaki
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
- Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
- Department of Clinical Chemistry, School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Shun Tamaki
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
- Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
- Department of Biochemistry, School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Shotaro Maehana
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
- Department of Environmental Microbiology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
| | - Takafumi Ichikawa
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
- Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
- Department of Biochemistry, School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Hideaki Hanaki
- Infection Control Research Center, Ōmura Satoshi Memorial Institute, Kitasato University, Minato-Ku, Tokyo, Japan
| | - Hidero Kitazato
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
- Department of Environmental Microbiology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
| | - Makoto Kubo
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
- Department of Environmental Microbiology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
| |
Collapse
|
3
|
Naidu AS, Wang CK, Rao P, Mancini F, Clemens RA, Wirakartakusumah A, Chiu HF, Yen CH, Porretta S, Mathai I, Naidu SAG. Precision nutrition to reset virus-induced human metabolic reprogramming and dysregulation (HMRD) in long-COVID. NPJ Sci Food 2024; 8:19. [PMID: 38555403 PMCID: PMC10981760 DOI: 10.1038/s41538-024-00261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
SARS-CoV-2, the etiological agent of COVID-19, is devoid of any metabolic capacity; therefore, it is critical for the viral pathogen to hijack host cellular metabolic machinery for its replication and propagation. This single-stranded RNA virus with a 29.9 kb genome encodes 14 open reading frames (ORFs) and initiates a plethora of virus-host protein-protein interactions in the human body. These extensive viral protein interactions with host-specific cellular targets could trigger severe human metabolic reprogramming/dysregulation (HMRD), a rewiring of sugar-, amino acid-, lipid-, and nucleotide-metabolism(s), as well as altered or impaired bioenergetics, immune dysfunction, and redox imbalance in the body. In the infectious process, the viral pathogen hijacks two major human receptors, angiotensin-converting enzyme (ACE)-2 and/or neuropilin (NRP)-1, for initial adhesion to cell surface; then utilizes two major host proteases, TMPRSS2 and/or furin, to gain cellular entry; and finally employs an endosomal enzyme, cathepsin L (CTSL) for fusogenic release of its viral genome. The virus-induced HMRD results in 5 possible infectious outcomes: asymptomatic, mild, moderate, severe to fatal episodes; while the symptomatic acute COVID-19 condition could manifest into 3 clinical phases: (i) hypoxia and hypoxemia (Warburg effect), (ii) hyperferritinemia ('cytokine storm'), and (iii) thrombocytosis (coagulopathy). The mean incubation period for COVID-19 onset was estimated to be 5.1 days, and most cases develop symptoms after 14 days. The mean viral clearance times were 24, 30, and 39 days for acute, severe, and ICU-admitted COVID-19 patients, respectively. However, about 25-70% of virus-free COVID-19 survivors continue to sustain virus-induced HMRD and exhibit a wide range of symptoms that are persistent, exacerbated, or new 'onset' clinical incidents, collectively termed as post-acute sequelae of COVID-19 (PASC) or long COVID. PASC patients experience several debilitating clinical condition(s) with >200 different and overlapping symptoms that may last for weeks to months. Chronic PASC is a cumulative outcome of at least 10 different HMRD-related pathophysiological mechanisms involving both virus-derived virulence factors and a multitude of innate host responses. Based on HMRD and virus-free clinical impairments of different human organs/systems, PASC patients can be categorized into 4 different clusters or sub-phenotypes: sub-phenotype-1 (33.8%) with cardiac and renal manifestations; sub-phenotype-2 (32.8%) with respiratory, sleep and anxiety disorders; sub-phenotype-3 (23.4%) with skeleto-muscular and nervous disorders; and sub-phenotype-4 (10.1%) with digestive and pulmonary dysfunctions. This narrative review elucidates the effects of viral hijack on host cellular machinery during SARS-CoV-2 infection, ensuing detrimental effect(s) of virus-induced HMRD on human metabolism, consequential symptomatic clinical implications, and damage to multiple organ systems; as well as chronic pathophysiological sequelae in virus-free PASC patients. We have also provided a few evidence-based, human randomized controlled trial (RCT)-tested, precision nutrients to reset HMRD for health recovery of PASC patients.
Collapse
Affiliation(s)
- A Satyanarayan Naidu
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA.
- N-terminus Research Laboratory, 232659 Via del Rio, Yorba Linda, CA, 92887, USA.
| | - Chin-Kun Wang
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- School of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung, 40201, Taiwan
| | - Pingfan Rao
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- College of Food and Bioengineering, Fujian Polytechnic Normal University, No.1, Campus New Village, Longjiang Street, Fuqing City, Fujian, China
| | - Fabrizio Mancini
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- President-Emeritus, Parker University, 2540 Walnut Hill Lane, Dallas, TX, 75229, USA
| | - Roger A Clemens
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- University of Southern California, Alfred E. Mann School of Pharmacy/D. K. Kim International Center for Regulatory & Quality Sciences, 1540 Alcazar St., CHP 140, Los Angeles, CA, 90089, USA
| | - Aman Wirakartakusumah
- International Union of Food Science and Technology (IUFoST), Guelph, ON, Canada
- IPMI International Business School Jakarta; South East Asian Food and Agriculture Science and Technology, IPB University, Bogor, Indonesia
| | - Hui-Fang Chiu
- Department of Chinese Medicine, Taichung Hospital, Ministry of Health & Well-being, Taichung, Taiwan
| | - Chi-Hua Yen
- Department of Family and Community Medicine, Chung Shan Medical University Hospital; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Sebastiano Porretta
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- President, Italian Association of Food Technology (AITA), Milan, Italy
- Experimental Station for the Food Preserving Industry, Department of Consumer Science, Viale Tanara 31/a, I-43121, Parma, Italy
| | - Issac Mathai
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- Soukya International Holistic Health Center, Whitefield, Bengaluru, India
| | - Sreus A G Naidu
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- N-terminus Research Laboratory, 232659 Via del Rio, Yorba Linda, CA, 92887, USA
| |
Collapse
|
4
|
Rus CP, de Vries BEK, de Vries IEJ, Nutma I, Kooij JJS. Treatment of 95 post-Covid patients with SSRIs. Sci Rep 2023; 13:18599. [PMID: 37919310 PMCID: PMC10622561 DOI: 10.1038/s41598-023-45072-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/15/2023] [Indexed: 11/04/2023] Open
Abstract
After Covid-19 infection, 12.5% develops post-Covid-syndrome (PCS). Symptoms indicate numerous affected organ systems. After a year, chronic fatigue, dysautonomia and neurological and neuropsychiatric complaints predominate. In this study, 95 PCS patients were treated with selective serotonin reuptake inhibitors (SSRIs). This study used an exploratory questionnaire and found that two-thirds of patients had a reasonably good to strong response on SSRIs, over a quarter of patients had moderate response, while 10% reported no response. Overall, patients experienced substantial improved well-being. Brainfog and sensory overload decreased most, followed by chronic fatigue and dysautonomia. Outcomes were measured with three different measures that correlated strongly with each other. The response to SSRIs in PCS conditions was explained by seven possible neurobiological mechanisms based on recent literature on PCS integrated with already existing knowledge. Important for understanding these mechanisms is the underlying biochemical interaction between various neurotransmitter systems and parts of the immune system, and their dysregulation in PCS. The main link appears to be with the metabolic kynurenine pathway (KP) which interacts extensively with the immune system. The KP uses the same precursor as serotonin: tryptophan. The KP is overactive in PCS which maintains inflammation and which causes a lack of tryptophan. Finally, potential avenues for future research to advance this line of clinical research are discussed.
Collapse
Affiliation(s)
- Carla P Rus
- Independent Researcher, The Hague, The Netherlands.
| | | | - Ingmar E J de Vries
- Donders Institute, Radboud University, 6525 EN, Nijmegen, The Netherlands
- Centre for Mind/Brain Sciences (CIMeC), University of Trento, 38068, Rovereto, Italy
| | | | - J J Sandra Kooij
- Department of Psychiatry, Amsterdam UMC/VUMC, 1081 HJ, Amsterdam, The Netherlands
- PsyQ, 2593 HR, The Hague, The Netherlands
| |
Collapse
|
5
|
Kovacevich A, Weleff J, Claytor B, Barnett BS. Three Cases of Reported Improvement in Microsmia and Anosmia Following Naturalistic Use of Psilocybin and LSD. J Psychoactive Drugs 2023; 55:672-679. [PMID: 37650700 DOI: 10.1080/02791072.2023.2253538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 09/01/2023]
Abstract
Cultural awareness of anosmia and microsmia has recently increased due to their association with COVID-19, though treatment for these conditions is limited. A growing body of online media claims that individuals have noticed improvement in anosmia and microsmia following classic psychedelic use. We report what we believe to be the first three cases recorded in the academic literature of improvement in olfactory impairment after psychedelic use. In the first case, a man who developed microsmia after a respiratory infection experienced improvement in smell after the use of 6 g of psilocybin containing mushrooms. In the second case, a woman with anosmia since childhood reported olfactory improvement after ingestion of 100 µg of lysergic acid diethylamide (LSD). In the third case, a woman with COVID-19-related anosmia reported olfactory improvement after microdosing 0.1 g of psilocybin mushrooms three times. Following a discussion of these cases, we explore potential mechanisms for psychedelic-facilitated improvement in olfactory impairment, including serotonergic effects, increased neuroplasticity, and anti-inflammatory effects. Given the need for novel treatments for olfactory dysfunction, increasing reports describing improvement in these conditions following psychedelic use and potential biological plausibility, we believe that the possible therapeutic benefits of psychedelics for these conditions deserve further investigation.
Collapse
Affiliation(s)
| | - Jeremy Weleff
- Department of Psychiatry and Psychology, Cleveland Clinic, Cleveland, USA
- Department of Psychiatry, Yale University School of Medicine, Cleveland, USA
| | | | - Brian S Barnett
- Department of Psychiatry and Psychology, Cleveland Clinic, Cleveland, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, USA
| |
Collapse
|
6
|
Asadi Anar M, Foroughi E, Sohrabi E, Peiravi S, Tavakoli Y, Kameli Khouzani M, Behshood P, Shamshiri M, Faridzadeh A, Keylani K, Langari SF, Ansari A, Khalaji A, Garousi S, Mottahedi M, Honari S, Deravi N. Selective serotonin reuptake inhibitors: New hope in the fight against COVID-19. Front Pharmacol 2022; 13:1036093. [PMID: 36532776 PMCID: PMC9748354 DOI: 10.3389/fphar.2022.1036093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
The emerging COVID-19 pandemic led to a dramatic increase in global mortality and morbidity rates. As in most infections, fatal complications of coronavirus affliction are triggered by an untrammeled host inflammatory response. Cytokine storms created by high levels of interleukin and other cytokines elucidate the pathology of severe COVID-19. In this respect, repurposing drugs that are already available and might exhibit anti-inflammatory effects have received significant attention. With the in vitro and clinical investigation of several studies on the effect of antidepressants on COVID-19 prognosis, previous data suggest that selective serotonin reuptake inhibitors (SSRIs) might be the new hope for the early treatment of severely afflicted patients. SSRIs' low cost and availability make them potentially eligible for COVID-19 repurposing. This review summarizes current achievements and literature about the connection between SSRIs administration and COVID-19 prognosis.
Collapse
Affiliation(s)
- Mahsa Asadi Anar
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elaheh Foroughi
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elika Sohrabi
- Department of Medicine, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Samira Peiravi
- Department of Emergency Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yasaman Tavakoli
- Department of Medicine, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran
| | | | - Parisa Behshood
- Department of Microbiology, Young Researchers and Elite Club, Islamic Azad University, Shahrekord, Iran
| | - Melika Shamshiri
- School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Arezoo Faridzadeh
- Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kimia Keylani
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Faride Langari
- Department of Ophthalmology, Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Akram Ansari
- Shantou University Medical College, Shantou, Guangdong, China
| | | | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Honari
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Davidson M, Rashidi N, Nurgali K, Apostolopoulos V. The Role of Tryptophan Metabolites in Neuropsychiatric Disorders. Int J Mol Sci 2022; 23:ijms23179968. [PMID: 36077360 PMCID: PMC9456464 DOI: 10.3390/ijms23179968] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 12/20/2022] Open
Abstract
In recent decades, neuropsychiatric disorders such as major depressive disorder, schizophrenia, bipolar, etc., have become a global health concern, causing various detrimental influences on patients. Tryptophan is an important amino acid that plays an indisputable role in several physiological processes, including neuronal function and immunity. Tryptophan’s metabolism process in the human body occurs using different pathways, including the kynurenine and serotonin pathways. Furthermore, other biologically active components, such as serotonin, melatonin, and niacin, are by-products of Tryptophan pathways. Current evidence suggests that a functional imbalance in the synthesis of Tryptophan metabolites causes the appearance of pathophysiologic mechanisms that leads to various neuropsychiatric diseases. This review summarizes the pharmacological influences of tryptophan and its metabolites on the development of neuropsychiatric disorders. In addition, tryptophan and its metabolites quantification following the neurotransmitters precursor are highlighted. Eventually, the efficiency of various biomarkers such as inflammatory, protein, electrophysiological, genetic, and proteomic biomarkers in the diagnosis/treatment of neuropsychiatric disorders was discussed to understand the biomarker application in the detection/treatment of various diseases.
Collapse
Affiliation(s)
- Majid Davidson
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Niloufar Rashidi
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
- Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia
- Immunology Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
- Correspondence:
| |
Collapse
|
8
|
Kim HB, Hyun AH. Psychological and Biochemical Effects of an Online Pilates Intervention in Pregnant Women during COVID-19: A Randomized Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10931. [PMID: 36078648 PMCID: PMC9517892 DOI: 10.3390/ijerph191710931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The purpose of this study was to analyze the effect of real-time online Pilates exercise during COVID-19 on women's body composition, blood lipids, and psychological health after childbirth. The participants were 16 pregnant women (24-28 weeks pregnant) enrolled at the C Women's Culture Center in Seoul, South Korea, classified into online Pilates groups and non-exercise groups (PE, n = 8; CON, n = 8). The online Pilates program was conducted for 8 weeks, twice a week, and 50 min a day using a real-time video chat app. Participants visited the hospital twice for body composition and blood tests. Questionnaires on postpartum depression, sleep disorder, and stress were conducted at 6 weeks and 12 weeks after childbirth. We found a significant difference between groups in body composition. The weight, percentage of body fat, body fat mass, and BMI of the PE group decreased. Blood lipids showed significant differences between the groups in TC, TG, LDL and CRP, while insulin and HDL showed no difference. All blood lipids, insulin, and CRP in the PE group were reduced. There were significant differences between the groups in postpartum depression, sleep disorders, and perceived stress indices performed in the post-test, and the serotonin concentration in the PE group increased. Serotonin levels were significantly correlated with postpartum depression, body fat mass, and body fat rate. Pregnant women's online Pilates in this study was effective at reducing weight and depression in women after childbirth and should be used to promote women's mental health during COVID-19.
Collapse
Affiliation(s)
- Hyun-Bin Kim
- Department of Biological Sciences, Daeduk University, 68, Gajeongbuk-ro, Yuseong-gu, Daejeon 34111, Korea
| | - Ah-Hyun Hyun
- Department of Exercise Biochemistry and Exercise, Korea National Sport University, Seoul 05541, Korea
| |
Collapse
|
9
|
Karu N, Kindt A, van Gammeren AJ, Ermens AAM, Harms AC, Portengen L, Vermeulen RCH, Dik WA, Langerak AW, van der Velden VHJ, Hankemeier T. Severe COVID-19 Is Characterised by Perturbations in Plasma Amines Correlated with Immune Response Markers, and Linked to Inflammation and Oxidative Stress. Metabolites 2022; 12:618. [PMID: 35888742 PMCID: PMC9321395 DOI: 10.3390/metabo12070618] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 02/01/2023] Open
Abstract
The COVID-19 pandemic raised a need to characterise the biochemical response to SARS-CoV-2 infection and find biological markers to identify therapeutic targets. In support of these aims, we applied a range of LC-MS platforms to analyse over 100 plasma samples from patients with varying COVID-19 severity and with detailed clinical information on inflammatory responses (>30 immune markers). The first publication in a series reports the results of quantitative LC-MS/MS profiling of 56 amino acids and derivatives. A comparison between samples taken from ICU and ward patients revealed a notable increase in ten post-translationally modified amino acids that correlated with markers indicative of an excessive immune response: TNF-alpha, neutrophils, markers for macrophage, and leukocyte activation. Severe patients also had increased kynurenine, positively correlated with CRP and cytokines that induce its production. ICU and ward patients with high IL-6 showed decreased levels of 22 immune-supporting and anti-oxidative amino acids and derivatives (e.g., glutathione, GABA). These negatively correlated with CRP and IL-6 and positively correlated with markers indicative of adaptive immune activation. Including corresponding alterations in convalescing ward patients, the overall metabolic picture of severe COVID-19 reflected enhanced metabolic demands to maintain cell proliferation and redox balance, alongside increased inflammation and oxidative stress.
Collapse
Affiliation(s)
- Naama Karu
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands; (A.K.); (A.C.H.)
| | - Alida Kindt
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands; (A.K.); (A.C.H.)
| | - Adriaan J. van Gammeren
- Department of Clinical Chemistry and Hematology, Amphia Hospital, 4818 CK Breda, The Netherlands; (A.J.v.G.); (A.A.M.E.)
| | - Anton A. M. Ermens
- Department of Clinical Chemistry and Hematology, Amphia Hospital, 4818 CK Breda, The Netherlands; (A.J.v.G.); (A.A.M.E.)
| | - Amy C. Harms
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands; (A.K.); (A.C.H.)
| | - Lutzen Portengen
- Department of Population Health Sciences, Institute for Risk Assessment Sciences, University Utrecht, 3584 CK Utrecht, The Netherlands; (L.P.); (R.C.H.V.)
| | - Roel C. H. Vermeulen
- Department of Population Health Sciences, Institute for Risk Assessment Sciences, University Utrecht, 3584 CK Utrecht, The Netherlands; (L.P.); (R.C.H.V.)
| | - Willem A. Dik
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (W.A.D.); (A.W.L.); (V.H.J.v.d.V.)
| | - Anton W. Langerak
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (W.A.D.); (A.W.L.); (V.H.J.v.d.V.)
| | - Vincent H. J. van der Velden
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (W.A.D.); (A.W.L.); (V.H.J.v.d.V.)
| | - Thomas Hankemeier
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands; (A.K.); (A.C.H.)
| |
Collapse
|
10
|
Xerfan EMS, Morelhao PK, Arakaki FH, Facina ADS, Tomimori J, Xavier SD, Tufik S, Andersen ML. Could melatonin have a potential adjuvant role in the treatment of the lasting anosmia associated with COVID-19? A review. Int J Dev Neurosci 2022; 82:465-470. [PMID: 35766866 PMCID: PMC9349376 DOI: 10.1002/jdn.10208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Anosmia, the loss of the sense of smell, is usually associated with rhinopathies and has been reported as a common symptom of COVID-19. There is no specific drug to treat this condition, although some evidence suggests that melatonin could promote the recovery of olfactory sensory neurons. METHODS We set out to perform a narrative review to synthesize the current evidence in this area in respect of our hypothesis that melatonin may be linked with anosmia and play a part in oxidative stress and the regulation of inflammation. The main electronic databases (MEDLINE/PubMed, Embase, and Cochrane) were searched. RESULTS The search produced 26 articles related to our hypothesis. Some studies examined issues related to melatonin's effects and its use as adjuvant therapy for COVID-19. Despite some studies suggesting that melatonin may have potential in the treatment of COVID-19, to the best of our knowledge, there have been no trials that have used it to treat anosmia associated with the disease. Few articles identified proposed that melatonin might have an effect on olfactory cells. DISCUSSION Further experimental and clinical research on the role of circadian melatonin in the olfactory system is warranted. This will provide evidence of the use of melatonin in the management of anosmia. A number of identified studies suggest that the imbalanced release of melatonin by the pineal gland associated with sleep disturbance may play a role in anosmia, although the specific pathway is not yet entirely clear. This may be a base for further research into the potential role of melatonin as adjuvant treatment of anosmia.
Collapse
Affiliation(s)
- Ellen M S Xerfan
- Programa de Pós-Graduação em Medicina Translacional, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Priscila K Morelhao
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Felipe H Arakaki
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Jane Tomimori
- Programa de Pós-Graduação em Medicina Translacional, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,Departamento de Dermatologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Sandra D Xavier
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Sergio Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Monica L Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
11
|
Unbalanced IDO1/IDO2 Endothelial Expression and Skewed Keynurenine Pathway in the Pathogenesis of COVID-19 and Post-COVID-19 Pneumonia. Biomedicines 2022; 10:biomedicines10061332. [PMID: 35740354 PMCID: PMC9220124 DOI: 10.3390/biomedicines10061332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022] Open
Abstract
Despite intense investigation, the pathogenesis of COVID-19 and the newly defined long COVID-19 syndrome are not fully understood. Increasing evidence has been provided of metabolic alterations characterizing this group of disorders, with particular relevance of an activated tryptophan/kynurenine pathway as described in this review. Recent histological studies have documented that, in COVID-19 patients, indoleamine 2,3-dioxygenase (IDO) enzymes are differentially expressed in the pulmonary blood vessels, i.e., IDO1 prevails in early/mild pneumonia and in lung tissues from patients suffering from long COVID-19, whereas IDO2 is predominant in severe/fatal cases. We hypothesize that IDO1 is necessary for a correct control of the vascular tone of pulmonary vessels, and its deficiency in COVID-19 might be related to the syndrome’s evolution toward vascular dysfunction. The complexity of this scenario is discussed in light of possible therapeutic manipulations of the tryptophan/kynurenine pathway in COVID-19 and post-acute COVID-19 syndromes.
Collapse
|
12
|
Eteraf-Oskouei T, Najafi M. The relationship between the serotonergic system and COVID-19 disease: A review. Heliyon 2022; 8:e09544. [PMID: 35652122 PMCID: PMC9132783 DOI: 10.1016/j.heliyon.2022.e09544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/07/2022] [Accepted: 05/20/2022] [Indexed: 02/07/2023] Open
Abstract
COVID-19 is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which led to a pandemic started in Wuhan, China, in 2019. The rapid spread of the disease in the world, unprecedented mortality rate, and lack of definitive treatment for the disease have led to a global effort to develop effective vaccines as well as new therapeutic interventions. Immune cells activation with excessive inflammation is an important pathophysiological feature of COVID-19 that may impair the various organs functions. Accordingly, these could cause dysfunction in the brain with some symptoms such as respiratory failure, headache, impaired consciousness, olfactory and taste disorders, and severe neurological disorders such as encephalitis. It was found that there is a two-way communication between the immune system and the nervous system through classical neurotransmitters, hormones, and cytokines. Among neurotransmitters, serotonin plays important roles in the immune system and in regulating inflammatory responses by central and peripheral mechanisms. This article aimed to review the two-way relationship between the immune and the nervous systems by focusing on the serotonergic system and the emerging COVID-19 disease.
Collapse
Affiliation(s)
- Tahereh Eteraf-Oskouei
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Moslem Najafi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Tan DX, Reiter RJ. Mechanisms and clinical evidence to support melatonin's use in severe COVID-19 patients to lower mortality. Life Sci 2022; 294:120368. [PMID: 35108568 PMCID: PMC8800937 DOI: 10.1016/j.lfs.2022.120368] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/07/2023]
Abstract
The fear of SARS-CoV-2 infection is due to its high mortality related to seasonal flu. To date, few medicines have been developed to significantly reduce the mortality of the severe COVID-19 patients, especially those requiring tracheal intubation. The severity and mortality of SARS-CoV-2 infection not only depend on the viral virulence, but are primarily determined by the cytokine storm and the destructive inflammation driven by the host immune reaction. Thus, to target the host immune response might be a better strategy to combat this pandemic. Melatonin is a molecule with multiple activities on a virus infection. These include that it downregulates the overreaction of innate immune response to suppress inflammation, promotes the adaptive immune reaction to enhance antibody formation, inhibits the entrance of the virus into the cell as well as limits its replication. These render it a potentially excellent candidate for treatment of the severe COVID-19 cases. Several clinical trials have confirmed that melatonin when added to the conventional therapy significantly reduces the mortality of the severe COVID-19 patients. The cost of melatonin is a small fraction of those medications approved by FDA for emergency use to treat COVID-19. Because of its self-administered, low cost and high safety margin, melatonin could be made available to every country in the world at an affordable cost. We recommend melatonin be used to treat severe COVID-19 patients with the intent of reducing mortality. If successful, it would make the SARS-CoV-2 pandemic less fearful and help to return life back to normalcy.
Collapse
Affiliation(s)
- Dun-Xian Tan
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
14
|
Rauchman SH, Mendelson SG, Rauchman C, Kasselman LJ, Pinkhasov A, Reiss AB. Ongoing Use of SSRIs Does Not Alter Outcome in Hospitalized COVID-19 Patients: A Retrospective Analysis. J Clin Med 2021; 11:70. [PMID: 35011811 PMCID: PMC8745642 DOI: 10.3390/jcm11010070] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/29/2022] Open
Abstract
SARS-CoV-2 continues to have devastating consequences worldwide. Though vaccinations have helped reduce spread, new strains still pose a threat. Therefore, it is imperative to identify treatments that prevent severe COVID-19 infection. Recently, acute use of SSRI antidepressants in COVID+ patients was shown to reduce symptom severity. The aim of this retrospective observational study was to determine whether COVID+ patients already on SSRIs upon hospital admission had reduced mortality compared to COVID+ patients not on chronic SSRI treatment. Electronic medical records of 9044 patients with laboratory-confirmed COVID-19 from six hospitals were queried for demographic and clinical information. Using R, a logistic regression model was run with mortality as the outcome and SSRI status as the exposure. In this sample, no patients admitted on SSRIs had them discontinued. There was no significant difference in the odds of dying between COVID+ patients on chronic SSRIs vs. those not taking SSRIs, after controlling for age category, gender, and race. This study shows the utility of large clinical databases in determining what commonly prescribed drugs might be useful in treating COVID-19. During pandemics due to novel infectious agents, it is critical to evaluate safety and efficacy of drugs that might be repurposed for treatment.
Collapse
Affiliation(s)
| | | | | | - Lora J. Kasselman
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (L.J.K.); (A.P.); (A.B.R.)
| | - Aaron Pinkhasov
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (L.J.K.); (A.P.); (A.B.R.)
| | - Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (L.J.K.); (A.P.); (A.B.R.)
| |
Collapse
|
15
|
Jain A. Deregulated kynurenine metabolism - An alternate hypothesis for COVID-19 associated anosmia. Med Hypotheses 2021; 157:110721. [PMID: 34731682 PMCID: PMC8553410 DOI: 10.1016/j.mehy.2021.110721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/29/2021] [Accepted: 10/20/2021] [Indexed: 11/18/2022]
Affiliation(s)
- Amit Jain
- Anesthesiology Institute, Cleveland Clinic Abu Dhabi, United Arab Emirates.
| |
Collapse
|
16
|
Sen A. Deficient synthesis of melatonin in COVID-19 can impair the resistance of coronavirus patients to mucormycosis. Med Hypotheses 2021; 158:110722. [PMID: 34753008 PMCID: PMC8553412 DOI: 10.1016/j.mehy.2021.110722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/12/2021] [Accepted: 10/17/2021] [Indexed: 12/25/2022]
Abstract
In addition to uncontrolled diabetes and the excess use of corticosteroids, it is believed that other factors may be responsible for the recent spurt of COVID-19 associated mucormycosis (CAM). In the present paper it is argued that COVID-19 increases the susceptibility of the patients to mucormycosis by augmenting the virulence factors of the mucor species, where deficient synthesis of melatonin plays a key role. Melatonin is synthesized from tryptophan via the serotonin pathway and melatonin deficiency in COVID-19 arises from the faulty absorption of tryptophan from the food because SARS-CoV-2 downregulates angiotensin-converting enzyme-2, the chaperone of the transporter of tryptophan. The enhanced fungal virulence in COVID-19 can be mitigated by correcting the melatonin deficiency as melatonin can prevent iron acquisition of the mucor species and inhibit their morphological transition from the yeast to the virulent hyphal form, given the fact that melatonin is an iron chelator, calmodulin blocker and inhibitor of myeloperoxidase as well as inhibitor of ferroptosis and pyroptosis. Also, by lowering the expression of glucose-regulated protein 78 and by inhibiting the suppression of T-cell immunity, melatonin can further increase the resistance of the patients to mucormycosis. Accordingly, clinical trials should be carried out on tryptophan supplementation, administration of selective serotonin reuptake inhibitors (to increase serotonin, the precursor of melatonin), and exogenous melatonin to find out how they perform in eliminating or reducing the propensity of the coronavirus patients to CAM.
Collapse
Affiliation(s)
- Amarnath Sen
- 40 Jadunath Sarbovouma Lane, Kolkata 700035, India.
| |
Collapse
|
17
|
Jaffal SM, Abbas MA. TRP channels in COVID-19 disease: Potential targets for prevention and treatment. Chem Biol Interact 2021; 345:109567. [PMID: 34166652 PMCID: PMC8217345 DOI: 10.1016/j.cbi.2021.109567] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 01/05/2023]
Abstract
Coronavirus disease 2019 [COVID-19] is a global health threat caused by severe acute respiratory syndrome coronavirus 2 [SARS-CoV2] that requires two proteins for entry: angiotensin-converting enzyme 2 [ACE2] and -membrane protease serine 2 [TMPRSS2]. Many patients complain from pneumonia, cough, fever, and gastrointestinal (GI) problems. Notably, different TRP channels are expressed in various tissues infected by SARS-CoV-2. TRP channels are cation channels that show a common architecture with high permeability to calcium [Ca2+] in most sub-families. Literature review shed light on the possible role of TRP channels in COVID-19 disease. TRP channels may take part in inflammation, pain, fever, anosmia, ageusia, respiratory, cardiovascular, GI and neurological complications related to COVID-19. Also, TRP channels could be the targets for many active compounds that showed effectiveness against SARS-CoV-2. Desensitization or blocking TRP channels by antibodies, aptamers, small molecules or venoms can be an option for COVID-19 prevention and future treatment. This review provides insights into the involvement of TRP channels in different symptoms and mechanisms of SARS-CoV-2 , potential treatments targeting these channels and highlights missing gaps in literature.
Collapse
Affiliation(s)
- Sahar M Jaffal
- Department of Biological Sciences, Faculty of Science, The University of Jordan, 11942, Amman, Jordan.
| | - Manal A Abbas
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, 19328, Amman, Jordan; Pharmacological and Diagnostic Research Center, Al-Ahliyya Amman University, 19328, Amman, Jordan
| |
Collapse
|