1
|
Wang W, Pan CY, Huang EY, Peng BJ, Hsu J, Clapper JC. Electrospun Polyacrylonitrile Silver(I,III) Oxide Nanoparticle Nanocomposites as Alternative Antimicrobial Materials. ACS OMEGA 2022; 7:48173-48183. [PMID: 36591150 PMCID: PMC9798751 DOI: 10.1021/acsomega.2c06208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/30/2022] [Indexed: 05/23/2023]
Abstract
Infectious microbial diseases can easily be transferred from person to person in the air or via high contact surfaces. As a result, researchers must aspire to create materials that can be implemented in surface contact applications to disrupt pathogen growth and transmission. This study examines the antimicrobial properties of polyacrylonitrile (PAN) nanofibers coated with silver nanoparticles (AgNPs) and silver(I,III) oxide. PAN was homogenized with varied weight concentrations of silver nitrate (AgNO3) in N,N-dimethylformamide solution, a common organic solvent that serves as both an electrospinning solvent and as a reducing agent that forms AgNPs. The subsequent colloids were electrospun into nanofibers, which were then characterized via various analysis techniques, including scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray analysis, dynamic light scattering, and X-ray photoelectron spectroscopy. A total of 10 microbes, including 7 strains of Gram-positive bacteria, 2 strains of Gram-negative bacteria, and Candida albicans, were incubated with cutouts of various PAN-AgNP nanocomposites using disk diffusion methods to test for the nanocomposites' antimicrobial efficiency. We report that our electrospun PAN-AgNP nanocomposites contain 100% AgO, a rare, mixed oxidation state of silver(I,III) oxide that is a better sterilizing agent than conventional nanosilver. PAN-AgNP nanocomposites also retain a certain degree of antimicrobial longevity; samples stored for approximately 90 days demonstrate a similar antimicrobial activity against Escherichia coli (E. coli) and Lactobacillus crispatus (L. crispatus) when compared to their newly electrospun counterparts. Moreover, our results indicate that PAN-AgNP nanocomposites successfully display antimicrobial activity against various bacteria and fungi strains regardless of their resistance to conventional antibiotics. Our study demonstrates that PAN-AgNP nanocomposites, a novel polymer material with long-term universal antimicrobial stability, can potentially be applied as a universal antimicrobial on surfaces at risk of contracting microbial infections and alleviate issues related to antibiotic overuse and microbial mutability.
Collapse
Affiliation(s)
- William
B. Wang
- Department
of Scientific Research, Taipei American
School, Taipei 11152, Taiwan
| | - Chieh-Yu Pan
- Department
and Graduate Institute of Aquaculture, National
Kaohsiung University of Science and Technology, Kaohsiung 811213, Taiwan
| | - Eng-Yen Huang
- Department
of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan
- School
of Traditional Chinese Medicine, Chang Gung
University, Kaohsiung 833401, Taiwan
| | - Bai-Jing Peng
- School
of Pharmacy, College of Pharmacy, Kaohsiung
Medical University, Kaohsiung 807, Taiwan
| | - Jonathan Hsu
- Department
of Scientific Research, Taipei American
School, Taipei 11152, Taiwan
| | - Jude C. Clapper
- Department
of Scientific Research, Taipei American
School, Taipei 11152, Taiwan
| |
Collapse
|
2
|
Cosme JRA, Castro‐Muñoz R, Vatanpour V. Recent Advances in Nanocomposite Membranes for Organic Compound Remediation from Potable Waters. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202200017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jose R. Aguilar Cosme
- University of Maryland Baltimore Department of Surgery 670 W Baltimore St 21201 Baltimore USA
| | - Roberto Castro‐Muñoz
- Gdansk University of Technology Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering 11/12 Narutowicza St. 80-233 Gdansk Poland
- Tecnologico de Monterrey, Campus Toluca Av. Eduardo Monroy Cárdenas 2000, San Antonio Buenavista 50110 Toluca de Lerdo Mexico
| | - Vahid Vatanpour
- Kharazmi University Department of Applied Chemistry, Faculty of Chemistry 15719-14911 Tehran Iran
- Istanbul Technical University, Maslak National Research Center on Membrane Technologies 34469 Istanbul Turkey
| |
Collapse
|
3
|
Antibacterial Activity of Electrospun Polyacrylonitrile Copper Nanoparticle Nanofibers on Antibiotic Resistant Pathogens and Methicillin Resistant Staphylococcus aureus (MRSA). NANOMATERIALS 2022; 12:nano12132139. [PMID: 35807975 PMCID: PMC9268565 DOI: 10.3390/nano12132139] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 12/03/2022]
Abstract
Bacteria induced diseases such as community-acquired pneumonia (CAP) are easily transmitted through respiratory droplets expelled from a person’s nose or mouth. It has become increasingly important for researchers to discover materials that can be implemented in in vitro surface contact settings which disrupt bacterial growth and transmission. Copper (Cu) is known to have antibacterial properties and have been used in medical applications. This study investigates the antibacterial properties of polyacrylonitrile (PAN) based nanofibers coated with different concentrations of copper nanoparticles (CuNPs). Different concentrations of copper sulfate (CuSO4) and polyacrylonitrile (PAN) were mixed with dimethylformamide (DMF) solution, an electrospinning solvent that also acts as a reducing agent for CuSO4, which forms CuNPs and Cu ions. The resulting colloidal solutions were electrospun into nanofibers, which were then characterized using various analysis techniques. Methicillin-Resistant isolates of Staphylococcus aureus, an infective strain that induces pneumonia, were incubated with cutouts of various nanocomposites using disk diffusion methods on Luria-Bertani (LB) agar to test for the polymers’ antibacterial properties. Herein, we disclose that PAN-CuNP nanofibers have successfully demonstrated antibacterial activity against bacteria that were otherwise resistant to highly effective antibiotics. Our findings reveal that PAN-CuNP nanofibers have the potential to be used on contact surfaces that are at risk of contracting bacterial infections, such as masks, in vivo implants, or surgical intubation.
Collapse
|
4
|
Li C, Hu D, Liu L, Zhu L, Xu M, Wang C, Li Y. Polyelectrolyte complex nanofiltration membranes by surface deposition of polyethylenimine on polyanion supports. J Appl Polym Sci 2022. [DOI: 10.1002/app.52137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chenwei Li
- School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan China
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology Wuhan Institute of Technology Wuhan China
| | - Dujuan Hu
- School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan China
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology Wuhan Institute of Technology Wuhan China
| | - Ling Liu
- School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan China
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology Wuhan Institute of Technology Wuhan China
| | - Li Zhu
- Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province Wuhan Institute of Technology Wuhan China
| | - Man Xu
- Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province Wuhan Institute of Technology Wuhan China
| | - Cunwen Wang
- School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan China
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology Wuhan Institute of Technology Wuhan China
| | - Yanbo Li
- School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan China
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology Wuhan Institute of Technology Wuhan China
| |
Collapse
|
5
|
Castro-Muñoz R, González-Melgoza LL, García-Depraect O. Ongoing progress on novel nanocomposite membranes for the separation of heavy metals from contaminated water. CHEMOSPHERE 2021; 270:129421. [PMID: 33401070 DOI: 10.1016/j.chemosphere.2020.129421] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Membranes, as the primary separation element of membrane-based processes, have greatly attracted the attention of researchers in several water treatment applications, including wastewater treatment, water purification, water disinfection, toxic and non-toxic chemical molecules, heavy metals, among others. Today, the removal of heavy metals from water has become challenging, in which chemical engineers are approaching new materials in membrane technologies. Therefore, the current review elucidates the progress of using different concepts of membranes and potential novel materials for such separations, identifying that polymeric membranes can exhibit a removal efficiency from 77 up to 99%; while novel nanocomposite membranes are able to offer complete removal of heavy metals (up to 100%), together with unprecedented permeation rates (from 80 up to 1, 300 L m-2 h-1). Thereby, the review also addresses the highlighted literature survey of using polymeric and nanocomposite membranes for heavy metal removal, highlighting the relevant insights and denoted metal uptake mechanisms. Moreover, it gives up-to-date information related to those novel nanocomposite materials and their contribution to heavy metals separation. Finally, the concluding remarks, future perspectives, and strategies for new researchers in the field are given according to the recent findings of this comprehensive review.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, 50110, Toluca de Lerdo, Mexico; Gdansk University of Technology, Faculty of Chemistry, Department of Process, Engineering and Chemical Technology, 11/12 Narutowicza St., 80-233, Gdansk, Poland.
| | | | - Octavio García-Depraect
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, S/n, 47011, Valladolid, Spain
| |
Collapse
|
6
|
Spoială A, Ilie CI, Ficai D, Ficai A, Andronescu E. Chitosan-Based Nanocomposite Polymeric Membranes for Water Purification-A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2091. [PMID: 33919022 PMCID: PMC8122305 DOI: 10.3390/ma14092091] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 01/11/2023]
Abstract
During the past few years, researchers have focused their attention on developing innovative nanocomposite polymeric membranes with applications in water purification. Natural and synthetic polymers were considered, and it was proven that chitosan-based materials presented important features. This review presents an overview regarding diverse materials used in developing innovative chitosan-based nanocomposite polymeric membranes for water purification. The first part of the review presents a detailed introduction about chitosan, highlighting the fact that is a biocompatible, biodegradable, low-cost, nontoxic biopolymer, having unique structure and interesting properties, and also antibacterial and antioxidant activities, reasons for using it in water treatment applications. To use chitosan-based materials for developing nanocomposite polymeric membranes for wastewater purification applications must enhance their performance by using different materials. In the second part of the review, the performance's features will be presented as a consequence of adding different nanoparticles, also showing the effect that those nanoparticles could bring on other polymeric membranes. Among these features, pollutant's retention and enhancing thermo-mechanical properties will be mentioned. The focus of the third section of the review will illustrate chitosan-based nanocomposite as polymeric membranes for water purification. Over the last few years, researchers have demonstrated that adsorbent nanocomposite polymeric membranes are powerful, important, and potential instruments in separation or removal of pollutants, such as heavy metals, dyes, and other toxic compounds presented in water systems. Lastly, we conclude this review with a summary of the most important applications of chitosan-based nanocomposite polymeric membranes and their perspectives in water purification.
Collapse
Affiliation(s)
- Angela Spoială
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania; (A.S.); (C.-I.I.); (E.A.)
| | - Cornelia-Ioana Ilie
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania; (A.S.); (C.-I.I.); (E.A.)
| | - Denisa Ficai
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 050054 Bucharest, Romania;
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania; (A.S.); (C.-I.I.); (E.A.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania; (A.S.); (C.-I.I.); (E.A.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| |
Collapse
|
7
|
García A, Rodríguez B, Giraldo H, Quintero Y, Quezada R, Hassan N, Estay H. Copper-Modified Polymeric Membranes for Water Treatment: A Comprehensive Review. MEMBRANES 2021; 11:93. [PMID: 33525631 PMCID: PMC7911616 DOI: 10.3390/membranes11020093] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 11/23/2022]
Abstract
In the last decades, the incorporation of copper in polymeric membranes for water treatment has received greater attention, as an innovative potential solution against biofouling formation on membranes, as well as, by its ability to improve other relevant membrane properties. Copper has attractive characteristics: excellent antimicrobial activity, high natural abundance, low cost and the existence of multiple cost-effective synthesis routes for obtaining copper-based materials with tunable characteristics, which favor their incorporation into polymeric membranes. This study presents a comprehensive analysis of the progress made in the area regarding modified membranes for water treatment when incorporating copper. The notable use of copper materials (metallic and oxide nanoparticles, salts, composites, metal-polymer complexes, coordination polymers) for modifying microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), forward osmosis (FO) and reverse osmosis (RO) membranes have been identified. Antibacterial and anti-fouling effect, hydrophilicity increase, improvements of the water flux, the rejection of compounds capacity and structural membrane parameters and the reduction of concentration polarization phenomena are some outstanding properties that improved. Moreover, the study acknowledges different membrane modification approaches to incorporate copper, such as, the incorporation during the membrane synthesis process (immobilization in polymer and phase inversion) or its surface modification using physical (coating, layer by layer assembly and electrospinning) and chemical (grafting, one-pot chelating, co-deposition and mussel-inspired PDA) surface modification techniques. Thus, the advantages and limitations of these modifications and their methods with insights towards a possible industrial applicability are presented. Furthermore, when copper was incorporated into membrane matrices, the study identified relevant detrimental consequences with potential to be solved, such as formation of defects, pore block, and nanoparticles agglomeration during their fabrication. Among others, the low modification stability, the uncontrolled copper ion releasing or leaching of incorporated copper material are also identified concerns. Thus, this article offers modification strategies that allow an effective copper incorporation on these polymeric membranes and solve these hinders. The article finishes with some claims about scaling up the implementation process, including long-term performance under real conditions, feasibility of production at large scale, and assessment of environmental impact.
Collapse
Affiliation(s)
- Andreina García
- Mining Engineering Department, FCFM, Universidad de Chile, Santiago 8370451, Chile
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Santiago 8370451, Chile; (H.G.); (Y.Q.); (R.Q.); (H.E.)
| | - Bárbara Rodríguez
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Santiago 8370451, Chile; (H.G.); (Y.Q.); (R.Q.); (H.E.)
| | - Hugo Giraldo
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Santiago 8370451, Chile; (H.G.); (Y.Q.); (R.Q.); (H.E.)
| | - Yurieth Quintero
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Santiago 8370451, Chile; (H.G.); (Y.Q.); (R.Q.); (H.E.)
| | - Rodrigo Quezada
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Santiago 8370451, Chile; (H.G.); (Y.Q.); (R.Q.); (H.E.)
| | - Natalia Hassan
- Programa Institucional de Fomento a la I+D+i, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile;
| | - Humberto Estay
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Santiago 8370451, Chile; (H.G.); (Y.Q.); (R.Q.); (H.E.)
| |
Collapse
|
8
|
Sun F, Lu J, Wang Y, Xiong J, Gao C, Xu J. Reductant-assisted polydopamine-modified membranes for efficient water purification. Front Chem Sci Eng 2020. [DOI: 10.1007/s11705-020-1987-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Supamas Danwittayakul, Phitchaya Muensri. Polyethyleneimine Coated Polyacrylonitrile Cellulose Membrane for Colorimetric Copper(II) Determination. J WATER CHEM TECHNO+ 2020. [DOI: 10.3103/s1063455x20010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Composite NF membranes with anti-bacterial activity prepared by electrostatic self-assembly for dye recycle. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2019.10.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Shen L, Yi M, Tian L, Wang F, Ding C, Sun S, Lu A, Su L, Wang Y. Efficient surface ionization and metallization of TFC membranes with superior separation performance, antifouling and anti-bacterial properties. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.040] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Study on the structure and properties of PPS/PCNF hybrid membranes and their applications in wastewater treatment. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.05.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
13
|
Shen L, Zhang Y, Yu W, Li R, Wang M, Gao Q, Li J, Lin H. Fabrication of hydrophilic and antibacterial poly(vinylidene fluoride) based separation membranes by a novel strategy combining radiation grafting of poly(acrylic acid) (PAA) and electroless nickel plating. J Colloid Interface Sci 2019; 543:64-75. [DOI: 10.1016/j.jcis.2019.02.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 12/28/2022]
|
14
|
Wang X, Cheng H, Hong P, Zhang X, Lai Z. A DNA-mimic contact-active functional group for antifouling ultrafiltration membranes. CHEMOSPHERE 2019; 216:669-676. [PMID: 30391888 DOI: 10.1016/j.chemosphere.2018.10.185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 06/08/2023]
Abstract
Despite advanced materials and techniques to reduce the fouling issue of membranes, 10-30% of the cost of ultrafiltration (UF) processes have been spent on membrane cleaning. Particularly in water treatment, the traditional heavy metal-based method is challenged due to its environmental pollution risk and increasing public health awareness. Here, we report the synthesis of a metal-free contact-active antifouling and antimicrobial membrane by covalently functionalizing a commercial polyacrylonitrile (PAN) UF membrane with 2,4-diamino-1,3,5-triazine (DAT) via a one-step catalyst-free hydrothermal [4 + 2] cyclization of dicyandiamide reaction. The proposed mechanism of the antimicrobial activity of the DAT-functionalized membrane is through strong attraction between the DAT groups and the microbial membrane protein via strong hydrogen bonding, leading to microbial membrane disruption and thus microbe death. A high water flux and good reusability of the membrane against protein in a UF experiment were achieved. The low cost, easy availability of the compounds, as well as the facile reaction offer a high potential of the membrane for real applications in ultrafiltration.
Collapse
Affiliation(s)
- Xinbo Wang
- Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Hong Cheng
- Water Desalination and Reuse Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Peiying Hong
- Water Desalination and Reuse Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xixiang Zhang
- Advanced Nanofabrication, Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, 239955, Saudi Arabia
| | - Zhiping Lai
- Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
15
|
A novel strategy to develop antifouling and antibacterial conductive Cu/polydopamine/polyvinylidene fluoride membranes for water treatment. J Colloid Interface Sci 2018; 531:493-501. [DOI: 10.1016/j.jcis.2018.07.090] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 01/06/2023]
|
16
|
Li R, Wang X, Cai X, Lin H, Shen L, Chen J, Hong H, Liao BQ. A facile strategy to prepare superhydrophilic polyvinylidene fluoride (PVDF) based membranes and the thermodynamic mechanisms underlying the improved performance. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.01.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Qin Y, Yang H, Xu Z, Li F. Surface Modification of Polyacrylonitrile Membrane by Chemical Reaction and Physical Coating: Comparison between Static and Pore-Flowing Procedures. ACS OMEGA 2018; 3:4231-4241. [PMID: 31458656 PMCID: PMC6641343 DOI: 10.1021/acsomega.7b02094] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/02/2018] [Indexed: 05/29/2023]
Abstract
The influences of static and pore-flowing procedures on the surface modification of a polyacrylonitrile (PAN) ultrafiltration membrane through chemical reaction and physical coating were investigated in detail. For chemical modification by ethanolamine, a membrane modified by the pore-flowing procedure showed a higher flux and different morphology. The reasons were explained by two effects: the pore-flowing resistance to the random thermal motion of PAN at high temperatures and different reaction kinetics related to the reactant concentration profile on the interface between the membrane and reaction solution and the kinetic property of the fluid (driving force and miscibility) and reaction (time and rate). For physical coating modification, a dense and flat layer via a loose and random layer was formed during the pore-flowing process and static process, which changed the flux and antifouling property of the membrane. The membrane prepared by dead-end filtration showed the best trade-off between the flux and antifouling property. Overall, the procedure kinetics plays an important role in the optimization of membrane modification.
Collapse
|
18
|
Ursino C, Castro-Muñoz R, Drioli E, Gzara L, Albeirutty MH, Figoli A. Progress of Nanocomposite Membranes for Water Treatment. MEMBRANES 2018; 8:E18. [PMID: 29614045 PMCID: PMC6027241 DOI: 10.3390/membranes8020018] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/20/2018] [Accepted: 03/29/2018] [Indexed: 12/16/2022]
Abstract
The use of membrane-based technologies has been applied for water treatment applications; however, the limitations of conventional polymeric membranes have led to the addition of inorganic fillers to enhance their performance. In recent years, nanocomposite membranes have greatly attracted the attention of scientists for water treatment applications such as wastewater treatment, water purification, removal of microorganisms, chemical compounds, heavy metals, etc. The incorporation of different nanofillers, such as carbon nanotubes, zinc oxide, graphene oxide, silver and copper nanoparticles, titanium dioxide, 2D materials, and some other novel nano-scale materials into polymeric membranes have provided great advances, e.g., enhancing on hydrophilicity, suppressing the accumulation of pollutants and foulants, enhancing rejection efficiencies and improving mechanical properties and thermal stabilities. Thereby, the aim of this work is to provide up-to-date information related to those novel nanocomposite membranes and their contribution for water treatment applications.
Collapse
Affiliation(s)
- Claudia Ursino
- Institute on Membrane Technology National Research Council, ITM-CNR, Via P. Bucci 17/C, 87036 Rende (CS), Italy; (C.U.); (R.C.-M.); (E.D.)
| | - Roberto Castro-Muñoz
- Institute on Membrane Technology National Research Council, ITM-CNR, Via P. Bucci 17/C, 87036 Rende (CS), Italy; (C.U.); (R.C.-M.); (E.D.)
- Department of Inorganic Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Enrico Drioli
- Institute on Membrane Technology National Research Council, ITM-CNR, Via P. Bucci 17/C, 87036 Rende (CS), Italy; (C.U.); (R.C.-M.); (E.D.)
| | - Lassaad Gzara
- Center of Excellence in Desalination Technology, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia;
| | - Mohammad H. Albeirutty
- Center of Excellence in Desalination Technology, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia;
- Mechanical Engineering Department, King Abdulaziz University, P.O. Box 80204, Jeddah 21589, Saudi Arabia
| | - Alberto Figoli
- Institute on Membrane Technology National Research Council, ITM-CNR, Via P. Bucci 17/C, 87036 Rende (CS), Italy; (C.U.); (R.C.-M.); (E.D.)
| |
Collapse
|
19
|
Zhu J, Hou J, Zhang Y, Tian M, He T, Liu J, Chen V. Polymeric antimicrobial membranes enabled by nanomaterials for water treatment. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.12.071] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
20
|
Highly antifouling and antibacterial performance of poly (vinylidene fluoride) ultrafiltration membranes blending with copper oxide and graphene oxide nanofillers for effective wastewater treatment. J Colloid Interface Sci 2017; 505:341-351. [DOI: 10.1016/j.jcis.2017.05.074] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 05/19/2017] [Accepted: 05/23/2017] [Indexed: 12/16/2022]
|
21
|
Hosseini SS, Nazif A, Alaei Shahmirzadi MA, Ortiz I. Fabrication, tuning and optimization of poly (acrilonitryle) nanofiltration membranes for effective nickel and chromium removal from electroplating wastewater. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.06.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Bilal M, Rasheed T, Iqbal HMN, Hu H, Wang W, Zhang X. Macromolecular agents with antimicrobial potentialities: A drive to combat antimicrobial resistance. Int J Biol Macromol 2017; 103:554-574. [PMID: 28528940 DOI: 10.1016/j.ijbiomac.2017.05.071] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/23/2017] [Accepted: 05/15/2017] [Indexed: 02/08/2023]
Abstract
In recent years, the antimicrobial resistance (AMR) or multidrug resistance (MDR) has become a serious health concern and major challenging issue, worldwide. After decades of negligence, the AMR has now captured global attention. The increasing number of antibiotic-resistant strains has threatened the achievements of science and medicine since it inactivates conventional antimicrobial therapeutics. Scientists are trying to respond to AMR/MDR threat by exploring innovative platforms and new therapeutic strategies to tackle infections from these resistant strains and bypass treatment limitations related to these pathologies. The present review focuses on the utilization of bio-inspired novel constructs and their potential applications as novel antimicrobial agents. The first part of the review describes plant-based biological macromolecules containing an immense variety of secondary metabolites, which could be potentially used as alternative strategies to combat antimicrobial resistance. The second part discusses the potential of metal-based macromolecules as effective antimicrobial platforms for preventing infections from resistant strains. The third part comprehensively elucidates how nanoparticles, in particular, metal-integrated nanoparticles can overcome this AMR or MDR issue. Towards the end, information is given with critical concluding remarks, gaps, and finally envisioned with future considerations.
Collapse
Affiliation(s)
- Muhammad Bilal
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Tahir Rasheed
- The School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hafiz M N Iqbal
- School of Engineering and Science, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., CP 64849, Mexico.
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
23
|
Incorporation of CuO nanoparticles into thin-film composite reverse osmosis membranes (TFC-RO) for antibiofouling properties. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-2146-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Investigation of antifouling and disinfection potential of chitosan coated iron oxide-PAN hollow fiber membrane using Gram-positive and Gram-negative bacteria. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:133-148. [DOI: 10.1016/j.msec.2017.02.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/29/2016] [Accepted: 02/07/2017] [Indexed: 01/16/2023]
|
25
|
In situ formation of copper nanoparticles in carboxylated chitosan layer: Preparation and characterization of surface modified TFC membrane with protein fouling resistance and long-lasting antibacterial properties. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2016.12.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
|
27
|
Abd-El-Aziz AS, Agatemor C, Etkin N. Antimicrobial resistance challenged with metal-based antimicrobial macromolecules. Biomaterials 2017; 118:27-50. [DOI: 10.1016/j.biomaterials.2016.12.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 11/30/2016] [Accepted: 12/02/2016] [Indexed: 12/24/2022]
|
28
|
Lv L, Xu J, Shan B, Gao C. Concentration performance and cleaning strategy for controlling membrane fouling during forward osmosis concentration of actual oily wastewater. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.08.058] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
Liu C, Faria AF, Ma J, Elimelech M. Mitigation of Biofilm Development on Thin-Film Composite Membranes Functionalized with Zwitterionic Polymers and Silver Nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:182-191. [PMID: 27976869 DOI: 10.1021/acs.est.6b03795] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We demonstrate the functionalization of thin-film composite membranes with zwitterionic polymers and silver nanoparticles (AgNPs) for combating biofouling. Combining hydrophilic zwitterionic polymer brushes and biocidal AgNPs endows the membrane with dual functionality: antiadhesion and bacterial inactivation. An atom transfer radical polymerization (ATRP) reaction is used to graft zwitterionic poly(sulfobetaine methacrylate) (PSBMA) brushes to the membrane surface, while AgNPs are synthesized in situ through chemical reduction of silver. Two different membrane architectures (Ag-PSBMA and PSBMA-Ag TFC) are developed according to the sequence AgNPs, and PSBMA brushes are grafted on the membrane surface. A static adhesion assay shows that both modified membranes significantly reduced the adsorption of proteins, which served as a model organic foulant. However, improved antimicrobial activity is observed for PSBMA-Ag TFC (i.e., AgNPs on top of the polymer brush) in comparison to the Ag-PSBMA TFC membrane (i.e., polymer brush on top of AgNPs), indicating that architecture of the antifouling layer is an important factor in the design of zwitterion-silver membranes. Confocal laser scanning microscopy (CLSM) imaging indicated that PSBMA-Ag TFC membranes effectively inhibit biofilm formation under dynamic cross-flow membrane biofouling tests. Finally, we demonstrate the regeneration of AgNPs on the membrane after depletion of silver from the surface of the PSBMA-Ag TFC membrane.
Collapse
Affiliation(s)
- Caihong Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology , Harbin 150090, China
| | | | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology , Harbin 150090, China
| | | |
Collapse
|
30
|
Qiu WZ, Lv Y, Du Y, Yang HC, Xu ZK. Composite nanofiltration membranes via the co-deposition and cross-linking of catechol/polyethylenimine. RSC Adv 2016. [DOI: 10.1039/c6ra04074h] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Composite NF membranes are fabricated based on the co-deposition of CCh/PEI. The optimized membranes possess high rejection of multivalent ions with acceptable flux and show excellent operational stability over long-term filtration process.
Collapse
Affiliation(s)
- Wen-Ze Qiu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Yan Lv
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Yong Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Hao-Cheng Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
31
|
Xu J, Xu L, Xu H, Sun F, Gao X, Gao C. Stability and permeation behavior of a porous membrane modified by polyelectrolyte networks enabled by electro-deposition and cross-linking for water purification. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.08.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
32
|
Constructing antimicrobial membrane surfaces with polycation–copper(II) complex assembly for efficient seawater softening treatment. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.05.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
33
|
Improving antifouling performance of PAN hollow fiber membrane using surface modification method. J Taiwan Inst Chem Eng 2015. [DOI: 10.1016/j.jtice.2015.03.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Moreira J, Gomes L, Simões M, Melo L, Mergulhão F. The impact of material properties, nutrient load and shear stress on biofouling in food industries. FOOD AND BIOPRODUCTS PROCESSING 2015. [DOI: 10.1016/j.fbp.2015.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Liu W, Cai M, He Y, Wang S, Zheng J, Xu X. Development of antibacterial polyacrylonitrile membrane modified with a covalently immobilized lysozyme. RSC Adv 2015. [DOI: 10.1039/c5ra14867g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A novel antibacterial polyacrylonitrile (PAN) membrane covalently immobilized with lysozyme was prepared.
Collapse
Affiliation(s)
- Wei Liu
- Research Institute of Photocatalysis
- College of Chemistry
- Fuzhou University
- Fuzhou 350108
- China
| | - Minhua Cai
- Research Institute of Photocatalysis
- College of Chemistry
- Fuzhou University
- Fuzhou 350108
- China
| | - Yuegui He
- Research Institute of Photocatalysis
- College of Chemistry
- Fuzhou University
- Fuzhou 350108
- China
| | - Shuai Wang
- Research Institute of Photocatalysis
- College of Chemistry
- Fuzhou University
- Fuzhou 350108
- China
| | - Jinwang Zheng
- Shanghai Tofflon Science and Technology Co., Ltd
- Shanghai
- China
| | - Xiaoping Xu
- Research Institute of Photocatalysis
- College of Chemistry
- Fuzhou University
- Fuzhou 350108
- China
| |
Collapse
|
36
|
A new approach of synthesis and morphological control of poly(ethylene terephthalate)-g-polyacrylonitrile composite film with a porous surface. Radiat Phys Chem Oxf Engl 1993 2015. [DOI: 10.1016/j.radphyschem.2014.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Zhen H, Wang T, Jia R, Su B, Gao C. Preparation and performance of antibacterial layer-by-layer polyelectrolyte nanofiltration membranes based on metal–ligand coordination interactions. RSC Adv 2015. [DOI: 10.1039/c5ra15427h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Coordinative nanofiltration membranes with commendable antibacterial property and hydrophilicity are prepared and investigated extensively by alternating LBL assembly of polyethyleneimine and polystyrene sulfonate using Cu2+ as coordination agent.
Collapse
Affiliation(s)
- Hongyan Zhen
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China)
- Ministry of Education
- Qingdao 266100
- China
- College of Chemistry & Chemical Engineering
| | - Tingting Wang
- College of Chemistry & Chemical Engineering
- Ocean University of China
- Qingdao 266100
- China
| | - Rui Jia
- College of Chemistry & Chemical Engineering
- Ocean University of China
- Qingdao 266100
- China
| | - Baowei Su
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China)
- Ministry of Education
- Qingdao 266100
- China
- College of Chemistry & Chemical Engineering
| | - Congjie Gao
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China)
- Ministry of Education
- Qingdao 266100
- China
- College of Chemistry & Chemical Engineering
| |
Collapse
|
38
|
Adib H, Hassanajili S, Sheikhi-Kouhsar MR, Salahi A, Mohammadi T. Experimental and computational investigation of polyacrylonitrile ultrafiltration membrane for industrial oily wastewater treatment. KOREAN J CHEM ENG 2014. [DOI: 10.1007/s11814-014-0218-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Li M, Xu J, Chang CY, Feng C, Zhang L, Tang Y, Gao C. Bioinspired fabrication of composite nanofiltration membrane based on the formation of DA/PEI layer followed by cross-linking. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2014.01.038] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Effect of coagulation bath conditions on the morphology and performance of PSf membrane blended with a capsaicin-mimic copolymer. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2013.12.076] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Mei Y, Yao C, Li X. A simple approach to constructing antibacterial and anti-biofouling nanofibrous membranes. BIOFOULING 2014; 30:313-322. [PMID: 24558981 DOI: 10.1080/08927014.2013.871540] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this work, antibacterial and anti-adhesive polymeric thin films were constructed on polyacrylonitrile (PAN) nanofibrous membranes in order to extend their applications. Polyhexamethylene guanidine hydrochloride (PHGH) as an antibacterial agent and heparin (HP) as an anti-adhesive agent have been successfully coated onto the membranes via a layer-by-layer (LBL) assembly technique confirmed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), energy-dispersive spectroscopy (EDS) and scanning electron microscopy (SEM). The antibacterial properties of LBL-functionalized PAN nanofibrous membranes were evaluated using the Gram-positive bacterium Staphylococcus aureus and the Gram-negative Escherichia coli. Furthermore, the dependence of the antibacterial activity and anti-biofouling performance on the number of layers in the LBL films was investigated quantitatively. It was found that these LBL-modified nanofibrous membranes possessed high antibacterial activities, easy-cleaning properties and stability under physiological conditions, thus qualifying them as candidates for anti-biofouling coatings.
Collapse
Affiliation(s)
- Yan Mei
- a School of Chemistry and Chemical Engineering , Southeast University , Nanjing , PR China
| | | | | |
Collapse
|
42
|
Feng C, Xu J, Li M, Tang Y, Gao C. Studies on a novel nanofiltration membrane prepared by cross-linking of polyethyleneimine on polyacrylonitrile substrate. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2013.10.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Ben-Sasson M, Zodrow KR, Genggeng Q, Kang Y, Giannelis EP, Elimelech M. Surface functionalization of thin-film composite membranes with copper nanoparticles for antimicrobial surface properties. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:384-93. [PMID: 24308843 DOI: 10.1021/es404232s] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Biofouling is a major operational challenge in reverse osmosis (RO) desalination, motivating a search for improved biofouling control strategies. Copper, long known for its antibacterial activity and relatively low cost, is an attractive potential biocidal agent. In this paper, we present a method for loading copper nanoparticles (Cu-NPs) on the surface of a thin-film composite (TFC) polyamide RO membrane. Cu-NPs were synthesized using polyethyleneimine (PEI) as a capping agent, resulting in particles with an average radius of 34 nm and a copper content between 39 and 49 wt.%. The positive charge of the Cu-NPs imparted by the PEI allowed a simple electrostatic functionalization of the negatively charged RO membrane. We confirmed functionalization and irreversible binding of the Cu-NPs to the membrane surface with SEM and XPS after exposing the membrane to bath sonication. We also demonstrated that Cu-NP functionalization can be repeated after the Cu-NPs dissolve from the membrane surface. The Cu-NP functionalization had minimal impact on the intrinsic membrane transport parameters. Surface hydrophilicity and surface roughness were also maintained, and the membrane surface charge became positive after functionalization. The functionalized membrane exhibited significant antibacterial activity, leading to an 80-95% reduction in the number of attached live bacteria for three different model bacterial strains. Challenges associated with this functionalization method and its implementation in RO desalination are discussed.
Collapse
Affiliation(s)
- Moshe Ben-Sasson
- Department of Chemical and Environmental Engineering Yale University New Haven, Connecticut 06520-8286, United States
| | | | | | | | | | | |
Collapse
|
44
|
Xu J, Feng X, Hou J, Wang X, Shan B, Yu L, Gao C. Preparation and characterization of a novel polysulfone UF membrane using a copolymer with capsaicin-mimic moieties for improved anti-fouling properties. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2013.06.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|