1
|
Worajittiphon P, Majan P, Wangkawong K, Somsunan R, Jantrawut P, Panraksa P, Chaiwarit T, Srithep Y, Sommano SR, Jantanasakulwong K, Rachtanapun P. Inside-out templating: A strategy to decorate helical carbon nanotubes and 2D MoS 2 on ethyl cellulose sponge for enhanced oil adsorption and oil/water separation. Int J Biol Macromol 2024; 273:133119. [PMID: 38880452 DOI: 10.1016/j.ijbiomac.2024.133119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Ethyl cellulose (EC)-based composite sponges were developed for oil spillage treatment. The EC sponge surface was decorated with helical carbon nanotubes (HCNTs) and molybdenum disulfide (MoS2) (1 phr) using the inside-out sugar templating method. The inside surface of a sugar cube was coated with HCNTs and MoS2. After filling the sugar cube pores with EC and the subsequent sugar leaching, the decorating materials presented on the sponge surface. The EC/HCNT/MoS2 sponge had a high level of oil removal based on its adsorption capacity (41.68 g/g), cycled adsorption (∼75-79 %), separation flux efficiency (∼85-95 %), and efficiency in oil/water emulsion separation (92-94 %). The sponge maintained adsorption capacity in acidic, basic, and salty conditions, adsorbed oil under water, and functioned as an oil/water separator in a continuous pump-assisted system. The compressive stress and Young's modulus of the EC sponge increased following its decoration using HCNTs and MoS2. The composite sponge was robust based on cycled compression and was thermally stable up to ∼120 οC. Based on the eco-friendliness of EC, the low loading of HCNTs and MoS2, and sponge versatility, the developed EC/HCNT/MoS2 sponge should be good candidate for use in sustainable oil adsorption and separation applications.
Collapse
Affiliation(s)
- Patnarin Worajittiphon
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Panudda Majan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kanlayawat Wangkawong
- Department of Basic Science and Physical Education, Faculty of Science at Sriracha, Kasetsart University Sriracha Campus, Chonburi 20230, Thailand
| | - Runglawan Somsunan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pattaraporn Panraksa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tanpong Chaiwarit
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yottha Srithep
- Manufacturing and Materials Research Unit, Department of Manufacturing Engineering, Faculty of Engineering, Mahasarakham University, Mahasarakham 44150, Thailand
| | - Sarana Rose Sommano
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kittisak Jantanasakulwong
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; Division of Packaging Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pornchai Rachtanapun
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; Division of Packaging Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| |
Collapse
|
2
|
Liu S, Zhang J, Theliander A, Chen W, Wu J, Wu L. Construction of self-repairing polyethersulfone membrane with high density hydrophilic microregions by two dimensional restricted channels for enhanced dyes/salts selective separation. ENVIRONMENTAL RESEARCH 2024; 247:118266. [PMID: 38253193 DOI: 10.1016/j.envres.2024.118266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/18/2023] [Accepted: 11/25/2023] [Indexed: 01/24/2024]
Abstract
Based on the dye/salts separation efficiency and membrane injury caused by serious pollution of dye/salts wastewater, this study constructed a 2D tight ultrafiltration membrane that could both solve the membrane injury problem and improve the dye/salts separation efficiency, the compatibility of good self-healing performance and penetration performance by 2D material magnesium-aluminum Layered double hydroxide (MgAl-LDH). The self-repairing of physical injury was achieved through the swelling effect of AMPS-PAN, this property was proved by permeate flux, the retention performance of salts in dye/salts solution, the comparison of scanning electron microscope (SEM), and the mechanical strength after physical injury. The healing of chemical injury occured through the reaction of CC and polyethersulfone chain breakage, which was confirmed by X-ray photoelectron spectroscopy (XPS), permeate flux, the retention performance of salts in dye/salts solution, and mechanical property. The high separation efficiency of dye/salts was achieved through 2D material MgAl-LDH, which was proved by separation selectivity ɑ. The compatibility of good self-healing performance and penetration performance was obtained by 2D material MgAl-LDH, which was proved by the penetration and self-healing performance. Morever, the membrane illustrated excellent both permeability and dye/sals separation efficiency, just like the permeate flux, the retention performance of sodium sulfate in methyl blue/sodium sulfate solution, the retention performance of Na2SO4 in methyl blue/Na2SO4 solution, the retention rate of methyl blue were 99.1 L/m2h, 12.5%, 7.9%, 97.7%, respectively. The results of pollution index and contact angle also proved that the membrane had anti-pollution performance.
Collapse
Affiliation(s)
- Shenghui Liu
- College of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin ,541004, China.
| | - Jintuan Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin ,541004, China.
| | - Anette Theliander
- Department of Energy Conversion and Storage, Technical University of Denmark, 2880, Kgs. Lyngby, Denmark
| | - Weibin Chen
- College of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Junyong Wu
- College of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Leixin Wu
- College of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| |
Collapse
|
3
|
Wang M, Huang T, Shan M, Sun M, Liu S, Tang H. Zwitterionic Tröger's Base Microfiltration Membrane Prepared via Vapor-Induced Phase Separation with Improved Demulsification and Antifouling Performance. Molecules 2024; 29:1001. [PMID: 38474513 DOI: 10.3390/molecules29051001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
The fouling of separation membranes has consistently been a primary factor contributing to the decline in membrane performance. Enhancing the surface hydrophilicity of the membrane proves to be an effective strategy in mitigating membrane fouling in water treatment processes. Zwitterionic polymers (containing an equimolar number of homogeneously distributed anionic and cationic groups on the polymer chains) have been used extensively as one of the best antifouling materials for surface modification. The conventional application of zwitterionic compounds as surface modifiers is intricate and inefficient, adding complexity and length to the membrane preparation process, particularly on an industrial scale. To overcome these limitations, zwitterionic polymer, directly used as a main material, is an effective method. In this work, a novel zwitterionic polymer (TB)-zwitterionic Tröger's base (ZTB)-was synthesized by quaternizing Tröger's base (TB) with 1,3-propane sultone. The obtained ZTB is blended with TB to fabricate microfiltration (MF) membranes via the vapor-induced phase separation (VIPS) process, offering a strategic solution for separating emulsified oily wastewater. Atomic force microscopy (AFM), scanning electron microscopy (SEM), water contact angle, and zeta potential measurements were employed to characterize the surface of ZTB/TB blended membranes, assessing surface morphology, charge, and hydrophilic/hydrophobic properties. The impact of varying ZTB levels on membrane surface morphology, hydrophilicity, water flux, and rejection were investigated. The results showed that an increase in ZTB content improved hydrophilicity and surface roughness, consequently enhancing water permeability. Due to the attraction of water vapor, the enrichment of zwitterionic segments was enriched, and a stable hydration layer was formed on the membrane surface. The hydration layer formed by zwitterions endowed the membrane with good antifouling properties. The proposed mechanism elucidates the membrane's proficiency in demulsification and the reduction in irreversible fouling through the synergistic regulation of surface charge and hydrophilicity, facilitated by electrostatic repulsion and the formation of a hydration layer. The ZTB/TB blended membranes demonstrated superior efficiency in oil-water separation, achieving a maximum flux of 1897.63 LMH bar-1 and an oil rejection rate as high as 99% in the oil-water emulsion separation process. This study reveals the migration behavior of the zwitterionic polymer in the membrane during the VIPS process. It enhances our comprehension of the antifouling mechanism of zwitterionic membranes and provides guidance for designing novel materials for antifouling membranes.
Collapse
Affiliation(s)
- Meng Wang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Tingting Huang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Meng Shan
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Mei Sun
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Shasha Liu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Hai Tang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| |
Collapse
|
4
|
Amini M, Haji Hosseinzadeh A, Nikkhoo M, Hosseinifard M, Namvar A, Naslhajian H, Bayrami A. High-Performance Novel Polyoxometalate-LDH Nanocomposite-Modified Thin-Film Nanocomposite Forward Osmosis Membranes: A Study of Desalination and Antifouling Performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14528-14538. [PMID: 37802097 DOI: 10.1021/acs.langmuir.3c01595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Numerous investigations have focused on creating effective membranes for desalination in order to alleviate the water scarcity crisis. In this study, first, LDH nanoplates were synthesized and utilized to alter the surface of thin-film composite (TFC) membranes in the course of this investigation. Following that, a simple technique was used to produce a novel nanocomposite incorporating LDH layers and Na14(P2W18Co4O70)·28H2O polyoxometalate nanoparticles, resulting in the creation of a fresh variety of thin-film nanocomposite (TFN). The performance of all of the membranes acquired was examined in the process of forward osmosis (FO). The impact of the compounds that were prepared was assessed on the hydrophilicity, topology, chemical structure, and morphology of the active layer of polyamide (PA) through analysis methods such as atomic force microscopy (AFM), energy-dispersive X-ray (EDX), FTIR spectroscopy, powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and water contact angle (WCA) goniometry. After evaluating the outcomes of both modified membrane types, it was observed that the membrane equipped with the nanocomposite modifier at a concentration of 0.01 wt % exhibited the highest water flux, measuring 46.6 LMH and selectivity of 0.23 g/L. This membrane was thus considered the best option. Furthermore, the membrane's ability to prevent fouling was examined, and the findings revealed an enhancement in its resistance to fouling in comparison to the filler-free membrane.
Collapse
Affiliation(s)
- Mojtaba Amini
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, P.O. Box 5166616471 Tabriz, Iran
| | - Asal Haji Hosseinzadeh
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 5518779842 Maragheh, Iran
| | - Mohammad Nikkhoo
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, P.O. Box 1458889694 Tehran, Iran
| | - Mojtaba Hosseinifard
- Department of Energy, Materials and Energy Research Center, P.O. Box 14155-4777 Karaj, Iran
| | - Amir Namvar
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 5518779842 Maragheh, Iran
| | - Hadi Naslhajian
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 5518779842 Maragheh, Iran
| | - Arshad Bayrami
- Chemistry Department, Sharif University of Technology, P.O. Box 11155-3615 Tehran, Iran
| |
Collapse
|
5
|
Novel Thin-Film Nanocomposite Forward Osmosis Membranes Modified with WS2/CuAl LDH Nanocomposite to Enhance Desalination and Anti-fouling Performance. J Inorg Organomet Polym Mater 2023. [DOI: 10.1007/s10904-023-02547-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
6
|
Nambikkattu J, Jacob Kaleekkal N. Investigating the performance of surface-engineered membranes for direct contact membrane distillation. SEP SCI TECHNOL 2023. [DOI: 10.1080/01496395.2023.2178011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Jenny Nambikkattu
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode, Kerala, India
| | - Noel Jacob Kaleekkal
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode, Kerala, India
| |
Collapse
|
7
|
A critical review on thin-film nanocomposite membranes enabled by nanomaterials incorporated in different positions and with diverse dimensions: Performance comparison and mechanisms. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Mousa HM, Fahmy HS, Ali GAM, Abdelhamid HN, Ateia M. Membranes for Oil/Water Separation: A Review. ADVANCED MATERIALS INTERFACES 2022; 9:10.1002/admi.202200557. [PMID: 37593153 PMCID: PMC10428143 DOI: 10.1002/admi.202200557] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 08/19/2023]
Abstract
Recent advancements in separation and membrane technologies have shown a great potential in removing oil from wastewaters effectively. In addition, the capabilities have improved to fabricate membranes with tunable properties in terms of their wettability, permeability, antifouling, and mechanical properties that govern the treatment of oily wastewaters. Herein, authors have critically reviewed the literature on membrane technology for oil/water separation with a specific focus on: 1) membrane properties and characterization, 2) development of various materials (e.g., organic, inorganic, and hybrid membranes, and innovative materials), 3) membranes design (e.g., mixed matrix nanocomposite and multilayers), and 4) membrane fabrication techniques and surface modification techniques. The current challenges and future research directions in materials and fabrication techniques for membrane technology applications in oil/water separation are also highlighted. Thus, this review provides helpful guidance toward finding more effective, practical, and scalable solutions to tackle environmental pollution by oils.
Collapse
Affiliation(s)
- Hamouda M Mousa
- Mechanical Engineering Department, Faculty of Engineering, South Valley University, Qena 83523, Egypt
| | - Hanan S Fahmy
- Mechanical Engineering Department, Faculty of Engineering, South Valley University, Qena 83523, Egypt
| | - Gomaa A M Ali
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Department of Chemistry, Faculty of Science, Assiut University, Assiut 71515, Egypt
| | - Mohamed Ateia
- United States Environmental Protection Agency, Center for Environmental Solutions & Emergency Response, Cincinnati, OH 45220, USA
| |
Collapse
|
9
|
Tailoring the substrate of thin film reverse osmosis membrane through a novel β-FeOOH nanorods templating strategy: An insight into the effects on interfacial polymerization of polyamide. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Zhang X, Choi PJ, Khanzada NK, Sun J, Wong PW, Guo J, Ling L, Wu D, Jang A, An AK. FO membrane fabricated by layer-by-layer interfacial polymerisation and grafted sulfonamide group for improving chlorine resistance and water permeability. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Surface Hydrophilicity Modification of Thin-Film Composite Membranes with Metal−Organic Frameworks (MOFs) Ti-UiO-66 for Simultaneous Enhancement of Anti-fouling Property and Desalination Performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Qiu Z, Chen J, Dai R, Wang Z. Modification of ultrafiltration membrane with antibacterial agent intercalated layered nanosheets: Toward superior antibiofouling performance for water treatment. WATER RESEARCH 2022; 219:118539. [PMID: 35526429 DOI: 10.1016/j.watres.2022.118539] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/15/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Membrane fouling, especially biofouling induced by biofilm formation on membranes, can result in frequent cleaning or even replacement of membranes. Fabrication of membrane with excellent antibiofouling property is quite attractive due to its effectiveness and low-impact on the operation of membrane-based process. Herein, a cationic antibacterial agent, quaternary ammonium compound (QAC), was intercalated into the interlayer spaces of the MgAl layered double hydroxide (QAC/LDH) by self-assembly. The QAC/LDH composite was incorporated into polyethersulfone (PES) ultrafiltration (UF) membrane (PES-QLDH). The QAC/LDH enhanced the hydrophilicity, water flux, and resistance to organic fouling for the PES-QLDH membrane. The PES-QLDH membrane exhibited superior antibiofouling performance than the control PES membrane, with deposition of a thinner biofilm layer consisted of almost dead cells. The superior antibacterial activity inhibits the adhesion and growth of bacteria on the membrane surface, effectively retarding the formation of biofilms. Importantly, the synergistic effect of QAC and LDH in the PES-QLDH membrane resulted in a high biocidal activity based on both direct and indirect killing mechanisms. The PES-QLDH membrane maintained a stable and high antibacterial activity after several fouling-cleaning cycles. These results imply that the PES-QLDH membrane provides an effective and promising strategy for its long-term application in wastewater treatment.
Collapse
Affiliation(s)
- Zhiwei Qiu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jiansuxuan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
13
|
Wang Y, Li D, Li J, Li J, Fan M, Han M, Liu Z, Li Z, Kong F. Metal organic framework UiO-66 incorporated ultrafiltration membranes for simultaneous natural organic matter and heavy metal ions removal. ENVIRONMENTAL RESEARCH 2022; 208:112651. [PMID: 35007541 DOI: 10.1016/j.envres.2021.112651] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
In this work, a new type of UiO-66 incorporated polysulfone (PSf) ultrafiltration (UF) membranes was fabricated to enhance antifouling properties and heavy metal ions removal efficiency. The UF membranes incorporating different loadings of the UiO-66 filler were prepared via the classical phase inversion process. These membranes unveiled enhanced hydrophilicity, porosity, water uptake, zeta potential, mechanical strength, permeability, and HA removal ratios due to the incorporation of hydrophilic UiO-66 fillers. Particularly, HA rejection ratios were observed to be approximately 93% for all the modified membranes, which was attributed to electrostatic repulsion interactions between the hydrophilic groups of HA and UiO-66. Moreover, the antifouling abilities of the modified membranes were evaluated and found to be much better with a high flux recovery ratio (FRR) of about 88% when compared to the blank PSf membrane (only around 34%). Moreover, the UiO-66 incorporated membranes were highly-effective in the removal of contaminants like heavy metal ions (Sr2+, Pb2+, Cd2+, and Cr6+) and HA at the same time. Overall, the PSf UF membranes incorporating UiO-66 opened up a new avenue to enhance the membrane hydrophilicity, permeability, antifouling properties as well as heavy metal ions removal abilities.
Collapse
Affiliation(s)
- Yi Wang
- State Key Lab of NBC for Civilian Protection, Beijing, 102205, China; Water Industry and Environment Engineering Technology Research Centre, Chongqing, 401311, China
| | - Daxue Li
- State Key Lab of NBC for Civilian Protection, Beijing, 102205, China; Water Industry and Environment Engineering Technology Research Centre, Chongqing, 401311, China
| | - Jian Li
- State Key Lab of NBC for Civilian Protection, Beijing, 102205, China
| | - Jun Li
- State Key Lab of NBC for Civilian Protection, Beijing, 102205, China.
| | - Mao Fan
- State Key Lab of NBC for Civilian Protection, Beijing, 102205, China
| | - Mengwei Han
- State Key Lab of NBC for Civilian Protection, Beijing, 102205, China
| | - Zequn Liu
- Water Industry and Environment Engineering Technology Research Centre, Chongqing, 401311, China
| | - Zhanguo Li
- State Key Lab of NBC for Civilian Protection, Beijing, 102205, China.
| | - Fanxin Kong
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil & Gas Pollution Control, China University of Petroleum, Beijing, 102249, China.
| |
Collapse
|
14
|
Huang T, Yin J, Tang H, Zhang Z, Liu D, Liu S, Xu Z, Li N. Improved permeability and antifouling performance of Tröger's base polymer-based ultrafiltration membrane via zwitterionization. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Ismail MF, Islam MA, Khorshidi B, Tehrani-Bagha A, Sadrzadeh M. Surface characterization of thin-film composite membranes using contact angle technique: Review of quantification strategies and applications. Adv Colloid Interface Sci 2022; 299:102524. [PMID: 34620491 DOI: 10.1016/j.cis.2021.102524] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 02/08/2023]
Abstract
Thin-film composite (TFC) membranes are the most widely used membranes for low-cost and energy-efficient water desalination processes. Proper control over the three influential surface parameters, namely wettability, roughness, and surface charge, is vital in optimizing the TFC membrane surface and permeation properties. More specifically, the surface properties of TFC membranes are often tailored by incorporating novel special wettability materials to increase hydrophilicity and tune surface physicochemical heterogeneity. These essential parameters affect the membrane permeability and antifouling properties. The membrane surface characterization protocols employed to date are rather controversial, and there is no general agreement about the metrics used to evaluate the surface hydrophilicity and physicochemical heterogeneity. In this review, we surveyed and critically evaluated the process that emerged for understanding the membrane surface properties using the simple and economical contact angle analysis technique. Contact angle analysis allows the estimation of surface wettability, surface free energy, surface charge, oleophobicity, contact angle hysteresis, and free energy of interaction; all coordinatively influence the membrane permeation and fouling properties. This review will provide insights into simplifying the evaluation of membrane properties by contact angle analysis that will ultimately expedite the membrane development process by reducing the time and expenses required for the characterization to confirm the success and the impact of any modification.
Collapse
|
16
|
Mokarizadeh H, Moayedfard S, Maleh MS, Mohamed SIGP, Nejati S, Esfahani MR. The role of support layer properties on the fabrication and performance of thin-film composite membranes: The significance of selective layer-support layer connectivity. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119451] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Developing a Thin Film Composite Membrane with Hydrophilic Sulfonated Substrate on Nonwoven Backing Fabric Support for Forward Osmosis. MEMBRANES 2021; 11:membranes11110813. [PMID: 34832042 PMCID: PMC8621868 DOI: 10.3390/membranes11110813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022]
Abstract
This study describes the fabrication of sulfonated polyethersulfone (SPES) as a super-hydrophilic substrate for developing a composite forward osmosis (FO) membrane on a nonwoven backing fabric support. SPES was prepared through an indirect sulfonation procedure and then blended with PES at a certain ratio. Applying SPES as the substrate affected membrane properties, such as porosity, total thickness, morphology, and hydrophilicity. The PES-based FO membrane with a finger-like structure had lower performance in comparison with the SPES based FO membrane having a sponge-like structure. The finger-like morphology changed to a sponge-like morphology with the increase in the SPES concentration. The FO membrane based on a more hydrophilic substrate via sulfonation had a sponge morphology and showed better water flux results. Water flux of 26.1 L m−2 h−1 and specific reverse solute flux of 0.66 g L−1 were attained at a SPES blend ratio of 50 wt % when 3 M NaCl was used as the draw solution and DI water as feed solution under the FO mode. This work offers significant insights into understanding the factors affecting FO membrane performance, such as porosity and functionality.
Collapse
|
18
|
Wei Y, Yang Z, Wang L, Yu Y, Yang H, Jin H, Lu P, Wang Y, Wu D, Li Y, Tang CY. Facile ZIF–8 nanocrystals interlayered solvent–resistant thin–film nanocomposite membranes for enhanced solvent permeance and rejection. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119586] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
|
20
|
Jain H, Garg MC. Fabrication of polymeric nanocomposite forward osmosis membranes for water desalination—A review. ENVIRONMENTAL TECHNOLOGY & INNOVATION 2021; 23:101561. [DOI: 10.1016/j.eti.2021.101561] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
|
21
|
Kim DY, Park H, Park YI, Lee JH. Polyvinyl alcohol hydrogel-supported forward osmosis membranes with high performance and excellent pH stability. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.04.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Adsorption performance of calcined copper-aluminum layered double hydroxides/CNT/PVDF composite films toward removal of carminic acid. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115558] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Zheng K, Zhou S, Cheng Z, Huang G. Polyvinyl chloride/quaternized poly phenylene oxide substrates supported thin-film composite membranes: Enhancement of forward osmosis performance. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119070] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Wei Y, Wang Y, Wang L, Yang H, Jin H, Lu P, Li Y. Simultaneous phase-inversion and crosslinking in organic coagulation bath to prepare organic solvent forward osmosis membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118829] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
25
|
Abdollahi E, Heidari A, Mohammadi T, Asadi AA, Ahmadzadeh Tofighy M. Application of Mg-Al LDH nanoparticles to enhance flux, hydrophilicity and antifouling properties of PVDF ultrafiltration membrane: Experimental and modeling studies. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117931] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Recent progress of two-dimensional nanosheet membranes and composite membranes for separation applications. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-020-2016-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
Suzaimi ND, Goh PS, Ismail AF, Mamah SC, Malek NANN, Lim JW, Wong KC, Hilal N. Strategies in Forward Osmosis Membrane Substrate Fabrication and Modification: A Review. MEMBRANES 2020; 10:E332. [PMID: 33171847 PMCID: PMC7695145 DOI: 10.3390/membranes10110332] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 01/13/2023]
Abstract
Forward osmosis (FO) has been recognized as the preferred alternative membrane-based separation technology for conventional water treatment technologies due to its high energy efficiency and promising separation performances. FO has been widely explored in the fields of wastewater treatment, desalination, food industry and bio-products, and energy generation. The substrate of the typically used FO thin film composite membranes serves as a support for selective layer formation and can significantly affect the structural and physicochemical properties of the resultant selective layer. This signifies the importance of substrate exploration to fine-tune proper fabrication and modification in obtaining optimized substrate structure with regards to thickness, tortuosity, and porosity on the two sides. The ultimate goal of substrate modification is to obtain a thin and highly selective membrane with enhanced hydrophilicity, antifouling propensity, as well as long duration stability. This review focuses on the various strategies used for FO membrane substrate fabrication and modification. An overview of FO membranes is first presented. The extant strategies applied in FO membrane substrate fabrications and modifications in addition to efforts made to mitigate membrane fouling are extensively reviewed. Lastly, the future perspective regarding the strategies on different FO substrate layers in water treatment are highlighted.
Collapse
Affiliation(s)
- Nur Diyana Suzaimi
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor 81310, Malaysia; (N.D.S.); (P.S.G.); (A.F.I.); (S.C.M.); (K.C.W.)
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor 81310, Malaysia; (N.D.S.); (P.S.G.); (A.F.I.); (S.C.M.); (K.C.W.)
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor 81310, Malaysia; (N.D.S.); (P.S.G.); (A.F.I.); (S.C.M.); (K.C.W.)
| | - Stanley Chinedu Mamah
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor 81310, Malaysia; (N.D.S.); (P.S.G.); (A.F.I.); (S.C.M.); (K.C.W.)
- Department of Chemical Engineering, Alex Ekwueme Federal University, Ebonyi State 84001, Nigeria
| | - Nik Ahmad Nizam Nik Malek
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor 81310, Malaysia;
| | - Jun Wei Lim
- Department of Fundamental and Applied Sciences, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia;
| | - Kar Chun Wong
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor 81310, Malaysia; (N.D.S.); (P.S.G.); (A.F.I.); (S.C.M.); (K.C.W.)
| | - Nidal Hilal
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi 129188, UAE
| |
Collapse
|
28
|
Immobilization of sulfonated polysulfone via 2D LDH nanosheets during phase-inversion: A novel strategy towards greener membrane synthesis and enhanced desalination performance. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118508] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Calcination of layered double hydroxide membrane with enhanced nanofiltration performance. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Mei X, Yang S, Lu P, Zhang Y, Zhang J. Improving the Selectivity of ZIF-8/Polysulfone-Mixed Matrix Membranes by Polydopamine Modification for H 2/CO 2 Separation. Front Chem 2020; 8:528. [PMID: 32754574 PMCID: PMC7366856 DOI: 10.3389/fchem.2020.00528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/22/2020] [Indexed: 11/13/2022] Open
Abstract
Gas separation membranes are essential for the capture, storage, and utilization (CSU) of CO2, especially for H2/CO2separation. However, both glassy and rubbery polymer membranes lead a relatively poor selectivity for H2/CO2 separation because the differences in kinetic diameters of these gases are small. The present study establishing the mixed matrix membranes (MMMs) consist of a nano-sized zeolitic imidazolate frameworks (ZIF-8) blended with the polysulfone (PSf) asymmetric membranes. The gas transport properties (H2, CO2, N2, and CH4) of MMMs with a ZIF-8 loading up to 10 wt% were tested and showing significant improvement on permeance of the light gases (e.g., H2 and CO2). Moreover, the depositional polydopamine (PDA) layer further enhanced the ideal H2/CO2 selectivity, and the PDA-modified MMMs approach the Robeson upper bound of H2/CO2 separation membranes. Hence, the PDA post-modification strategy can effectively repair the defects of MMMs and improved the H2/CO2selectivity.
Collapse
Affiliation(s)
- Xueyi Mei
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Sheng Yang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Peng Lu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo, China.,School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Yexin Zhang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jian Zhang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
31
|
Shen L, Hung WS, Zuo J, Tian L, Yi M, Ding C, Wang Y. Effect of ultrasonication parameters on forward osmosis performance of thin film composite polyamide membranes prepared with ultrasound-assisted interfacial polymerization. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117834] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Zhang C, Huang R, Tang H, Zhang Z, Xu Z, Li N. Enhanced antifouling and separation properties of Tröger's base polymer ultrafiltration membrane via ring-opening modification. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117763] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Safarpour M, Arefi-Oskoui S, Khataee A. A review on two-dimensional metal oxide and metal hydroxide nanosheets for modification of polymeric membranes. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.11.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Smalenskaite A, Kaba MM, Grigoraviciute-Puroniene I, Mikoliunaite L, Zarkov A, Ramanauskas R, Morkan IA, Kareiva A. Sol-Gel Synthesis and Characterization of Coatings of Mg-Al Layered Double Hydroxides. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3738. [PMID: 31766177 PMCID: PMC6888420 DOI: 10.3390/ma12223738] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023]
Abstract
In this study, new synthetic approaches for the preparation of thin films of Mg-Al layered double hydroxides (LDHs) have been developed. The LDHs were fabricated by reconstruction of mixed-metal oxides (MMOs) in deionized water. The MMOs were obtained by calcination of the precursor gels. Thin films of sol-gel-derived Mg-Al LDHs were deposited on silicon and stainless-steel substrates using the dip-coating technique by a single dipping process, and the deposited film was dried before the new layer was added. Each layer in the preparation of the Mg-Al LDH multilayers was separately annealed at 70 °C or 300 °C in air. Fabricated Mg-Al LDH coatings were characterized by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), and atomic force microscopy (AFM). It was discovered that the diffraction lines of Mg3Al LDH thin films are sharper and more intensive in the sample obtained on the silicon substrate, confirming a higher crystallinity of synthesized Mg3Al LDH. However, in both cases the single-phase crystalline Mg-Al LDHs have formed. To enhance the sol-gel processing, the viscosity of the precursor gel was increased by adding polyvinyl alcohol (PVA) solution. The LDH coatings could be used to protect different substrates from corrosion, as catalyst supports, and as drug-delivery systems in medicine.
Collapse
Affiliation(s)
- A. Smalenskaite
- Department of Inorganic Chemistry, Faculty of Chemistry, Vilnius University, Vilnius LT-03225, Lithuania; (A.S.); (I.G.-P.); (L.M.); (A.Z.)
| | - M. M. Kaba
- Department of Chemistry, Institute of Natural Sciences, Bolu Abant Izzet Baysal University, 14030 Bolu, Turkey; (M.M.K.); (I.A.M.)
| | - I. Grigoraviciute-Puroniene
- Department of Inorganic Chemistry, Faculty of Chemistry, Vilnius University, Vilnius LT-03225, Lithuania; (A.S.); (I.G.-P.); (L.M.); (A.Z.)
| | - L. Mikoliunaite
- Department of Inorganic Chemistry, Faculty of Chemistry, Vilnius University, Vilnius LT-03225, Lithuania; (A.S.); (I.G.-P.); (L.M.); (A.Z.)
- Center for Physical Sciences and Technology, LT-10257 Vilnius, Lithuania;
| | - A. Zarkov
- Department of Inorganic Chemistry, Faculty of Chemistry, Vilnius University, Vilnius LT-03225, Lithuania; (A.S.); (I.G.-P.); (L.M.); (A.Z.)
| | - R. Ramanauskas
- Center for Physical Sciences and Technology, LT-10257 Vilnius, Lithuania;
| | - I. A. Morkan
- Department of Chemistry, Institute of Natural Sciences, Bolu Abant Izzet Baysal University, 14030 Bolu, Turkey; (M.M.K.); (I.A.M.)
| | - A. Kareiva
- Department of Inorganic Chemistry, Faculty of Chemistry, Vilnius University, Vilnius LT-03225, Lithuania; (A.S.); (I.G.-P.); (L.M.); (A.Z.)
| |
Collapse
|
35
|
Lu P, Li W, Yang S, Wei Y, Zhang Z, Li Y. Layered double hydroxides (LDHs) as novel macropore-templates: The importance of porous structures for forward osmosis desalination. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Lau WJ, Lai GS, Li J, Gray S, Hu Y, Misdan N, Goh PS, Matsuura T, Azelee IW, Ismail AF. Development of microporous substrates of polyamide thin film composite membranes for pressure-driven and osmotically-driven membrane processes: A review. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.05.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
37
|
Amini M, Naslhajian H, Akbari A, Farnia SMF, Jabbari E, Gautam S, Chae KH. A novel high-flux, thin-film composite desalination membrane via co-deposition of multifunctional polyhedral oligomeric silsesquioxane and polyoxometalate. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.04.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
38
|
Lu P, Li W, Yang S, Liu Y, Wang Q, Li Y. Layered double hydroxide-modified thin–film composite membranes with remarkably enhanced chlorine resistance and anti-fouling capacity. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.03.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
39
|
Recent advances in nanomaterial-modified polyamide thin-film composite membranes for forward osmosis processes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.064] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
40
|
Kwon SJ, Park SH, Shin MG, Park MS, Park K, Hong S, Park H, Park YI, Lee JH. Fabrication of high performance and durable forward osmosis membranes using mussel-inspired polydopamine-modified polyethylene supports. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.074] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Ndiaye I, Vaudreuil S, Bounahmidi T. Forward Osmosis Process: State-Of-The-Art of Membranes. SEPARATION & PURIFICATION REVIEWS 2019. [DOI: 10.1080/15422119.2019.1622133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Issa Ndiaye
- Euro-Med Research Institute, Euro-Med University of Fes (UEMF), Fes, Morocco
- Laboratoires d’Analyse et Synthèse des Procédés industriels, Ecole Mohammadia d’Ingénieurs, Université Mohamed V-Rabat, Agdal Rabat, Morocco
| | - Sébastien Vaudreuil
- Euro-Med Research Institute, Euro-Med University of Fes (UEMF), Fes, Morocco
| | - Tijani Bounahmidi
- Euro-Med Research Institute, Euro-Med University of Fes (UEMF), Fes, Morocco
- Laboratoires d’Analyse et Synthèse des Procédés industriels, Ecole Mohammadia d’Ingénieurs, Université Mohamed V-Rabat, Agdal Rabat, Morocco
| |
Collapse
|
42
|
Shah AA, Cho YH, Choi HG, Nam SE, Kim JF, Kim Y, Park YI, Park H. Facile integration of halloysite nanotubes with bioadhesive as highly permeable interlayer in forward osmosis membranes. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.01.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Esfahani MR, Aktij SA, Dabaghian Z, Firouzjaei MD, Rahimpour A, Eke J, Escobar IC, Abolhassani M, Greenlee LF, Esfahani AR, Sadmani A, Koutahzadeh N. Nanocomposite membranes for water separation and purification: Fabrication, modification, and applications. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.12.050] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
44
|
Tajuddin MH, Yusof N, Wan Azelee I, Wan Salleh WN, Ismail AF, Jaafar J, Aziz F, Nagai K, Razali NF. Development of Copper-Aluminum Layered Double Hydroxide in Thin Film Nanocomposite Nanofiltration Membrane for Water Purification Process. Front Chem 2019; 7:3. [PMID: 30800647 PMCID: PMC6375824 DOI: 10.3389/fchem.2019.00003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/04/2019] [Indexed: 11/13/2022] Open
Abstract
This study aims to fabricate a thin film composite (TFC) membrane, modified with copper-aluminium layered double hydroxide (LDH) nanofillers via interfacial polymerization technique for nanofiltration (NF) processes. It was found that Cu-Al LDH nanofillers possessed layered structured materials with typical hexagonal plate-like shape and positive surface charge. The study revealed that TFN membrane exhibits a relatively smooth surface and a less nodular structure compared to pristine TFC membrane. The contact angle of TFN progressively decreased from 54.1° to 37.25°, indicating enhancement in surface hydrophilicity. Moreover, the incorporation of LDH nanofillers resulted in a less negative membrane as compared to the pristine TFC membrane. The best NF performance was achieved by TFN2 membrane with 0.1° of Cu-Al LDH loading and a water flux of 7.01 Lm-2h-1.bar. The addition of Cu-Al LDH resulted in excellent single salt rejections of Na2SO4 (96.8%), MgCl2 (95.6%), MgSO4 (95.4%), and NaCl (60.8%). The improvement in anti-fouling properties of resultant TFN membranes can be observed from the increments of pure water flux recovery and normalized water flux by 14% and 25% respectively. The findings indicated that Cu-Al LDH is a promising material in tailoring membrane surface properties and fouling resistance. The modification of the LDH-filled TFN membrane shows another alternative to fabricating a high-performance composite membrane, especially for water softening and partial desalination process.
Collapse
Affiliation(s)
- Muhammad Hanis Tajuddin
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Norhaniza Yusof
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Ihsan Wan Azelee
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Wan Norharyati Wan Salleh
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Juhana Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Farhana Aziz
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Kazukiyo Nagai
- Department of Applied Chemistry, Meiji University, Kawasaki, Japan
| | - Nor Faizah Razali
- Faculty of Engineering Technology, Universiti Tun Hussein Onn Malaysia, Parit Raja, Malaysia
| |
Collapse
|
45
|
Shakeri A, Salehi H, Ghorbani F, Amini M, Naslhajian H. Polyoxometalate based thin film nanocomposite forward osmosis membrane: Superhydrophilic, anti-fouling, and high water permeable. J Colloid Interface Sci 2019; 536:328-338. [DOI: 10.1016/j.jcis.2018.10.069] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 01/06/2023]
|
46
|
Liang Z, Yun Y, Wang M, Liu G, Lu P, Yang W, Li C. Performance evaluation of interfacial polymerisation-fabricated aquaporin-based biomimetic membranes in forward osmosis. RSC Adv 2019; 9:10715-10726. [PMID: 35515303 PMCID: PMC9062497 DOI: 10.1039/c9ra00787c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/18/2019] [Accepted: 03/22/2019] [Indexed: 12/24/2022] Open
Abstract
Aquaporins play a promising role in the fabrication of high-performance biomimetic membranes. Interfacial polymerisation is a promising strategy for synthesizing aquaporin-based membranes. In this study, robust and high-performance aquaporin-based biomimetic membranes were successfully fabricated by interfacial polymerisation, and the membrane separation performance and interfacial polymerisation method were systematically evaluated. The effects of modification methods on the performance of aquaporins-based biomimetic membranes, including sodium hypochlorite and thermal post-treatment, protein-to-lipid ratio, liposome concentration and the addition arrangement of aquaporins were also investigated. Morphological observation suggested that the introduced proteoliposomes were completely embedded in the polyamide layer and that their spherical shape was preserved. Sodium hypochlorite post-treatment and thermal treatment were beneficial in improving the water flux and salt rejection of the resultant membrane without sacrificing the aquaporin activity. The biomimetic membranes had a high water flux and salt rejection, which were almost twice that of the control membranes, after aquaporin-based proteoliposomes were incorporated with an appropriated protein-to-lipid ratio and liposome concentration. The addition arrangement of aquaporins during the interfacial polymerisation procedure significantly influence the obtained membrane's structure. Lastly, this article introduces valuable and systematic research on interfacial polymerisation fabricated aquaporin-based biomimetic membranes with outstanding separation performance. Aquaporins play a promising role in the fabrication of high-performance biomimetic membranes.![]()
Collapse
Affiliation(s)
- Zhixia Liang
- School of Environmental Science and Engineering
- Beijing Forestry University
- Beijing 100083
- China
| | - Yanbin Yun
- School of Environmental Science and Engineering
- Beijing Forestry University
- Beijing 100083
- China
| | - Manxiang Wang
- Center for Energy Storage Research
- Green City Research Institute
- Korea Institute of Science and Technology (KIST)
- Seoul 02792
- Republic of Korea
| | - Guicheng Liu
- Department of Physics
- Dongguk University
- Seoul 04620
- Republic of Korea
| | - Peng Lu
- College of Material Science and Chemical Engineering
- Ningbo University
- Zhejiang 315211
- China
| | - Woochul Yang
- Department of Physics
- Dongguk University
- Seoul 04620
- Republic of Korea
| | - Chunli Li
- College of Material Science and Chemical Engineering
- Ningbo University
- Zhejiang 315211
- China
| |
Collapse
|
47
|
Wang Y, Li X, Zhao S, Fang Z, Ng D, Xie C, Wang H, Xie Z. Thin-Film Composite Membrane with Interlayer Decorated Metal–Organic Framework UiO-66 toward Enhanced Forward Osmosis Performance. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b04968] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yi Wang
- Water Industry and Environment Engineering Technology Research Centre, 401311, Chongqing, China
- CSIRO Manufacturing, Private bag 10, Clayton South, Victoria 3169, Australia
| | - Xingya Li
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3168, Australia
| | - Shuaifei Zhao
- Department of Environmental Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Zhendong Fang
- Water Industry and Environment Engineering Technology Research Centre, 401311, Chongqing, China
| | - Derrick Ng
- CSIRO Manufacturing, Private bag 10, Clayton South, Victoria 3169, Australia
| | - Chaoxin Xie
- Water Industry and Environment Engineering Technology Research Centre, 401311, Chongqing, China
| | - Huanting Wang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3168, Australia
| | - Zongli Xie
- CSIRO Manufacturing, Private bag 10, Clayton South, Victoria 3169, Australia
| |
Collapse
|
48
|
Lu P, Liu Y, Zhou T, Wang Q, Li Y. Recent advances in layered double hydroxides (LDHs) as two-dimensional membrane materials for gas and liquid separations. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.09.041] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
49
|
Liu TY, Yuan HG, Liu YY, Ren D, Su YC, Wang X. Metal-Organic Framework Nanocomposite Thin Films with Interfacial Bindings and Self-Standing Robustness for High Water Flux and Enhanced Ion Selectivity. ACS NANO 2018; 12:9253-9265. [PMID: 30153418 DOI: 10.1021/acsnano.8b03994] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Metal-organic framework (MOF)-based materials are promising candidates for a range of separation applications. However, the fabrication of self-standing MOF-based thin films remains challenging. Herein, a facile solution casting strategy is developed for fabricating UiO-66 nanocomposite thin films (UiO66TFs) with thicknesses down to ∼400 nm. Nanosizing UiO-66 and incorporating sulfonated polysulfone additives render high dispersity and interfacial bindings between MOFs and polymer matrices, so UiO66TFs are more mechanically robust and thermally stable than their pure-polymer counterparts. Enhanced microporosity with sub-nanometer pore sizes of the self-standing membranes enables the direct translation of UiO-66-based sorption and ion-sieving properties, thus increasing water flux and separation performance (Na2SO4 rejection of 94-96%) under hydraulic pressure-driven processes and eliminating internal concentration polarization in osmotic pressure-driven processes. Enhanced separation performances are achieved with water/Na2SO4 permselectivity of 13.5 L g-1 and high osmotic water permeability up to 1.41 L m-2 h-1 bar-1, providing 3-fold higher water/Na2SO4 permselectivity and 56-fold-higher water flux than polymer membranes for forward osmosis.
Collapse
Affiliation(s)
- Tian-Yin Liu
- Beijing Key Laboratory of Membrane Materials and Engineering, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , P. R. China
- Department of Chemical Engineering , Imperial College London , South Kensington Campus , London SW7 2AZ , U.K
| | - Hao-Ge Yuan
- Beijing Key Laboratory of Membrane Materials and Engineering, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , P. R. China
| | - Yuan-Yuan Liu
- Beijing Key Laboratory of Membrane Materials and Engineering, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , P. R. China
- Aerospace Research Institute of Special Material and Processing Technology , Aerospace Science and Industry Corp , Beijing 100074 , P. R. China
| | - Dan Ren
- Beijing Key Laboratory of Membrane Materials and Engineering, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , P. R. China
| | - Yi-Cheng Su
- Beijing Key Laboratory of Membrane Materials and Engineering, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , P. R. China
| | - Xiaolin Wang
- Beijing Key Laboratory of Membrane Materials and Engineering, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , P. R. China
| |
Collapse
|
50
|
Darestani M, Locq J, Millar GJ. Powering reversible actuators using forward osmosis membranes: feasibility study and modeling. SEP SCI TECHNOL 2018. [DOI: 10.1080/01496395.2018.1498519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Mariam Darestani
- Institute for Future Environments; and School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- Centre for Infrastructure Engineering, School of Computing, Engineering and Mathematics, Western Sydney University, Sydney, New South Wales, Australia
| | - Jerome Locq
- SeaTech Engineering School, University of Toulon CS 60584 - 83041 TOULON CEDEX 9, Toulon, France
| | - Graeme J. Millar
- Institute for Future Environments; and School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| |
Collapse
|