1
|
Duan Y, Ru C, Pang Y, Li J, Liu B, Zhao C. Crosslinked PAEK-based nanofiber reinforced Nafion membrane with ion-paired interfaces towards high-concentration DMFC. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
2
|
Du H, Wang J, Xu N, Yu Y, Liu S. Transparent, self-healable, shape memory poly(vinyl alcohol)/ionic liquid difunctional hydrogels assembled spontaneously from polymer solution. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
3
|
Gohil JM, Dutta K. Structures and properties of polymers in ion exchange membranes for hydrogen generation by water electrolysis. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jaydevsinh M. Gohil
- Advanced Polymer Design and Development Research Laboratory (APDDRL) School for Advanced Research in Petrochemicals (SARP), Central Institute of Petrochemicals Engineering and Technology (CIPET) Bengaluru Karnataka India
| | - Kingshuk Dutta
- Advanced Polymer Design and Development Research Laboratory (APDDRL) School for Advanced Research in Petrochemicals (SARP), Central Institute of Petrochemicals Engineering and Technology (CIPET) Bengaluru Karnataka India
| |
Collapse
|
4
|
Kräuter M, Tazreiter M, Perrotta A, Coclite AM. Deposition of Ion-Conductive Membranes from Ionic Liquids via Initiated Chemical Vapor Deposition. Macromolecules 2020; 53:7962-7969. [PMID: 32981970 PMCID: PMC7513469 DOI: 10.1021/acs.macromol.0c01258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/21/2020] [Indexed: 11/30/2022]
Abstract
In this study, liquid droplets of 1-allyl-3-methylimidazolium dicyanamide have been processed by initiated chemical vapor deposition (iCVD) with a cross-linked polymer film consisting of (hydroxyethyl)methacrylate and ethylene glycol dimethacrylate to develop free-standing, ion-conductive membranes. We found that the obtained films are solids and have a conductivity of up to 18 ± 6 mS/cm, associated with the negatively charged counterion, indicating no loss of conductivity, compared to the ionic liquid in the liquid state. The membranes were conductive within a large process window and in air, thanks to the fact that the iCVD process does not affect the mobility of the anion in the ionic liquid. Furthermore, we demonstrate that varying the deposition conditions can influence the homogeneity and conductivity of the resulting membranes. The promising results of this study represent an important stepping stone on the way to novel ion-conductive membranes.
Collapse
Affiliation(s)
- Marianne Kräuter
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria
| | - Martin Tazreiter
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria
| | - Alberto Perrotta
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria
| | - Anna Maria Coclite
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria
| |
Collapse
|
5
|
Xie W, Tan S, Yang J, Luo J, Wang C, Wu Y. Ionic Liquid Crystalline Composite Membranes Composed of Smectic Imidazolium Hydrogen Sulfate and Polyvinyl Alcohol for Anhydrous Proton Conduction. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wenting Xie
- School of Chemical Engineering, Sichuan University, No. 24 South
Section 1, Yihuan Road, Chengdu 610065, China
| | - Shuai Tan
- School of Chemical Engineering, Sichuan University, No. 24 South
Section 1, Yihuan Road, Chengdu 610065, China
| | - Jie Yang
- School of Chemical Engineering, Sichuan University, No. 24 South
Section 1, Yihuan Road, Chengdu 610065, China
| | - Jie Luo
- School of Chemical Engineering, Sichuan University, No. 24 South
Section 1, Yihuan Road, Chengdu 610065, China
| | - Caihong Wang
- School of Chemical Engineering, Sichuan University, No. 24 South
Section 1, Yihuan Road, Chengdu 610065, China
| | - Yong Wu
- School of Chemical Engineering, Sichuan University, No. 24 South
Section 1, Yihuan Road, Chengdu 610065, China
| |
Collapse
|
6
|
Ru C, Gu Y, Na H, Li H, Zhao C. Preparation of a Cross-Linked Sulfonated Poly(arylene ether ketone) Proton Exchange Membrane with Enhanced Proton Conductivity and Methanol Resistance by Introducing an Ionic Liquid-Impregnated Metal Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2019; 11:31899-31908. [PMID: 31407896 DOI: 10.1021/acsami.9b09183] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A novel ionic liquid-impregnated metal-organic-framework (IL@NH2-MIL-101) was prepared and introduced into sulfonated poly(arylene ether ketone) with pendent carboxyl groups (SPAEK) as the nanofiller for achieving hybrid proton exchange membranes. The nanofiller was anchored in the polymeric matrix by the formation of amido linkage between the pendent carboxyl group attached to the molecule chain of SPAEK and amino group belonging to the inorganic framework, thus leading to the enhancement in mechanical properties and dimensional stability. Besides, the hybrid membrane (IL@MOF-1) exhibits an enhanced proton conductivity up to 0.184 S·cm-1 because of the incorporation of ionic liquid in the nanocages of NH2-MIL-101. Moreover, the special structure of NH2-MIL-101 contributes to a low leakage of ionic liquid so as to retain the stable proton conductivity of hybrid membranes under fully hydrated conditions. Furthermore, as a result of a cross-linked structure formed by inorganic nanofiller, the IL@MOF-1 hybrid membrane shows a lower methanol permeability (7.53 × 10-7 cm2 s-1) and superior selectivity (2.44 × 105 S s cm-3) than the pristine SPAEK membrane. Especially, IL@MOF-1 performs high single-cell efficiency with a peak power density of 37.5 mW cm-2, almost 2.3-fold to SPAEK. Electrochemical impedance spectroscopy and scanning electron microscopy indicated that the nanofiller not only contributed to faster proton transfer but also resulted in a tighter bond between the membrane and catalyst. Therefore, the incorporation of IL@NH2-MIL-101 to prepare the hybrid membrane is proven to be suitable for application in direct methanol fuel cells.
Collapse
|
7
|
Wang J, Li P, Zhang Y, Liu Y, Wu W, Liu J. Porous Nafion nanofiber composite membrane with vertical pathways for efficient through-plane proton conduction. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.041] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Na R, Lu N, Zhang S, Huo G, Yang Y, Zhang C, Mu Y, Luo Y, Wang G. Facile synthesis of a high-performance, fire-retardant organic gel polymer electrolyte for flexible solid-state supercapacitors. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.09.074] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Bakonyi P, Koók L, Kumar G, Tóth G, Rózsenberszki T, Nguyen DD, Chang SW, Zhen G, Bélafi-Bakó K, Nemestóthy N. Architectural engineering of bioelectrochemical systems from the perspective of polymeric membrane separators: A comprehensive update on recent progress and future prospects. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.07.051] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
10
|
Chen G, Chen N, Li L, Wang Q, Duan W. Ionic Liquid Modified Poly(vinyl alcohol) with Improved Thermal Processability and Excellent Electrical Conductivity. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b00157] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gang Chen
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Ning Chen
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Li Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Qi Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Wenfeng Duan
- State Key Laboratory of Special Functional Waterproof Materials, Beijing Oriental Yuhong Waterproof Technology Co., Ltd, Beijing 100123, China
| |
Collapse
|
11
|
Samarkina DA, Gabdrakhmanov DR, Lukashenko SS, Khamatgalimov AR, Kovalenko VI, Zakharova LY. Cationic amphiphiles bearing imidazole fragment: From aggregation properties to potential in biotechnologies. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.07.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
|
13
|
|
14
|
Koók L, Nemestóthy N, Bakonyi P, Zhen G, Kumar G, Lu X, Su L, Saratale GD, Kim SH, Gubicza L. Performance evaluation of microbial electrochemical systems operated with Nafion and supported ionic liquid membranes. CHEMOSPHERE 2017; 175:350-355. [PMID: 28235744 DOI: 10.1016/j.chemosphere.2017.02.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/07/2017] [Accepted: 02/09/2017] [Indexed: 06/06/2023]
Abstract
In this work, the performance of dual-chamber microbial fuel cells (MFCs) constructed either with commonly used Nafion® proton exchange membrane or supported ionic liquid membranes (SILMs) was assessed. The behavior of MFCs was followed and analyzed by taking the polarization curves and besides, their efficiency was characterized by measuring the electricity generation using various substrates such as acetate and glucose. By using the SILMs containing either [C6mim][PF6] or [Bmim][NTf2] ionic liquids, the energy production of these MFCs from glucose was comparable to that obtained with the MFC employing polymeric Nafion® and the same substrate. Furthermore, the MFC operated with [Bmim][NTf2]-based SILM demonstrated higher energy yield in case of low acetate loading (80.1 J g-1 CODin m-2 h-1) than the one with the polymeric Nafion® N115 (59 J g-1 CODin m-2 h-1). Significant difference was observed between the two SILM-MFCs, however, the characteristics of the system was similar based on the cell polarization measurements. The results suggest that membrane-engineering applying ionic liquids can be an interesting subject field for bioelectrochemical system research.
Collapse
Affiliation(s)
- László Koók
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem ut 10, 8200, Veszprém, Hungary.
| | - Nándor Nemestóthy
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem ut 10, 8200, Veszprém, Hungary
| | - Péter Bakonyi
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem ut 10, 8200, Veszprém, Hungary
| | - Guangyin Zhen
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Gopalakrishnan Kumar
- Department of Environmental Engineering, Daegu University, Gyeongsan, Gyeongbuk, 712-714, Republic of Korea; Sustainable Environmental Process Research Institute, Daegu University, Jillyang, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Xueqin Lu
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, 980-8579, Japan
| | - Lianghu Su
- Nanjing Institute of Environmental Sciences of the Ministry of Environmental Protection, 210046, Nanjing, PR China
| | - Ganesh Dattatraya Saratale
- Department of Food Science & Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido, 10326, Republic of Korea
| | - Sang-Hyoun Kim
- Department of Environmental Engineering, Daegu University, Gyeongsan, Gyeongbuk, 712-714, Republic of Korea; Sustainable Environmental Process Research Institute, Daegu University, Jillyang, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - László Gubicza
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem ut 10, 8200, Veszprém, Hungary
| |
Collapse
|