1
|
Habib R, Do MP, Chen Y, Jiang G, Sivakumar M. Elucidating biofouling development and succession in membrane distillation using treated effluent. ENVIRONMENTAL RESEARCH 2024; 262:119864. [PMID: 39216734 DOI: 10.1016/j.envres.2024.119864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Biofouling in membrane distillation (MD) has several repercussions, including reduced efficiency of the MD process and limiting membrane life. Additionally, the evaluation of MD biofouling using treated effluents from wastewater treatment plants remains an unexplored area. Thus, biofouling formation and development in a long term MD process (15 days) using treated effluent from a wastewater treatment plant was explored in this study. The results revealed that flux decline occurred in four phases: i) initial decline (0-1 d), ii) gradual decline (1-5 d), iii) progressive decline (5-10 d), and iv) rapid decline (10-15 d). Liquid Chromatography-Organic Carbon Detection (LC-OCD) analysis demonstrated that the treated effluent contained humic-like substances, which deposited on the membrane surface in phase 1. Whereas biopolymers development on the membrane surface in phase 2 and 3 was linked to biofouling. Microbial community analysis revealed that the initial colonisers were predominantly thermophilic bacteria, which were different from the microbial community of the treated effluent. The biofilm-forming bacteria included Schlegelella, Meiothermus, and Vulcaniibacterium. These microorganisms proliferate and release excessive extracellular polymeric substances (EPS), leading to the development of mature biofilm on membrane surface. This helped in the deposition of organics and inorganics from the bulk feed, which led to microbial community succession in phase 4 with the emergence of the Kallotenue genus. The results suggested that organic substances and microbial communities on membrane surface at different stages in a long-term MD process had a significant influence on MD performance for high-quality wastewater reuse.
Collapse
Affiliation(s)
- Rasikh Habib
- School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Mai Phuong Do
- School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Yan Chen
- School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Guangming Jiang
- School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Muttucumaru Sivakumar
- School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
2
|
Lin D, Lai C, Wang X, Wang Z, Kuang K, Wang Z, Du X, Liu L. Enhanced membrane fouling by microplastics during nanofiltration of secondary effluent considering secretion, interaction and deposition of extracellular polymeric substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167110. [PMID: 37739085 DOI: 10.1016/j.scitotenv.2023.167110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/25/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023]
Abstract
Microplastic (MP) has been found to influence membrane fouling during microfiltration/ultrafiltration processes in direct and indirect ways by acting as fouling components and changing microbial activities, respectively. However, there is no relevant research about the contribution of MPs to nanofiltration membrane fouling. In this study, for the first time, the impacts of MPs on membrane fouling during the nanofiltration of secondary effluent (SE) were systematically investigated from the perspective of bacterial extracellular polymeric substances (EPS) secretion, their interaction with coexisting pollutants and also deposition. Membrane flux behaviors indicate that MPs simultaneously aggravated the short-term and long-term membrane fouling resistance of nanofiltration by 46 % and 27 %, respectively. ATR-FTIR, XPS and spectrophotometry spectra demonstrate that the deteriorated membrane fouling by MPs directly resulted from the increased accumulation of protein-like, polysaccharides-like and humic-like substances on membranes. EEM spectra further confirmed that MPs preferred to induce serious cake layers, which dominated membrane flux decline but hindered pore fouling. According to CLSM and SEM-EDS mappings, MPs in SE could stimulate microbial activities and then aggravate EPS secretion, after which their interaction with Ca2+ was also enhanced in bulk solution. The cross-linker nets could promote the deposition of other unlinked pollutants on membranes. Besides, MPs could weaken the rejection of certain dissolved organic matters (from 57 % to 52 % on the 50th day of filtration) by aggravating cake-enhanced concentration polarization (CECP), but improved the average removal of inorganic salts from 58 % to 63 % by improving their back diffusion through cake layers. Based on these analyses, the mechanisms of MP-enhanced membrane fouling during the nanofiltration of SE can be thoroughly revealed.
Collapse
Affiliation(s)
- Dachao Lin
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Caijing Lai
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xiaokai Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zhihong Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Ke Kuang
- GuangZhou Sewage Purification Company, Guangzhou 510627, PR China
| | - Ziyuan Wang
- GuangZhou Sewage Purification Company, Guangzhou 510627, PR China
| | - Xing Du
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Lifan Liu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
3
|
Kim J, Tijing L, Shon HK, Hong S. Electrically conductive membrane distillation via an alternating current operation for zero liquid discharge. WATER RESEARCH 2023; 244:120510. [PMID: 37634460 DOI: 10.1016/j.watres.2023.120510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/29/2023]
Abstract
Membrane distillation (MD) shows promise for achieving high salinity treatment and zero liquid discharge (ZLD) compared to conventional water treatment processes due to its unique characteristics, including low energy consumption and high resulting water quality. However, performance degradation due to fouling and scaling under high recovery conditions remains a challenge, particularly considering the need to control both cations and anions for maximum scaling mitigation. Accordingly, in this study, alternating current (AC) operation for electrically conductive membrane distillation (ECMD) is newly proposed, based on its potential for controlling both cations and anions, in contrast to conventional direct current (DC) operation. Systematic experiments and theoretical analysis show that water recovery in ECMD can be increased by 27% through AC operation. The proposed modification and effective AC operation of ECMD increase the practicality of using MD in desalination for a high recovery rate, perhaps even for ZLD.
Collapse
Affiliation(s)
- Junghyun Kim
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), 15 Broadway, NSW 2007, Australia; Department of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Leonard Tijing
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), 15 Broadway, NSW 2007, Australia; ARC Research Hub for Nutrients in a Circular Economy, University of Technology Sydney (UTS), 15 Broadway, NSW 2007, Australia
| | - Ho Kyong Shon
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), 15 Broadway, NSW 2007, Australia; ARC Research Hub for Nutrients in a Circular Economy, University of Technology Sydney (UTS), 15 Broadway, NSW 2007, Australia.
| | - Seungkwan Hong
- Department of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
4
|
Ioannou D, Hou Y, Shah P, Ellinas K, Kappl M, Sapalidis A, Constantoudis V, Butt HJ, Gogolides E. Plasma-Induced Superhydrophobicity as a Green Technology for Enhanced Air Gap Membrane Distillation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18493-18504. [PMID: 36989435 DOI: 10.1021/acsami.3c00535] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Superhydrophobicity has only recently become a requirement in membrane fabrication and modification. Superhydrophobic membranes have shown improved flux performance and scaling resistance in long-term membrane distillation (MD) operations compared to simply hydrophobic membranes. Here, we introduce plasma micro- and nanotexturing followed by plasma deposition as a novel, dry, and green method for superhydrophobic membrane fabrication. Using plasma micro- and nanotexturing, commercial membranes, both hydrophobic and hydrophilic, are transformed to superhydrophobic featuring water static contact angles (WSCA) greater than 150° and contact angle hysteresis lower than 10°. To this direction, hydrophobic polytetrafluoroethylene (PTFE) and hydrophilic cellulose acetate (CA) membranes are transformed to superhydrophobic. The superhydrophobic PTFE membranes showed enhanced water flux in standard air gap membrane distillation and more stable performance compared to the commercial ones for at least 48 h continuous operation, with salt rejection >99.99%. Additionally, their performance and high salt rejection remained stable, when low surface tension solutions containing sodium dodecyl sulfate (SDS) and NaCl (down to 35 mN/m) were used, showcasing their antiwetting properties. The improved performance is attributed to superhydrophobicity and increased pore size after plasma micro- and nanotexturing. More importantly, CA membranes, which are initially unsuitable for MD due to their hydrophilic nature (WSCA ≈ 40°), showed excellent performance with stable flux and salt rejection >99.2% again for at least 48 h, demonstrating the effectiveness of the proposed method for wetting control in membranes regardless of their initial wetting properties.
Collapse
Affiliation(s)
- Dimosthenis Ioannou
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Aghia Paraskevi, 15341 Attica, Greece
- School of Mechanical Engineering, National Technical University of Athens, Zografou, 15780 Attica, Greece
| | - Youmin Hou
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Prexa Shah
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Kosmas Ellinas
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Aghia Paraskevi, 15341 Attica, Greece
- Department of food science and nutrition, School of the Environment, University of the Aegean, Ierou Lochou & Makrygianni St, 81400 Myrina, Lemnos, Greece
| | - Michael Kappl
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Andreas Sapalidis
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Aghia Paraskevi, 15341 Attica, Greece
| | - Vassilios Constantoudis
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Aghia Paraskevi, 15341 Attica, Greece
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Evangelos Gogolides
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Aghia Paraskevi, 15341 Attica, Greece
| |
Collapse
|
5
|
Nambikkattu J, Jacob Kaleekkal N. Investigating the performance of surface-engineered membranes for direct contact membrane distillation. SEP SCI TECHNOL 2023. [DOI: 10.1080/01496395.2023.2178011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Jenny Nambikkattu
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode, Kerala, India
| | - Noel Jacob Kaleekkal
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode, Kerala, India
| |
Collapse
|
6
|
Ding M, Xu H, Yao C, Chen W, Song N, Zhang Q, Lin T, Xie Z. Understanding the membrane fouling control process at molecular level in the heated persulfate activation- membrane distillation hybrid system. WATER RESEARCH 2023; 229:119465. [PMID: 36513019 DOI: 10.1016/j.watres.2022.119465] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/18/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Sulfate radical (SO4●-) based advanced oxidation is considered as a promising pretreatment strategy to degrade organic pollutants and thereby mitigate the membrane fouling in the membrane process. In this study, heat-activated persulfate (PS) activation was integrated with the membrane distillation (MD) process for the alleviation of membrane fouling in treatment of wastewater treatment plant (WWTP) secondary effluent and surface water. In-depth understanding of the molecular fate during membrane fouling control process was performed by using a non-targeted screening method of two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOF-MS) coupling with multiple characterizations. It was found that the heat-activated PS activation pretreatment could effectively degrade the dissolved organic matter (DOM) and change its molecular conformation, wherein the relative abundance of oxygen-containing substances was remarkably increased through oxygenation reactions. Moreover, the refractory organics with higher molecular weight (MW) and unsaturation degree were more inclined to be destroyed, following by partial mineralization during pretreatment process. It was also identified that oxygen-deficient compounds and the molecular formulas featuring higher double bond equivalent (DBE) values and lower MW tended to be deposited on the membrane surface to cause the membrane fouling. In particular, the aliphatic substances were the predominant components irrespective of membrane foulant samples from secondary effluent or surface water. Meanwhile, the complexation between organic compounds and high valence cations as well as the precipitation of inorganics were restrained owing to the reduction of DOM concentration and the transformation of molecular structure, consequently leading to reduced membrane fouling. This study is believed to further provide new insight into the membrane fouling control mechanism at molecular level.
Collapse
Affiliation(s)
- Mingmei Ding
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Hang Xu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Chen Yao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Weihang Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Ninghui Song
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Qian Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Zongli Xie
- CSIRO Manufacturing, Private Bag 10, Clayton South, VIC 3169, Australia.
| |
Collapse
|
7
|
Liu C, Liu J, Zhu L, Xiong H. Treatment of mariculture wastewater by an integrated ultrasonic stripping-membrane distillation (US-MD) system: Effect of operating parameters on effluent quality and membrane fouling mitigation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Chang J, Chang H, Meng Y, Zhao H, Lu M, Liang Y, Yan Z, Liang H. Effects of surfactant types on membrane wetting and membrane hydrophobicity recovery in direct contact membrane distillation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
9
|
A novel Cu-BTC@PVA/PVDF Janus membrane with underwater-oleophobic/hydrophobic asymmetric wettability for anti-fouling membrane distillation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Liu N, Yang Z, Sun Y, Shan L, Li H, Wang Z. Slippery Mechanism for Enhancing Separation and Anti-fouling of the Superhydrophobic Membrane in a Water-in-Oil Emulsion: Evaluating Water Adhesion of the Membrane Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8312-8323. [PMID: 35767278 DOI: 10.1021/acs.langmuir.2c00767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Water removal from water-in-oil emulsions with superhydrophobic microporous membranes is an important industrial process, where the interface property between the membrane and feed becomes critical. Here, superhydrophobic isotactic polypropylene (iPP) microporous membranes with the "lotus effect" and "rose-petal effect" were prepared via utilizing micromolding phase separation, where the former surface exhibited a water contact angle of 153° and a sliding angle of 3.2°, while the latter surface exhibited a water contact angle of 151° and adhesive characteristics. Surface topography and wettability analysis revealed that surface hydrophobicity and water adhesion could be improved by reducing the periodic distance and diameter and increasing the height of the micron-scale structure. When treating both water-in-oil emulsions and water-in-oil emulsions containing BSA pollutants, the iPP membrane with the "lotus effect" was superior to that with the "rose-petal effect" in terms of oil permeate flux, separation efficiency, anti-fouling ability, and recyclability (20 cycles). To explain this phenomenon, a "slippery" mechanism was introduced that correlated the sliding angle to the slippery surface of the iPP membrane with the "lotus effect" and its anti-water adhesion property. This work proposed a theoretical platform for investigating the effect of water adhesion on superhydrophobic membranes in terms of oil-water separation efficiency and anti-fouling ability, thereby providing a definite basis for preparing superhydrophobic membranes with efficient separation and fouling resistance capabilities.
Collapse
Affiliation(s)
- Ning Liu
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Zhensheng Yang
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yue Sun
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Linna Shan
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Hao Li
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Zhiying Wang
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
11
|
Kim J, Yun ET, Tijing L, Shon HK, Hong S. Mitigation of fouling and wetting in membrane distillation by electrical repulsion using a multi-layered single-wall carbon nanotube/polyvinylidene fluoride membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Bhoumick MC, Roy S, Mitra S. Reduction and Elimination of Humic Acid Fouling in Air Sparged Membrane Distillation Using Nanocarbon Immobilized Membrane. Molecules 2022; 27:molecules27092896. [PMID: 35566247 PMCID: PMC9103841 DOI: 10.3390/molecules27092896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
In this paper, we present the treatment of humic acid solution via carbon nanotube immobilized membrane (CNIM) distillation assisted by air sparging (AS). Carbon nanotubes offer excellent hydrophobicity to the modified membrane surface and actively transport water vapor molecules through the membrane to generate higher vapor flux and better rejection of humic acid. The introduction of air sparging in the membrane distillation (MD) system has changed the humic substance fouling by changing the colloidal behavior of the deposits. This modified MD system can sustain a higher run time of separation and has enhanced the evaporation efficiency by 20% more than the regular membrane distillation. The air sparging has reduced the deposition by 30% in weight and offered lesser fouling of membrane surface even after a longer operating cycle. The water vapor flux increased with temperature and decreased as the volumetric concentrating factor (VCF) increased. The mass transfer coefficient was found to be the highest for the air sparged—carbon nanotube immobilized membrane (AS-CNIM) integrated membrane distillation. While the highest change in mass transfer coefficient (MTC) was found for polytetrafluoroethylene (PTFE) membrane with air sparging at 70 °C.
Collapse
|
13
|
Wu M, Yuan Z, Niu Y, Meng Y, He G, Jiang X. Interfacial induction and regulation for microscale crystallization process: a critical review. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-021-2129-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Liu C, Zhu L, Pan M. Seasonal shift of water quality in China Yangtze River and its impacts on membrane fouling development during the drinking water supply by membrane distillation system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152298. [PMID: 34896505 DOI: 10.1016/j.scitotenv.2021.152298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/29/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Membrane distillation (MD) technique is increasingly regarded as a promising process for drinking water supply and wastewater treatment owing to its great water purification and usage of renewable energy. Like other membrane separation processes, the membrane fouling issue is widely considered as the main obstacle for real applications of large-scale MD systems. Feedwater characteristics, as the predominant factors for membrane fouling layer formation, mostly determined the membrane fouling trend of MD. Thus the impacts of seasonal shifts of initial feedwater quality on the MD membrane fouling were detailedly researched in this study, and the biofilm development mechanism was especially explored. The bacterial community structure of membrane biofilms was clearly clarified in MD runs of Yangtze River waters that collected in four seasons. The results revealed that the winter run posed a quite sharp flux drop, while a relatively milder flux decline behaviour was seen for other groups despite of the higher bacteria concentration of initial feedwaters. The poorer water quality in winter induced the establishment of a rather thick biofilm on the MD membrane, in which the biofilm-forming bacteria (Gammaproteobacteria and Alphaproteobacteria) and organic matters (EPS) were remarkably observed. Comparatively, a relatively thin biofilm containing abundant live cells and fewer organics finally formed in summer and autumn runs, causing a mitigated flux decline trend. Hence, it can be inferred that the membrane flux decline of MD was likely to be more sensitive to the organic attachment on the membrane in comparison with the bacteria adhesion. Finally, a three-phase pretreatment method was suggested for MD fouling control, including heating course, sterilization course, and filtration course.
Collapse
Affiliation(s)
- Chang Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China.
| | - Liang Zhu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Mei Pan
- College of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224003, China
| |
Collapse
|
15
|
Liu J, Albdoor AK, Lin W, Hai FI, Ma Z. Membrane fouling in direct contact membrane distillation for liquid desiccant regeneration: Effects of feed temperature and flow velocity. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119936] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Rivera F, Muñoz R, Prádanos P, Hernández A, Palacio L. A Systematic Study of Ammonia Recovery from Anaerobic Digestate Using Membrane-Based Separation. MEMBRANES 2021; 12:membranes12010019. [PMID: 35054545 PMCID: PMC8777830 DOI: 10.3390/membranes12010019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/20/2022]
Abstract
Ammonia recovery from synthetic and real anaerobic digestates was accomplished using hydrophobic flat sheet membranes operated with H2SO4 solutions to convert ammonia into ammonium sulphate. The influence of the membrane material, flow rate (0.007, 0.015, 0.030 and 0.045 m3 h−1) and pH (7.6, 8.9, 10 and 11) of the digestate on ammonia recovery was investigated. The process was carried out with a flat sheet configuration at a temperature of 35 °C and with a 1 M, or 0.005 M, H2SO4 solution on the other side of the membrane. Polytetrafluoroethylene membranes with a nominal pore radius of 0.22 µm provided ammonia recoveries from synthetic and real digestates of 84.6% ± 1.0% and 71.6% ± 0.3%, respectively, for a membrane area of 8.6 × 10−4 m2 and a reservoir volume of 0.5 L, in 3.5 h with a 1 M H2SO4 solution and a recirculation flow on the feed side of the membrane of 0.030 m3 h−1. NH3 recovery followed first order kinetics and was faster at higher pHs of the H2SO4 solution and recirculation flow rate on the membrane feed side. Fouling resulted in changes in membrane surface morphology and pore size, which were confirmed by Atomic Force Microscopy and Air Displacement Porometry.
Collapse
Affiliation(s)
- Fanny Rivera
- Institute of Sustainable Processes, University of Valladolid, 47011 Valladolid, Spain; (F.R.); (R.M.); (P.P.); (A.H.)
- Department of Applied Physics, Science Faculty, University of Valladolid, 47011 Valladolid, Spain
| | - Raúl Muñoz
- Institute of Sustainable Processes, University of Valladolid, 47011 Valladolid, Spain; (F.R.); (R.M.); (P.P.); (A.H.)
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, 47011 Valladolid, Spain
| | - Pedro Prádanos
- Institute of Sustainable Processes, University of Valladolid, 47011 Valladolid, Spain; (F.R.); (R.M.); (P.P.); (A.H.)
- Department of Applied Physics, Science Faculty, University of Valladolid, 47011 Valladolid, Spain
| | - Antonio Hernández
- Institute of Sustainable Processes, University of Valladolid, 47011 Valladolid, Spain; (F.R.); (R.M.); (P.P.); (A.H.)
- Department of Applied Physics, Science Faculty, University of Valladolid, 47011 Valladolid, Spain
| | - Laura Palacio
- Institute of Sustainable Processes, University of Valladolid, 47011 Valladolid, Spain; (F.R.); (R.M.); (P.P.); (A.H.)
- Department of Applied Physics, Science Faculty, University of Valladolid, 47011 Valladolid, Spain
- Correspondence:
| |
Collapse
|
17
|
Tibi F, Charfi A, Cho J, Kim J. Effect of interactions between ammonium and organic fouling simulated by sodium alginate on performance of direct contact membrane distillation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Contactless membrane distillation for effective ammonia recovery from waste sludge: A new configuration and mass transfer mechanism. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Peng Q, Yang K, Venkataraman M, Tan X, Xiong X, Novotna J, Karpiskova J, Hruza J, Stuchlík M, Militky J. Preparation of electrosprayed composite coated microporous filter for particulate matter capture. NANO SELECT 2021. [DOI: 10.1002/nano.202100186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Qingyan Peng
- Department of Material Engineering, Faculty of Textile Engineering Technical University of Liberec Liberec Czech Republic
| | - Kai Yang
- Department of Material Engineering, Faculty of Textile Engineering Technical University of Liberec Liberec Czech Republic
| | - Mohanapriya Venkataraman
- Department of Material Engineering, Faculty of Textile Engineering Technical University of Liberec Liberec Czech Republic
| | - Xiaodong Tan
- Department of Material Engineering, Faculty of Textile Engineering Technical University of Liberec Liberec Czech Republic
| | - Xiaoman Xiong
- Department of Material Engineering, Faculty of Textile Engineering Technical University of Liberec Liberec Czech Republic
| | - Jana Novotna
- Department of Material Engineering, Faculty of Textile Engineering Technical University of Liberec Liberec Czech Republic
| | - Jana Karpiskova
- Department of Nanochemistry, Institute for Nanomaterials, Advanced Technologies and Innovation Technical University of Liberec Liberec Czech Republic
| | - Jakub Hruza
- Department of Nanotechnology and Informatics, Institute for Nanomaterials, Advanced Technologies and Innovation Technical University of Liberec Liberec Czech Republic
| | - Martin Stuchlík
- Department of Nanomaterials in Natural Science, Institute for Nanomaterials, Advanced Technologies and Innovation Technical University of Liberec Liberec Czech Republic
| | - Jiri Militky
- Department of Material Engineering, Faculty of Textile Engineering Technical University of Liberec Liberec Czech Republic
| |
Collapse
|
20
|
Charfi A, Tibi F, Kim J, Hur J, Cho J. Organic Fouling Impact in a Direct Contact Membrane Distillation System Treating Wastewater: Experimental Observations and Modeling Approach. MEMBRANES 2021; 11:membranes11070493. [PMID: 34208956 PMCID: PMC8303707 DOI: 10.3390/membranes11070493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022]
Abstract
This study aims to investigate the effect of operational conditions on organic fouling occurring in a direct contact membrane distillation (DCMD) system used to treat wastewater. A mixed solution of sodium alginate (SA) and bovine serum albumin (BSA) was used as a feed solution to simulate polysaccharides and proteins, respectively, assumed as the main organic foulants. The permeate flux was observed at two feed temperatures 35 and 50 °C, as well as three feed solution pH 4, 6, and 8. Higher permeate flux was observed for higher feed temperature, which allows higher vapor pressure. At higher pH, a smaller particle size was detected with lower permeate flux. A mathematical model based on mass balance was developed to simulate permeate flux with time by assuming (i) the cake formation controlled by attachment and detachment of foulant materials and (ii) the increase in specific cake resistance, the function of the cake porosity, as the main mechanisms controlling membrane fouling to investigate the fouling mechanism responsible of permeate flux decline. The model fitted well with the experimental data with R2 superior to 0.9. High specific cake resistance fostered by small particle size would be responsible for the low permeate flux observed at pH 8.
Collapse
Affiliation(s)
- Amine Charfi
- Department of Environment & Energy, Sejong University, Seoul 05006, Korea; (A.C.); (J.H.)
| | - Fida Tibi
- Program of Environmental and Polymer Engineering, Department of Environmental Engineering, Inha University, Michuholgu, Inharo 100, Incheon 22212, Korea; (F.T.); (J.K.)
| | - Jeonghwan Kim
- Program of Environmental and Polymer Engineering, Department of Environmental Engineering, Inha University, Michuholgu, Inharo 100, Incheon 22212, Korea; (F.T.); (J.K.)
| | - Jin Hur
- Department of Environment & Energy, Sejong University, Seoul 05006, Korea; (A.C.); (J.H.)
| | - Jinwoo Cho
- Department of Environment & Energy, Sejong University, Seoul 05006, Korea; (A.C.); (J.H.)
- Correspondence: ; Tel.: +82-2-3408-3970
| |
Collapse
|
21
|
Chang H, Liu B, Zhang Z, Pawar R, Yan Z, Crittenden JC, Vidic RD. A Critical Review of Membrane Wettability in Membrane Distillation from the Perspective of Interfacial Interactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1395-1418. [PMID: 33314911 DOI: 10.1021/acs.est.0c05454] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrophobic membranes used in membrane distillation (MD) systems are often subject to wetting during long-term operation. Thus, it is of great importance to fully understand factors that influence the wettability of hydrophobic membranes and their impact on the overall separation efficiency that can be achieved in MD systems. This Critical Review summarizes both fundamental and applied aspects of membrane wetting with particular emphasis on interfacial interaction between the membrane and solutes in the feed solution. First, the theoretical background of surface wetting, including the relationship between wettability and interfacial interaction, definition and measurement of contact angle, surface tension, surface free energy, adhesion force, and liquid entry pressure, is described. Second, the nature of wettability, membrane wetting mechanisms, influence of membrane properties, feed characteristics and operating conditions on membrane wetting, and evolution of membrane wetting are reviewed in the context of an MD process. Third, specific membrane features that increase resistance to wetting (e.g., superhydrophobic, omniphobic, and Janus membranes) are discussed briefly followed by the comparison of various cleaning approaches to restore membrane hydrophobicity. Finally, challenges with the prevention of membrane wetting are summarized, and future work is proposed to improve the use of MD technology in a variety of applications.
Collapse
Affiliation(s)
- Haiqing Chang
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Sichuan University, Chengdu 610207, China
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Baicang Liu
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Sichuan University, Chengdu 610207, China
| | - Zhewei Zhang
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Ritesh Pawar
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fujian, 350116, China
| | - John C Crittenden
- Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Radisav D Vidic
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
22
|
Jiang C, Huang T, Chen Y, Su Z, Yan X, Xu Q, Jiang M, Liu P. The effect of grafting monomer charge on the antifouling performance of poly(ether ether ketone) hollow fiber membrane by ultraviolet irradiation polymerization. POLYM INT 2020. [DOI: 10.1002/pi.6159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chunhui Jiang
- College of Polymer Science and Engineering Sichuan University Chengdu China
| | - Tingjian Huang
- College of Polymer Science and Engineering Sichuan University Chengdu China
| | - Yuan Chen
- College of Polymer Science and Engineering Sichuan University Chengdu China
| | - Zexi Su
- College of Polymer Science and Engineering Sichuan University Chengdu China
| | - Xiang Yan
- College of Polymer Science and Engineering Sichuan University Chengdu China
| | - Qibin Xu
- College of Polymer Science and Engineering Sichuan University Chengdu China
| | - Mengjin Jiang
- College of Polymer Science and Engineering Sichuan University Chengdu China
| | - Pengqing Liu
- College of Polymer Science and Engineering Sichuan University Chengdu China
| |
Collapse
|
23
|
Arabi S, Pellegrin ML, Aguinaldo J, Sadler ME, McCandless R, Sadreddini S, Wong J, Burbano MS, Koduri S, Abella K, Moskal J, Alimoradi S, Azimi Y, Dow A, Tootchi L, Kinser K, Kaushik V, Saldanha V. Membrane processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1447-1498. [PMID: 32602987 DOI: 10.1002/wer.1385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
This literature review provides a review for publications in 2018 and 2019 and includes information membrane processes findings for municipal and industrial applications. This review is a subsection of the annual Water Environment Federation literature review for Treatment Systems section. The following topics are covered in this literature review: industrial wastewater and membrane. Bioreactor (MBR) configuration, membrane fouling, design, reuse, nutrient removal, operation, anaerobic membrane systems, microconstituents removal, membrane technology advances, and modeling. Other sub-sections of the Treatment Systems section that might relate to this literature review include the following: Biological Fixed-Film Systems, Activated Sludge, and Other Aerobic Suspended Culture Processes, Anaerobic Processes, and Water Reclamation and Reuse. This publication might also have related information on membrane processes: Industrial Wastes, Hazardous Wastes, and Fate and Effects of Pollutants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph Wong
- Brown and Caldwell, Walnut Creek, California, USA
| | | | | | | | - Jeff Moskal
- Suez Water Technologies & Solutions, Oakville, ON, Canada
| | | | | | - Andrew Dow
- Donohue and Associates, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
24
|
Liu XY, Chen W, Yu HQ. Probing protein-induced membrane fouling with in-situ attenuated total reflectance fourier transform infrared spectroscopy and multivariate curve resolution-alternating least squares. WATER RESEARCH 2020; 183:116052. [PMID: 32622234 DOI: 10.1016/j.watres.2020.116052] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Proteins are one of the major contributors to membrane fouling. The interaction between proteins and the polymer membrane at the molecular level is essential for the alleviation/prevention of membrane fouling, but remains unclear. In this work, time-dependent in-situ attenuated total reflectance Fourier transform infrared spectroscopy is applied to investigate the interaction process between two model proteins, bovine serum albumin and lysozyme, and the poly(vinylidene fluoride) (PVDF) membrane. Multivariate curve resolution-alternating least squares is integrated with two-dimensional correlation spectroscopy analysis to resolve the membrane-induced conformational changes of proteins. The multivariate curve resolution-alternating least squares analysis reveals a two-step process in the protein-membrane interaction and provides the kinetics of the conformational transition, which aids the segmentation of the spectral dataset. By applying two-dimensional correlation spectroscopy analysis to different groups of the time-dependent spectra, the sequential order of the secondary structural changes of proteins is determined. The proteins initially undergo unfolding transition to a more open, less structured state, which appears to be triggered by the hydrophobic membrane surface. Afterwards, the proteins become aggregated with the high anti-parallel β-sheet content, aggravating the membrane fouling. The conformational transition process of proteins was also confirmed by the atomic force microscopic images and quartz crystal microbalance measurement. Overall, this work provides an in-depth understanding of the interaction between proteins and the membrane surface, which is helpful for the development of membrane anti-fouling strategies.
Collapse
Affiliation(s)
- Xiao-Yang Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wei Chen
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
25
|
Pillai S, Santana A, Das R, Shrestha BR, Manalastas E, Mishra H. A molecular to macro level assessment of direct contact membrane distillation for separating organics from water. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118140] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Liu C, Zhu L, Chen L. Effect of salt and metal accumulation on performance of membrane distillation system and microbial community succession in membrane biofilms. WATER RESEARCH 2020; 177:115805. [PMID: 32311577 DOI: 10.1016/j.watres.2020.115805] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/02/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
Membrane distillation (MD) works as a potential technology for the "zero liquid discharge" water treatment owing to its high concentration brine tolerance. The continuous accumulation of salts and metals in the MD system during the "zero liquid discharge" water treatment inevitably posed remarkable impacts on the biofilm formation as well as the MD performance. Hence, the biofouling mechanism of MD was deeply researched in this study with an emphasis on the roles of salt-stress (NaCl) and metal-stress (Zn and Fe) in biofilm development. The membrane flux decline of MD was effectively mitigated by the appearance of NaCl and ZnO, while that was significantly aggravated under the metal-stress of Fe. Considering the serious membrane scaling caused by NaCl crystals, a sharp flux decline was seen for the NaCl group during the later stage of MD operation. Basing on the 16S rDNA and 16S rRNA analysis, heat-stress, salt-stress, and metal-stress all posed certain impacts on the biofouling development in the MD system, and a more remarkable influence was observed for metal-stress. Under the salt-stress from NaCl, a thin biofilm containing high biovolume of dead cells finally formed, in which the bacterial community mainly consisted of halotolerant and thermophile species. Owing to the Zn2+-stress and oxidation-stress mechanisms of ZnO, the bacteria in the MD system were largely dead and live bacterial community in biofilms was dominated by some gram-negative species. Under the metal-stress from Fe, a rather thick biofilm containing higher biovolume of live cells clearly developed, in which the prevailing species could secret large amounts of EPS and accumulate metabolites around cells as biological surfactants, inducing aggravated membrane biofouling and high risk of membrane wetting.
Collapse
Affiliation(s)
- Chang Liu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Liang Zhu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Lin Chen
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
27
|
Liu C, Zhu L, Chen L. Biofouling phenomenon of direct contact membrane distillation (DCMD) under two typical operating modes: Open-loop mode and closed-loop mode. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117952] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Liu C, Zhu L, Chen L. Mechanism of biofilm formation on a hydrophobic polytetrafluoroethylene membrane during the purification of surface water using direct contact membrane distillation (DCMD), with especial interest in the feed properties. BIOFOULING 2020; 36:14-31. [PMID: 31928216 DOI: 10.1080/08927014.2019.1710136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
The impact of feed water quality on biofilm formation during membrane distillation (MD) was investigated in this study, particularly emphasizing the interrelationship between organics, salts, and microbes. Two types of typical natural surface waters in Nanjing, China, were chosen as feed solutions for long-term MD operation, including the Qinhuai River and Xuanwu Lake. The biofilms that developed under different feed water qualities exhibited distinct Foulant compositions and structures, causing different flux decline trends for the MD system. Accordingly, two typical patterns of biofilm formation were suggested for the MD operation of the two different kinds of surface waters in this study. Organics from a primal feed solution and dead bacteria were the key to the establishment of a biofilm on the membrane, and this needs to be effectively removed from the MD system through pre-treatment and process control strategies. Finally, a feasible strategy for MD biofouling control was suggested.
Collapse
Affiliation(s)
- Chang Liu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, China
- College of Environment, Hohai University, Nanjing, China
| | - Liang Zhu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, China
- College of Environment, Hohai University, Nanjing, China
| | - Lin Chen
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, China
- College of Environment, Hohai University, Nanjing, China
| |
Collapse
|
29
|
Xu X, Zhang H, Yu M, Wang Y, Gao T, Yang F. Conductive thin film nanocomposite forward osmosis membrane (TFN-FO) blended with carbon nanoparticles for membrane fouling control. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134050. [PMID: 32380598 DOI: 10.1016/j.scitotenv.2019.134050] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/23/2019] [Accepted: 08/21/2019] [Indexed: 05/28/2023]
Abstract
Membrane fouling in forward osmosis (FO) significantly affects water flux and membrane life, which restricts the further development of FO. In this work, carbon nanoparticles were blended in polyethersulfone (PES) to prepare a conductive thin film nanocomposite (TFN) FO membrane to control the membrane fouling in FO processes. The membrane containing 4 wt% carbon exhibited an optimum performance with water flux of 14.0 and 17.2 LMH for FO (active layer for FS) and PRO (active layer for DS) modes, respectively, using DI water as feed solution and 1 M NaCl as draw solution and electrical conductivity of 170.1 mS/m. Dynamic antifouling experiments showed that, compared with no voltage applied, the water flux decline of surface charged TFN-FO membrane was significantly retarded. For CaSO4, BSA and LYS as model contaminants, the water fluxes were improved by 31%, 13% and 7% under the voltages of +1.7 V, -1.7 V and +1.7 V, respectively. Moreover, the charged membrane is more effective in relieving the initial membrane fouling, and contaminant-contaminant interactions mechanism dominates the formation of further membrane fouling processes. Therefore, for contaminants with different charge conditions, customizing membrane surface charges is a feasible and promising approach for controlling membrane fouling in situ method.
Collapse
Affiliation(s)
- Xiaotong Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| | - Hanmin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China.
| | - Mingchuan Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| | - Yuezhu Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| | - Tianyu Gao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| |
Collapse
|
30
|
Panagopoulos A, Haralambous KJ, Loizidou M. Desalination brine disposal methods and treatment technologies - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133545. [PMID: 31374511 DOI: 10.1016/j.scitotenv.2019.07.351] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/19/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
Brine, also known as concentrate, is the by-product of the desalination process that has an adverse impact on the environment due to its high salinity. Hence, viable and cost-effective brine management systems are needed to reduce environmental pollution. Currently, various disposal methods have been practiced, including surface water discharge, sewer discharge, deep-well injection, evaporation ponds and land application. However, these brine disposal methods are unsustainable and restricted by high capital costs and non-universal application. Nowadays, brine treatment is considered one of the most promising alternatives to brine disposal, since treatment results in the reduction of environmental pollution, minimization of waste volume and production of freshwater with high recovery. This review article evaluates current practices in brine management, including disposal methods and treatment technologies. Based upon the side-by-side comparison of technologies, a brine treatment technology framework is introduced to outline the Zero Liquid Discharge (ZLD) approach through high freshwater recovery and wastewater volume minimization. Furthermore, an overview of brine characteristics and its sources, as well as its negative impact on the environment is discussed. Finally, the paper highlights future research areas for brine treatment technologies aiming to enhance the effectiveness and viability of desalination.
Collapse
Affiliation(s)
- Argyris Panagopoulos
- Unit of Environmental Science and Technology, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou St., Zografou, 15780, Athens, Greece.
| | - Katherine-Joanne Haralambous
- Unit of Environmental Science and Technology, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou St., Zografou, 15780, Athens, Greece.
| | - Maria Loizidou
- Unit of Environmental Science and Technology, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou St., Zografou, 15780, Athens, Greece.
| |
Collapse
|
31
|
Shi J, Dang Y, Qu D, Sun D. Effective treatment of reverse osmosis concentrate from incineration leachate using direct contact membrane distillation coupled with a NaOH/PAM pre-treatment process. CHEMOSPHERE 2019; 220:195-203. [PMID: 30583212 DOI: 10.1016/j.chemosphere.2018.12.110] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
Reverse osmosis is frequently used to process biologically treated leachate from municipal solid waste incineration plants. Reverse osmosis concentrate from incineration leachate (ROCIL) contains extremely high concentrations of monovalent and divalent ions (e.g. Na+, K+, Mg2+, and Ca2+) and some refractory organic pollutants (e.g. humic substances). In this study, lab-scale direct contact membrane distillation (DCMD) coupled with pre-treatment was applied to treat ROCIL. NaOH and polyacrylamide (PAM) chemical precipitation and coagulation pretreatment effectively removed Ca2+ and Mg2+ (>99%) from the ROCIL, which also significantly improved the treatment efficiency of DCMD and slowed down membrane fouling caused by Mg5(CO3)4(OH)2·4H2O and CaCO3 scaling on the membrane surface. During the long-term operation of DCMD, ROCIL was concentrated 21 times and nearly all of the inorganic ions (>99.9%) and organic matter (>99%) were removed from the pre-treated ROCIL. A strong interaction occurred due to the accumulation of humic substances and metal ions in the feed solution, which lead to inorganic and organic scaling deposited on the membrane surface and pores, but the wetting phenomenon was not serious. These results demonstrated that DCMD coupled with NaOH/PAM pre-treatment can be a potential alternative for further treatment and concentration of ROCIL to obtain high quality water.
Collapse
Affiliation(s)
- Jinyu Shi
- College of Environmental Science and Engineering, Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Yan Dang
- College of Environmental Science and Engineering, Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Dan Qu
- College of Environmental Science and Engineering, Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Dezhi Sun
- College of Environmental Science and Engineering, Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
32
|
Liu C, Chen L, Zhu L, Wu Z, Hu Q, Pan M. The effect of feed temperature on biofouling development on the MD membrane and its relationship with membrane performance: An especial attention to the microbial community succession. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
33
|
Shan H, Liu J, Li X, Li Y, Tezel FH, Li B, Wang S. Nanocoated amphiphobic membrane for flux enhancement and comprehensive anti-fouling performance in direct contact membrane distillation. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.09.038] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Wu J, Wei W, Li S, Zhong Q, Liu F, Zheng J, Wang J. The effect of membrane surface charges on demulsification and fouling resistance during emulsion separation. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.05.065] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Liu H, Wang L, Yin B, Fu B, Liu H. Deep exploitation of refractory organics in anaerobic dynamic membrane bioreactor for volatile fatty acids production from sludge fermentation: Performance and effect of protease catalysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 217:478-485. [PMID: 29631237 DOI: 10.1016/j.jenvman.2018.03.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
Volatile fatty acids (VFAs) production from waste activated sludge fermentation could be improved in anaerobic dynamic membrane bioreactor (ADMBR) by retaining residual organics within the reactor and prolonging their reaction time. However, the accumulation of refractory organics made it operate unstably. Therefore, protease catalysis was adopted to deeply exploit those refractory organics in sludge. By combining with dynamic membrane retention, protease catalysis indeed presented a good performance. VFAs yield was further enhanced by over 40% in ADMBR. Membrane fouling was slightly relieved due to protein and polysaccharide degradations in the sludge of dynamic membrane. It was also interestingly found that not only protease activity of sludge was improved from 5 to 21 U/ml, but also β-GLC activity was enhanced from 13 to 20 μmoL/L/h. Microbial community analysis showed protease addition could reduce bacterial richness and evenness in sludge, and accelerate the growth of polysaccharides-hydrolyzing bacteria, as well as inhibit some proteolytic bacteria.
Collapse
Affiliation(s)
- Hongbo Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, Jiangsu, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215011, PR China
| | - Ling Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Bo Yin
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Bo Fu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, Jiangsu, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215011, PR China
| | - He Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, Jiangsu, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215011, PR China.
| |
Collapse
|