1
|
Ou Y, Qu T, Cheng F, Yang H, Hu F, Wang J, Liu H, Liu G, Wen S, Gong C. Dual reinforced composite membranes from in-situ ionic crosslinked quaternized chitosan filled quaternized polyvinylidene fluoride nanofiber for alkaline direct methanol fuel cell. Carbohydr Polym 2023; 322:121363. [PMID: 37839835 DOI: 10.1016/j.carbpol.2023.121363] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/22/2023] [Accepted: 09/01/2023] [Indexed: 10/17/2023]
Abstract
The main obstacle of high-performance cationic functionalization chitosan (CS) as anion exchange membranes (AEMs) is the trade-off between mechanical stability and ionic conductivity. Here, in-situ ionic crosslinking between the deprotonated hydroxyl group and quaternary ammonium group under alkaline conditions was ingeniously applied to improve the mechanical stability of highly quaternized CS (HQCS) with high IEC (>2 mmol g-1). Meanwhile, to further reduce the swelling and enhance the hydroxide conductivity, a mechanically robust hydroxide ion conduction network, quaternized electrospun poly(vinylidene fluoride) (QPVDF) nanofiber, was subsequently used as the filling substrate of in-situ crosslinked HQCS to prepare dual reinforced thin AEMs. The introduction of a robust QPVDF nanofiber mat can not only greatly improve the mechanical properties and limit swelling, but also create facile ion transport channels. Notably, the HQCS/QPVDF-74.0 composite membrane demonstrates perfect dimensional stability, high mechanical performance and excellent alkaline stability, as well as superior ionic conductivity of 66.2 mS cm-1 at 80 °C. The thus assembled alkaline direct methanol fuel cell displays a maximum power density of 132.30 mW cm-2 using 5 M KOH and 3 M methanol as fuels at 80 °C with satisfactory durability.
Collapse
Affiliation(s)
- Ying Ou
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China.
| | - Ting Qu
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Fan Cheng
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Haiyang Yang
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Fuqiang Hu
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Jie Wang
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Hai Liu
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China.
| | - Guoliang Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Nr. 122 Luoshi Rd., Wuhan 430070, China.
| | - Sheng Wen
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Chunli Gong
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| |
Collapse
|
2
|
Huang KX, Zhou LY, Chen JQ, Peng N, Chen HX, Gu HZ, Zou T. Applications and perspectives of quaternized cellulose, chitin and chitosan: A review. Int J Biol Macromol 2023:124990. [PMID: 37211070 DOI: 10.1016/j.ijbiomac.2023.124990] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/13/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
Recently, increasing attention has been paid to natural polysaccharides for their low cost, biocompatibility and biodegradability. Quaternization is a modification method to improve the solubility and antibacterial ability of natural polysaccharides. Water-soluble derivatives of cellulose, chitin and chitosan offer the prospect of diverse applications in a wide range of fields, such as antibacterial products, drug delivery, wound healing, sewage treatment and ion exchange membranes. By combining the inherent properties of cellulose, chitin and chitosan with the inherent properties of the quaternary ammonium groups, new products with multiple functions and properties can be obtained. In this review, we summarized the research progress in the applications of quaternized cellulose, chitin and chitosan in recent five years. Moreover, ubiquitous challenges and personal perspectives on the further development of this promising field are also discussed.
Collapse
Affiliation(s)
- Ke-Xin Huang
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Ling-Yue Zhou
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Jia-Qi Chen
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Na Peng
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Hong-Xiang Chen
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Hua-Zhi Gu
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Tao Zou
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China.
| |
Collapse
|
3
|
Chen C, Zeng X, Peng Z, Chen Z. Polyaromatic anion exchange membranes for alkaline fuel cells with high hydroxide conductivity and alkaline stability. J Appl Polym Sci 2023. [DOI: 10.1002/app.53795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
4
|
Yang L, Wang Z, Wang F, Wang Z, Zhu H. Poly(aryl piperidinium) anion exchange membranes with cationic extender sidechain for fuel cells. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Facilitating ionic conduction for anion exchange membrane via employing star-shaped block copolymer. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119290] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Chu X, Liu J, Miao S, Liu L, Huang Y, Tang E, Liu S, Xing X, Li N. Crucial role of side-chain functionality in anion exchange membranes: Properties and alkaline fuel cell performance. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119172] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Chen Y, Li Y, Xu J, Chen S, Chen D. Densely Quaternized Fluorinated Poly(fluorenyl ether)s with Excellent Conductivity and Stability for Vanadium Redox Flow Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18923-18933. [PMID: 33852269 DOI: 10.1021/acsami.1c04250] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cationic group distribution and elemental composition are two key factors determining the conductivity and stability of anion exchange membranes (AEMs) for vanadium redox flow batteries (VRFBs). Herein, fluorinated tetra-dimethylaminomethyl-poly(fluorenyl ether)s (TAPFE)s were designed as the polymer precursors, which were reacted with 6-bromo-N,N,N-trimethylhexan-1-aminium bromide to introduce di-quaternary ammonium (DQA) containing side chains. The resultant DQA-TAPFEs with a rigid fluorinated backbone and flexible multi-cationic side chains exhibited distinct micro-phase separation as probed by small-angle X-ray scattering (SAXS) and atomic force microscopy (AFM). DQA-TAPFE-20 with an ion exchange capacity (IEC) of 1.55 mmol g-1 exhibited a SO42- conductivity of 10.1 mS cm-1 at room temperature, much higher than that of a control AEM with an identical backbone but spaced out cationic groups, which had a similar IEC of 1.60 mmol g-1 but a SO42- conductivity of only 3.2 mS cm-1. Due to the Donnan repulsion effect, the DQA-TAPFEs exhibited significantly lower VO2+ permeability than Nafion 212. The VRFB assembled with DQA-TAPFE-20 achieved an energy efficiency of 80.4% at 80 mA cm-1 and a capacity retention rate of 82.9% after the 50th cycling test, both higher than those of the VRFB assembled with Nafion 212 and other AEMs in the literature. Therefore, the rationally designed DQA-TAPFEs are promising candidates for VRFB applications.
Collapse
Affiliation(s)
- Yu Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, China
| | - Yanyan Li
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, China
| | - Jiaqi Xu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, China
| | - Shaoyun Chen
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Dongyang Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
8
|
Khan M, Li X, Fernandez-Garcia J, Lashari MH, ur Rehman A, Elboughdiri N, Kolsi L, Ghernaout D. Effect of Different Quaternary Ammonium Groups on the Hydroxide Conductivity and Stability of Anion Exchange Membranes. ACS OMEGA 2021; 6:7994-8001. [PMID: 33817458 PMCID: PMC8014933 DOI: 10.1021/acsomega.0c05134] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/02/2021] [Indexed: 05/15/2023]
Abstract
Anion exchange membrane fuel cells (AEMFCs) are encouraging electrochemical structures for the competent and complaisant conversion of energy. Herein, the development of brominated poly(2,6-dimethyl phenylene oxide) (BPPO)-based anion exchange membranes (AEMs) with different quaternary ammonium groups for AEMFCs was reported. The successful preparation of AEMs was proved by utilizing proton nuclear magnetic resonance and Fourier transform infrared spectroscopy. They were explored in terms of water uptake (W R), ion exchange capacity (IEC), hydration number (λ), linear swelling ratio (LSR), morphology, tensile strength (TS), and elongation at break (E b). The alkaline stability of the prepared AEMs was assessed and compared with each other. The experimental outcomes demonstrated that the N-methylpyrrolidinium-based membrane (MPyPPO) exhibited higher alkaline stability, whereas the N-methylimidazolium-based membrane (MImPPO) showed the lowest alkaline stability among the prepared AEMs. Similarly, the hydroxide conductivity of the prepared AEMs was measured and compared with each other. The pyrrolidinium-based membrane (MPyPPO) exhibited higher hydroxide conductivity among the prepared AEMs.
Collapse
Affiliation(s)
- Muhammad
Imran Khan
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou 350002, China
| | - Xiaofang Li
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou 350002, China
| | - Javier Fernandez-Garcia
- Department
of Chemical Engineering, University College
London, Torrington Place, London WC1E 7JE, U.K.
| | | | - Aziz ur Rehman
- The
Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Noureddine Elboughdiri
- Chemical
Engineering Department, College of Engineering, University of Ha’il, P.O. Box 2440, Ha’il 81441, Saudi Arabia
- Chemical
Engineering Process Department, National School of Engineering Gabes, University of Gabes, Gabes 6011, Tunisia
| | - Lioua Kolsi
- Mechanical
Engineering Department, College of Engineering, University of Ha’il, P.O. Box
2440, Ha’il 81441, Saudi Arabia
- Laboratory
of Metrology and Energy Systems, University
of Monastir, Monastir 5000, Tunisia
| | - Djamel Ghernaout
- Chemical
Engineering Department, College of Engineering, University of Ha’il, P.O. Box 2440, Ha’il 81441, Saudi Arabia
- Chemical
Engineering Department, Faculty of Engineering, University of Blida, P.O. Box 270, Blida 09000, Algeria
| |
Collapse
|
9
|
Khan MI, Shanableh A, Elboughdiri N, Kriaa K, Ghernaout D, Ghareba S, Khraisheh M, Lashari MH. Higher Acid Recovery Efficiency of Novel Functionalized Inorganic/Organic Composite Anion Exchange Membranes from Acidic Wastewater. MEMBRANES 2021; 11:membranes11020133. [PMID: 33672853 PMCID: PMC7918162 DOI: 10.3390/membranes11020133] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/07/2021] [Accepted: 02/10/2021] [Indexed: 01/31/2023]
Abstract
In this work, the synthesis of a series of the functionalized inorganic/organic composite anion exchange membranes (AEMs) was carried out by employing the varying amount of inorganic filler consist of N-(trimethoxysilylpropyl)-N,N,N-trimethylammonium chloride (TMSP-TMA+Cl-) into the quaternized poly (2, 6-dimethyl-1, 4-phenylene oxide) (QPPO) matrix for acid recovery via diffusion dialysis (DD) process. Fourier transform infrared (FTIR) spectroscopy clearly demonstrated the fabrication of the functionalized inorganic/organic composite AEMs and the subsequent membrane characteristic measurements such as ion exchange capacity (IEC), linear swelling ratio (LSR), and water uptake (WR) gave us the optimum loading condition of the filler without undesirable filler particle aggregation. These composite AEMs exhibited IEC of 2.18 to 2.29 meq/g, LSR of 13.33 to 18.52%, and WR of 46.11 to 81.66% with sufficient thermal, chemical, and mechanical stability. The diffusion dialysis (DD) test for acid recovery from artificial acid wastewater of HCl/FeCl2 showed high acid DD coefficient (UH+) (0.022 to 0.025 m/h) and high separation factor (S) (139-260) compared with the commercial membrane. Furthermore, the developed AEMs was acceptably stable (weight loss < 20%) in the acid wastewater at 60 °C as an accelerated severe condition for 2 weeks. These results clearly indicated that the developed AEMs have sufficient potential for acid recovery application by DD process.
Collapse
Affiliation(s)
- Muhammad Imran Khan
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Correspondence: ; Tel.: +971-563-404-827
| | - Abdallah Shanableh
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha’il, P.O. Box 2440, Ha’il 81441, Saudi Arabia; (N.E.); (D.G.); (S.G.)
- Chemical Engineering Process Department, National School of Engineering Gabes, University of Gabes, Gabes 6011, Tunisia;
| | - Karim Kriaa
- Chemical Engineering Process Department, National School of Engineering Gabes, University of Gabes, Gabes 6011, Tunisia;
- Chemical Engineering Department, College of Engineering, Al Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia
| | - Djamel Ghernaout
- Chemical Engineering Department, College of Engineering, University of Ha’il, P.O. Box 2440, Ha’il 81441, Saudi Arabia; (N.E.); (D.G.); (S.G.)
- Chemical Engineering Department, Faculty of Engineering, University of Blida, P.O. Box 270, Blida 09000, Algeria
| | - Saad Ghareba
- Chemical Engineering Department, College of Engineering, University of Ha’il, P.O. Box 2440, Ha’il 81441, Saudi Arabia; (N.E.); (D.G.); (S.G.)
- Department of Chemical and Petroleum Engineering, ElMergib University, Alkhums 40414, Libya
| | - Majeda Khraisheh
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar;
| | | |
Collapse
|
10
|
Hossain MM, Yang Z, Wu L, Liang X, Xu T. Introducing a new generation of anion conducting membrane using swelling induced fabrication of covalent methanol barrier layer. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Wan R, Xu S, Wang J, Yang Y, Zhang D, He R. Construction of ion conducting channels by embedding hydrophilic oligomers in piperidine functionalized poly(2, 6-dimethyl-1, 4-phenylene oxide) membranes. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
12
|
Liu G, Tsen WC, Jang SC, Hu F, Zhong F, Zhang B, Wang J, Liu H, Wang G, Wen S, Gong C. Composite membranes from quaternized chitosan reinforced with surface-functionalized PVDF electrospun nanofibers for alkaline direct methanol fuel cells. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118242] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
13
|
Trant C, Hwang S, Bae C, Lee S. Synthesis and Characterization of Anion-Exchange Membranes Using Semicrystalline Triblock Copolymers in Ordered and Disordered States. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Carrie Trant
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Sooyeon Hwang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Chulsung Bae
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Sangwoo Lee
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
14
|
A Novel Anion Exchange Membrane for Bisulfite Anion Separation by Grafting a Quaternized Moiety through BPPO via Thermal-Induced Phase Separation. Int J Mol Sci 2020; 21:ijms21165782. [PMID: 32806611 PMCID: PMC7460881 DOI: 10.3390/ijms21165782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 02/01/2023] Open
Abstract
Ion-exchange membranes are the core elements for an electrodialysis (ED) separation process. Phase inversion is an effective method, particularly for commercial membrane production. It introduces two different mechanisms, i.e., thermal induced phase separation (TIPS) and diffusion induced phase separation (DIPS). In this study, anion exchange membranes (AEMs) were prepared by grafting a quaternized moiety (QM,2-[dimethylaminomethyl]naphthalen-1-ol) through brominated poly (2,6-dimethyl-1,4-phenylene oxide) (BPPO) via the TIPS method. Those membranes were applied for selective bisulfite (HSO3-) anion separation using ED. The membrane surface morphology was characterized by SEM, and the compositions were magnified using a high-resolution transmission electron microscope (HRTEM). Notably, the membranes showed excellent substance stability in an alkali medium and in grafting tests performed in a QM-soluble solvent. The ED experiment indicated that the as-prepared membrane exhibited better HSO3- separation performance than the state-of-the-art commercial Neosepta AMX (ASTOM, Japan) membrane.
Collapse
|
15
|
Liu L, Liu Z, Bai L, Shao C, Chen R, Zhao P, Chu X, Li N. Quaternized poly (2, 6-dimethyl-1, 4-phenylene oxide) anion exchange membranes based on isomeric benzyltrimethylammonium cations for alkaline fuel cells. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118133] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Khan MI, Fernandez-Garcia J, Zhu QL. Fabrication of doubly charged anion-exchange membranes for enhancing hydroxide conductivity. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2020.1781896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Muhammad Imran Khan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | | | - Qi-Long Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| |
Collapse
|
17
|
He X, Cheng C, Huang S, Zhang F, Duan Y, Zhu C, Guo Y, Wang K, Chen D. Alkaline anion exchange membranes with imidazolium-terminated flexible side-chain cross-linked topological structure based on ROMP-type norbornene copolymers. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122412] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
18
|
Koók L, Žitka J, Bakonyi P, Takács P, Pavlovec L, Otmar M, Kurdi R, Bélafi-Bakó K, Nemestóthy N. Electrochemical and microbiological insights into the use of 1,4-diazabicyclo[2.2.2]octane-functionalized anion exchange membrane in microbial fuel cell: A benchmarking study with Nafion. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116478] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Ramanujam AS, Kaleekkal NJ, Kumar PS. Preparation and characterization of proton exchange polyvinylidene fluoride membranes incorporated with sulfonated mesoporous carbon/SPEEK nanocomposite. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2464-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
20
|
Lee SB, Min CM, Jang J, Lee JS. Enhanced conductivity and stability of anion exchange membranes depending on chain lengths with crosslinking based on poly(phenylene oxide). POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122331] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
21
|
Bi-guanidinium-based crosslinked anion exchange membranes: Synthesis, characterization, and properties. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117923] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Li S, Zhang H, Wang K, Yang F, Han Y, Sun Y, Pang J, Jiang Z. Micro-block versus random quaternized poly(arylene ether sulfones) with highly dense quaternization units for anion exchange membranes. Polym Chem 2020. [DOI: 10.1039/c9py01951k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A systematic study was carried out to investigate the effect of different distributions of conducting groups in segments for poly(arylene ether sulfone)s.
Collapse
Affiliation(s)
- Su Li
- Laboratory of High Performance Plastics (Jilin University)
- Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer. College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Haibo Zhang
- Laboratory of High Performance Plastics (Jilin University)
- Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer. College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Kaiqi Wang
- Laboratory of High Performance Plastics (Jilin University)
- Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer. College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Fan Yang
- Laboratory of High Performance Plastics (Jilin University)
- Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer. College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Yuntao Han
- Laboratory of High Performance Plastics (Jilin University)
- Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer. College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Yirong Sun
- Laboratory of High Performance Plastics (Jilin University)
- Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer. College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Jinhui Pang
- Laboratory of High Performance Plastics (Jilin University)
- Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer. College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Zhenhua Jiang
- Laboratory of High Performance Plastics (Jilin University)
- Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer. College of Chemistry
- Jilin University
- Changchun
- P. R. China
| |
Collapse
|
23
|
Peng J, Liang M, Liu Z, Wang P, Shi C, Hu W, Liu B. Poly(arylene ether sulfone) crosslinked networks with pillar[5]arene units grafted by multiple long-chain quaternary ammonium salts for anion exchange membranes. Chem Commun (Camb) 2020; 56:928-931. [DOI: 10.1039/c9cc07105a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
For the first time, high-molecular-weight pillar[5]arene-containing aromatic polymers were synthesized and further modified for application as anion exchange membranes.
Collapse
Affiliation(s)
- Jinwu Peng
- Key Laboratory of High Performance Plastics
- Ministry of Education
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer
- College of Chemistry
- Jilin University
| | - Minhui Liang
- Key Laboratory of High Performance Plastics
- Ministry of Education
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer
- College of Chemistry
- Jilin University
| | - Zhenchao Liu
- Key Laboratory of High Performance Plastics
- Ministry of Education
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer
- College of Chemistry
- Jilin University
| | - Peng Wang
- Key Laboratory of High Performance Plastics
- Ministry of Education
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer
- College of Chemistry
- Jilin University
| | - Chengying Shi
- Key Laboratory of High Performance Plastics
- Ministry of Education
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer
- College of Chemistry
- Jilin University
| | - Wei Hu
- Key Laboratory of Polyoxometalate Science of the Ministry of Education
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Baijun Liu
- Key Laboratory of High Performance Plastics
- Ministry of Education
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer
- College of Chemistry
- Jilin University
| |
Collapse
|
24
|
Dischinger SM, Gupta S, Carter BM, Miller DJ. Transport of Neutral and Charged Solutes in Imidazolium-Functionalized Poly(phenylene oxide) Membranes for Artificial Photosynthesis. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b05628] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sarah M. Dischinger
- Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Shubham Gupta
- Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Blaine M. Carter
- Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Daniel J. Miller
- Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
25
|
Kim Y, Wang Y, France-Lanord A, Wang Y, Wu YCM, Lin S, Li Y, Grossman JC, Swager TM. Ionic Highways from Covalent Assembly in Highly Conducting and Stable Anion Exchange Membrane Fuel Cells. J Am Chem Soc 2019; 141:18152-18159. [DOI: 10.1021/jacs.9b08749] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yoonseob Kim
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yanming Wang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Arthur France-Lanord
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yichong Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - You-Chi Mason Wu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sibo Lin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yifan Li
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jeffrey C. Grossman
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Timothy M. Swager
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
26
|
Highly Conductive and Water-Swelling Resistant Anion Exchange Membrane for Alkaline Fuel Cells. Int J Mol Sci 2019; 20:ijms20143470. [PMID: 31311111 PMCID: PMC6679103 DOI: 10.3390/ijms20143470] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/04/2019] [Accepted: 07/12/2019] [Indexed: 11/29/2022] Open
Abstract
To ameliorate the trade-off effect between ionic conductivity and water swelling of anion exchange membranes (AEMs), a crosslinked, hyperbranched membrane (C-HBM) combining the advantages of densely functionalization architecture and crosslinking structure was fabricated by the quaternization of the hyperbranched poly(4-vinylbenzyl chloride) (HB-PVBC) with a multiamine oligomer poly(N,N-Dimethylbenzylamine). The membrane displayed well-developed microphase separation morphology, as confirmed by small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). Moreover, the corresponding high ionic conductivity, strongly depressed water swelling, high thermal stability, and acceptable alkaline stability were achieved. Of special note is the much higher ratio of hydroxide conductivity to water swelling (33.0) than that of most published side-chain type, block, and densely functionalized AEMs, implying its higher potential for application in fuel cells.
Collapse
|
27
|
Qaisrani NA, Ma L, Liu J, Hussain M, Li L, Li P, Gong S, Zhang F, He G. Anion exchange membrane with a novel quaternized ammonium containing long ether substituent. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.054] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
"Intrinsic" Anion Exchange Polymers through the Dissociation of Strong Basic Groups: PPO with Grafted Bicyclic Guanidines. MEMBRANES 2019; 9:membranes9050057. [PMID: 31035646 PMCID: PMC6572084 DOI: 10.3390/membranes9050057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 11/17/2022]
Abstract
We synthesized anion exchange polymers by a reaction of chloromethylated poly(2,6-dimethyl-1,4-phenylene)oxide (PPO) with strongly basic 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD). TBD contains secondary and tertiary amine groups in the guanidine portion. To favor the functionalization with the secondary amine, TBD was activated with butyl lithium. The yield of amine formation via the reaction of the benzyl chloride moiety with TBD was 85%. Furthermore, we prepared polymers with quaternary ammonium groups by the reaction of PPO-TBD with CH3I. The synthesis pathways and ionomer structure were investigated by NMR spectroscopy. The thermal decomposition of both ionomers, studied by thermogravimetry, started above 200 °C, corresponding to the loss of the basic group. The ion exchange capacities, water uptake and volumetric swelling are also reported. The “intrinsic” anion conductivity of PPO-TBD due to the dissociation of grafted TBD was in the order of 1 mS/cm (Cl form). The quaternized ionomer (PPO-TBD-Me) showed an even larger ionic conductivity, above 10 mS/cm at 80 °C in fully humidified conditions.
Collapse
|
29
|
Goh K, Li H, Lam K. Effects of salt- and oxygen-coupled stimuli on the reactive behaviors of hemoglobin-loaded polymeric membranes. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Maurya S, Dumont JH, Villarrubia CN, Matanovic I, Li D, Kim YS, Noh S, Han J, Bae C, Miller HA, Fujimoto CH, Dekel DR. Surface Adsorption Affects the Performance of Alkaline Anion-Exchange Membrane Fuel Cells. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03227] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sandip Maurya
- MPA-11: Materials Synthesis & Integrated Devices, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Joseph H. Dumont
- MPA-11: Materials Synthesis & Integrated Devices, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Claudia Narvaez Villarrubia
- MPA-11: Materials Synthesis & Integrated Devices, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Ivana Matanovic
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials (CMEM), The University of New Mexico, Albuquerque, New Mexico 87231, United States
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Dongguo Li
- MPA-11: Materials Synthesis & Integrated Devices, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Yu Seung Kim
- MPA-11: Materials Synthesis & Integrated Devices, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sangtaik Noh
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Junyoung Han
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Chulsung Bae
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Hamish A. Miller
- Istituto di Chimica dei Composti Organometallici (CNR-ICCOM), via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze Italy
| | - Cy H. Fujimoto
- Materials Science and Engineering Center, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Dario R. Dekel
- The Wolfson Department of Chemical Engineering, Technion−Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|