1
|
Kuzminova A, Dmitrenko M, Dubovenko R, Puzikova M, Mikulan A, Korovina A, Koroleva A, Selyutin A, Semenov K, Su R, Penkova A. Development and Study of Novel Ultrafiltration Membranes Based on Cellulose Acetate. Polymers (Basel) 2024; 16:1236. [PMID: 38732705 PMCID: PMC11085473 DOI: 10.3390/polym16091236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Recently, increasing attention of researchers in the field of membrane technology has been paid to the development of membranes based on biopolymers. One of the well-proven polymers for the development of porous membranes is cellulose acetate (CA). This paper is devoted to the study of the influence of different parameters on ultrafiltration CA membrane formation and their transport properties, such as the variation in coagulation bath temperature, membrane shrinkage (post-treatment at 80 °C), introduction to casting CA solution of polymers (polyethylene glycol (PEG), polysulfone (PS), and Pluronic F127 (PL)) and carbon nanoparticles (SWCNTs, MWCNTs, GO, and C60). The structural and physicochemical properties of developed membranes were studied by scanning electron and atomic force microscopies, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and contact angle measurements. The transport properties of developed CA-based membranes were evaluated in ultrafiltration of bovine serum albumin (BSA), dextran 110 and PVP K-90. All developed membranes rejected 90% compounds with a molecular weight from ~270,000 g/mol. It was shown that the combination of modifications (addition of PEG, PS, PL, PS-PL, and 0.5 wt% C60) led to an increase in the fluxes and BSA rejection coefficients with slight decrease in the flux recovery ratio. These changes were due to an increased macrovoid number, formation of a more open porous structure and/or thinner top selective, and decreased surface roughness and hydrophobization during C60 modification of blend membranes. Optimal transport properties were found for CA-PEG+C60 (the highest water-394 L/(m2h) and BSA-212 L/(m2h) fluxes) and CA-PS+C60 (maximal rejection coefficient of BSA-59%) membranes.
Collapse
Affiliation(s)
- Anna Kuzminova
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia; (M.D.); (R.D.); (M.P.); (A.M.); (A.K.); (A.K.); (A.S.)
| | - Mariia Dmitrenko
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia; (M.D.); (R.D.); (M.P.); (A.M.); (A.K.); (A.K.); (A.S.)
| | - Roman Dubovenko
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia; (M.D.); (R.D.); (M.P.); (A.M.); (A.K.); (A.K.); (A.S.)
| | - Margarita Puzikova
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia; (M.D.); (R.D.); (M.P.); (A.M.); (A.K.); (A.K.); (A.S.)
| | - Anna Mikulan
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia; (M.D.); (R.D.); (M.P.); (A.M.); (A.K.); (A.K.); (A.S.)
| | - Alexandra Korovina
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia; (M.D.); (R.D.); (M.P.); (A.M.); (A.K.); (A.K.); (A.S.)
| | - Aleksandra Koroleva
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia; (M.D.); (R.D.); (M.P.); (A.M.); (A.K.); (A.K.); (A.S.)
| | - Artem Selyutin
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia; (M.D.); (R.D.); (M.P.); (A.M.); (A.K.); (A.K.); (A.S.)
| | - Konstantin Semenov
- Pavlov First Saint Petersburg State Medical University, L’va Tolstogo ulitsa 6-8, St. Petersburg 197022, Russia;
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;
| | - Anastasia Penkova
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia; (M.D.); (R.D.); (M.P.); (A.M.); (A.K.); (A.K.); (A.S.)
| |
Collapse
|
2
|
Moradi S, Zinatizadeh AA, Zinadini S. Post-treatment of soft drink industrial wastewater using a new antibacterial ultra-filtration membrane prepared of Polyethersulfone blended with boehmite-tannic acid-graphene quantum dot. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e10997. [PMID: 38385894 DOI: 10.1002/wer.10997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/05/2024] [Accepted: 01/25/2024] [Indexed: 02/23/2024]
Abstract
Polymeric membranes have garnered great interest in wastewater treatment; however, fouling is known as their main limitation. Therefore, the blending of hydrophilic nanoparticles in polymeric membranes' structure is a promising approach for fouling reduction. Herein, a hydrophilic boehmite-tannic acid-graphene quantum dot (BM-TA-GQD) nanoparticle was synthesized and blended in a polyethersulfone polymeric membrane in different percentages. The fabricated membranes were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) images, water contact angle, porosity measurement, and antibacterial and antifouling properties. Surface SEM images of the modified membranes showed good dispersion of nanoparticles up to 0.5 wt%, which resulted in hydrophilicity and pure water flux enhancement. Based on AFM images, the mean roughness (Sa) of the fabricated membranes decreased from 2.07 to 0.84 nm for the bare and optimum membranes, respectively. In terms of performance, increasing the nanoparticle percentages up to 0.5 wt% resulted in the flux recovery ratio developing from 44.58% for the bare membrane to 71.35% for the 0.5 wt% BM-TA-GQD/PES membrane (optimum membrane). The antibacterial property of fabricated membranes was studied against biologically treated soft drink industrial wastewater (BTSDIW) as a bacterial source. The results showed that the turbidity of solutions containing permeated wastewater from the modified membranes (0.1, 0.5, and 1 wt% of BM-TA-GQD) was lower than that obtained from the unmodified membrane. These results confirmed the antibacterial properties of fabricated membranes. Finally, the optimal membrane (0.5 wt% BM-TA-GQD) was examined for post-treatment of the BTSDIW. An effluent COD of 13 mg/L and turbidity of 2 NTU showed a successful performance of the filtration process. PRACTITIONER POINTS: Ultrafiltration PES membranes were modified by different loadings of BM-TA-GQD. Hydrophilicity improvement was achieved by adding BM-TA-GQD nanoparticles. Expansion of size and number of macro-voids in modified membranes was confirmed. Membrane roughness was reduced in the BM-TA-GQD blended membranes. The optimum membrane was efficient in COD and turbidity removal.
Collapse
Affiliation(s)
- Sahar Moradi
- Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Ali Akbar Zinatizadeh
- Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
- Environmental Pollution and Engineering Group, Environmental Research Center (ERC), Razi University, Kermanshah, Iran
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), University of Queensland, Brisbane, Queensland, Australia
| | - Sirus Zinadini
- Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
- Environmental Pollution and Engineering Group, Environmental Research Center (ERC), Razi University, Kermanshah, Iran
| |
Collapse
|
3
|
Taheri M. Advances in Nanohybrid Membranes for Dye Reduction: A Comprehensive Review. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300052. [PMID: 38223886 PMCID: PMC10784202 DOI: 10.1002/gch2.202300052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/18/2023] [Indexed: 01/16/2024]
Abstract
Separating valuable materials such as dyes from wastewater using membranes and returning them to the production line is a desirable environmental and economical procedure. However, sometimes, besides filtration, adsorption, and separation processes, pollutant destruction also can be suitable using photocatalytic membranes. The art of producing nanohybrid materials in contrast with nanocomposites encompasses nanomaterial synthesis as a new product with different properties from raw materials for nanohybrids versus the composition of nanomaterials for nanocomposites. According to the findings of this research, confirming proper synthesis of nanohybrid is one challenge that can be overcome by different analyses, other researchers' reports, and the theoretical assessment of physical or chemical reactions. The application of organic-inorganic nanomaterials and frameworks is another challenge that is discussed in the present work. According to the findings, Nanohybrid Membranes (NHMs) can achieve 100% decolorization, but cannot eliminate salts and dyes, although the removal efficiency is notable for some salts, especially divalent salts. Hydrophilicity, antifouling properties, flux, pressure, costs, usage frequency, and mechanical, chemical, and thermal stabilities of NHMs should be considered.
Collapse
Affiliation(s)
- Mahsa Taheri
- Civil and Environmental Engineering DepartmentAmirkabir University of Technology (AUT)Hafez Ave.Tehran15875‐4413Iran
| |
Collapse
|
4
|
Mousa SA, Abdallah H, Khairy SA. Low-cost photocatalytic membrane modified with green heterojunction TiO 2/ZnO nanoparticles prepared from waste. Sci Rep 2023; 13:22150. [PMID: 38092891 PMCID: PMC10719331 DOI: 10.1038/s41598-023-49516-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
The combination of photocatalysis and membrane procedures represents a promising approach for water treatment. This study utilized green synthesis methods to produce TiO2 nanoparticles (NPs) using Pomegranate extract and ZnO nanoparticles using Tangerine extract. These nanoparticles were then incorporated into a polyvinyl chloride (PVC) nanocomposite photocatalytic membrane. Different devices were used to examine the properties of nanocomposite membranes. The prepared membranes' morphology was examined using atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). The hydrophilicity of the membrane surface was assessed through the measurement of contact angle, while the crystal structure and chemical bonding were analyzed using Raman and Fourier transform infrared spectroscopy (FT-IR). The study also encompassed an examination of the mechanical properties. The hydrophilicity of the modified membrane exhibited a significant improvement. Additionally, there was an observed increase in both the pure water flux and rejection values. The photocatalytic activity of the membrane was found to be enhanced when exposed to sunlight as compared to when kept in the dark. The TiO2/ZnO nanocomposites membrane exhibited the highest level of photocatalytic degradation, achieving a rejection rate of 98.7% compared to the unmodified membrane. Therefore, it was determined that the TiO2/ZnO nanocomposites membrane exhibited superior performance to the other membranes assessed. The potential utility of our research lies in its application within the water treatment industry, specifically as an effective technique for modifying PVC membranes.
Collapse
Affiliation(s)
- Sahar A Mousa
- Physics Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Heba Abdallah
- Chemical Engineering and Pilot Plant Department, Engineering Research Division, National Research Centre, 33 El-Bohouth St. (Former El-Tahrir St.), Dokki, PO Box 12622, Giza, Egypt
| | - S A Khairy
- Physics Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
5
|
Rabiee N, Sharma R, Foorginezhad S, Jouyandeh M, Asadnia M, Rabiee M, Akhavan O, Lima EC, Formela K, Ashrafizadeh M, Fallah Z, Hassanpour M, Mohammadi A, Saeb MR. Green and Sustainable Membranes: A review. ENVIRONMENTAL RESEARCH 2023; 231:116133. [PMID: 37209981 DOI: 10.1016/j.envres.2023.116133] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/21/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
Membranes are ubiquitous tools for modern water treatment technology that critically eliminate hazardous materials such as organic, inorganic, heavy metals, and biomedical pollutants. Nowadays, nano-membranes are of particular interest for myriad applications such as water treatment, desalination, ion exchange, ion concentration control, and several kinds of biomedical applications. However, this state-of-the-art technology suffers from some drawbacks, e.g., toxicity and fouling of contaminants, which makes the synthesis of green and sustainable membranes indeed safety-threatening. Typically, sustainability, non-toxicity, performance optimization, and commercialization are concerns centered on manufacturing green synthesized membranes. Thus, critical issues related to toxicity, biosafety, and mechanistic aspects of green-synthesized nano-membranes have to be systematically and comprehensively reviewed and discussed. Herein we evaluate various aspects of green nano-membranes in terms of their synthesis, characterization, recycling, and commercialization aspects. Nanomaterials intended for nano-membrane development are classified in view of their chemistry/synthesis, advantages, and limitations. Indeed, attaining prominent adsorption capacity and selectivity in green-synthesized nano-membranes requires multi-objective optimization of a number of materials and manufacturing parameters. In addition, the efficacy and removal performance of green nano-membranes are analyzed theoretically and experimentally to provide researchers and manufacturers with a comprehensive image of green nano-membrane efficiency under real environmental conditions.
Collapse
Affiliation(s)
- Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, 6150, Australia; Department of Physics, Sharif University of Technology, Tehran, P.O. Box 11155-9161, Iran.
| | - Rajni Sharma
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Sahar Foorginezhad
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Lulea University of Technology, Department of Energy Science and Mathematics, Energy Science, 97187, Lulea, Sweden
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, University of Tehran, Tehran, Iran
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia.
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, Tehran, P.O. Box 11155-9161, Iran
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Krzysztof Formela
- Department of Polymer Technology, Faculty of Chemistry, Gdánsk University of Technology, G. Narutowicza 11/12, 80-233, Gdánsk, Poland
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zari Fallah
- Faculty of Chemistry, University of Mazandaran, P. O. Box 47416, 95447, Babolsar, Iran
| | - Mahnaz Hassanpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Abbas Mohammadi
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdánsk University of Technology, G. Narutowicza 11/12, 80-233, Gdánsk, Poland
| |
Collapse
|
6
|
Cellulose-cellulose composite membranes for ultrafiltration. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
7
|
Review on Thin-film Nanocomposite Membranes with Various Quantum Dots for Water Treatments. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Márquez-Ríos E, Robles-García MÁ, Rodríguez-Félix F, Aguilar-López JA, Reynoso-Marín FJ, Tapia-Hernández JA, Cinco-Moroyoqui FJ, Ceja-Andrade I, González-Vega RI, Barrera-Rodríguez A, Aguilar-Martínez J, Omar-Rueda-Puente E, Del-Toro-Sánchez CL. Effect of Ionic Liquids in the Elaboration of Nanofibers of Cellulose Bagasse from Agave tequilana Weber var. azul by Electrospinning Technique. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2819. [PMID: 36014684 PMCID: PMC9412263 DOI: 10.3390/nano12162819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/08/2022] [Accepted: 08/13/2022] [Indexed: 05/16/2023]
Abstract
The objective of this paper was to report the effect of ionic liquids (ILs) in the elaboration of nanofibers of cellulose bagasse from Agave tequilana Weber var. azul by the electrospinning method. The ILs used were 1-butyl-3-methylimidazolium chloride (BMIMCl), and DMSO was added as co-solvent. To observe the effect of ILs, this solvent was compared with the organic solvent TriFluorAcetic acid (TFA). The nanofibers were characterized by transmission electron microscopy (TEM), X-ray, Fourier transform-infrared using attenuated total reflection (FTIR-ATR) spectroscopy, and thermogravimetric analysis (TGA). TEM showed different diameters (ranging from 35 to 76 nm) of cellulose nanofibers with ILs (CN ILs). According to X-ray diffraction, a notable decrease of the crystalline structure of cellulose treated with ILs was observed, while FTIR-ATR showed two bands that exhibit the physical interaction between cellulose nanofibers and ILs. TGA revealed that CN ILs exhibit enhanced thermal properties due to low or null cellulose crystallinity. CN ILs showed better characteristics in all analyses than nanofibers elaborated with TFA organic solvent. Therefore, CN ILs provide new alternatives for cellulose bagasse. Due to their small particle size, CN ILs could have several applications, including in food, pharmaceutical, textile, and material areas, among others.
Collapse
Affiliation(s)
- Enrique Márquez-Ríos
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Hermosillo 83000, Sonora, Mexico
| | - Miguel Ángel Robles-García
- Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega, Universidad de Gaudalajara, Av. Universidad 1115, Ocotlán 47820, Jalisco, Mexico
| | - Francisco Rodríguez-Félix
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Hermosillo 83000, Sonora, Mexico
| | - José Antonio Aguilar-López
- Departamento de Genómica Alimentaria, Universidad de la Ciénega del Estado de Michoacán de Ocampo (UCEMICH), Avenida Universidad 3000, Colonia Lomas de la Universidad, Sahuayo 59103, Michoacan, Mexico
| | - Francisco Javier Reynoso-Marín
- Departamento de Genómica Alimentaria, Universidad de la Ciénega del Estado de Michoacán de Ocampo (UCEMICH), Avenida Universidad 3000, Colonia Lomas de la Universidad, Sahuayo 59103, Michoacan, Mexico
| | - José Agustín Tapia-Hernández
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Hermosillo 83000, Sonora, Mexico
| | - Francisco Javier Cinco-Moroyoqui
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Hermosillo 83000, Sonora, Mexico
| | - Israel Ceja-Andrade
- Departamento de Física, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. M. García-Barragán 1451, Guadalajara 44430, Jalisco, Mexico
| | - Ricardo Iván González-Vega
- Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega, Universidad de Gaudalajara, Av. Universidad 1115, Ocotlán 47820, Jalisco, Mexico
| | - Arturo Barrera-Rodríguez
- Departamento de Ciencias Básicas, Centro Universitario de la Ciénega, Universidad de Gaudalajara, Av. Universidad 1115, Ocotlán 47820, Jalisco, Mexico
| | - Jacobo Aguilar-Martínez
- Departemento de Ciencias Tecnológicas, Centro Universitario de la Ciénega, Universidad de Gaudalajara, Av. Universidad 1115, Ocotlán 47820, Jalisco, Mexico
| | - Edgar Omar-Rueda-Puente
- Departamento de Agricultura y Ganadería, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Hermosillo 83000, Sonora, Mexico
| | - Carmen Lizette Del-Toro-Sánchez
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Hermosillo 83000, Sonora, Mexico
| |
Collapse
|
9
|
High performance and sustainable CNF membrane via facile in-situ envelopment of hydrochar for water treatment. Carbohydr Polym 2022; 296:119948. [DOI: 10.1016/j.carbpol.2022.119948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 07/30/2022] [Indexed: 12/25/2022]
|
10
|
Zhang K, Wu HH, Huo HQ, Ji YL, Zhou Y, Gao CJ. Recent advances in nanofiltration, reverse osmosis membranes and their applications in biomedical separation field. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Tanpichai S, Boonmahitthisud A, Soykeabkaew N, Ongthip L. Review of the recent developments in all-cellulose nanocomposites: Properties and applications. Carbohydr Polym 2022; 286:119192. [DOI: 10.1016/j.carbpol.2022.119192] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/21/2022]
|
12
|
Miardan LN, Rezaii E, Mahkam M. 500 Methylene blue removal with carbon-cage adsorbent produced by hydrazinium azide and comparison of its performance with graphene quantum dot composite. MAIN GROUP CHEMISTRY 2022. [DOI: 10.3233/mgc-210165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Water pollution, which is an increasing global concern, is one of the significant environmental problems which damage economic growth and the health of billions of people. Therefore, many companies and investigators make an effort to prepare a reusable and cost-effective filter to overcome the problem of water shortages. In this study, we have investigated two adsorbents with high adsorption capacity: a graphene quantum dot-based composite and a carbon-cage adsorbent prepared only with graphite and hydrazinium azide that are expanded through an electrical heater. Both adsorbents were able to remove almost 100% of the methylene blue dye, which is widely used in the textile industry. Adsorption rates and morphology of adsorbents were analyzed with XRD, SEM, EDS, TGA and UV spectrometry measurements.
Collapse
Affiliation(s)
- Leila Nazmi Miardan
- Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Ebrahim Rezaii
- Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Mehrdad Mahkam
- Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
13
|
Yang HL, Ang MBMY, Tsai HA, Lee KR, Lai JY. Effect of adding carbon quantum dots to a NMP solution of cellulose acetate on the formation mechanism of ensuing membrane. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Yang G, Kong H, Chen Y, Liu B, Zhu D, Guo L, Wei G. Recent advances in the hybridization of cellulose and carbon nanomaterials: Interactions, structural design, functional tailoring, and applications. Carbohydr Polym 2022; 279:118947. [PMID: 34980360 DOI: 10.1016/j.carbpol.2021.118947] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/15/2021] [Accepted: 11/26/2021] [Indexed: 01/13/2023]
Abstract
Due to the good biocompatibility and flexibility of cellulose and the excellent optical, electronic, as well as mechanical properties of carbon nanomaterials (CNMs), cellulose/CNM hybrid materials have been widely synthesized and used in energy storage, sensors, adsorption, biomedicine, and many other fields. In this review, we present recent advances (2016-current) in the design, structural design, functional tailoring and various applications of cellulose/CNM hybrid materials. For this aim, first the interactions between cellulose and CNMs for promoting the formation of cellulose/CNM materials are analyzed, and then the hybridization between cellulose with various CNMs for tailoring the structures and functions of hybrid materials is introduced. Further, abundant applications of cellulose/CNM hybrid materials in various fields are presented and discussed. This comprehensive review will be helpful for readers to understand the functional design and facile synthesis of cellulose-based nanocomposites, and to promote the high-performance utilization and sustainability of biomass materials in the future.
Collapse
Affiliation(s)
- Guozheng Yang
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China
| | - Hao Kong
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China
| | - Yun Chen
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China
| | - Bin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China
| | - Lei Guo
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, 266071 Qingdao, PR China.
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China.
| |
Collapse
|
15
|
Jain H, Kumar A, Rajput VD, Minkina T, Verma AK, Wadhwa S, Dhupper R, Chandra Garg M, Joshi H. Fabrication and characterization of high-performance forward-osmosis membrane by introducing manganese oxide incited graphene quantum dots. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114335. [PMID: 34952392 DOI: 10.1016/j.jenvman.2021.114335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Forward osmosis (FO) is the futuristic membrane desalination technology as it transcends the disadvantages of other pressure-driven techniques. But, there still remain critical challenges like fabrication of highly permeable membrane with ideal structures maintaining high rejection rates that need to be addressed for implementation as a practical technology. In this work, novel thin-film composite (TFC) membranes were fabricated by means of incorporating manganese oxide (MnO2) incited graphene quantum dots (GQDs) nanocomposite into a cellulose acetate (CA) suspension followed by phase inversion (PI) for enhanced FO performance. The surface morphology and chemical structure of fabricated membranes were studied using various characterization techniques like XRD, FT-IR, SEM-EDS, Mapping, AFM, and TGA. The structural parameters, water flux, reverse salt flux and salt rejection was estimated on the basis of data obtained from four varying initial draw solution concentrations. At high nanocomposites stacking, the hydrophilicity of the casting blend increase, and subsequently, the PI exchange rate additionally increases, which brings about noticeable difference in the surface morphology. The membrane with 0.5 wt% nanocomposite exhibited superior FO separation performance with osmotic water flux of 18.89, 34.49, 41.76 and 42.34 in L.m-2.h-1 with variable concentrations of NaCl salt solution (0.25M, 0.5M, 1M, and 2M), respectively. Also, the porosity of the membrane was increased to 47.23% with 96.87% salt rejection. The results indicate that the hydrophilicity of the nanocomposite drives them to the interface among CA and water during PI process leading to solid hydrogen bonding to achieve high water permeability.
Collapse
Affiliation(s)
- Harshita Jain
- Amity Institute of Environmental Sciences, Amity University Uttar Pradesh, Noida Sector-125, Uttar Pradesh, 201313, India
| | - Ajay Kumar
- Department of Hydrology, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Rostov-on-Don, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Rostov-on-Don, Russia
| | - Anoop Kumar Verma
- School of Energy and Environment, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147005, India
| | - Shikha Wadhwa
- Department of Chemistry, School of Engineering, University of Petroleum & Energy Studies, Bidholi Campus, Dehradun, Uttarakhand, 248007, India
| | - Renu Dhupper
- Amity Institute of Environmental Sciences, Amity University Uttar Pradesh, Noida Sector-125, Uttar Pradesh, 201313, India
| | - Manoj Chandra Garg
- Amity Institute of Environmental Sciences, Amity University Uttar Pradesh, Noida Sector-125, Uttar Pradesh, 201313, India.
| | - Himanshu Joshi
- Department of Hydrology, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| |
Collapse
|
16
|
Bandehali S, Parvizian F, Ruan H, Moghadassi A, Shen J, Figoli A, Adeleye AS, Hilal N, Matsuura T, Drioli E, Hosseini SM. A planned review on designing of high-performance nanocomposite nanofiltration membranes for pollutants removal from water. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.06.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Dong X, Lu D, Harris TAL, Escobar IC. Polymers and Solvents Used in Membrane Fabrication: A Review Focusing on Sustainable Membrane Development. MEMBRANES 2021; 11:309. [PMID: 33922560 PMCID: PMC8146349 DOI: 10.3390/membranes11050309] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 02/04/2023]
Abstract
(1) Different methods have been applied to fabricate polymeric membranes with non-solvent induced phase separation (NIPS) being one of the mostly widely used. In NIPS, a solvent or solvent blend is required to dissolve a polymer or polymer blend. N-methyl-2-pyrrolidone (NMP), dimethylacetamide (DMAc), dimethylformamide (DMF) and other petroleum-derived solvents are commonly used to dissolve some petroleum-based polymers. However, these components may have negative impacts on the environment and human health. Therefore, using greener and less toxic components is of great interest for increasing membrane fabrication sustainability. The chemical structure of membranes is not affected by the use of different solvents, polymers, or by the differences in fabrication scale. On the other hand, membrane pore structures and surface roughness can change due to differences in diffusion rates associated with different solvents/co-solvents diffusing into the non-solvent and with differences in evaporation time. (2) Therefore, in this review, solvents and polymers involved in the manufacturing process of membranes are proposed to be replaced by greener/less toxic alternatives. The methods and feasibility of scaling up green polymeric membrane manufacturing are also examined.
Collapse
Affiliation(s)
- Xiaobo Dong
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA; (X.D.); (D.L.)
| | - David Lu
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA; (X.D.); (D.L.)
| | - Tequila A. L. Harris
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Isabel C. Escobar
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA; (X.D.); (D.L.)
| |
Collapse
|
18
|
Carbon dots – Separative techniques: Tools-objective towards green analytical nanometrology focused on bioanalysis. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Zheng D, Hua D, Hong Y, Ibrahim AR, Yao A, Pan J, Zhan G. Functions of Ionic Liquids in Preparing Membranes for Liquid Separations: A Review. MEMBRANES 2020; 10:E395. [PMID: 33291472 PMCID: PMC7762167 DOI: 10.3390/membranes10120395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 11/17/2022]
Abstract
Membranes are widely used for liquid separations such as removing solute components from solvents or liquid/liquid separations. Due to negligible vapor pressure, adjustable physical properties, and thermal stability, the application of ionic liquids (ILs) has been extended to fabricating a myriad of membranes for liquid separations. A comprehensive overview of the recent developments in ILs in fabricating membranes for liquid separations is highlighted in this review article. Four major functions of ILs are discussed in detail, including their usage as (i) raw membrane materials, (ii) physical additives, (iii) chemical modifiers, and (iv) solvents. Meanwhile, the applications of IL assisted membranes are discussed, highlighting the issues, challenges, and future perspectives of these IL assisted membranes in liquid separations.
Collapse
Affiliation(s)
- Dayuan Zheng
- Integrated Nanocatalysts Institute (INCI), College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, China; (D.Z.); (Y.H.); (A.Y.); (J.P.)
| | - Dan Hua
- Integrated Nanocatalysts Institute (INCI), College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, China; (D.Z.); (Y.H.); (A.Y.); (J.P.)
| | - Yiping Hong
- Integrated Nanocatalysts Institute (INCI), College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, China; (D.Z.); (Y.H.); (A.Y.); (J.P.)
| | - Abdul-Rauf Ibrahim
- Department of Mechanical Engineering, Faculty of Engineering and Built Environment, Tamale Technical University, Education Ridge Avenue, Sagnarigu District, Tamale, Ghana;
| | - Ayan Yao
- Integrated Nanocatalysts Institute (INCI), College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, China; (D.Z.); (Y.H.); (A.Y.); (J.P.)
| | - Junyang Pan
- Integrated Nanocatalysts Institute (INCI), College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, China; (D.Z.); (Y.H.); (A.Y.); (J.P.)
| | - Guowu Zhan
- Integrated Nanocatalysts Institute (INCI), College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, China; (D.Z.); (Y.H.); (A.Y.); (J.P.)
| |
Collapse
|
20
|
Vatanpour V, Mousavi Khadem SS, Masteri-Farahani M, Mosleh N, Ganjali MR, Badiei A, Pourbashir E, Mashhadzadeh AH, Tajammal Munir M, Mahmodi G, Zarrintaj P, Ramsey JD, Kim SJ, Saeb MR. Anti-fouling and permeable polyvinyl chloride nanofiltration membranes embedded by hydrophilic graphene quantum dots for dye wastewater treatment. JOURNAL OF WATER PROCESS ENGINEERING 2020; 38:101652. [DOI: 10.1016/j.jwpe.2020.101652] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
|
21
|
Effect of Synthesis Temperature of Magnetic–Fluorescent Nanoparticles on Properties and Cellular Imaging. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01720-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Zhou L, Pan F, Zeng S, Li Q, Bai L, Liu Y, Nie Y. Ionic liquid assisted fabrication of cellulose‐based conductive films for Li‐ion battery. J Appl Polym Sci 2020. [DOI: 10.1002/app.49430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Le Zhou
- CAS Key Laboratory of Green Process and EngineeringBeijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing China
- School of Chemical EngineeringUniversity of Chinese Academy of Sciences Beijing China
- Zhengzhou Institute of Emerging Industrial Technology Zhengzhou China
| | - Fengjiao Pan
- CAS Key Laboratory of Green Process and EngineeringBeijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing China
- School of Chemical EngineeringUniversity of Chinese Academy of Sciences Beijing China
- Zhengzhou Institute of Emerging Industrial Technology Zhengzhou China
| | - Shaojuan Zeng
- CAS Key Laboratory of Green Process and EngineeringBeijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing China
- School of Chemical EngineeringUniversity of Chinese Academy of Sciences Beijing China
| | - Qiongguang Li
- CAS Key Laboratory of Green Process and EngineeringBeijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing China
- School of Chemical EngineeringUniversity of Chinese Academy of Sciences Beijing China
| | - Lu Bai
- CAS Key Laboratory of Green Process and EngineeringBeijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing China
| | - Yanrong Liu
- Energy Engineering, Division of Energy ScienceLuleå University of Technology Luleå Sweden
| | - Yi Nie
- CAS Key Laboratory of Green Process and EngineeringBeijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing China
- School of Chemical EngineeringUniversity of Chinese Academy of Sciences Beijing China
- Zhengzhou Institute of Emerging Industrial Technology Zhengzhou China
| |
Collapse
|
23
|
Tadyszak K, Wychowaniec JK, Załęski K, Coy E, Majchrzycki Ł, Carmieli R. Tuning Properties of Partially Reduced Graphene Oxide Fibers upon Calcium Doping. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E957. [PMID: 32443522 PMCID: PMC7325576 DOI: 10.3390/nano10050957] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Abstract
The arrangement of two-dimensional graphene oxide sheets has been shown to influence physico-chemical properties of the final bulk structures. In particular, various graphene oxide microfibers remain of high interest in electronic applications due to their wire-like thin shapes and the ease of hydrothermal fabrication. In this research, we induced the internal ordering of graphene oxide flakes during typical hydrothermal fabrication via doping with Calcium ions (~6 wt.%) from the capillaries. The Ca2+ ions allowed for better graphene oxide flake connections formation during the hydrogelation and further modified the magnetic and electric properties of structures compared to previously studied aerogels. Moreover, we observed the unique pseudo-porous fiber structure and flakes connections perpendicular to the long fiber axis. Pulsed electron paramagnetic resonance (EPR) and conductivity measurements confirmed the denser flake ordering compared to previously studied aerogels. These studies ultimately suggest that doping graphene oxide with Ca2+ (or other) ions during hydrothermal methods could be used to better control the internal architecture and thus tune the properties of the formed structures.
Collapse
Affiliation(s)
- Krzysztof Tadyszak
- Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17, 60-179 Poznań, Poland
| | - Jacek K. Wychowaniec
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland;
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland; (K.Z.); (E.C.)
| | - Karol Załęski
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland; (K.Z.); (E.C.)
| | - Emerson Coy
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland; (K.Z.); (E.C.)
| | - Łukasz Majchrzycki
- Center of Advanced Technology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland;
| | - Raanan Carmieli
- Department of Chemical Research Support, Faculty of Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel;
| |
Collapse
|
24
|
Tadyszak K, Musiał A, Ostrowski A, Wychowaniec JK. Unraveling Origins of EPR Spectrum in Graphene Oxide Quantum Dots. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E798. [PMID: 32326319 PMCID: PMC7221827 DOI: 10.3390/nano10040798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/12/2020] [Accepted: 04/17/2020] [Indexed: 01/17/2023]
Abstract
Carbon nanostructures are utilized in a plethora of applications ranging from biomedicine to electronics. Particularly interesting are carbon nanostructured quantum dots that can be simultaneously used for bimodal therapies with both targeting and imaging capabilities. Here, magnetic and optical properties of graphene oxide quantum dots (GOQDs) prepared by the top-down technique from graphene oxide and obtained using the Hummers' method were studied. Graphene oxide was ultra-sonicated, boiled in HNO3, ultra-centrifuged, and finally filtrated, reaching a mean flake size of ~30 nm with quantum dot properties. Flake size distributions were obtained from scanning electron microscopy (SEM) images after consecutive preparation steps. Energy-dispersive X-ray (EDX) confirmed that GOQDs were still oxidized after the fabrication procedure. Magnetic and photoluminescence measurements performed on the obtained GOQDs revealed their paramagnetic behavior and broad range optical photoluminescence around 500 nm, with magnetic moments of 2.41 µB. Finally, electron paramagnetic resonance (EPR) was used to separate the unforeseen contributions and typically not taken into account metal contaminations, and radicals from carbon defects. This study contributes to a better understanding of magnetic properties of carbon nanostructures, which could in the future be used for the design of multimodal imaging agents.
Collapse
Affiliation(s)
- Krzysztof Tadyszak
- Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17, 60-179 Poznań, Poland
| | - Andrzej Musiał
- Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17, 60-179 Poznań, Poland
| | - Adam Ostrowski
- Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17, 60-179 Poznań, Poland
| | | |
Collapse
|
25
|
Dong X, Shannon HD, Parker C, De Jesus S, Escobar IC. Comparison of two low‐hazard organic solvents as individual and cosolvents for the fabrication of polysulfone membranes. AIChE J 2019. [DOI: 10.1002/aic.16790] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Xiaobo Dong
- Department of Chemical and Materials Engineering University of Kentucky Lexington Kentucky
| | - Halle D. Shannon
- Department of Chemical and Materials Engineering University of Kentucky Lexington Kentucky
| | - Caleb Parker
- Department of Chemical and Materials Engineering University of Kentucky Lexington Kentucky
| | - Samantha De Jesus
- Department of Chemical and Materials Engineering University of Kentucky Lexington Kentucky
| | - Isabel C. Escobar
- Department of Chemical and Materials Engineering University of Kentucky Lexington Kentucky
| |
Collapse
|
26
|
Colburn A, Vogler RJ, Patel A, Bezold M, Craven J, Liu C, Bhattacharyya D. Composite Membranes Derived from Cellulose and Lignin Sulfonate for Selective Separations and Antifouling Aspects. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E867. [PMID: 31181627 PMCID: PMC6630825 DOI: 10.3390/nano9060867] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 12/18/2022]
Abstract
Cellulose-based membrane materials allow for separations in both aqueous solutions and organic solvents. The addition of nanocomposites into cellulose structure is facilitated through steric interaction and strong hydrogen bonding with the hydroxy groups present within cellulose. An ionic liquid, 1-ethyl-3-methylimidazolium acetate, was used as a solvent for microcrystalline cellulose to incorporate graphene oxide quantum dots into cellulose membranes. In this work, other composite materials such as, iron oxide nanoparticles, polyacrylic acid, and lignin sulfonate have all been uniformly incorporated into cellulose membranes utilizing ionic liquid cosolvents. Integration of iron into cellulose membranes resulted in high selectivity (>99%) of neutral red and methylene blue model dyes separation over salts with a high permeability of 17 LMH/bar. With non-aqueous (alcohol) solvent, iron-cellulose composite membranes become less selective and more permeable, suggesting the interaction of iron ions cellulose OH groups plays a major role in pore structure. Polyacrylic acid was integrated into cellulose membranes to add pH responsive behavior and capacity for metal ion capture. Calcium capture of 55 mg Ca2+/g membrane was observed for PAA-cellulose membranes. Lignin sulfonate was also incorporated into cellulose membranes to add strong negative charge and a steric barrier to enhance antifouling behavior. Lignin sulfonate was also functionalized on the commercial DOW NF270 nanofiltration membranes via esterification of hydroxy groups with carboxyl group present on the membrane surface. Antifouling behavior was observed for both lignin-cellulose composite and commercial membranes functionalized with lignin. Up to 90% recovery of water flux after repeated cycles of fouling was observed for both types of lignin functionalized membranes while flux recovery of up to 60% was observed for unmodified membranes.
Collapse
Affiliation(s)
- Andrew Colburn
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA.
| | - Ronald J Vogler
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA.
| | - Aum Patel
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA.
| | - Mariah Bezold
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA.
| | - John Craven
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA.
| | - Chunqing Liu
- R&D Department, Honeywell UOP, Des Plaines, IL 60016, USA.
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
27
|
Eco-friendly modification of a regenerated cellulose based film by silicon, carbon and N-doped carbon quantum dots. Carbohydr Polym 2019; 206:238-244. [DOI: 10.1016/j.carbpol.2018.10.074] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/11/2018] [Accepted: 10/23/2018] [Indexed: 12/27/2022]
|
28
|
High-Throughput Microfiltration Membranes with Natural Biofouling Reducer Agent for Food Processing. Processes (Basel) 2018. [DOI: 10.3390/pr7010001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The effect of natural antibiotics Moringa oleifera seeds powder in cellulose acetate membranes as biofouling reducer agent was investigated. Mixed matrix membranes (MMM) were synthesized by adding 100 mesh M. oleifera seeds powder with variation of three concentrations (1 wt%, 2 wt%, and 3 wt%), into a mix polymer solution of CA (cellulose acetate) and two different solvents, i.e., DMF (dimethylformamide) and DMAc (dimethylacetamide). The synthesized membranes morphology was observed under scanning electron microscopy and from the images can be seen that the membranes made of DMAc formed rather large macrovoid as compared to DMF-based membranes. The microstructure affected the water flux through the membranes, in which the DMAc membranes provided a higher flux value and served as high-throughput microfiltration membranes. Antibacterial properties of MMM were tested using Escherichia coli adhesion onto membrane surfaces. The results showed that M. oleifera has been proven to eradicate E. coli activity on the membrane surfaces due to interaction between bacterial cells and phenolic compounds from M. oleifera, through absorption processes involving hydrogen bonds.
Collapse
|
29
|
Zhao DL, Chung TS. Applications of carbon quantum dots (CQDs) in membrane technologies: A review. WATER RESEARCH 2018; 147:43-49. [PMID: 30296608 DOI: 10.1016/j.watres.2018.09.040] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/17/2018] [Accepted: 09/25/2018] [Indexed: 05/05/2023]
Abstract
Carbon quantum dots (CQDs), which are a fascinating class of nanostructured carbons, have recently attracted extensive attention in the field of membrane technologies for their applications in separation processes. This is because they possess two unique advantages. Their productions are facile and inexpensive, while their physicochemical properties such as ultra-small sizes, good biocompatibility, high chemical inertness, tunable hydrophilicity, rich surface functional groups and antifouling characteristics are highly desirable. Leveraging on these, researchers have explored their utilizations in various membrane designs for reverse osmosis (RO), ultrafiltration (UF), nanofiltration (NF), forward osmosis (FO), pressure retarded osmosis (PRO), membrane distillation (MD), and organic solvent nanofiltration (OSN) processes. In particular, CQDs have especially stimulated exploration in the field of water treatment by membrane technologies since biocompatibility of membrane materials is of utmost importance to ensure safety of drinking water. In addition, CQDs are in a favorable position for achieving unprecedented performance of membrane separation processes in water treatment, in the light of substantial efficiency enhancement and antifouling propensity as discovered in recent studies. In this article, we will review the progress in the development of CQD incorporated membranes with discussions on their challenges and perspectives.
Collapse
Affiliation(s)
- Die Ling Zhao
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Tai-Shung Chung
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|