1
|
Darmayanti MG, Tuck KL, Thang SH. Carbon Dioxide Capture by Emerging Innovative Polymers: Status and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403324. [PMID: 38709571 DOI: 10.1002/adma.202403324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/30/2024] [Indexed: 05/08/2024]
Abstract
A significant amount of research has been conducted in carbon dioxide (CO2) capture, particularly over the past decade, and continues to evolve. This review presents the most recent advancements in synthetic methodologies and CO2 capture capabilities of diverse polymer-based substances, which includes the amine-based polymers, porous organic polymers, and polymeric membranes, covering publications in the last 5 years (2019-2024). It aims to assist researchers with new insights and approaches to develop innovative polymer-based materials with improved capturing CO2 capacity, efficiency, sustainability, and cost-effective, thereby addressing the current obstacles in carbon capture and storage to sooner meeting the net-zero CO2 emission target.
Collapse
Affiliation(s)
- Made Ganesh Darmayanti
- School of Chemistry, Monash University, Clayton Campus, Victoria, 3800, Australia
- Faculty of Mathematics and Natural Sciences, University of Mataram, Jalan Majapahit 62 Mataram, Nusa Tenggara Barat, 83125, Indonesia
| | - Kellie L Tuck
- School of Chemistry, Monash University, Clayton Campus, Victoria, 3800, Australia
| | - San H Thang
- School of Chemistry, Monash University, Clayton Campus, Victoria, 3800, Australia
| |
Collapse
|
2
|
Bora H, Borpatra Gohain R, Barman P, Biswas S, Sen Sarma N, Kalita A. Assessing CO 2 Adsorption Behavior onto Free-Standing, Flexible Organic Framework-PVDF Composite Membrane: An Empirical Modeling and Validation of an Experimental Data Set. ACS OMEGA 2023; 8:36065-36075. [PMID: 37810656 PMCID: PMC10552478 DOI: 10.1021/acsomega.3c04198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023]
Abstract
Covalent organic framework (COF) materials have greatly expanded their range in a variety of applications since the cognitive goal of a highly organized and durable adsorbent is quite rational. The characteristics of a conjugated organic framework are combined with an industrially relevant polymer to produce a composite membrane optimized for selectively adsorbing carbon dioxide (CO2) gas across a wide temperature range. Additionally, treatment of the composite membrane with cold atmospheric plasma (CAP) that specifically enhanced the parent membrane's surface area by 36% is established. Following CAP treatment, the membrane accelerates the CO2 uptake by as much as 66%. This is primarily due to a Lewis acid-base interaction between the electron-deficient carbon atom of CO2 and the newly acquired functionalities on the COFs@PVDF membrane's surface. In particular, the C-N bonds, which appear to be a higher electron density site, play a key role in this interaction. Moreover, the empirical model proposed here has confirmed CO2 adsorption phenomena in the COF@PVDF composite membrane, which closely matches the findings from the experimental data set under designated operating conditions. As a result, the current study may pave the way for future design work as well as refine the covalent framework polymer composite membrane's features, revealing a more sophisticated approach to addressing CO2 capture problems.
Collapse
Affiliation(s)
- Hridoy
Jyoti Bora
- Physical
Sciences Division, Institute of Advanced
Study in Science and Technology, Paschim Boragaon, Guwahati, Assam 781035, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Reetesh Borpatra Gohain
- Physical
Sciences Division, Institute of Advanced
Study in Science and Technology, Paschim Boragaon, Guwahati, Assam 781035, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Pranjal Barman
- Technology
Innovation and Development Foundation, Indian
Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Subir Biswas
- Physical
Sciences Division, Institute of Advanced
Study in Science and Technology, Paschim Boragaon, Guwahati, Assam 781035, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Neelotpal Sen Sarma
- Physical
Sciences Division, Institute of Advanced
Study in Science and Technology, Paschim Boragaon, Guwahati, Assam 781035, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Anamika Kalita
- Physical
Sciences Division, Institute of Advanced
Study in Science and Technology, Paschim Boragaon, Guwahati, Assam 781035, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
3
|
Knebel A, Caro J. Metal-organic frameworks and covalent organic frameworks as disruptive membrane materials for energy-efficient gas separation. NATURE NANOTECHNOLOGY 2022; 17:911-923. [PMID: 35995854 DOI: 10.1038/s41565-022-01168-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
In this Review we survey the molecular sieving behaviour of metal-organic framework (MOF) and covalent organic framework (COF) membranes, which is different from that of classical zeolite membranes. The nature of MOFs as inorganic-organic hybrid materials and COFs as purely organic materials is powerful and disruptive for the field of gas separation membranes. The possibility of growing neat MOFs and COFs on membrane supports, while also allowing successful blending into polymer-filler composites, has a huge advantage over classical zeolite molecular sieves. MOFs and COFs allow synthetic access to more than 100,000 different structures and tailor-made molecular gates. Additionally, soft evacuation below 100 °C is often enough to achieve pore activation. Therefore, a huge number of synthetic methods for supported MOF and COF membrane thin films, such as solvothermal synthesis, seed-mediated growth and counterdiffusion, exist. Among them, methods with high scale-up potential, for example, layer-by-layer dip- and spray-coating, chemical and physical vapour deposition, and electrochemical methods. Additionally, physical methods have been developed that involve external stimuli, such as electric fields and light. A particularly important point is their ability to react to stimuli, which has allowed the 'drawbacks' of the non-ideality of the molecular sieving properties to be exploited in a completely novel research direction. Controllable gas transport through membrane films is a next-level property of MOFs and COFs, leading towards adaptive process deviation. MOF and COF particles are highly compatible with polymers, which allows for mixed-matrix membranes. However, these membranes are not simple MOF-polymer blends, as they require improved polymer-filler interactions, such as cross-linking or surface functionalization.
Collapse
Affiliation(s)
- A Knebel
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Jena, Germany.
| | - J Caro
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Hannover, Germany.
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
4
|
Wang L, Saji SE, Wu L, Wang Z, Chen Z, Du Y, Yu XF, Zhao H, Yin Z. Emerging Synthesis Strategies of 2D MOFs for Electrical Devices and Integrated Circuits. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201642. [PMID: 35843870 DOI: 10.1002/smll.202201642] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 06/15/2023]
Abstract
The development of advanced electronic devices is boosting many aspects of modern technology and industry. The ever-increasing demand for advanced electrical devices and integrated circuits calls for the design of novel materials, with superior properties for the improvement of working performance. In this review, a detailed overview of the synthesis strategies of 2D metal organic frameworks (MOFs) acquiring growing attention is presented, as a basis for expansion of novel key materials in electrical devices and integrated circuits. A framework of controllable synthesis routes to be implanted in the synthesis strategies of 2D materials and MOFs is described. In short, the synthesis methods of 2D MOFs are summarized and discussed in depth followed by the illustrations of promising applications relating to various electrical devices and integrated circuits. It is concluded by outlining how 2D MOFs can be synthesized in a simpler, highly efficient, low-cost, and more environmentally friendly way which can open up their applicable opportunities as key materials in advanced electrical devices and integrated circuits, enabling their use in broad aspects of the society.
Collapse
Affiliation(s)
- Linjuan Wang
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Sandra Elizabeth Saji
- Research School of Chemistry, Australian National University, Acton, ACT, 2601, Australia
| | - Lingjun Wu
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Zixuan Wang
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Zijian Chen
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Xue-Feng Yu
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Haitao Zhao
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Zongyou Yin
- Research School of Chemistry, Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
5
|
Hu CC, Yeh HH, Hu CP, Lecaros RLG, Cheng CC, Hung WS, Tsai HA, Lee KR, Lai JY. The influence of intermediate layer and graphene oxide modification on the CO2 capture efficiency of Pebax-GO/PDMS/PSf mixed matrix composite membranes. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Thomas AM, de Grooth J, Wood JA. Synthetic guidelines for highly selective mixed matrix membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Alebrahim T, Chakraborty A, Hu L, Patil S, Cheng S, Acharya D, Doherty CM, Hill AJ, Cook TR, Lin H. Gas transport characteristics of supramolecular networks of metal-coordinated highly branched Poly(ethylene oxide). J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120063] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Mixed matrix membranes for post-combustion carbon capture: From materials design to membrane engineering. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120140] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Kadja GTM, Himma NF, Prasetya N, Sumboja A, Bazant MZ, Wenten IG. Advances and challenges in the development of nanosheet membranes. REV CHEM ENG 2021. [DOI: 10.1515/revce-2021-0004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract
The development of highly efficient separation membranes utilizing emerging materials with controllable pore size and minimized thickness could greatly enhance the broad applications of membrane-based technologies. Having this perspective, many studies on the incorporation of nanosheets in membrane fabrication have been conducted, and strong interest in this area has grown over the past decade. This article reviews the development of nanosheet membranes focusing on two-dimensional materials as a continuous phase, due to their promising properties, such as atomic or nanoscale thickness and large lateral dimensions, to achieve improved performance compared to their discontinuous counterparts. Material characteristics and strategies to process nanosheet materials into separation membranes are reviewed, followed by discussions on the membrane performances in diverse applications. The review concludes with a discussion of remaining challenges and future outlook for nanosheet membrane technologies.
Collapse
Affiliation(s)
- Grandprix T. M. Kadja
- Division of Inorganic and Physical Chemistry , Institut Teknologi Bandung , Jalan Ganesha no. 10 , Bandung , 40132 , Indonesia
- Center for Catalytic and Reaction Engineering , Institut Teknologi Bandung , Jalan Ganesha no. 10 , Bandung , 40132 , Indonesia
- Research Center for Nanosciences and Nanotechnology , Institut Teknologi Bandung , Jalan Ganesha no. 10 , Bandung 40132 , Indonesia
| | - Nurul F. Himma
- Department of Chemical Engineering , Universitas Brawijaya , Jl. Mayjen Haryono 167 , Malang 65145 , Indonesia
| | - Nicholaus Prasetya
- Research Center for Nanosciences and Nanotechnology , Institut Teknologi Bandung , Jalan Ganesha no. 10 , Bandung 40132 , Indonesia
- Department of Chemical Engineering , Barrer Centre, Imperial College London , Exhibition Road , London SW7 2AZ , UK
| | - Afriyanti Sumboja
- Material Science and Engineering Research Group , Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung , Jl. Ganesha 10 , Bandung 40132 , Indonesia
- National Centre for Sustainable Transportation Technology , Institut Teknologi Bandung , Jalan Ganesha no. 10 , Bandung 40132 , Indonesia
| | - Martin Z. Bazant
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , MA 02139 , USA
- Department of Mathematics , Massachusetts Institute of Technology , Cambridge , MA 02139 , USA
| | - I G. Wenten
- Research Center for Nanosciences and Nanotechnology , Institut Teknologi Bandung , Jalan Ganesha no. 10 , Bandung 40132 , Indonesia
- Department of Chemical Engineering , Institut Teknologi Bandung , Jalan Ganesha no. 10 , Bandung 40132 , Indonesia
| |
Collapse
|
10
|
van Essen M, Thür R, Houben M, Vankelecom IF, Borneman Z, Nijmeijer K. Tortuous mixed matrix membranes: A subtle balance between microporosity and compatibility. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Chuah CY, Jiang X, Goh K, Wang R. Recent Progress in Mixed-Matrix Membranes for Hydrogen Separation. MEMBRANES 2021; 11:666. [PMID: 34564483 PMCID: PMC8466440 DOI: 10.3390/membranes11090666] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022]
Abstract
Membrane separation is a compelling technology for hydrogen separation. Among the different types of membranes used to date, the mixed-matrix membranes (MMMs) are one of the most widely used approaches for enhancing separation performances and surpassing the Robeson upper bound limits for polymeric membranes. In this review, we focus on the recent progress in MMMs for hydrogen separation. The discussion first starts with a background introduction of the current hydrogen generation technologies, followed by a comparison between the membrane technology and other hydrogen purification technologies. Thereafter, state-of-the-art MMMs, comprising emerging filler materials that include zeolites, metal-organic frameworks, covalent organic frameworks, and graphene-based materials, are highlighted. The binary filler strategy, which uses two filler materials to create synergistic enhancements in MMMs, is also described. A critical evaluation on the performances of the MMMs is then considered in context, before we conclude with our perspectives on how MMMs for hydrogen separation can advance moving forward.
Collapse
Affiliation(s)
- Chong Yang Chuah
- Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; (C.Y.C.); (X.J.); (K.G.)
| | - Xu Jiang
- Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; (C.Y.C.); (X.J.); (K.G.)
| | - Kunli Goh
- Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; (C.Y.C.); (X.J.); (K.G.)
| | - Rong Wang
- Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; (C.Y.C.); (X.J.); (K.G.)
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
12
|
Introducing two-dimensional metal-organic frameworks with axial coordination anion into Pebax for CO2/CH4 separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118107] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Goh PS, Wong KC, Ismail AF. Nanocomposite Membranes for Liquid and Gas Separations from the Perspective of Nanostructure Dimensions. MEMBRANES 2020; 10:E297. [PMID: 33096685 PMCID: PMC7589584 DOI: 10.3390/membranes10100297] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/11/2020] [Accepted: 10/19/2020] [Indexed: 11/16/2022]
Abstract
One of the critical aspects in the design of nanocomposite membrane is the selection of a well-matched pair of nanomaterials and a polymer matrix that suits their intended application. By making use of the fascinating flexibility of nanoscale materials, the functionalities of the resultant nanocomposite membranes can be tailored. The unique features demonstrated by nanomaterials are closely related to their dimensions, hence a greater attention is deserved for this critical aspect. Recognizing the impressive research efforts devoted to fine-tuning the nanocomposite membranes for a broad range of applications including gas and liquid separation, this review intends to discuss the selection criteria of nanostructured materials from the perspective of their dimensions for the production of high-performing nanocomposite membranes. Based on their dimension classifications, an overview of the characteristics of nanomaterials used for the development of nanocomposite membranes is presented. The advantages and roles of these nanomaterials in advancing the performance of the resultant nanocomposite membranes for gas and liquid separation are reviewed. By highlighting the importance of dimensions of nanomaterials that account for their intriguing structural and physical properties, the potential of these nanomaterials in the development of nanocomposite membranes can be fully harnessed.
Collapse
Affiliation(s)
- Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; (K.C.W.); (A.F.I.)
| | | | | |
Collapse
|
14
|
Borgohain R, Mandal B. Thermally stable and moisture responsive carboxymethyl chitosan/dendrimer/hydrotalcite membrane for CO2 separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118214] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Kim JH, Vijayakumar V, Kim DJ, Nam SY. Preparation and characterization of POSS-PEG high performance membranes for gas separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Enhanced selectivity of O2/N2 gases in co-casted mixed matrix membranes filled with BaFe12O19 nanoparticles. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Xu Y, Xu J, Yang C. Molecule design of effective C2H4/C2H6 separation membranes: From 2D nanoporous graphene to 3D AHT zeolite. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Fang M, Montoro C, Semsarilar M. Metal and Covalent Organic Frameworks for Membrane Applications. MEMBRANES 2020; 10:E107. [PMID: 32455983 PMCID: PMC7281687 DOI: 10.3390/membranes10050107] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022]
Abstract
Better and more efficient membranes are needed to face imminent and future scientific, technological and societal challenges. New materials endowed with enhanced properties are required for the preparation of such membranes. Metal and Covalent Organic Frameworks (MOFs and COFs) are a new class of crystalline porous materials with large surface area, tuneable pore size, structure, and functionality, making them a perfect candidate for membrane applications. In recent years an enormous number of articles have been published on the use of MOFs and COFs in preparation of membranes for various applications. This review gathers the work reported on the synthesis and preparation of membranes containing MOFs and COFs in the last 10 years. Here we give an overview on membranes and their use in separation technology, discussing the essential factors in their synthesis as well as their limitations. A full detailed summary of the preparation and characterization methods used for MOF and COF membranes is given. Finally, applications of these membranes in gas and liquid separation as well as fuel cells are discussed. This review is aimed at both experts in the field and newcomers, including students at both undergraduate and postgraduate levels, who would like to learn about preparation of membranes from crystalline porous materials.
Collapse
Affiliation(s)
| | | | - Mona Semsarilar
- Institut Européen des Membranes—IEM UMR 5635, Univ Montpellier, CNRS, ENSCM, 34095 Montpellier, France;
| |
Collapse
|
19
|
Xu Y, Zhu H, Wang M, Xu J, Yang C. Separation of 1-Butene and 2-Butene Isomers via Nanoporous Graphene: A Molecular Simulation Study. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yinxiang Xu
- School of Space and Environment, Beihang University, Beijing 100191, China
- College of Mechanical Engineering, Sichuan University of Science and Engineering, Sichuan 643000, China
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Huajian Zhu
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Min Wang
- Dynamic Machinery Institute of Inner Mongolia, Hohhot 010010, China
| | - Junbo Xu
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Chao Yang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Dalian National Laboratory for Clean Energy, Dalian 116023, China
| |
Collapse
|
20
|
Tailoring the Thermal and Mechanical Properties of PolyActive TM Poly(Ether-Ester) Multiblock Copolymers Via Blending with CO 2-Phylic Ionic Liquid. Polymers (Basel) 2020; 12:polym12040890. [PMID: 32290575 PMCID: PMC7240668 DOI: 10.3390/polym12040890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/01/2020] [Accepted: 04/08/2020] [Indexed: 11/21/2022] Open
Abstract
The last decade has seen an exponential increase in the number of studies focused on novel applications for ionic liquids (ILs). Blends of polymers with ILs have been proposed for use in fuel cells, batteries, gas separation membranes, packaging, etc., each requiring a set of specific physico-chemical properties. In this work, blends of four grades of the poly(ether-ester) multiblock copolymer PolyActive™ with different concentrations of the CO2-philic 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [BMIM][Tf2N] were prepared in the form of dense films by a solution casting and solvent evaporation method, in view of their potential use as gas separation membranes for CO2 capture. Depending on the polymer structure, the material properties could be tailored over a wide range by means of the IL content. All samples were dry-feeling, highly elastic self-standing dense films. The microstructure of the blends was studied by scanning electron microscopy with a backscattering detector, able to observe anisotropy in the sample, while a special topographic analysis mode allowed the visualization of surface roughness. Samples with the longest poly(ethylene oxide terephthalate) (PEOT) blocks were significantly more anisotropic than those with shorter blocks, and this heterogeneity increased with increasing IL content. DSC analysis revealed a significant decrease in the melting enthalpy and melting temperature of the crystalline PEOT domains with increasing IL content, forming an amorphous phase with Tg ≈ −50 °C, whereas the polybutylene terephthalate (PBT) phase was hardly affected. This indicates better compatibility of the IL with the polyether phase than the polyester phase. Young’s modulus was highest and most IL-dependent for the sample with the highest PEOT content and PEOT block length, due to its high crystallinity. Similarly, the sample with short PEOT blocks and high PBT content also showed a high modulus and tensile strength, but much lower maximum elongation. This study provides a detailed discussion on the correlation between the morphological, thermal, and mechanical properties of these PolyActive™/[BMIM][Tf2N] blends.
Collapse
|
21
|
State-of-the-art modification of polymeric membranes by PEO and PEG for carbon dioxide separation: A review of the current status and future perspectives. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.12.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Nikolaeva D, Luis P. Top-Down Polyelectrolytes for Membrane-Based Post-Combustion CO 2 Capture. Molecules 2020; 25:E323. [PMID: 31941140 PMCID: PMC7024304 DOI: 10.3390/molecules25020323] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 11/16/2022] Open
Abstract
Polymer-based CO2 selective membranes offer an energy efficient method to separate CO2 from flue gas. `Top-down' polyelectrolytes represent a particularly interesting class of polymer materials based on their vast synthetic flexibility, tuneable interaction with gas molecules, ease of processability into thin films, and commercial availability of precursors. Recent developments in their synthesis and processing are reviewed herein. The four main groups of post-synthetically modified polyelectrolytes discern ionised neutral polymers, cation and anion functionalised polymers, and methacrylate-derived polyelectrolytes. These polyelectrolytes differentiate according to the origin and chemical structure of the precursor polymer. Polyelectrolytes are mostly processed into thin-film composite (TFC) membranes using physical and chemical layer deposition techniques such as solvent-casting, Langmuir-Blodgett, Layer-by-Layer, and chemical grafting. While solvent-casting allows manufacturing commercially competitive TFC membranes, other methods should still mature to become cost-efficient for large-scale application. Many post-synthetically modified polyelectrolytes exhibit outstanding selectivity for CO2 and some overcome the Robeson plot for CO2/N2 separation. However, their CO2 permeance remain low with only grafted and solvent-casted films being able to approach the industrially relevant performance parameters. The development of polyelectrolyte-based membranes for CO2 separation should direct further efforts at promoting the CO2 transport rates while maintaining high selectivities with additional emphasis on environmentally sourced precursor polymers.
Collapse
Affiliation(s)
- Daria Nikolaeva
- UCLouvain—IMMC, Materials & Process Engineering, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium;
| | | |
Collapse
|
23
|
Xu Y, Goh K, Wang R, Bae TH. A review on polymer-based membranes for gas-liquid membrane contacting processes: Current challenges and future direction. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115791] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Abstract
In recent decades, mixed matrix membranes (MMMs) have attracted considerable interest in research laboratories worldwide, motivated by the gap between the growing interest in developing novel mixed matrix membranes by various research groups and the lack of large-scale implementation. This Special Issue contains six publications dealing with the current opportunities and challenges of mixed matrix membranes development and applications as solutions for the environmental and health challenges of 21st century society.
Collapse
|
25
|
Fauzan NAB, Mannan HA, Nasir R, Mohshim DFB, Mukhtar H. Various Techniques for Preparation of Thin‐Film Composite Mixed‐Matrix Membranes for CO
2
Separation. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201800520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nur Aqilah Bt Fauzan
- Universiti Teknologi PETRONASChemical Engineering Department 32610 Seri Iskandar Perak Malaysia
| | - Hafiz Abdul Mannan
- Universiti Teknologi PETRONASChemical Engineering Department 32610 Seri Iskandar Perak Malaysia
| | - Rizwan Nasir
- University of JeddahDepartment of Chemical Engineering 23890 Jeddah Saudi Arabia
| | - Dzeti Farhah Bt Mohshim
- Universiti Teknologi PETRONASPetroleum Engineering Department 32610 Seri Iskandar Perak Malaysia
| | - Hilmi Mukhtar
- Universiti Teknologi PETRONASChemical Engineering Department 32610 Seri Iskandar Perak Malaysia
| |
Collapse
|
26
|
Zhuang L, Ge L, Liu H, Jiang Z, Jia Y, Li Z, Yang D, Hocking RK, Li M, Zhang L, Wang X, Yao X, Zhu Z. A Surfactant‐Free and Scalable General Strategy for Synthesizing Ultrathin Two‐Dimensional Metal–Organic Framework Nanosheets for the Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2019; 58:13565-13572. [DOI: 10.1002/anie.201907600] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Linzhou Zhuang
- School of Chemical Engineering The University of Queensland Brisbane 4072 Australia
| | - Lei Ge
- Centre for Future Materials University of Southern Queensland Springfield 4300 Australia
| | - Hongli Liu
- Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province Institute of Marine Biobased Materials School of Environmental Science and Engineering Qingdao University Shandong 266071 P. R. China
| | - Zongrui Jiang
- School of Chemical Engineering The University of Queensland Brisbane 4072 Australia
| | - Yi Jia
- School of Environment and Sciences Queensland Micro-Griffith University Nathan Campus 4111 Nathan Australia
| | - Zhiheng Li
- School of Chemical Engineering The University of Queensland Brisbane 4072 Australia
| | - Dongjiang Yang
- Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province Institute of Marine Biobased Materials School of Environmental Science and Engineering Qingdao University Shandong 266071 P. R. China
| | - Rosalie K. Hocking
- Department of Chemistry and Biotechnology Faculty of Science, Engineering and Technology Swinburne University of Technology Hawthorn, Melbourne Victoria 3122 Australia
| | - Mengran Li
- School of Chemical Engineering The University of Queensland Brisbane 4072 Australia
| | - Longzhou Zhang
- School of Environment and Sciences Queensland Micro-Griffith University Nathan Campus 4111 Nathan Australia
| | - Xin Wang
- School of Environment and Sciences Queensland Micro-Griffith University Nathan Campus 4111 Nathan Australia
| | - Xiangdong Yao
- School of Environment and Sciences Queensland Micro-Griffith University Nathan Campus 4111 Nathan Australia
| | - Zhonghua Zhu
- School of Chemical Engineering The University of Queensland Brisbane 4072 Australia
| |
Collapse
|
27
|
Zhuang L, Ge L, Liu H, Jiang Z, Jia Y, Li Z, Yang D, Hocking RK, Li M, Zhang L, Wang X, Yao X, Zhu Z. A Surfactant‐Free and Scalable General Strategy for Synthesizing Ultrathin Two‐Dimensional Metal–Organic Framework Nanosheets for the Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907600] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Linzhou Zhuang
- School of Chemical Engineering The University of Queensland Brisbane 4072 Australia
| | - Lei Ge
- Centre for Future Materials University of Southern Queensland Springfield 4300 Australia
| | - Hongli Liu
- Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province Institute of Marine Biobased Materials School of Environmental Science and Engineering Qingdao University Shandong 266071 P. R. China
| | - Zongrui Jiang
- School of Chemical Engineering The University of Queensland Brisbane 4072 Australia
| | - Yi Jia
- School of Environment and Sciences Queensland Micro-Griffith University Nathan Campus 4111 Nathan Australia
| | - Zhiheng Li
- School of Chemical Engineering The University of Queensland Brisbane 4072 Australia
| | - Dongjiang Yang
- Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province Institute of Marine Biobased Materials School of Environmental Science and Engineering Qingdao University Shandong 266071 P. R. China
| | - Rosalie K. Hocking
- Department of Chemistry and Biotechnology Faculty of Science, Engineering and Technology Swinburne University of Technology Hawthorn, Melbourne Victoria 3122 Australia
| | - Mengran Li
- School of Chemical Engineering The University of Queensland Brisbane 4072 Australia
| | - Longzhou Zhang
- School of Environment and Sciences Queensland Micro-Griffith University Nathan Campus 4111 Nathan Australia
| | - Xin Wang
- School of Environment and Sciences Queensland Micro-Griffith University Nathan Campus 4111 Nathan Australia
| | - Xiangdong Yao
- School of Environment and Sciences Queensland Micro-Griffith University Nathan Campus 4111 Nathan Australia
| | - Zhonghua Zhu
- School of Chemical Engineering The University of Queensland Brisbane 4072 Australia
| |
Collapse
|
28
|
Ma L, Svec F, Lv Y, Tan T. Engineering of the Filler/Polymer Interface in Metal–Organic Framework‐Based Mixed‐Matrix Membranes to Enhance Gas Separation. Chem Asian J 2019; 14:3502-3514. [DOI: 10.1002/asia.201900843] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Liang Ma
- College of Life Science and TechnologyBeijing University of Chemical Technology No 15th North Third Ring East Road, Chaoyang District Beijing 100029 China
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical Technology No 15th North Third Ring East Road, Chaoyang District Beijing 100029 China
| | - Frantisek Svec
- College of Life Science and TechnologyBeijing University of Chemical Technology No 15th North Third Ring East Road, Chaoyang District Beijing 100029 China
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical Technology No 15th North Third Ring East Road, Chaoyang District Beijing 100029 China
| | - Yongqin Lv
- College of Life Science and TechnologyBeijing University of Chemical Technology No 15th North Third Ring East Road, Chaoyang District Beijing 100029 China
| | - Tianwei Tan
- College of Life Science and TechnologyBeijing University of Chemical Technology No 15th North Third Ring East Road, Chaoyang District Beijing 100029 China
| |
Collapse
|
29
|
Separation of diverse alkenes from C2-C4 alkanes through nanoporous graphene membranes via local size sieving. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Li X, Hou J, Guo R, Wang Z, Zhang J. Constructing Unique Cross-Sectional Structured Mixed Matrix Membranes by Incorporating Ultrathin Microporous Nanosheets for Efficient CO 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:24618-24626. [PMID: 31257849 DOI: 10.1021/acsami.9b07815] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ultrathin microporous nanosheets denoted as Zn-tetra-(4-carboxyphenyl)porphyrin (Zn-TCPP) were synthesized and incorporated into a Pebax MH 1657 (Pebax) polymer to fabricate mixed matrix membranes (MMMs) for efficient CO2 separation. The Zn-TCPP nanosheets with a microporous structure provide high-speed channels for fast CO2 transport and shorten the diffusion pathways, both contributing toward high CO2 permeability. Furthermore, scanning electron microscopy results indicate that the ultrathin Zn-TCPP nanosheets with an ultrahigh aspect ratio (>200) tend to arrange horizontally in the Pebax matrix. The obtained unique cross-sectional structure of the MMMs functions as a selective barrier, allowing repeated discrimination of gases due to the tortuous interlayer of horizontal nanosheets, thus improving the selectivity of the MMMs. In addition, the horizontally arranged microporous nanosheets were found to strongly interact with the membrane matrix and endowed the MMMs with excellent interfacial compatibility, which improved the CO2 permeability and eliminated unselective permeation pathways. Significantly, the optimized CO2 separation performance of the MMMs surpassed the 2008 Robeson's limit.
Collapse
Affiliation(s)
- Xueqin Li
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan , Shihezi University , Shihezi , Xinjiang 832003 , China
| | - Jinpeng Hou
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan , Shihezi University , Shihezi , Xinjiang 832003 , China
| | - Ruili Guo
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan , Shihezi University , Shihezi , Xinjiang 832003 , China
| | - Zhongming Wang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan , Shihezi University , Shihezi , Xinjiang 832003 , China
| | - Jianshu Zhang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan , Shihezi University , Shihezi , Xinjiang 832003 , China
| |
Collapse
|