1
|
Song J, Xu D, Han Y, Zhu X, Liu Z, Li G, Liang H. Surface modification of Fe Ⅲ-juglone coating on nanofiltration membranes for efficient biofouling mitigation. WATER RESEARCH 2023; 247:120795. [PMID: 37931358 DOI: 10.1016/j.watres.2023.120795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/24/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023]
Abstract
Nanofiltration membranes have increasingly played a vital role in the purification of surface water and the recycling of wastewater. However, the problem of membrane biofouling, which leads to shortened service life and increased energy consumption, has hindered the widespread application of nanofiltration membranes. In this study, we developed functionalized nanofiltration membranes with anti-adhesive and anti-biofouling properties by coordinating FeIII and juglone onto commercial nanofiltration membranes in a facile and viable manner. Due to the hydrophilic nature of the FeⅢ-juglone coating as well as its ultra-thin thickness and minimal impact on the membrane pores, the permeance of the optimally modified membrane even increased slightly (14 %). The outstanding anti-adhesive property of the FeⅢ-juglone coating was demonstrated by a significant reduction in the adsorption of proteins and bacteria. Furthermore, the modified membranes exhibited lower flux decline amplitude and reduced biofilm deposition during dynamic fouling experiment, further supporting the outstanding anti-biofouling performance of the nanofiltration membrane after the modification with FeⅢ-juglone coating. This study presents a novel and feasible approach for simultaneously improving the water permeance, anti-adhesive property and anti-biofouling property of commercial nanofiltration membranes.
Collapse
Affiliation(s)
- Jialin Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Daliang Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yonghui Han
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xuewu Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Zihan Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
2
|
You SM, Lee SS, Ryu MH, Song HM, Kang MS, Jung YJ, Song EC, Sung BH, Park SJ, Joo JC, Kim HT, Cha HG. β-Ketoadipic acid production from poly(ethylene terephthalate) waste via chemobiological upcycling. RSC Adv 2023; 13:14102-14109. [PMID: 37180017 PMCID: PMC10168023 DOI: 10.1039/d3ra02072j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
The upcycling of poly(ethylene terephthalate) (PET) waste can simultaneously produce value-added chemicals and reduce the growing environmental impact of plastic waste. In this study, we designed a chemobiological system to convert terephthalic acid (TPA), an aromatic monomer of PET, to β-ketoadipic acid (βKA), a C6 keto-diacid that functions as a building block for nylon-6,6 analogs. Using microwave-assisted hydrolysis in a neutral aqueous system, PET was converted to TPA with Amberlyst-15, a conventional catalyst with high conversion efficiency and reusability. The bioconversion process of TPA into βKA used a recombinant Escherichia coli βKA expressing two conversion modules for TPA degradation (tphAabc and tphB) and βKA synthesis (aroY, catABC, and pcaD). To improve bioconversion, the formation of acetic acid, a deleterious factor for TPA conversion in flask cultivation, was efficiently regulated by deleting the poxB gene along with operating the bioreactor to supply oxygen. By applying two-stage fermentation consisting of the growth phase in pH 7 followed by the production phase in pH 5.5, a total of 13.61 mM βKA was successfully produced with 96% conversion efficiency. This efficient chemobiological PET upcycling system provides a promising approach for the circular economy to acquire various chemicals from PET waste.
Collapse
Affiliation(s)
- Sang-Mook You
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT) Ulsan 44429 Republic of Korea
| | - Si Seon Lee
- Department of Biotechnology, The Catholic University of Korea Bucheon-si Gyeonggi-do 14662 Republic of Korea
| | - Mi Hee Ryu
- Green Carbon Research Center Korea Research Institute of Chemical Technology (KRICT) Daejeon 34114 Republic of Korea
| | - Hye Min Song
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science & Engineering, Ewha Woman's University Seoul 03760 Republic of Korea
| | - Min Soo Kang
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT) Ulsan 44429 Republic of Korea
| | - Ye Jean Jung
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT) Ulsan 44429 Republic of Korea
| | - Eun Chae Song
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University Daejeon 34134 Republic of Korea
| | - Bong Hyun Sung
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology Daejeon 34141 Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science & Engineering, Ewha Woman's University Seoul 03760 Republic of Korea
| | - Jeong Chan Joo
- Department of Biotechnology, The Catholic University of Korea Bucheon-si Gyeonggi-do 14662 Republic of Korea
| | - Hee Taek Kim
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University Daejeon 34134 Republic of Korea
| | - Hyun Gil Cha
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT) Ulsan 44429 Republic of Korea
| |
Collapse
|
3
|
Dou W, Qi F, Li Y, Wei F, Hu Q, Yao Z, Wang J, Zhang L, Tang Z. Charge-biased nanofibrous membranes with uniform charge distribution and hemocompatibility for enhanced selective adsorption of endotoxin from plasma. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Li Q, Wen C, Yang J, Zhou X, Zhu Y, Zheng J, Cheng G, Bai J, Xu T, Ji J, Jiang S, Zhang L, Zhang P. Zwitterionic Biomaterials. Chem Rev 2022; 122:17073-17154. [PMID: 36201481 DOI: 10.1021/acs.chemrev.2c00344] [Citation(s) in RCA: 130] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The term "zwitterionic polymers" refers to polymers that bear a pair of oppositely charged groups in their repeating units. When these oppositely charged groups are equally distributed at the molecular level, the molecules exhibit an overall neutral charge with a strong hydration effect via ionic solvation. The strong hydration effect constitutes the foundation of a series of exceptional properties of zwitterionic materials, including resistance to protein adsorption, lubrication at interfaces, promotion of protein stabilities, antifreezing in solutions, etc. As a result, zwitterionic materials have drawn great attention in biomedical and engineering applications in recent years. In this review, we give a comprehensive and panoramic overview of zwitterionic materials, covering the fundamentals of hydration and nonfouling behaviors, different types of zwitterionic surfaces and polymers, and their biomedical applications.
Collapse
Affiliation(s)
- Qingsi Li
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Chiyu Wen
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Jing Yang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Xianchi Zhou
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yingnan Zhu
- Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Gang Cheng
- Department of Chemical Engineering, The University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Jie Bai
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, China
| | - Tong Xu
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shaoyi Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Lei Zhang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Peng Zhang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
5
|
Shao Z, Cheng J, Zhang Y, Peng Y, Shi L, Zhong M. Comprehension of the Synergistic Effect between m&t-BiVO 4/TiO 2-NTAs Nano-Heterostructures and Oxygen Vacancy for Elevated Charge Transfer and Enhanced Photoelectrochemical Performances. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4042. [PMID: 36432328 PMCID: PMC9692637 DOI: 10.3390/nano12224042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Through the utilization of a facile procedure combined with anodization and hydrothermal synthesis, highly ordered alignment TiO2 nanotube arrays (TiO2-NTAs) were decorated with BiVO4 with distinctive crystallization phases of monoclinic scheelite (m-BiVO4) and tetragonal zircon (t-BiVO4), favorably constructing different molar ratios and concentrations of oxygen vacancies (Vo) for m&t-BiVO4/TiO2-NTAs heterostructured nanohybrids. Simultaneously, the m&t-BiVO4/TiO2-NTAs nanocomposites significantly promoted photoelectrochemical (PEC) activity, tested under UV-visible light irradiation, through photocurrent density testing and electrochemical impedance spectra, which were derived from the positive synergistic effect between nanohetero-interfaces and Vo defects induced energetic charge transfer (CT). In addition, a proposed self-consistent interfacial CT mechanism and a convincing quantitative dynamic process (i.e., rate constant of CT) for m&t-BiVO4/TiO2-NTAs nanoheterojunctions are supported by time-resolved photoluminescence and nanosecond time-resolved transient photoluminescence spectra, respectively. Based on the scheme, the m&t-BiVO4/TiO2-NTAs-10 nanohybrids exhibited a photodegradation rate of 97% toward degradation of methyl orange irradiated by UV-visible light, 1.14- and 1.04-fold that of m&t-BiVO4/TiO2-NTAs-5 and m&t-BiVO4/TiO2-NTAs-20, respectively. Furthermore, the m&t-BiVO4/TiO2-NTAs-10 nanohybrids showed excellent PEC biosensing performance with a detection limit of 2.6 μM and a sensitivity of 960 mA cm-2 M-1 for the detection of glutathione. Additionally, the gas-sensing performance of m&t-BiVO4/TiO2-NTAs-10 is distinctly superior to that of m&t-BiVO4/TiO2-NTAs-5 and m&t-BiVO4/TiO2-NTAs-20 in terms of sensitivity and response speed.
Collapse
Affiliation(s)
- Zhufeng Shao
- College of Physical Science and Technology, Bohai University, Jinzhou 121000, China
| | - Jianyong Cheng
- College of Physical Science and Technology, Bohai University, Jinzhou 121000, China
| | - Yonglong Zhang
- College of Physical Science and Technology, Bohai University, Jinzhou 121000, China
| | - Yajing Peng
- College of Physical Science and Technology, Bohai University, Jinzhou 121000, China
| | - Libin Shi
- College of Physical Science and Technology, Bohai University, Jinzhou 121000, China
| | - Min Zhong
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121000, China
| |
Collapse
|
6
|
Sutariya B, Sargaonkar A, Raval H. Methods of visualizing hydrodynamics and fouling in membrane filtration systems: recent trends. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2089585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Bhaumik Sutariya
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aabha Sargaonkar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Cleaner Technology and Modelling Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
| | - Hiren Raval
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
7
|
Liu C, He Q, Song D, Jackson J, Faria AF, Jiang X, Li X, Ma J, Sun Z. Electroless deposition of copper nanoparticles integrates polydopamine coating on reverse osmosis membranes for efficient biofouling mitigation. WATER RESEARCH 2022; 217:118375. [PMID: 35405551 DOI: 10.1016/j.watres.2022.118375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
In this study, highly antimicrobial CuNPs were integrated into a hydrophilic polydopamine (PDA) coating and immobilized on a RO TFC membrane via a mild and facile reduction approach to form a stable and durable dual-functional layer. Based on the XDLVO analysis, the introduction of PDA increased the membrane-foulant total interaction energy (ΔGmwf) to 14.13 mJ/m2, resulting in improved anti-adhesive properties as demonstrated by a 37% decrease in BSA adsorption for the modified membranes. The well dispersed and high loadings of CuNPs induced by PDA conferred strong bacterial toxicity to the modified membranes, reducing the viability of E. coli by 76%. Furthermore, the presence of catechol groups on PDA favors the formation of covalent bond with CuNPs, thus prolonging the durability of the copper-based anti-biofouling membranes. The combination of PDA coating and CuNPs functionalization imparts the membrane with simultaneous anti-adhesive and anti-microbial properties, leading to a substantial reduction in biofouling propensity in dynamic biofouling experiments. Specifically, the flux decline due to biofouling observed for the modified membranes significantly decreased from 65% to 39%, and biofilm thickness and TOC biomass were 58%, and 55% lower, respectively. This study provides a facile and versatile strategy to construct high performance RO membranes with excellent anti-biofouling functionality.
Collapse
Affiliation(s)
- Caihong Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Qiang He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Dan Song
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jennifer Jackson
- Engineering School of Sustainable Infrastructure & Environment (ESSIE), Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611-6580, USA
| | - Andreia F Faria
- Engineering School of Sustainable Infrastructure & Environment (ESSIE), Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611-6580, USA
| | - Xihui Jiang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Xueyan Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiqiang Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
8
|
Ali A, Aziz T, Zheng J, Hong F, Awad MF, Manan S, Haq F, Ullah A, Shah MN, Javed Q, Kubar AA, Guo L. Modification of Cellulose Nanocrystals With 2-Carboxyethyl Acrylate in the Presence of Epoxy Resin for Enhancing its Adhesive Properties. Front Bioeng Biotechnol 2022; 9:797672. [PMID: 35155406 PMCID: PMC8832013 DOI: 10.3389/fbioe.2021.797672] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/20/2021] [Indexed: 12/30/2022] Open
Abstract
Cellulose nanocrystals (CNCs) have unparalleled advantages in the preparation of nanocomposites for various applications. However, a major challenge associated with CNCs in nanocomposite preparation is the lack of compatibility with hydrophobic polymers. The hydrophobic modification of CNCs has attracted increasing interest in the modern era standing with long challenges and being environmentally friendly. Here, we synthesized CNCs by using cotton as raw material and then modified them with 2-carboxyethyl acrylate to improve their corresponding mechanical, adhesive, contact angle, and thermal properties. Different concentrations (1-5 wt%) of CNCs were used as modifiers to improve the interfacial adhesion between the reinforced CNCs and E-51 (Bisphenol A diglycidyl ether) epoxy resin system. CNCs offered a better modulus of elasticity, a lower coefficient of energy, and thermal expansion. Compared with the standard sample, the modified CNCs (MCNCs) showed high shear stress, high toughness, efficient degradation, thermal stability, and recycling due to the combined effect of the hyperbranched topological structure of epoxy with good compatibility. The native CNCs lost their hydrophilicity after modification with epoxy, and MCNCs showed good hydrophobic behavior (CA = 105 ± 2°). The findings of this study indicate that modification of CNCs with 2-carboxyethyl acrylate in the presence of epoxy resin and the enhancement of the features would further expand their applications to different sectors.
Collapse
Affiliation(s)
- Amjad Ali
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
| | - Tariq Aziz
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Jieyuan Zheng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Fan Hong
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Mahamed F. Awad
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Sehrish Manan
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Fazal Haq
- Department of Chemistry, Gomal University, Dera Ismail Khan, Pakistan
| | - Asmat Ullah
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
| | - Muhammad Naeem Shah
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Qaiser Javed
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Ameer Ali Kubar
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China
| | - Li Guo
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
9
|
Tailored thin film nanocomposite membrane incorporated with Noria for simultaneously overcoming the permeability-selectivity trade-off and the membrane fouling in nanofiltration process. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119863] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Surface charge control of poly(methyl methacrylate-co-dimethyl aminoethyl methacrylate)-based membrane for improved fouling resistance. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119778] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
11
|
Li M, Hu J, Li B, Deng S, Zhang X. Graphene oxide nanofiltration membrane with trimethylamine-N-oxide zwitterions for robust biofouling resistance. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Suresh D, Goh PS, Ismail AF, Hilal N. Surface Design of Liquid Separation Membrane through Graft Polymerization: A State of the Art Review. MEMBRANES 2021; 11:832. [PMID: 34832061 PMCID: PMC8621935 DOI: 10.3390/membranes11110832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/17/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022]
Abstract
Surface modification of membranes is an effective approach for imparting unique characteristics and additional functionalities to the membranes. Chemical grafting is a commonly used membrane modification technique due to its versatility in tailoring and optimizing the membrane surface with desired functionalities. Various types of polymers can be precisely grafted onto the membrane surface and the operating conditions of grafting can be tailored to further fine-tune the membrane surface properties. This review focuses on the recent strategies in improving the surface design of liquid separation membranes through grafting-from technique, also known as graft polymerization, to improve membrane performance in wastewater treatment and desalination applications. An overview on membrane technology processes such as pressure-driven and osmotically driven membrane processes are first briefly presented. Grafting-from surface chemical modification approaches including chemical initiated, plasma initiated and UV initiated approaches are discussed in terms of their features, advantages and limitations. The innovations in membrane surface modification techniques based on grafting-from techniques are comprehensively reviewed followed by some highlights on the current challenges in this field. It is concluded that grafting-from is a versatile and effective technique to introduce various functional groups to enhance the surface properties and separation performances of liquid separation membranes.
Collapse
Affiliation(s)
- Deepa Suresh
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia; (D.S.); (A.F.I.)
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia; (D.S.); (A.F.I.)
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia; (D.S.); (A.F.I.)
| | - Nidal Hilal
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| |
Collapse
|
13
|
Wang SY, Fang LF, Zhu BK, Matsuyama H. Enhancing the antifouling property of polymeric membrane via surface charge regulation. J Colloid Interface Sci 2021; 593:315-322. [PMID: 33744540 DOI: 10.1016/j.jcis.2021.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023]
Abstract
In this study, positively charged monomers were grafted onto negatively charged membranes via UV radiation to improve the antifouling/antibiofouling properties of the polymeric membrane and the stability of the modification layer. The surface properties, morphologies, antifouling and antibiofouling properties, and stability of the modified membranes were systematically characterized. Results indicated that the introduction of [2-(methacryloyloxy) ethyl] trimethylammonium chloride (MTAC) monomers onto polyethersulfone (PES)/sulfonated polyethersulfone (SPES) membranes effectively increased the surface hydrophilicity. Meanwhile, the surfaces were neutralized with ~0 mV zeta potential in pH 3-10. Moreover, the formation of a polyampholytic copolymer and the antibacterial ability of MTAC considerably improved the antibiofouling properties of the modified membranes. The MTAC-grafted PES/SPES membranes showed excellent antifouling/antibiofouling properties during the treatment of various types of wastewater, including bovine serum albumin solution, oil/water emulsion, and bacterial suspension. Therefore, this study provides a simple and effective method of constructing stable and antifouling membranes for sustainable water treatment.
Collapse
Affiliation(s)
- Sheng-Yao Wang
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan
| | - Li-Feng Fang
- Engineering Research Center for Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Bao-Ku Zhu
- Engineering Research Center for Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan.
| |
Collapse
|
14
|
Kudaibergenov SE. Synthetic and natural polyampholytes: Structural and behavioral similarity. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sarkyt E. Kudaibergenov
- Institute of Polymer Materials and Technology Atyrau Kazakhstan
- Laboratory of Engineering Profile Satbayev University Almaty Kazakhstan
| |
Collapse
|
15
|
Yang Z, Takagi R, Zhang X, Yasui T, Zhang L, Matsuyama H. Engineering a dual-functional sulfonated polyelectrolyte-silver nanoparticle complex on a polyamide reverse osmosis membrane for robust biofouling mitigation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118757] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Gonçalves Dias LF, Stamboroski S, Noeske M, Salz D, Rischka K, Pereira R, Mainardi MDC, Cardoso MH, Wiesing M, Bronze-Uhle ES, Esteves Lins RB, Lisboa-Filho PN. New details of assembling bioactive films from dispersions of amphiphilic molecules on titania surfaces. RSC Adv 2020; 10:39854-39869. [PMID: 35558137 PMCID: PMC9088674 DOI: 10.1039/d0ra06511k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022] Open
Abstract
Tailoring the surface properties of materials for biomedical applications is important to avoid clinical complications. Forming thin layers of amphiphilic molecules with apolar regions that facilitate attractive intermolecular interactions, can be a suitable and versatile approach to achieve hydrophobic surface modification and provide functional antibacterial properties. Aiming to correlate layer structure and properties starting from film formation, octadecylphosphonic acid (ODPA) and dimethyloctadecyl (3-trimethoxysilylpropyl) ammonium chloride (DMOAP) layers were adsorbed onto smooth titania surfaces. Then the films were studied by atomic force microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS), and their interactions with aqueous environments were characterized by contact angle and zeta potential measurements. In addition, antibacterial assays were performed using E. coli and S. mutants to reveal the antibacterial properties effected by the surface modification. Immediately after sputter deposition, titania was hydrophilic; however, after air storage and adsorption of DMOAP or ODPA, an increase in the water contact angle was observed. XPS investigations after layer formation and after antibacterial tests revealed that the attachment of layers assembled from ODPA on titania substrates is considerably stronger and more stable than that observed for DMOAP films. Heat treatment strongly affects DMOAP layers. Furthermore, DMOAP layers are not stable under biological conditions. Structure–property relationship of amphiphilic molecules on smooth substrates was explored through a multi-step approach and its influence on biological activity.![]()
Collapse
Affiliation(s)
- Leonardo Francisco Gonçalves Dias
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM Bremen Germany .,São Paulo State University - UNESP, School of Science, Department of Physics Brazil
| | - Stephani Stamboroski
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM Bremen Germany .,Institute for Biophysics, University of Bremen Otto-Hahn-Allee 1 28359 Bremen Germany
| | - Michael Noeske
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM Bremen Germany
| | - Dirk Salz
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM Bremen Germany
| | - Klaus Rischka
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM Bremen Germany
| | - Renata Pereira
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM Bremen Germany .,Department of Restorative Dentistry, Operative Dentistry Division, Piracicaba Dental School, University of Campinas (UNICAMP) Avenida Limeira 901 Zip code 13414-903 Piracicaba, SP Brazil
| | - Maria do Carmo Mainardi
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM Bremen Germany .,School of Dentistry, Herminio Ometto University Center Araras SP Brazil
| | - Marina Honorato Cardoso
- Department of Biochemistry, Bauru School of Dentistry, Sao Paulo University - USP Bauru SP Brazil
| | - Martin Wiesing
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM Bremen Germany
| | - Erika Soares Bronze-Uhle
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, Sao Paulo University - USP Bauru SP Brazil
| | | | | |
Collapse
|