1
|
Ghodsi A, Fashandi H. Influence of photothermal nanomaterials localization within the electrospun membrane structure on purification of saline oily wastewater based on photothermal vacuum membrane distillation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121866. [PMID: 39018852 DOI: 10.1016/j.jenvman.2024.121866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Today, synergistic combination of special nanomaterials (NMs) and electrospinning technique has emerged as a promising strategy to address both water scarcity and energy concerns through the development of photothermal membranes for wastewater purification and desalination. This work was organized to provide a new perspective on membrane design for photothermal vacuum membrane distillation (PVMD) through optimizing membrane performance by varying the localization of photothermal NMs. Poly(vinylidene fluoride) omniphobic photothermal membranes were prepared by localizing graphene oxide nanosheets (GO NSh) (1) on the surface (0.2 wt%), (2) within the nanofibers structure (10 wt%) or (3) in both positions. Considering the case 1, after 7 min exposure to the 1 sun intensity light, the highest temperature (∼93.5 °C) was recorded, which is assigned to the accessibility of GO NSh upon light exposure. The case 3 yielded to a small reduction in surface temperature (∼90.4 °C) compared to the case 1, indicating no need to localize NMs within the nanofibers structure when they are localized on the surface. The other extreme belonged to the case 2 with the lowest temperature of ∼71.3 °C, which is consistent with the less accessibility of GO NSh during irradiation. It was demonstrated that the accessibility of photothermal NMs plays more pronounced role in the membrane surface temperature compared to the light trapping. However, benefiting from higher surface temperature during PVMD due to enhanced accessibility of photothermal NMs is balanced out by decrease in the permeate flux (case 1: 1.51 kg/m2 h and case 2: 1.83 kg/m2 h) due to blocking some membrane surface pores by the binder. A trend similar to that for flux was also followed by the efficiency. Additionally, no change in rejection was observed for different GO NSh localizations.
Collapse
Affiliation(s)
- Ali Ghodsi
- Department of Textile Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Hossein Fashandi
- Department of Textile Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| |
Collapse
|
2
|
Jawaduddin M, Su Z, Siddique MS, Rashid S, Yu W. Purifying surface water contaminated with azo dyes using nanofiltration: Interactions between dyes and dissolved organic matter. CHEMOSPHERE 2024; 361:142438. [PMID: 38797203 DOI: 10.1016/j.chemosphere.2024.142438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
In this research, the interactions of two azo dyes, Methyl Orange (MO) and Eriochrome Black T (EBT), with dissolved organic matter (DOM) in surface water were studied, emphasizing their removal using nano-filtration membranes (NF-270 and NF-90). High-Performance Size Exclusion Chromatography (HPSEC) findings indicated that the dyes' molecular weight in deionized (DI) water ranged from 500 to 15k Dalton (Da), adjusting peak intensities with Jingmi River (JM) water Beijing. Notably, when dyes were diluted in JM water, ultraviolet (UV533 & 466, and UV254), together with total organic carbon (TOC) parameters, revealed color removal rates of 99.49% (EBT), 94.2% (MO), 87.6% DOM removal, and 86% TOC removal for NF-90. The NF-90 membrane demonstrated a 75% flux decline for 50 mL permeate volume due to its finer pore structure and higher rejection effectiveness. In contrast, the NF-270 membrane showed a 60% decline in flux under the same conditions. Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) analysis of dye-treated membranes in JM water revealed that the NF-270 showed a CC bond peak at 1660 cm-1 across various samples, while analyzing NF-90, the peaks at 1400 cm-1, 1040 cm-1, 750 cm-1, and 620 cm-1 disappeared for composite sample removal. The hydrophobicity of each membrane is measured by the contact angle (CA), which identified that initial CAs for NF-270 and NF-90 were 460 and 700, respectively, that were rapidly declined but stabilized after a few seconds of processing. Overall, this investigation shows that azo dyes interact with DOM in surface waters and enhance the removal efficiency of NF membranes.
Collapse
Affiliation(s)
- Mian Jawaduddin
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaoyang Su
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Muhammad Saboor Siddique
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Sajid Rashid
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
3
|
Shakayeva AK, Yeszhanov AB, Borissenko AN, Kassymzhanov MT, Zhumazhanova AT, Khlebnikov NA, Nurkassimov AK, Zdorovets MV, Güven O, Korolkov IV. Surface Modification of Polyethylene Terephthalate Track-Etched Membranes by 2,2,3,3,4,4,5,5,6,6,7,7-Dodecafluoroheptyl Acrylate for Application in Water Desalination by Direct Contact Membrane Distillation. MEMBRANES 2024; 14:145. [PMID: 39057653 PMCID: PMC11278615 DOI: 10.3390/membranes14070145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024]
Abstract
In this work, the surfaces of poly (ethylene terephthalate) track-etched membranes (PET TeMs) with pore sizes of 670-1310 nm were hydrophobized with 2,2,3,3,4,4,5,5,6,6,7,7-dodecafluoroheptyl acrylate (DFHA) by photoinitiated graft polymerization. Attenuated total reflection FTIR spectroscopy (ATR-FTIR), scanning electron microscopy (SEM) coupled to an energy-dispersive X-ray spectrometer (EDX), and contact angle measurements were used to identify and characterize the TeMs. The optimal parameters for graft polymerization were determined as follows: polymerization time of 60 min, monomer concentration of 30%, and distance from the UV source of 7 cm. The water contact angle of the modified membranes reached 97°, which is 51° for pristine membranes. The modified membranes were tested for water desalination using direct contact membrane distillation (DCMD) method. The effects of membrane pore size, the degree of grafting, and salt concentration on the performance of membrane distillation process were investigated. According to the results obtained, it has been concluded that large pore size hydrophobic TeMs modified by using DFHA could be used for desalinating water.
Collapse
Affiliation(s)
- Aigerim Kh. Shakayeva
- The Institute of Nuclear Physics, Ibragimov Str., 1, Almaty 050032, Kazakhstan; (A.K.S.); (A.B.Y.)
| | - Arman B. Yeszhanov
- The Institute of Nuclear Physics, Ibragimov Str., 1, Almaty 050032, Kazakhstan; (A.K.S.); (A.B.Y.)
| | | | - Murat T. Kassymzhanov
- JSC “Park of Nuclear Technologies”, Kurchatova Str. 18/1, Kurchatov 071100, Kazakhstan
| | - Ainash T. Zhumazhanova
- The Institute of Nuclear Physics, Ibragimov Str., 1, Almaty 050032, Kazakhstan; (A.K.S.); (A.B.Y.)
| | | | - A. K. Nurkassimov
- JSC “Park of Nuclear Technologies”, Kurchatova Str. 18/1, Kurchatov 071100, Kazakhstan
| | - Maxim V. Zdorovets
- The Institute of Nuclear Physics, Ibragimov Str., 1, Almaty 050032, Kazakhstan; (A.K.S.); (A.B.Y.)
- JSC “Park of Nuclear Technologies”, Kurchatova Str. 18/1, Kurchatov 071100, Kazakhstan
| | - Olgun Güven
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey;
| | - Ilya V. Korolkov
- The Institute of Nuclear Physics, Ibragimov Str., 1, Almaty 050032, Kazakhstan; (A.K.S.); (A.B.Y.)
| |
Collapse
|
4
|
Manouchehri M. A comprehensive review on state-of-the-art antifouling super(wetting and anti-wetting) membranes for oily wastewater treatment. Adv Colloid Interface Sci 2024; 323:103073. [PMID: 38160525 DOI: 10.1016/j.cis.2023.103073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
One of the most dangerous types of pollution to the environment is oily wastewater, which is produced from a number of industrial sources and can cause damage to the environment, people, and creatures. To overcome this issue, membrane technology as an advanced method has been considered for treating oily wastewater due to its stability, high removal efficiency, and simplicity in scaling up. Membrane fouling, or the accumulation of oil droplets at or within the membrane pores, compromises the efficiency of membrane separation and water flux. In the last decade, the fabrication of membranes with specific wettability to reduce fouling has received much consideration. The purpose of this article is to offer a literature overview of all fabricated anti-fouling super(wetting and anti-wetting) membranes for applicable membrane processes for the separation of immiscible and emulsified oil/water mixtures. In this review, we first explain membrane fouling and discuss methods for preventing it. Afterwards, in all membrane separation processes, including pressure-driven, gravity-driven, and thermal-driven, membranes based on the form and density of oil are categorized as oil-removing or water-removing with special wettability, and then their wettability modification with different materials is particularly discussed. Finally, the prospect of anti-fouling membrane fabrication in the future is presented.
Collapse
Affiliation(s)
- Massoumeh Manouchehri
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
5
|
Zhang H, Zhao X. Enhanced Anti-Wetting Methods of Hydrophobic Membrane for Membrane Distillation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300598. [PMID: 37219004 PMCID: PMC10427381 DOI: 10.1002/advs.202300598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/24/2023] [Indexed: 05/24/2023]
Abstract
Increasing issues of hydrophobic membrane wetting occur in the membrane distillation (MD) process, stimulating the research on enhanced anti-wetting methods for membrane materials. In recent years, surface structural construction (i.e., constructing reentrant-like structures), surface chemical modification (i.e., coating organofluorides), and their combination have significantly improved the anti-wetting properties of the hydrophobic membranes. Besides, these methods change the MD performance (i.e., increased/decreased vapor flux and increased salt rejection). This review first introduces the characterization parameters of wettability and the fundamental principles of membrane surface wetting. Then it summarizes the enhanced anti-wetting methods, the related principles, and most importantly, the anti-wetting properties of the resultant membranes. Next, the MD performance of hydrophobic membranes prepared by different enhanced anti-wetting methods is discussed in desalinating different feeds. Finally, facile and reproducible strategies are aspired for the robust MD membrane in the future.
Collapse
Affiliation(s)
- Honglong Zhang
- Lab of Environmental Science & TechnologyINETTsinghua UniversityBeijing100084P. R. China
| | - Xuan Zhao
- Lab of Environmental Science & TechnologyINETTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
6
|
Prasanna NS, Choudhary N, Singh N, Raghavarao KSMS. Omniphobic membranes in membrane distillation for desalination applications: A mini-review. CHEMICAL ENGINEERING JOURNAL ADVANCES 2023. [DOI: 10.1016/j.ceja.2023.100486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
|
7
|
Engineering omniphobic corrugated membranes for scaling mitigation in membrane distillation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Fluoropolymer Membranes for Membrane Distillation and Membrane Crystallization. Polymers (Basel) 2022; 14:polym14245439. [PMID: 36559805 PMCID: PMC9782556 DOI: 10.3390/polym14245439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/15/2022] Open
Abstract
Fluoropolymer membranes are applied in membrane operations such as membrane distillation and membrane crystallization where hydrophobic porous membranes act as a physical barrier separating two phases. Due to their hydrophobic nature, only gaseous molecules are allowed to pass through the membrane and are collected on the permeate side, while the aqueous solution cannot penetrate. However, these two processes suffer problems such as membrane wetting, fouling or scaling. Membrane wetting is a common and undesired phenomenon, which is caused by the loss of hydrophobicity of the porous membrane employed. This greatly affects the mass transfer efficiency and separation efficiency. Simultaneously, membrane fouling occurs, along with membrane wetting and scaling, which greatly reduces the lifespan of the membranes. Therefore, strategies to improve the hydrophobicity of membranes have been widely investigated by researchers. In this direction, hydrophobic fluoropolymer membrane materials are employed more and more for membrane distillation and membrane crystallization thanks to their high chemical and thermal resistance. This paper summarizes different preparation methods of these fluoropolymer membrane, such as non-solvent-induced phase separation (NIPS), thermally-induced phase separation (TIPS), vapor-induced phase separation (VIPS), etc. Hydrophobic modification methods, including surface coating, surface grafting and blending, etc., are also introduced. Moreover, the research advances on the application of less toxic solvents for preparing these membranes are herein reviewed. This review aims to provide guidance to researchers for their future membrane development in membrane distillation and membrane crystallization, using fluoropolymer materials.
Collapse
|
9
|
Zhang Z, Pei G, Zhao K, Pang P, Gao W, Ye T, Ma B, Luo J, Deng J. Fresnel Diffraction Strategy Enables the Fabrication of Flexible Superomniphobic Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14508-14516. [PMID: 36377419 DOI: 10.1021/acs.langmuir.2c02658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Doubly re-entrant surfaces inspired by springtails exhibit excellent repellency to low-surface-tension liquid. However, the flexible doubly re-entrant surfaces are difficult to fabricate, especially for the overhang of the structure. Herein, we demonstrate a simple Fresnel aperture diffraction modulation strategy in microscale lithography coupled with a molding process to obtain the flexible doubly re-entrant superomniphobic surfaces with nanoscale overhangs. The negative nanoscale overhang features were formed in a single-layer photoresist due to the fine-modulation of the optical intensity fluctuation of the Fresnel aperture diffraction. The as-prepared flexible non-fluorinated polydimethylsiloxane (PDMS) doubly re-entrant microstructure based on the Fresnel aperture diffraction (D-BF) surface (without any additional treatments) could repel ethanol droplets (21.8 mN m-1) in the Cassie-Baxter state. The robust nanoscale overhangs obtained by the molding process enable the maximum breakthrough pressure for the low-surface-tension ethanol droplets on the D-BF surfaces up to about 230 Pa, allowing ethanol liquids with Weber numbers up to 8.7 to fully bounce off. The fabricated non-fluorinated D-BF superomniphobic surface maintains outstanding liquid repellency after the surface wettability modification and deformation test.
Collapse
Affiliation(s)
- Zhonggang Zhang
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, 127 Youyi Road, Xi'an710072, China
| | - Guangyao Pei
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, 127 Youyi Road, Xi'an710072, China
| | - Keli Zhao
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, 127 Youyi Road, Xi'an710072, China
| | - Peng Pang
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, 127 Youyi Road, Xi'an710072, China
| | - Wei Gao
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, 127 Youyi Road, Xi'an710072, China
| | - Tao Ye
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, 127 Youyi Road, Xi'an710072, China
| | - Binghe Ma
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, 127 Youyi Road, Xi'an710072, China
| | - Jian Luo
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, 127 Youyi Road, Xi'an710072, China
| | - Jinjun Deng
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, 127 Youyi Road, Xi'an710072, China
| |
Collapse
|
10
|
Hierarchical structure design of electrospun membrane for enhanced membrane distillation treatment of shrimp aquaculture wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Zhang Z, Ma B, Ye T, Gao W, Pei G, Luo J, Deng J, Yuan W. One-Step Fabrication of Flexible Bioinspired Superomniphobic Surfaces. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39665-39672. [PMID: 35983670 DOI: 10.1021/acsami.2c12483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flexible superomniphobic doubly re-entrant (Dual-T) microstructures inspired by springtails have attracted growing attention due to their excellent liquid-repellent properties. However, the simple and practical manufacturing processes of the flexible Dual-T microstructures are urgently needed. Here, we proposed a one-step molding process coupled with the lithography technique to fabricate the elastomeric polydimethylsiloxane (PDMS) Dual-T microstructure surfaces with high uniformity. The angle between the downward overhang and the horizontal direction could reach 90° (vertical overhang). The flexible superomniphobic Dual-T microstructure surfaces, without fluorination treatment and physical treatments, could repel liquids with a surface tension lower than 20 mN m-1 in the Cassie-Baxter state. Owing to the excellent robustness of the one-step molding downward overhanging, the max breakthrough pressure of this surface could reach up to 164.3 Pa for ethanol droplets. Furthermore, the flexible superomniphobic Dual-T surface allowed impinging ethanol droplets to completely rebound at the Weber number up to 7.1 with an impact velocity of ∼0.32 m s-1. The Dual-T microstructure surface maintained excellent superomniphobicity even after surface oxygen plasma treatment and exhibited excellent structural robustness and recoverability to various large mechanical deformations.
Collapse
Affiliation(s)
- Zhonggang Zhang
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| | - Binghe Ma
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tao Ye
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wei Gao
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| | - Guangyao Pei
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jian Luo
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jinjun Deng
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| | - Weizheng Yuan
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
12
|
Li B, Hou D, Li C, Yun Y. Mussels-inspired design a carbon nanotube based underwater superoleophobic/hydrophobic Janus membrane with robust anti-oil-fouling for direct contact membrane distillation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Liu YJ, Lu YN, Liang DQ, Hu YS, Huang YX. Multi-Layered Branched Surface Fluorination on PVDF Membrane for Anti-Scaling Membrane Distillation. MEMBRANES 2022; 12:membranes12080743. [PMID: 36005658 PMCID: PMC9416731 DOI: 10.3390/membranes12080743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023]
Abstract
Membrane distillation (MD) has emerged as a promising technology for hypersaline wastewater treatment. However, membrane scaling is still a critical issue for common hydrophobic MD membranes. Herein, we report a multi-layered surface modification strategy on the commercial polyvinylidene fluoride (PVDF) membrane via plasma treatment and surface fluorination cycles. The repeated plasma treatment process generates more reaction sites for the fluorination reaction, leading to higher fluorination density and more branched structures. MD tests with CaSO4 as the scaling agent show that the modification strategy mentioned above improves the membrane scaling resistance. Notably, the PVDF membrane treated with three cycles of plasma and fluorination treatments exhibits the best anti-scaling performance while maintaining almost the same membrane flux as the unmodified PVDF membrane. This study suggests that a highly branched surface molecular structure with low surface energy benefits the MD process in both membrane flux and scaling resistance. Besides, our research demonstrates a universal and facile approach for membrane treatment to improve membrane scaling resistance.
Collapse
Affiliation(s)
- Yu-Jing Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (Y.-J.L.); (Y.-N.L.); (D.-Q.L.); (Y.-S.H.)
| | - Yan-Nan Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (Y.-J.L.); (Y.-N.L.); (D.-Q.L.); (Y.-S.H.)
| | - Dong-Qing Liang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (Y.-J.L.); (Y.-N.L.); (D.-Q.L.); (Y.-S.H.)
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yin-Shuang Hu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (Y.-J.L.); (Y.-N.L.); (D.-Q.L.); (Y.-S.H.)
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu-Xi Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (Y.-J.L.); (Y.-N.L.); (D.-Q.L.); (Y.-S.H.)
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
- Correspondence:
| |
Collapse
|
14
|
Santoro S, Avci AH, Politano A, Curcio E. The advent of thermoplasmonic membrane distillation. Chem Soc Rev 2022; 51:6087-6125. [PMID: 35789347 DOI: 10.1039/d0cs00097c] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Freshwater scarcity is a vital societal challenge related to climate change, population pressure, and agricultural and industrial demands. Therefore, sustainable desalination/purification of salty/contaminated water for human uses is particularly relevant. Membrane distillation is an emerging hybrid thermal-membrane technology with the potential to overcome the drawbacks of conventional desalination by a synergic exploitation of the water-energy nexus. Although membrane distillation is considered a green technology, efficient heat management remains a critical concern affecting the cost of the process and hindering its viability at large scale. A multidisciplinary approach that involves materials chemistry, physical chemistry, chemical engineering, and materials and polymer science is required to solve this problem. The combination of solar energy with membrane distillation is considered a potentially feasible low-cost approach for providing high-quality freshwater with a low carbon footprint. In particular, recent discoveries about efficient light-to-heat conversion in nanomaterials have opened unprecedented perspectives for the implementation of sunlight-based renewable energy in membrane distillation. The integration of nanofillers enabling photothermal effects into membranes has been demonstrated to be able to significantly enhance the energy efficiency without impacting on economic costs. Here, we provide a comprehensive overview on the state of the art, the opportunities, open challenges and pitfalls of the emerging field of solar-driven membrane distillation. We also assess the peculiar physicochemical properties and synthesis scalability of photothermal materials, as well as the strategies for their integration into polymeric nanocomposite membranes enabling efficient light-to-heat conversion and freshwater.
Collapse
Affiliation(s)
- Sergio Santoro
- University of Calabria - Department of Environmental and Chemical Engineering, Cubo 44 A, Via Pietro Bucci, 87036 Rende CS, Italy.
| | - Ahmet H Avci
- University of Calabria - Department of Environmental and Chemical Engineering, Cubo 44 A, Via Pietro Bucci, 87036 Rende CS, Italy.
| | - Antonio Politano
- Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio, 67100 L'Aquila (AQ), Italy.
| | - Efrem Curcio
- University of Calabria - Department of Environmental and Chemical Engineering, Cubo 44 A, Via Pietro Bucci, 87036 Rende CS, Italy.
| |
Collapse
|
15
|
Quan J, Yu J, Wang Y, Hu Z. Oriented shish-kebab like ultra-high molecular weight polyethylene membrane for direct contact membrane distillation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
Leng X, Wang M, Hou Y. Fabrication of a high-performance polyurethane pervaporation membrane via surface grafting of silane coupling agent. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02970-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Quan J, Yu J, Wang Y, Hu Z. Construction of intrinsic superhydrophobic ultra-high molecular weight polyethylene composite membrane for DCMD. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Li H, Feng H, Li M, Zhang X. Engineering a covalently constructed superomniphobic membrane for robust membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Omniphobic membrane with nest-like re-entrant structure via electrospraying strategy for robust membrane distillation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
A high-flux polystyrene-reinforced styrene-acrylonitrile/polyacrylonitrile nanofibrous membrane for desalination using direct contact membrane distillation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Liao X, Goh K, Liao Y, Wang R, Razaqpur AG. Bio-inspired super liquid-repellent membranes for membrane distillation: Mechanisms, fabrications and applications. Adv Colloid Interface Sci 2021; 297:102547. [PMID: 34687984 DOI: 10.1016/j.cis.2021.102547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 01/22/2023]
Abstract
With the aggravation of the global water crisis, membrane distillation (MD) for seawater desalination and hypersaline wastewater treatment is highlighted due to its low operating temperature, low hydrostatic pressure, and theoretically 100% rejection. However, some issues still impede the large-scale applications of MD technology, such as membrane fouling, scaling and unsatisfactory wetting resistance. Bio-inspired super liquid-repellent membranes have progressed rapidly in the past decades and been considered as one of the most promising approaches to overcome the above problems. This review for the first time systematically summarizes and analyzes the mechanisms of different super liquid-repellent surfaces, their preparation and modification methods, and anti-wetting/fouling/scaling performances in the MD process. Firstly, the topology theories of in-air superhydrophobic, in-air omniphobic and underwater superoleophobic surfaces are illustrated using different models. Secondly, the fabrication methods of various super liquid-repellent membranes are classified. The merits and demerits of each method are illustrated. Thirdly, the anti-wetting/fouling/scaling mechanisms of super liquid-repellent membranes are summarized. Finally, the conclusions and perspectives of the bio-inspired super liquid-repellent membranes are elaborated. It is anticipated that the systematic review herein can provide readers with foundational knowledge and current progress of super liquid-repellent membranes, and inspire researchers to overcome the challenges up ahead.
Collapse
Affiliation(s)
- Xiangjun Liao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China
| | - Kunli Goh
- Singapore Membrane Technology Centre, Nanyang Environment and Water Res. Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yuan Liao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China.
| | - Rong Wang
- Singapore Membrane Technology Centre, Nanyang Environment and Water Res. Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Abdul Ghani Razaqpur
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China.
| |
Collapse
|
22
|
Liu J, Guo H, Sun Z, Li B. Preparation of photothermal membrane for vacuum membrane distillation with excellent anti-fouling ability through surface spraying. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119434] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Liao X, Wang Y, Liao Y, You X, Yao L, Razaqpur AG. Effects of different surfactant properties on anti-wetting behaviours of an omniphobic membrane in membrane distillation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119433] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Ding Z, Liu Z, Xiao C. Excellent performance of novel superhydrophobic composite hollow membrane in the vacuum membrane distillation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Lin Y, Zhang Y, Zhang F, Zhang M, Li D, Deng G, Guan L, Dong M. Studies on the electrostatic effects of stretched PVDF films and nanofibers. NANOSCALE RESEARCH LETTERS 2021; 16:79. [PMID: 33939029 PMCID: PMC8093351 DOI: 10.1186/s11671-021-03536-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/20/2021] [Indexed: 05/09/2023]
Abstract
The electroactive β-phase in Poly (vinylidene fluoride, PVDF) is the most desirable conformation due to its highest pyro- and piezoelectric properties, which make it feasible to be used as flexible sensors, wearable electronics, and energy harvesters etc. In this study, we successfully developed a method to obtain high-content β-phase PVDF films and nanofiber meshes by mechanical stretching and electric spinning. The phase transition process and pyro- and piezoelectric effects of stretched films and nanofiber meshes were characterized by monitoring the polarized light microscopy (PLM) images, outputting currents and open-circuit voltages respectively, which were proved to be closely related to stretching ratio (λ) and concentrations. This study could expand a new route for the easy fabrication and wide application of PVDF films or fibers in wearable electronics, sensors, and energy harvesting devices.
Collapse
Affiliation(s)
- Yixuan Lin
- Department of Chemistry, Renmin University of China, Beijing, 100872 People’s Republic of China
| | - Yuqiong Zhang
- Department of Chemistry, Renmin University of China, Beijing, 100872 People’s Republic of China
| | - Fan Zhang
- Department of Chemistry, Renmin University of China, Beijing, 100872 People’s Republic of China
| | - Meining Zhang
- Department of Chemistry, Renmin University of China, Beijing, 100872 People’s Republic of China
| | - Dalong Li
- School of Marine Science and Technology, Harbin Institute of Technology At Weihai, Weihai, 264209 Shandong People’s Republic of China
- Sino-Danish Center for Education and Research (SDC), Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Gaofeng Deng
- State Key Laboratory of Building Safety and Environment, China Academy of Building Research, Beijing, 100013 People’s Republic of China
| | - Li Guan
- Department of Chemistry, Renmin University of China, Beijing, 100872 People’s Republic of China
| | - Mingdong Dong
- Sino-Danish Center for Education and Research (SDC), Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
26
|
Zhang W, Hu B, Wang Z, Li B. Fabrication of omniphobic PVDF composite membrane with dual-scale hierarchical structure via chemical bonding for robust membrane distillation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119038] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
27
|
Chang H, Liu B, Zhang Z, Pawar R, Yan Z, Crittenden JC, Vidic RD. A Critical Review of Membrane Wettability in Membrane Distillation from the Perspective of Interfacial Interactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1395-1418. [PMID: 33314911 DOI: 10.1021/acs.est.0c05454] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrophobic membranes used in membrane distillation (MD) systems are often subject to wetting during long-term operation. Thus, it is of great importance to fully understand factors that influence the wettability of hydrophobic membranes and their impact on the overall separation efficiency that can be achieved in MD systems. This Critical Review summarizes both fundamental and applied aspects of membrane wetting with particular emphasis on interfacial interaction between the membrane and solutes in the feed solution. First, the theoretical background of surface wetting, including the relationship between wettability and interfacial interaction, definition and measurement of contact angle, surface tension, surface free energy, adhesion force, and liquid entry pressure, is described. Second, the nature of wettability, membrane wetting mechanisms, influence of membrane properties, feed characteristics and operating conditions on membrane wetting, and evolution of membrane wetting are reviewed in the context of an MD process. Third, specific membrane features that increase resistance to wetting (e.g., superhydrophobic, omniphobic, and Janus membranes) are discussed briefly followed by the comparison of various cleaning approaches to restore membrane hydrophobicity. Finally, challenges with the prevention of membrane wetting are summarized, and future work is proposed to improve the use of MD technology in a variety of applications.
Collapse
Affiliation(s)
- Haiqing Chang
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Sichuan University, Chengdu 610207, China
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Baicang Liu
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Sichuan University, Chengdu 610207, China
| | - Zhewei Zhang
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Ritesh Pawar
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fujian, 350116, China
| | - John C Crittenden
- Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Radisav D Vidic
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
28
|
Su Y, Zhao Y, Zheng W, Yu H, Liu Y, Xu L. Asymmetric Sc-PLA Membrane with Multi-scale Microstructures: Wettability, Antifouling, and Oil-Water Separation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55520-55526. [PMID: 33231417 DOI: 10.1021/acsami.0c17545] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, an eco-friendly superhydrophobic stereo-complex polylactic acid (Sc-PLA) membrane was fabricated by a facile non-solvent-induced phase separation (NIPS) method, followed by peeling off its skin layer. By adjusting the thickness and roughness, membranes with various multi-scale microstructures could be obtained due to the formation of stereo-complex crystals during the process of phase separation. The Sc-PLA membranes display a hydrophobic wetting property. Interestingly, when the skin layer of the membrane with a 600 μm thickness was peeled off, the water contact angle on the surface of the membrane significantly improved from 142 to 152°, and the membrane displayed superhydrophobic wetting properties, which may be owing to the improvement of roughness for the surface by enlarging the exposure opportunity of finger holes and microstructures. In addition, the Sc-PLA membrane with superhydrophobicity shows excellent antifouling performance and large oil absorption capacity. Predictably, the Sc-PLA membranes may have potential applications in antifouling and oil-water separation.
Collapse
Affiliation(s)
- Yaozhuo Su
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, People's Republic of China
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Yongqing Zhao
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Wenge Zheng
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Hongwei Yu
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Yinfeng Liu
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Linqiong Xu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People's Republic of China
| |
Collapse
|
29
|
Kumar R, Ahmed M, Bhadrachari G, Al-Missri A, Thomas JP. The effect of chemistry of nanoparticle modifier groups on the PVDF membranes for membrane distillation. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.09.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Investigating the effect of various foulants on the performance of intrinsically superhydrophobic polyvinylidene fluoride membranes for direct contact membrane distillation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Liu J, Li X, Zhang W, Li B, Liu C. Superhydrophobic-slip surface based heat and mass transfer mechanism in vacuum membrane distillation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Dong Z, Lu J, Wu Y, Meng M, Yu C, Sun C, Chen M, Da Z, Yan Y. Antifouling molecularly imprinted membranes for pretreatment of milk samples: Selective separation and detection of lincomycin. Food Chem 2020; 333:127477. [PMID: 32673956 DOI: 10.1016/j.foodchem.2020.127477] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/17/2020] [Accepted: 06/30/2020] [Indexed: 10/23/2022]
Abstract
As a veterinary antibiotic, lincomycin (LIN) residues in milk are raising concerns of public on account of potential harm to human health. Efficient strategy is eagerly desired for detection of LIN from milk samples. Hence, lincomycin molecularly imprinted membranes (LINMIMs) were developed for selective separation of LIN as an efficient pretreatment of milk samples. The synergistic effect of polyethylenimine and dopamine provided effective antifouling performance by improving the hydrophilicity. Based on click chemistry, specific recognition sites were facilely formed on membranes using 4-vinylpyridine as functional monomers. The satisfactory rebinding capacity (151.62 mg g-1), permselectivity (4.43), together with the linear dependence (R2 = 0.9902) of concentrations in eluents and original samples. Moreover, the method was utilized to determine LIN from milk, with good recovery and relative standard deviation. Achievements in this work will actively promote the development of efficient detection technology.
Collapse
Affiliation(s)
- Zeqing Dong
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jian Lu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yilin Wu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Minjia Meng
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chao Yu
- School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chang Sun
- College of Computer Science and Technology, Beihua University, Jilin 132013, China
| | - Muning Chen
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zulin Da
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Yongsheng Yan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|