1
|
Hu C, Kang HW, Jung SW, Zhang X, Lee YJ, Kang NY, Park CH, Lee YM. Stabilizing the Catalyst Layer for Durable and High Performance Alkaline Membrane Fuel Cells and Water Electrolyzers. ACS CENTRAL SCIENCE 2024; 10:603-614. [PMID: 38559301 PMCID: PMC10979504 DOI: 10.1021/acscentsci.3c01490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 04/04/2024]
Abstract
Anion exchange membrane (AEM) fuel cells (AEMFCs) and water electrolyzers (AEMWEs) suffer from insufficient performance and durability compared with commercialized energy conversion systems. Great efforts have been devoted to designing high-quality AEMs and catalysts. However, the significance of the stability of the catalyst layer has been largely disregarded. Here, an in situ cross-linking strategy was developed to promote the interactions within the catalyst layer and the interactions between catalyst layer and AEM. The adhesion strength of the catalyst layer after cross-linking was improved 7 times compared with the uncross-linked catalyst layer due to the formation of covalent bonds between the catalyst layer and AEM. The AEMFC can be operated under 0.6 A cm-2 for 1000 h with a voltage decay rate of 20 μV h-1. The related AEMWE achieved an unprecedented current density of 15.17 A cm-2 at 2.0 V and was operated at 0.5, 1.0, and 1.5 A cm-2 for 1000 h.
Collapse
Affiliation(s)
- Chuan Hu
- Department
of Energy Engineering, College of Engineering, Hanyang University, Seoul 04763, Republic
of Korea
| | - Hyun Woo Kang
- Department
of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Seung Won Jung
- Department
of Energy Engineering, College of Engineering, Hanyang University, Seoul 04763, Republic
of Korea
| | - Xiaohua Zhang
- Department
of Energy Engineering, College of Engineering, Hanyang University, Seoul 04763, Republic
of Korea
| | - Young Jun Lee
- Department
of Energy Engineering, College of Engineering, Hanyang University, Seoul 04763, Republic
of Korea
| | - Na Yoon Kang
- Department
of Energy Engineering, College of Engineering, Hanyang University, Seoul 04763, Republic
of Korea
| | - Chi Hoon Park
- Department
of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Young Moo Lee
- Department
of Energy Engineering, College of Engineering, Hanyang University, Seoul 04763, Republic
of Korea
| |
Collapse
|
2
|
Hu C, Kang HW, Jung SW, Liu ML, Lee YJ, Park JH, Kang NY, Kim MG, Yoo SJ, Park CH, Lee YM. High Free Volume Polyelectrolytes for Anion Exchange Membrane Water Electrolyzers with a Current Density of 13.39 A cm -2 and a Durability of 1000 h. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306988. [PMID: 38044283 PMCID: PMC10837377 DOI: 10.1002/advs.202306988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/12/2023] [Indexed: 12/05/2023]
Abstract
The rational design of the current anion exchange polyelectrolytes (AEPs) is challenging to meet the requirements of both high performance and durability in anion exchange membrane water electrolyzers (AEMWEs). Herein, highly-rigid-twisted spirobisindane monomer is incorporated in poly(aryl-co-aryl piperidinium) backbone to construct continuous ionic channels and to maintain dimensional stability as promising materials for AEPs. The morphologies, physical, and electrochemical properties of the AEPs are investigated based on experimental data and molecular dynamics simulations. The present AEPs possess high free volumes, excellent dimensional stability, hydroxide conductivity (208.1 mS cm-1 at 80 °C), and mechanical properties. The AEMWE of the present AEPs achieves a new current density record of 13.39 and 10.7 A cm-2 at 80 °C by applying IrO2 and nonprecious anode catalyst, respectively, along with outstanding in situ durability under 1 A cm-2 for 1000 h with a low voltage decay rate of 53 µV h-1 . Moreover, the AEPs can be applied in fuel cells and reach a power density of 2.02 W cm-2 at 80 °C under fully humidified conditions, and 1.65 W cm-2 at 100 °C, 30% relative humidity. This study provides insights into the design of high-performance AEPs for energy conversion devices.
Collapse
Affiliation(s)
- Chuan Hu
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hyun Woo Kang
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University, Jinju, 52725, Republic of Korea
| | - Seung Won Jung
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Mei-Ling Liu
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Young Jun Lee
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jong Hyeong Park
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Na Yoon Kang
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Myeong-Geun Kim
- Hydrogen Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Sung Jong Yoo
- Hydrogen Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Chi Hoon Park
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University, Jinju, 52725, Republic of Korea
| | - Young Moo Lee
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| |
Collapse
|
3
|
Douglin JC, Vijaya Sankar K, Biancolli ALG, Santiago EI, Tsur Y, Dekel DR. Quantifying the Resistive Losses of the Catalytic Layers in Anion-Exchange Membrane Fuel Cells. CHEMSUSCHEM 2023; 16:e202301080. [PMID: 37525490 DOI: 10.1002/cssc.202301080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
The existing gap in the ability to quantify the impacts of resistive losses on the performance of anion-exchange membrane fuel cells (AEMFCs) during the lifetime of their operation is a serious concern for the technology. In this paper, we analyzed the ohmic region of an operating AEMFC fed with pure oxygen followed by CO2 -free air at various operating currents, using a combination of electrochemical impedance spectroscopy (EIS) and a novel technique called impedance spectroscopy genetic programming (ISGP). Presented here for the first time in this work, we isolated and quantified the individual effective resistance (Reff ) values occurring in the AEMFC and their influence on performance as operating conditions change. We believe that this first work is vital to help distinguish the influence of the individual catalytic and mass-transfer processes in this technology thereby providing valuable data to the AEMFC community, with potentially wider applicability to other electrochemical devices where individual physical processes occur simultaneously and need to be sequestered for deeper understanding.
Collapse
Affiliation(s)
- John C Douglin
- The Wolfson Department of Chemical Engineering, Technion, Israel Institute of Technology, Haifa, 3200003, Israel
| | - Kalimuthu Vijaya Sankar
- The Wolfson Department of Chemical Engineering, Technion, Israel Institute of Technology, Haifa, 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | | | | | - Yoed Tsur
- The Wolfson Department of Chemical Engineering, Technion, Israel Institute of Technology, Haifa, 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Dario R Dekel
- The Wolfson Department of Chemical Engineering, Technion, Israel Institute of Technology, Haifa, 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
4
|
Giron Rodriguez C, Joensen BÓ, Moss AB, Larrazábal GO, Whelligan DK, Seger B, Varcoe JR, Willson TR. Influence of Headgroups in Ethylene-Tetrafluoroethylene-Based Radiation-Grafted Anion Exchange Membranes for CO 2 Electrolysis. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:1508-1517. [PMID: 36743393 PMCID: PMC9890565 DOI: 10.1021/acssuschemeng.2c06205] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/03/2023] [Indexed: 06/18/2023]
Abstract
The performance of zero-gap CO2 electrolysis (CO2E) is significantly influenced by the membrane's chemical structure and physical properties due to its effects on the local reaction environment and water/ion transport. Radiation-grafted anion-exchange membranes (RG-AEM) have demonstrated high ionic conductivity and durability, making them a promising alternative for CO2E. These membranes were fabricated using two different thicknesses of ethylene-tetrafluoroethylene polymer substrates (25 and 50 μm) and three different headgroup chemistries: benzyl-trimethylammonium, benzyl-N-methylpyrrolidinium, and benzyl-N-methylpiperidinium (MPIP). Our membrane characterization and testing in zero-gap cells over Ag electrocatalysts under commercially relevant conditions showed correlations between the water uptake, ionic conductivity, hydration, and cationic-head groups with the CO2E efficiency. The thinner 25 μm-based AEM with the MPIP-headgroup (ion-exchange capacities of 2.1 ± 0.1 mmol g-1) provided balanced in situ test characteristics with lower cell potentials, high CO selectivity, reduced liquid product crossover, and enhanced water management while maintaining stable operation compared to the commercial AEMs. The CO2 electrolyzer with an MPIP-AEM operated for over 200 h at 150 mA cm-2 with CO selectivities up to 80% and low cell potentials (around 3.1 V) while also demonstrating high conductivities and chemical stability during performance at elevated temperatures (above 60 °C).
Collapse
Affiliation(s)
- Carlos
A. Giron Rodriguez
- Surface
Physics and Catalysis (SurfCat) Section, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Bjørt Óladottir Joensen
- Surface
Physics and Catalysis (SurfCat) Section, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Asger Barkholt Moss
- Surface
Physics and Catalysis (SurfCat) Section, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Gastón O. Larrazábal
- Surface
Physics and Catalysis (SurfCat) Section, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Daniel K. Whelligan
- School
of Chemistry and Chemical Engineering, University
of Surrey, Guildford GU2 7XH, U.K.
| | - Brian Seger
- Surface
Physics and Catalysis (SurfCat) Section, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - John R. Varcoe
- School
of Chemistry and Chemical Engineering, University
of Surrey, Guildford GU2 7XH, U.K.
| | - Terry R. Willson
- School
of Chemistry and Chemical Engineering, University
of Surrey, Guildford GU2 7XH, U.K.
| |
Collapse
|
5
|
Wang Q, Huang L, Wang Z, Zheng J, Zhang Q, Qin G, Li S, Zhang S. High Conductive Anion Exchange Membranes from All-Carbon Twisted Intrinsic Microporous Polymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Qian Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
- University of Science and Technology of China, Hefei230026, China
| | - Lei Huang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
- University of Science and Technology of China, Hefei230026, China
| | - Zimo Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
| | - Jifu Zheng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
| | - Qifeng Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
| | - Guorui Qin
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
| | - Shenghai Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
- University of Science and Technology of China, Hefei230026, China
| | - Suobo Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
- University of Science and Technology of China, Hefei230026, China
| |
Collapse
|
6
|
Barnett A, Karnes JJ, Lu J, Major DR, Oakdale JS, Grew KN, McClure JP, Molinero V. Exponential Water Uptake in Ionomer Membranes Results from Polymer Plasticization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Adam Barnett
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - John J. Karnes
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Jibao Lu
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Dale R. Major
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - James S. Oakdale
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Kyle N. Grew
- DEVCOM Army Research Laboratory, Adelphi, Maryland 20783, United States
| | - Joshua P. McClure
- DEVCOM Army Research Laboratory, Adelphi, Maryland 20783, United States
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
7
|
Karibayev M, Kalybekkyzy S, Wang Y, Mentbayeva A. Molecular Modeling in Anion Exchange Membrane Research: A Brief Review of Recent Applications. Molecules 2022; 27:3574. [PMID: 35684512 PMCID: PMC9182285 DOI: 10.3390/molecules27113574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
Anion Exchange Membrane (AEM) fuel cells have attracted growing interest, due to their encouraging advantages, including high power density and relatively low cost. AEM is a polymer matrix, which conducts hydroxide (OH-) ions, prevents physical contact of electrodes, and has positively charged head groups (mainly quaternary ammonium (QA) groups), covalently bound to the polymer backbone. The chemical instability of the quaternary ammonium (QA)-based head groups, at alkaline pH and elevated temperature, is a significant threshold in AEMFC technology. This review work aims to introduce recent studies on the chemical stability of various QA-based head groups and transportation of OH- ions in AEMFC, via modeling and simulation techniques, at different scales. It starts by introducing the fundamental theories behind AEM-based fuel-cell technology. In the main body of this review, we present selected computational studies that deal with the effects of various parameters on AEMs, via a variety of multi-length and multi-time-scale modeling and simulation methods. Such methods include electronic structure calculations via the quantum Density Functional Theory (DFT), ab initio, classical all-atom Molecular Dynamics (MD) simulations, and coarse-grained MD simulations. The explored processing and structural parameters include temperature, hydration levels, several QA-based head groups, various types of QA-based head groups and backbones, etc. Nowadays, many methods and software packages for molecular and materials modeling are available. Applications of such methods may help to understand the transportation mechanisms of OH- ions, the chemical stability of functional head groups, and many other relevant properties, leading to a performance-based molecular and structure design as well as, ultimately, improved AEM-based fuel cell performances. This contribution aims to introduce those molecular modeling methods and their recent applications to the AEM-based fuel cells research community.
Collapse
Affiliation(s)
- Mirat Karibayev
- Department of Chemical & Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
| | - Sandugash Kalybekkyzy
- Laboratory of Advanced Materials and Systems for Energy Storage, Center for Energy and Advanced Materials Science, National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
| | - Yanwei Wang
- Department of Chemical & Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
- Laboratory of Computational Materials Science for Energy Applications, Center for Energy and Advanced Materials Science, National Laboratory Astana, Nur-Sultan 010000, Kazakhstan
| | - Almagul Mentbayeva
- Department of Chemical & Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
- Laboratory of Advanced Materials and Systems for Energy Storage, Center for Energy and Advanced Materials Science, National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
| |
Collapse
|
8
|
Wu M, Zhang X, Zhao Y, Yang C, Jing S, Wu Q, Brozena A, Miller JT, Libretto NJ, Wu T, Bhattacharyya S, Garaga MN, Zhang Y, Qi Y, Greenbaum SG, Briber RM, Yan Y, Hu L. A high-performance hydroxide exchange membrane enabled by Cu 2+-crosslinked chitosan. NATURE NANOTECHNOLOGY 2022; 17:629-636. [PMID: 35437322 DOI: 10.1038/s41565-022-01112-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Ion exchange membranes are widely used to selectively transport ions in various electrochemical devices. Hydroxide exchange membranes (HEMs) are promising to couple with lower cost platinum-free electrocatalysts used in alkaline conditions, but are not stable enough in strong alkaline solutions. Herein, we present a Cu2+-crosslinked chitosan (chitosan-Cu) material as a stable and high-performance HEM. The Cu2+ ions are coordinated with the amino and hydroxyl groups of chitosan to crosslink the chitosan chains, forming hexagonal nanochannels (~1 nm in diameter) that can accommodate water diffusion and facilitate fast ion transport, with a high hydroxide conductivity of 67 mS cm-1 at room temperature. The Cu2+ coordination also enhances the mechanical strength of the membrane, reduces its permeability and, most importantly, improves its stability in alkaline solution (only 5% conductivity loss at 80 °C after 1,000 h). These advantages make chitosan-Cu an outstanding HEM, which we demonstrate in a direct methanol fuel cell that exhibits a high power density of 305 mW cm-2. The design principle of the chitosan-Cu HEM, in which ion transport channels are generated in the polymer through metal-crosslinking of polar functional groups, could inspire the synthesis of many ion exchange membranes for ion transport, ion sieving, ion filtration and more.
Collapse
Affiliation(s)
- Meiling Wu
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA
| | - Xin Zhang
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA
| | - Yun Zhao
- Centre for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Chunpeng Yang
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA
| | - Shuangshuang Jing
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA
| | - Qisheng Wu
- School of Engineering, Brown University, Providence, RI, USA
| | - Alexandra Brozena
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA
| | - Jeffrey T Miller
- Davidson School of Chemical Engineering, University of Purdue, West Lafayette, IN, USA
| | - Nicole J Libretto
- Davidson School of Chemical Engineering, University of Purdue, West Lafayette, IN, USA
| | - Tianpin Wu
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | | | | | - Yugang Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratories, Upton, NY, USA
| | - Yue Qi
- School of Engineering, Brown University, Providence, RI, USA
| | | | - Robert M Briber
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA
| | - Yushan Yan
- Centre for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA.
| |
Collapse
|
9
|
Foglia F, Berrod Q, Clancy AJ, Smith K, Gebel G, Sakai VG, Appel M, Zanotti JM, Tyagi M, Mahmoudi N, Miller TS, Varcoe JR, Periasamy AP, Brett DJL, Shearing PR, Lyonnard S, McMillan PF. Disentangling water, ion and polymer dynamics in an anion exchange membrane. NATURE MATERIALS 2022; 21:555-563. [PMID: 35301475 DOI: 10.1038/s41563-022-01197-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/11/2022] [Indexed: 05/12/2023]
Abstract
Semipermeable polymeric anion exchange membranes are essential for separation, filtration and energy conversion technologies including reverse electrodialysis systems that produce energy from salinity gradients, fuel cells to generate electrical power from the electrochemical reaction between hydrogen and oxygen, and water electrolyser systems that provide H2 fuel. Anion exchange membrane fuel cells and anion exchange membrane water electrolysers rely on the membrane to transport OH- ions between the cathode and anode in a process that involves cooperative interactions with H2O molecules and polymer dynamics. Understanding and controlling the interactions between the relaxation and diffusional processes pose a main scientific and critical membrane design challenge. Here quasi-elastic neutron scattering is applied over a wide range of timescales (100-103 ps) to disentangle the water, polymer relaxation and OH- diffusional dynamics in commercially available anion exchange membranes (Fumatech FAD-55) designed for selective anion transport across different technology platforms, using the concept of serial decoupling of relaxation and diffusional processes to analyse the data. Preliminary data are also reported for a laboratory-prepared anion exchange membrane especially designed for fuel cell applications.
Collapse
Affiliation(s)
- Fabrizia Foglia
- Department of Chemistry, Christopher Ingold Laboratory, University College London, London, UK.
| | - Quentin Berrod
- Université Grenoble Alpes, CNRS, CEA, IRIG-SyMMES, Grenoble, France
| | - Adam J Clancy
- Department of Chemistry, Christopher Ingold Laboratory, University College London, London, UK
| | - Keenan Smith
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, UK
| | - Gérard Gebel
- Université Grenoble Alpes, CNRS, CEA, IRIG-SyMMES, Grenoble, France
| | - Victoria García Sakai
- ISIS Neutron and Muon Source, Science & Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Chilton, UK
| | | | - Jean-Marc Zanotti
- Laboratoire Léon Brillouin (CEA-CNRS), Université Paris-Saclay, CEA Saclay, Gif-sur-Yvette Cedex, France
| | - Madhusudan Tyagi
- NIST Center for Neutron Research (NCNR), National Institute of Standards and Technology, Gaithersburg, MD, USA
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA
| | - Najet Mahmoudi
- ISIS Neutron and Muon Source, Science & Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Chilton, UK
| | - Thomas S Miller
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, UK
| | - John R Varcoe
- Department of Chemistry, University of Surrey, Guildford, UK
| | | | - Daniel J L Brett
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, UK
| | - Paul R Shearing
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, UK
| | - Sandrine Lyonnard
- Université Grenoble Alpes, CNRS, CEA, IRIG-SyMMES, Grenoble, France.
| | - Paul F McMillan
- Department of Chemistry, Christopher Ingold Laboratory, University College London, London, UK
| |
Collapse
|
10
|
Yang Y, Peltier CR, Zeng R, Schimmenti R, Li Q, Huang X, Yan Z, Potsi G, Selhorst R, Lu X, Xu W, Tader M, Soudackov AV, Zhang H, Krumov M, Murray E, Xu P, Hitt J, Xu L, Ko HY, Ernst BG, Bundschu C, Luo A, Markovich D, Hu M, He C, Wang H, Fang J, DiStasio RA, Kourkoutis LF, Singer A, Noonan KJT, Xiao L, Zhuang L, Pivovar BS, Zelenay P, Herrero E, Feliu JM, Suntivich J, Giannelis EP, Hammes-Schiffer S, Arias T, Mavrikakis M, Mallouk TE, Brock JD, Muller DA, DiSalvo FJ, Coates GW, Abruña HD. Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies. Chem Rev 2022; 122:6117-6321. [PMID: 35133808 DOI: 10.1021/acs.chemrev.1c00331] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydrogen energy-based electrochemical energy conversion technologies offer the promise of enabling a transition of the global energy landscape from fossil fuels to renewable energy. Here, we present a comprehensive review of the fundamentals of electrocatalysis in alkaline media and applications in alkaline-based energy technologies, particularly alkaline fuel cells and water electrolyzers. Anion exchange (alkaline) membrane fuel cells (AEMFCs) enable the use of nonprecious electrocatalysts for the sluggish oxygen reduction reaction (ORR), relative to proton exchange membrane fuel cells (PEMFCs), which require Pt-based electrocatalysts. However, the hydrogen oxidation reaction (HOR) kinetics is significantly slower in alkaline media than in acidic media. Understanding these phenomena requires applying theoretical and experimental methods to unravel molecular-level thermodynamics and kinetics of hydrogen and oxygen electrocatalysis and, particularly, the proton-coupled electron transfer (PCET) process that takes place in a proton-deficient alkaline media. Extensive electrochemical and spectroscopic studies, on single-crystal Pt and metal oxides, have contributed to the development of activity descriptors, as well as the identification of the nature of active sites, and the rate-determining steps of the HOR and ORR. Among these, the structure and reactivity of interfacial water serve as key potential and pH-dependent kinetic factors that are helping elucidate the origins of the HOR and ORR activity differences in acids and bases. Additionally, deliberately modulating and controlling catalyst-support interactions have provided valuable insights for enhancing catalyst accessibility and durability during operation. The design and synthesis of highly conductive and durable alkaline membranes/ionomers have enabled AEMFCs to reach initial performance metrics equal to or higher than those of PEMFCs. We emphasize the importance of using membrane electrode assemblies (MEAs) to integrate the often separately pursued/optimized electrocatalyst/support and membranes/ionomer components. Operando/in situ methods, at multiscales, and ab initio simulations provide a mechanistic understanding of electron, ion, and mass transport at catalyst/ionomer/membrane interfaces and the necessary guidance to achieve fuel cell operation in air over thousands of hours. We hope that this Review will serve as a roadmap for advancing the scientific understanding of the fundamental factors governing electrochemical energy conversion in alkaline media with the ultimate goal of achieving ultralow Pt or precious-metal-free high-performance and durable alkaline fuel cells and related technologies.
Collapse
Affiliation(s)
- Yao Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Cheyenne R Peltier
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Roberto Schimmenti
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Qihao Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Zhifei Yan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Georgia Potsi
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Ryan Selhorst
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xinyao Lu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Weixuan Xu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Mariel Tader
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Alexander V Soudackov
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Hanguang Zhang
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Mihail Krumov
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ellen Murray
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Pengtao Xu
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jeremy Hitt
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Linxi Xu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hsin-Yu Ko
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Brian G Ernst
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Colin Bundschu
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Aileen Luo
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Danielle Markovich
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Meixue Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Cheng He
- Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Hongsen Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Robert A DiStasio
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Lena F Kourkoutis
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Andrej Singer
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kevin J T Noonan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Li Xiao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Bryan S Pivovar
- Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Piotr Zelenay
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Enrique Herrero
- Instituto de Electroquímica, Universidad de Alicante, Alicante E-03080, Spain
| | - Juan M Feliu
- Instituto de Electroquímica, Universidad de Alicante, Alicante E-03080, Spain
| | - Jin Suntivich
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Emmanuel P Giannelis
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | | | - Tomás Arias
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Thomas E Mallouk
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joel D Brock
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - David A Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Francis J DiSalvo
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.,Center for Alkaline Based Energy Solutions (CABES), Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
11
|
|
12
|
Liu M, Hu X, Hu B, Liu L, Li N. Soluble poly(aryl piperidinium) with extended aromatic segments as anion exchange membranes for alkaline fuel cells and water electrolysis. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119966] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Yang Y, Li P, Zheng X, Sun W, Dou SX, Ma T, Pan H. Anion-exchange membrane water electrolyzers and fuel cells. Chem Soc Rev 2022; 51:9620-9693. [DOI: 10.1039/d2cs00038e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The key components, working management, and operating techniques of anion-exchange membrane water electrolyzers and fuel cells are reviewed for the first time.
Collapse
Affiliation(s)
- Yaxiong Yang
- Institute of Science and Technology for New Energy, Xi’an Technological University, Xi’an, 710021, P. R. China
| | - Peng Li
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
- Institute for Superconducting & Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Xiaobo Zheng
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wenping Sun
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
| | - Shi Xue Dou
- Institute of Energy Material Science, University of Shanghai for Science and Technology, Shanghai 200093, China
- Institute for Superconducting & Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi’an Technological University, Xi’an, 710021, P. R. China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
14
|
|
15
|
Han J, Song W, Cheng X, Cheng Q, Zhang Y, Liu C, Zhou X, Ren Z, Hu M, Ning T, Xiao L, Zhuang L. Conductivity and Stability Properties of Anion Exchange Membranes: Cation Effect and Backbone Effect. CHEMSUSCHEM 2021; 14:5021-5031. [PMID: 34498428 DOI: 10.1002/cssc.202101446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/03/2021] [Indexed: 06/13/2023]
Abstract
The rise of heterocycle cations, a new class of stable cations, has fueled faster growth of research interest in heterocycle cation-attached anion exchange membranes (AEMs). However, once cations are grafted onto backbones, the effect of backbones on properties of AEMs must also be taken into account. In order to comprehensively study the influence of cations effect and backbones effect on AEMs performance, a series of AEMs were prepared by grafting spacer cations, heterocycles cations, and aromatic cations onto brominated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO) or poly(vinylbenzyl chloride) (PVB) backbones, respectively. Spacer cation [trimethylamine (TMA), N,N-dimethylethylamine (DMEA)]-attached AEMs showed general ion transportation and stability behaviors, but exhibited high cationic reaction efficiency. Heterocycle cation [1-methylpyrrolidine (MPY), 1-methylpiperidine (MPrD)]-attached AEMs showed excellent chemical stability, but their ion conduction properties were unimpressive. Aromatic cation [1-methylimidazole (MeIm), N,N-dimethylaniline (DMAni)]-attached AEMs exhibited superior ionic conductivity, while their poor cations stabilities hindered the application of the membranes. Besides, it was found that PVB-based AEMs had excellent backbone stability, but BPPO-based AEMs exhibited higher OH- conductivity and cation stability than those of the same cations grafted PVB-based AEMs due to their higher water uptake (WU). For example, the ionic conductivities (ICs) of BPPO-TMA and PVB-TMA at 80 °C were 53.1 and 38.3 mS cm-1 , and their WU was 152.3 and 95.1 %, respectively. After the stability test, the IC losses of BPPO-TMA and PVB-TMA were 21.4 and 32.2 %, respectively. The result demonstrated that the conductivity and stability properties of the AEMs could be enhanced by increasing the WU of the membranes. These findings allowed the matching of cations to the appropriate backbones and reasonable modification of the AEM structure. In addition, these results helped to fundamentally understand the influence of cation effect and backbone effect on AEM performance.
Collapse
Affiliation(s)
- Juanjuan Han
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Wenfeng Song
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Xueqi Cheng
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Qiang Cheng
- Early Warning Simulation Training Center, People's Liberation Army Air Force Early Warning Academy, Wuhan, 430019, P. R. China
| | - Yangyang Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Chifeng Liu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Xiaorong Zhou
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Zhandong Ren
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Meixue Hu
- College of Chemistry and Molecular Sciences Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, P. R. China
| | - Tianshu Ning
- College of Chemistry and Molecular Sciences Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, P. R. China
| | - Li Xiao
- College of Chemistry and Molecular Sciences Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, P. R. China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
16
|
Abdi ZG, Chen J, Chiu T, Yang H, Yu H. Synthesis of ionic polybenzimidazoles with broad ion exchange capacity range for anion exchange membrane fuel cell application. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zelalem Gudeta Abdi
- Department of Materials Science and Engineering National Taiwan University of Science and Technology Taipei Taiwan
| | - Jyh‐Chien Chen
- Department of Materials Science and Engineering National Taiwan University of Science and Technology Taipei Taiwan
| | - Tse‐Han Chiu
- Department of Materials Science and Engineering National Taiwan University of Science and Technology Taipei Taiwan
| | - Hsiharng Yang
- Graduate Institute of Precision Engineering National Chung Hsing University Taichung City Taiwan
- Innovation and Development Center of Sustainable Agriculture (IDCSA) National Chung Hsing University Taichung City Taiwan
| | - Hsuan‐Hung Yu
- Graduate Institute of Precision Engineering National Chung Hsing University Taichung City Taiwan
| |
Collapse
|
17
|
Charvát J, Mazúr P, Paidar M, Pocedič J, Vrána J, Mrlík J, Kosek J. The role of ion exchange membrane in vanadium oxygen fuel cell. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Facilitating ionic conduction for anion exchange membrane via employing star-shaped block copolymer. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119290] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Chen N, Wang HH, Kim SP, Kim HM, Lee WH, Hu C, Bae JY, Sim ES, Chung YC, Jang JH, Yoo SJ, Zhuang Y, Lee YM. Poly(fluorenyl aryl piperidinium) membranes and ionomers for anion exchange membrane fuel cells. Nat Commun 2021; 12:2367. [PMID: 33888709 PMCID: PMC8062622 DOI: 10.1038/s41467-021-22612-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/22/2021] [Indexed: 01/18/2023] Open
Abstract
Low-cost anion exchange membrane fuel cells have been investigated as a promising alternative to proton exchange membrane fuel cells for the last decade. The major barriers to the viability of anion exchange membrane fuel cells are their unsatisfactory key components-anion exchange ionomers and membranes. Here, we present a series of durable poly(fluorenyl aryl piperidinium) ionomers and membranes where the membranes possess high OH- conductivity of 208 mS cm-1 at 80 °C, low H2 permeability, excellent mechanical properties (84.5 MPa TS), and 2000 h ex-situ durability in 1 M NaOH at 80 °C, while the ionomers have high water vapor permeability and low phenyl adsorption. Based on our rational design of poly(fluorenyl aryl piperidinium) membranes and ionomers, we demonstrate alkaline fuel cell performances of 2.34 W cm-2 in H2-O2 and 1.25 W cm-2 in H2-air (CO2-free) at 80 °C. The present cells can be operated stably under a 0.2 A cm-2 current density for ~200 h.
Collapse
Affiliation(s)
- Nanjun Chen
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Ho Hyun Wang
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Sun Pyo Kim
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hae Min Kim
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Won Hee Lee
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Chuan Hu
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Joon Yong Bae
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Eun Seob Sim
- Department of Materials Science and Engineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Yong-Chae Chung
- Department of Materials Science and Engineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Jue-Hyuk Jang
- Hydrogen Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Sung Jong Yoo
- Hydrogen Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Yongbing Zhuang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, PR China
| | - Young Moo Lee
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
20
|
|
21
|
Zhegur-Khais A, Kubannek F, Krewer U, Dekel DR. Measuring the true hydroxide conductivity of anion exchange membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118461] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Meek KM, Reed CM, Pivovar B, Kreuer KD, Varcoe JR, Bance-Soualhi R. The alkali degradation of LDPE-based radiation-grafted anion-exchange membranes studied using different ex situ methods. RSC Adv 2020; 10:36467-36477. [PMID: 35517956 PMCID: PMC9056956 DOI: 10.1039/d0ra06484j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
Three different ex situ alkali degradation protocols were compared on single batches of LDPE-based radiation-grafted anion-exchange membranes (containing trimethylammonium, N-methylpiperidinium, and N-methylpyrrolidinium headgroups).
Collapse
Affiliation(s)
- Kelly M. Meek
- Electrochemical Engineering & Materials Chemistry
- National Renewable Energy Laboratory (NREL)
- Golden
- USA
- Department of Chemical and Biological Engineering
| | - Carly M. Reed
- Department of Chemistry
- School of Chemistry and Chemical Engineering
- University of Surrey
- Guildford GU2 7XH
- UK
| | - Bryan Pivovar
- Electrochemical Engineering & Materials Chemistry
- National Renewable Energy Laboratory (NREL)
- Golden
- USA
| | - Klaus-Dieter Kreuer
- Max-Planck-Institut für Festkörperforschung (MPI-FKF)
- D-70569 Stuttgart
- Germany
| | - John R. Varcoe
- Department of Chemistry
- School of Chemistry and Chemical Engineering
- University of Surrey
- Guildford GU2 7XH
- UK
| | - Rachida Bance-Soualhi
- Department of Chemistry
- School of Chemistry and Chemical Engineering
- University of Surrey
- Guildford GU2 7XH
- UK
| |
Collapse
|