1
|
Shekhar H, Behera P, Naik A, Mishra M, Sahoo H. Interaction between polydopamine-based IONPs and human serum albumin (HSA): a spectroscopic analysis with cytotoxicity impact. Nanotoxicology 2024; 18:479-498. [PMID: 39177468 DOI: 10.1080/17435390.2024.2392579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/24/2024]
Abstract
Iron oxide nanoparticles (IONPs) have been extensively explored in biomedicine, bio-sensing, hyperthermia, and drug/gene delivery, attributed to their versatile and tunable properties. However, owing to its numerous applications, the functionalization of IONPs with appropriate materials is in demand. To achieve optimal functionalization of IONPs, polydopamine (PDA) was utilized due to its ability to provide a superior functionalized surface, near-infrared light absorption, and adhesive nature to customize desired functionalized IONPs. This notion of involving PDA led to the successful synthesis of magnetite-PDA nanoparticles, where PDA is surface-coated on magnetite (Fe3O4@PDA). The Fe3O4@PDA nanoparticles were characterized using techniques like TEM, FESEM, PXRD, XPS, VSM, and FTIR, suggesting PDA's successful attachment with magnetite crystal structure retention. Human serum albumin (HSA), the predominant protein in blood plasma, interacts with the delivered nanoparticles. Therefore, we have employed various spectroscopic techniques, along with cytotoxicity, to inspect the effect of Fe3O4@PDA NPs on the stability and structure of HSA. The structural alterations were examined using circular dichroism (CD) and synchronous fluorescence spectroscopy (SFS). It has been observed that there are no structural perturbations in the secondary structure of the HSA protein after interaction with Fe3O4@PDA. Studies using steady-state fluorescence revealed that the inherent fluorescence intensities of HSA were suppressed after interaction with Fe3O4@PDA. In addition, temperature-dependent fluorescence measurements suggested that the type of quenching consists of both static and dynamic quenching simultaneously. A cytotoxicity study in Drosophila melanogaster larvae revealed no cytotoxic effects but did show a minor genotoxic effect only at higher concentrations.
Collapse
Affiliation(s)
- Himanshu Shekhar
- Biophysical and Protein Chemistry Lab, Department of Chemistry, National Institute of Technology, Rourkela, India
| | - Priyatama Behera
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Ashutosh Naik
- Biophysical and Protein Chemistry Lab, Department of Chemistry, National Institute of Technology, Rourkela, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Harekrushna Sahoo
- Biophysical and Protein Chemistry Lab, Department of Chemistry, National Institute of Technology, Rourkela, India
- Center for Nanomaterials, National Institute of Technology, Rourkela, India
| |
Collapse
|
2
|
Ilyas A, Vankelecom IFJ. Designing sustainable membrane-based water treatment via fouling control through membrane interface engineering and process developments. Adv Colloid Interface Sci 2023; 312:102834. [PMID: 36634445 DOI: 10.1016/j.cis.2023.102834] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 12/05/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Membrane-based water treatment processes have been established as a powerful approach for clean water production. However, despite the significant advances made in terms of rejection and flux, provision of sustainable and energy-efficient water production is restricted by the inevitable issue of membrane fouling, known to be the major contributor to the elevated operating costs due to frequent chemical cleaning, increased transmembrane resistance, and deterioration of permeate flux. This review provides an overview of fouling control strategies in different membrane processes, such as microfiltration, ultrafiltration, membrane bioreactors, and desalination via reverse osmosis and forward osmosis. Insights into the recent advancements are discussed and efforts made in terms of membrane development, modules arrangement, process optimization, feed pretreatment, and fouling monitoring are highlighted to evaluate their overall impact in energy- and cost-effective water treatment. Major findings in four key aspects are presented, including membrane surface modification, modules design, process integration, and fouling monitoring. Among the above mentioned anti-fouling strategies, a large part of research has been focused on membrane surface modifications using a number of anti-fouling materials whereas much less research has been devoted to membrane module advancements and in-situ fouling monitoring and control. At the end, a critical analysis is provided for each anti-fouling strategy and a rationale framework is provided for design of efficient membranes and process for water treatment.
Collapse
Affiliation(s)
- Ayesha Ilyas
- Membrane Technology Group (MTG), Division cMACS, Faculty of Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, Box 2454, 3001 Leuven, Belgium
| | - Ivo F J Vankelecom
- Membrane Technology Group (MTG), Division cMACS, Faculty of Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, Box 2454, 3001 Leuven, Belgium.
| |
Collapse
|
3
|
Ding J, Wang J, Luo X, Xu D, Liu Y, Li P, Li S, Wu R, Gao X, Liang H. A passive-active combined strategy for ultrafiltration membrane fouling control in continuous oily wastewater purification. WATER RESEARCH 2022; 226:119219. [PMID: 36242937 DOI: 10.1016/j.watres.2022.119219] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Membrane-based technology has been confirmed as an effective way to treat emulsified oily wastewater, however, membrane fouling is still one of practical challenges in long-term operation. Herein, a novel passive-active combined strategy was proposed to control membrane fouling in continuous oily wastewater purification, where the δ-MnO2 decoration layer helped to reduce the total fouling ratio (passive strategy for fouling mitigation) and the catalytic cleaning effectively removed the irreversible oil fouling (active strategy for fouling removal). The functional membrane was prepared via in-situ modification, referred to as δ-MnO2@TA-PES. The morphology, crystalline phase, chemical structure and surface properties of the membranes were systematically characterized. Compared with PES, the δ-MnO2@TA-PES possessed superhydrophilicity, enhanced electronegativity and narrowed pore size. The δ-MnO2@TA-PES achieved high water permeation flux of 723.9 L·m - 2·h - 1·bar-1, excellent oil rejection with separation efficiency above 98.5% for various emulsions, and durable anti-oil-fouling performance with FRRb of 98.0%. Notably, the oil cake layer fouling on δ-MnO2@TA-PES was greatly alleviated owing to its enhanced surface properties. In addition, δ-MnO2@TA-PES showed high cleaning efficiency in the peroxymonosulfate (PMS) cleaning process, where the radical and nonradical pathways occurred simultaneously. And the active substances generated in the nonradical process (especially 1O2) were considered as the main contributor to the reduction of irreversible fouling. Overall, the novel strategy of fouling control ensured the efficient operation of ultrafiltration membranes for the continuous oily wastewater purification.
Collapse
Affiliation(s)
- Junwen Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jinlong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xinsheng Luo
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Daliang Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yatao Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Peijie Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shirong Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Rui Wu
- Harbin Institute of Technology National Engineering Research Center of Water Resources Co., Ltd, Harbin, 150090, China; Guangdong Yuehai Water Investment Co., Ltd, Shenzhen, 518021, China
| | - Xinlei Gao
- Harbin Institute of Technology National Engineering Research Center of Water Resources Co., Ltd, Harbin, 150090, China; Guangdong Yuehai Water Investment Co., Ltd, Shenzhen, 518021, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
4
|
Chen X, Zhan Y, Sun A, Feng Q, Yang W, Dong H, Chen Y, Zhang Y. Anchoring the TiO2@crumpled graphene oxide core–shell sphere onto electrospun polymer fibrous membrane for the fast separation of multi-component pollutant-oil–water emulsion. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
5
|
Feng Q, Zhan Y, Yang W, Dong H, Sun A, Li L, Chen X, Chen Y. Ultra-high flux and synergistically enhanced anti-fouling Ag@MXene lamellar membrane for the fast purification of oily wastewater through nano-intercalation, photocatalytic self-cleaning and antibacterial effect. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
6
|
Jia X, Cheng Q, Tang T, Xia M, Zhou F, Wu Y, Cheng P, Xu J, Liu K, Wang D. Facile plasma grafting of zwitterions onto nanofibrous membrane surface for improved antifouling properties and filtration performance. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Nasrollahi N, Yousefpoor M, Khataee A, Vatanpour V. Polyurethane-based separation membranes: a review on fabrication techniques, applications, and future prospectives. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Mussel primed grafted zwitterionic phosphorylcholine based superhydrophilic/underwater superoleophobic antifouling membranes for oil-water separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120887] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
9
|
Nanosponge membrane with 3D-macrocycle β-cyclodextrin as molecular cage to simultaneously enhance antifouling properties and efficient separation of dye/oil mixtures. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Tong Y, Chen J, Ding W, Shi L, Li W. Fabrication of a Superhydrophilic and Underwater Superoleophobic Membrane via One-Step Strategy for High-Efficiency Semicoking Wastewater Separation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yujia Tong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jinbo Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wenlong Ding
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lijian Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Weixing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
11
|
Nayak K, Kumar A, Tripathi BP. Molecular grafting and zwitterionization based antifouling and underwater superoleophobic PVDF membranes for oil/water separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120038] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Shah RM, Cihanoğlu A, Hardcastle J, Howell C, Schiffman JD. Liquid-Infused Membranes Exhibit Stable Flux and Fouling Resistance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6148-6156. [PMID: 35042335 DOI: 10.1021/acsami.1c20674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Antifouling membranes that offer excellent operational lifetimes are critical technologies needed to meet the growing demand for clean water. In this study, we demonstrate antifouling membranes featuring an ultrathin oil layer that stayed immobilized on the surface and in the pore walls of poly(vinylidene fluoride) membranes for multiple cycles of operation at industrially relevant transmembrane pressures. An optimized quantity of a commercial Krytox oil with either a low (K103) or a high viscosity (K107) was infused onto the active surface and into the pores of membranes with a 0.45 μm pore size. The presence of the oil layer was qualitatively confirmed using crystal violet staining and variable pressure scanning electron microscopy. Using a dead-end stirred cell, a consistent pure water permeance value of 3000 L m-2 h-1 bar-1 was achieved for the K103 liquid-infused membranes for at least 10 operation cycles, which was expectedly lower than the permeance of bare control membranes (∼16 000 L m-2 h-1 bar-1), suggesting that a stable oil layer was formed on all membrane-active sites. To quantify if oil was lost during membrane operation, extensive thermogravimetric analysis was conducted on both the as-prepared and used membranes. When challenged with the microorganism, Escherichia coli K12, the liquid-infused membranes statistically reduced microbial attachment by ∼50% versus the control membranes. For the first time, we have demonstrated that by forming an immobilized, robust, and stable oil-coated membrane, we can generate high-performance membranes with stable permeance values that can be operated at relevant transmembrane pressures and provide long-lasting antifouling properties.
Collapse
Affiliation(s)
- Rushabh M Shah
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Aydın Cihanoğlu
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Justin Hardcastle
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, Maine 04469, United States
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine 04469, United States
| | - Caitlin Howell
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, Maine 04469, United States
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine 04469, United States
| | - Jessica D Schiffman
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| |
Collapse
|
13
|
Tailoring the dual role of styrene-maleic anhydride copolymer in the fabrication of polysulfone ultrafiltration membranes: Acting as a pore former and amphiphilic surface modifier. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Ding J, Liang H, Zhu X, Xu D, Luo X, Wang Z, Bai L. Surface modification of nanofiltration membranes with zwitterions to enhance antifouling properties during brackish water treatment: A new concept of a “buffer layer”. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119651] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
15
|
Maruthapandi M, Saravanan A, Manoj S, Luong JHT, Gedanken A. Facile ultrasonic preparation of a polypyrrole membrane as an absorbent for efficient oil-water separation and as an antimicrobial agent. ULTRASONICS SONOCHEMISTRY 2021; 78:105746. [PMID: 34507263 PMCID: PMC8429107 DOI: 10.1016/j.ultsonch.2021.105746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 05/10/2023]
Abstract
Polypyrrole (PPY) spherical particles synthesized using carbon dots as an efficient catalyst were strongly embedded on fluorinated nonwoven fabric by ultrasonication to form a membrane with high hydrophilicity. An optimal amount of PPY adhered to the membrane after 30 min of sonication enhanced the overall membrane area with high hydrophilicity. Oil with high hydrophobicity was repelled by the resulting membrane, whereas water was freely penetrated and diffused from the membrane. The membrane exhibited good reusability and efficiency for the recovery of oil from a cooking oil-water mixture within 30 s. The incorporation of PPY in the fluorinated fabric imparts significant antibacterial properties against two common pathogens, Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive). The anti-biofouling membrane could pave the way for its potential application to separate spilled oil from contaminated waters, comprising different microorganisms and living species. The novelty of this manuscript is described in a new system, the fabrication of PPY membranes with two important properties: biocidal and oil/water separation.
Collapse
Affiliation(s)
- Moorthy Maruthapandi
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Arumugam Saravanan
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Shanmugasundaram Manoj
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - John H T Luong
- School of Chemistry, University College Cork, Cork T12 YN60, Ireland
| | - Aharon Gedanken
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel.
| |
Collapse
|