1
|
Portillo JAC, Pfaff A, Vos S, Weng M, Nagaraj RH, Subauste CS. Advanced Glycation End Products Upregulate CD40 in Human Retinal Endothelial and Müller Cells: Relevance to Diabetic Retinopathy. Cells 2024; 13:429. [PMID: 38474393 PMCID: PMC10930611 DOI: 10.3390/cells13050429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
CD40 induces pro-inflammatory responses in endothelial and Müller cells and is required for the development of diabetic retinopathy (DR). CD40 is upregulated in these cells in patients with DR. CD40 upregulation is a central feature of CD40-driven inflammatory disorders. What drives CD40 upregulation in the diabetic retina remains unknown. We examined the role of advanced glycation end products (AGEs) in CD40 upregulation in endothelial cells and Müller cells. Human endothelial cells and Müller cells were incubated with unmodified or methylglyoxal (MGO)-modified fibronectin. CD40 expression was assessed by flow cytometry. The expression of ICAM-1 and CCL2 was examined by flow cytometry or ELISA after stimulation with CD154 (CD40 ligand). The expression of carboxymethyl lysine (CML), fibronectin, and laminin as well as CD40 in endothelial and Müller cells from patients with DR was examined by confocal microscopy. Fibronectin modified by MGO upregulated CD40 in endothelial and Müller cells. CD40 upregulation was functionally relevant. MGO-modified fibronectin enhanced CD154-driven upregulation of ICAM-1 and CCL2 in endothelial and Müller cells. Increased CD40 expression in endothelial and Müller cells from patients with DR was associated with increased CML expression in fibronectin and laminin. These findings identify AGEs as inducers of CD40 upregulation in endothelial and Müller cells and enhancers of CD40-dependent pro-inflammatory responses. CD40 upregulation in these cells is associated with higher CML expression in fibronectin and laminin in patients with DR. This study revealed that CD40 and AGEs, two important drivers of DR, are interconnected.
Collapse
Affiliation(s)
- Jose-Andres C. Portillo
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (J.-A.C.P.); (A.P.); (S.V.); (M.W.)
| | - Amelia Pfaff
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (J.-A.C.P.); (A.P.); (S.V.); (M.W.)
| | - Sarah Vos
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (J.-A.C.P.); (A.P.); (S.V.); (M.W.)
| | - Matthew Weng
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (J.-A.C.P.); (A.P.); (S.V.); (M.W.)
| | - Ram H. Nagaraj
- Department of Ophthalmology, University of Colorado, Aurora, CO 80045, USA;
| | - Carlos S. Subauste
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (J.-A.C.P.); (A.P.); (S.V.); (M.W.)
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
2
|
Rosu LM, Prodan-Bărbulescu C, Maghiari AL, Bernad ES, Bernad RL, Iacob R, Stoicescu ER, Borozan F, Ghenciu LA. Current Trends in Diagnosis and Treatment Approach of Diabetic Retinopathy during Pregnancy: A Narrative Review. Diagnostics (Basel) 2024; 14:369. [PMID: 38396408 PMCID: PMC10887682 DOI: 10.3390/diagnostics14040369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Diabetes mellitus during pregnancy and gestational diabetes are major concerns worldwide. These conditions may lead to the development of severe diabetic retinopathy during pregnancy or worsen pre-existing cases. Gestational diabetes also increases the risk of diabetes for both the mother and the fetus in the future. Understanding the prevalence, evaluating risk factors contributing to pathogenesis, and identifying treatment challenges related to diabetic retinopathy in expectant mothers are all of utmost importance. Pregnancy-related physiological changes, including those in metabolism, blood flow, immunity, and hormones, can contribute to the development or worsening of diabetic retinopathy. If left untreated, this condition may eventually result in irreversible vision loss. Treatment options such as laser therapy, intravitreal anti-vascular endothelial growth factor drugs, and intravitreal steroids pose challenges in managing these patients without endangering the developing baby and mother. This narrative review describes the management of diabetic retinopathy during pregnancy, highlights its risk factors, pathophysiology, and diagnostic methods, and offers recommendations based on findings from previous literature.
Collapse
Affiliation(s)
- Luminioara M. Rosu
- Department of Anatomy and Embryology, Victor Babeș University of Medicine and Pharmacy, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (L.M.R.); (A.L.M.); (R.I.); (F.B.)
| | - Cătălin Prodan-Bărbulescu
- Department of Anatomy and Embryology, Victor Babeș University of Medicine and Pharmacy, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (L.M.R.); (A.L.M.); (R.I.); (F.B.)
| | - Anca Laura Maghiari
- Department of Anatomy and Embryology, Victor Babeș University of Medicine and Pharmacy, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (L.M.R.); (A.L.M.); (R.I.); (F.B.)
| | - Elena S. Bernad
- Department of Obstetrics and Gynecology, Victor Babeș University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Clinic of Obstetrics and Gynecology, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania
- Center for Laparoscopy, Laparoscopic Surgery and In Vitro Fertilization, Victor Babeș University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Department of Automatic Control and Applied Informatics, Politehnica University, 300223 Timisoara, Romania;
| | - Robert L. Bernad
- Department of Automatic Control and Applied Informatics, Politehnica University, 300223 Timisoara, Romania;
| | - Roxana Iacob
- Department of Anatomy and Embryology, Victor Babeș University of Medicine and Pharmacy, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (L.M.R.); (A.L.M.); (R.I.); (F.B.)
- Discipline of Radiology and Medical Imaging, Victor Babeș University of Medicine and Pharmacy, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Emil Robert Stoicescu
- Discipline of Radiology and Medical Imaging, Victor Babeș University of Medicine and Pharmacy, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
- Research Center for Pharmaco-Toxicological Evaluations, Victor Babeș University of Medicine and Pharmacy, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Florina Borozan
- Department of Anatomy and Embryology, Victor Babeș University of Medicine and Pharmacy, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (L.M.R.); (A.L.M.); (R.I.); (F.B.)
| | - Laura Andreea Ghenciu
- Department of Functional Sciences, Victor Babeș University of Medicine and Pharmacy, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
| |
Collapse
|
3
|
Berdowska I, Matusiewicz M, Fecka I. Methylglyoxal in Cardiometabolic Disorders: Routes Leading to Pathology Counterbalanced by Treatment Strategies. Molecules 2023; 28:7742. [PMID: 38067472 PMCID: PMC10708463 DOI: 10.3390/molecules28237742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Methylglyoxal (MGO) is the major compound belonging to reactive carbonyl species (RCS) responsible for the generation of advanced glycation end products (AGEs). Its upregulation, followed by deleterious effects at the cellular and systemic levels, is associated with metabolic disturbances (hyperglycemia/hyperinsulinemia/insulin resistance/hyperlipidemia/inflammatory processes/carbonyl stress/oxidative stress/hypoxia). Therefore, it is implicated in a variety of disorders, including metabolic syndrome, diabetes mellitus, and cardiovascular diseases. In this review, an interplay between pathways leading to MGO generation and scavenging is addressed in regard to this system's impairment in pathology. The issues associated with mechanistic MGO involvement in pathological processes, as well as the discussion on its possible causative role in cardiometabolic diseases, are enclosed. Finally, the main strategies aimed at MGO and its AGEs downregulation with respect to cardiometabolic disorders treatment are addressed. Potential glycation inhibitors and MGO scavengers are discussed, as well as the mechanisms of their action.
Collapse
Affiliation(s)
- Izabela Berdowska
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | | | - Izabela Fecka
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
4
|
Oezer K, Kolibabka M, Gassenhuber J, Dietrich N, Fleming T, Schlotterer A, Morcos M, Wohlfart P, Hammes HP. The effect of GLP-1 receptor agonist lixisenatide on experimental diabetic retinopathy. Acta Diabetol 2023; 60:1551-1565. [PMID: 37423944 PMCID: PMC10520173 DOI: 10.1007/s00592-023-02135-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/10/2023] [Indexed: 07/11/2023]
Abstract
AIMS Glucagon-like peptide-1 receptor agonists are effective treatments for type 2 diabetes, effectively lowering glucose without weight gain and with low risk for hypoglycemia. However, their influence on the retinal neurovascular unit remains unclear. In this study, we analyzed the effects of the GLP-1 RA lixisenatide on diabetic retinopathy. METHODS Vasculo- and neuroprotective effects were assessed in experimental diabetic retinopathy and high glucose-cultivated C. elegans, respectively. In STZ-diabetic Wistar rats, acellular capillaries and pericytes (quantitative retinal morphometry), neuroretinal function (mfERG), macroglia (GFAP western blot) and microglia (immunohistochemistry) quantification, methylglyoxal (LC-MS/MS) and retinal gene expressions (RNA-sequencing) were determined. The antioxidant properties of lixisenatide were tested in C. elegans. RESULTS Lixisenatide had no effect on glucose metabolism. Lixisenatide preserved the retinal vasculature and neuroretinal function. The macro- and microglial activation was mitigated. Lixisenatide normalized some gene expression changes in diabetic animals to control levels. Ets2 was identified as a regulator of inflammatory genes. In C. elegans, lixisenatide showed the antioxidative property. CONCLUSIONS Our data suggest that lixisenatide has a protective effect on the diabetic retina, most likely due to a combination of neuroprotective, anti-inflammatory and antioxidative effects of lixisenatide on the neurovascular unit.
Collapse
Affiliation(s)
- Kuebra Oezer
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Matthias Kolibabka
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Nadine Dietrich
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Thomas Fleming
- Department of Medicine I and Clinical Chemistry, Heidelberg University, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Andrea Schlotterer
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael Morcos
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Stoffwechselzentrum Rhein-Pfalz, Belchenstraße 1-5, 68163, Mannheim, Germany
| | - Paulus Wohlfart
- Sanofi, MSAT M&I Bioassays and Compliance, Frankfurt, Germany
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
5
|
Feng N, Feng Y, Tan J, Zhou C, Xu J, Chen Y, Xiao J, He Y, Wang C, Zhou M, Wu Q. Inhibition of advance glycation end products formation, gastrointestinal digestion, absorption and toxicity: A comprehensive review. Int J Biol Macromol 2023; 249:125814. [PMID: 37451379 DOI: 10.1016/j.ijbiomac.2023.125814] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/18/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Advanced glycation end-products (AGEs) are the final products of the non-enzymatic interaction between reducing sugars and amino groups in proteins, lipids and nucleic acids. In numerous diseases, such as diabetes, neuropathy, atherosclerosis, aging, nephropathy, retinopathy, and chronic renal illness, accumulation of AGEs has been proposed as a pathogenic mechanism of inflammation, oxidative stress, and structural tissue damage leading to chronic vascular issues. Current studies on the inhibition of AGEs mainly focused on food processing. However, there are few studies on the inhibition of AGEs during digestion, absorption and metabolism although there are still plenty of AGEs in our body with our daily diet. This review comprehensively expounded AGEs inhibition mechanism based on the whole process of digestion, absorption and metabolism by polyphenols, amino acids, hydrophilic colloid, carnosine and other new anti-glycation agents. Our study will provide a ground-breaking perspective on mediation or inhibition AGEs.
Collapse
Affiliation(s)
- Nianjie Feng
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Yingna Feng
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Jiangying Tan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Chen Zhou
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Jianhua Xu
- Pinyuan (Suizhou) Modern Agriculture Development Co., LTD., Suizhou, Hubei 441300, China
| | - Yashu Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, China
| | - Juan Xiao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Ministry of Education, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Yi He
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chao Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Mengzhou Zhou
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Qian Wu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| |
Collapse
|
6
|
Mehmood H, Akhtar T, Haroon M, Shah M, Rashid U, Woodward S. Synthesis of hydrazinylthiazole carboxylates: a mechanistic approach for treatment of diabetes and its complications. Future Med Chem 2023; 15:1149-1165. [PMID: 37551660 DOI: 10.4155/fmc-2023-0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
Aim: The deaths of thousands of people and millions affected by diabetes mellitus triggered us to look for alternative possible solutions to cure diabetes and its complications. Materials & methods: A series of hydrazinylthiazole carboxylates (3a-n) was prepared by cyclocondensation reaction of thiosemicarbazones with ethyl 2-chloroacetoacetate. These compounds were screened for antidiabetic potential through α-amylase inhibition, antiglycation and antioxidant assays. Results & conclusion: Most of the compounds exhibited a promising antidiabetic property. Compounds 3e and 3h showed excellent α-amylase and glycation inhibition properties. The hemolytic assay indicated that all compounds are biocompatible. Docking studies carried out on α-amylase target showed correlation between in vitro inhibition and binding energy.
Collapse
Affiliation(s)
- Hasnain Mehmood
- Department of Chemistry, Mirpur University of Science & Technology (MUST), Mirpur (AJK), 10250, Pakistan
| | - Tashfeen Akhtar
- Department of Chemistry, Mirpur University of Science & Technology (MUST), Mirpur (AJK), 10250, Pakistan
| | - Muhammad Haroon
- Department of Chemistry, Mirpur University of Science & Technology (MUST), Mirpur (AJK), 10250, Pakistan
- Department of Chemistry & Biochemistry, Miami University, 651 E. High Street, Oxford, OH 45056, USA
| | - Muhammad Shah
- Department of Chemistry, Comsat University, Abbottabad, 22060, Pakistan
| | - Umer Rashid
- Department of Chemistry, Comsat University, Abbottabad, 22060, Pakistan
| | - Simon Woodward
- GSK, Carbon Neutral Laboratories for Sustainable Chemistry, University Park Nottingham, NG7 2RD, UK
| |
Collapse
|
7
|
Chandrakumar S, Santiago Tierno I, Agarwal M, Matisioudis N, Kern TS, Ghosh K. Subendothelial Matrix Stiffening by Lysyl Oxidase Enhances RAGE-Mediated Retinal Endothelial Activation in Diabetes. Diabetes 2023; 72:973-985. [PMID: 37058096 PMCID: PMC10281239 DOI: 10.2337/db22-0761] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/30/2023] [Indexed: 04/15/2023]
Abstract
Endothelial cell (EC) activation is a crucial determinant of retinal vascular inflammation associated with diabetic retinopathy (DR), a major microvascular complication of diabetes. We previously showed that, similar to abnormal biochemical factors, aberrant mechanical cues in the form of lysyl oxidase (LOX)-dependent subendothelial matrix stiffening also contribute significantly to retinal EC activation in diabetes. Yet, how LOX is itself regulated and precisely how it mechanically controls retinal EC activation in diabetes is poorly understood. Here, we show that high-glucose-induced LOX upregulation in human retinal ECs (HRECs) is mediated by proinflammatory receptor for advanced glycation end products (RAGE). HRECs treated with methylglyoxal (MGO), an active precursor to the advanced glycation end product (AGE) MG-H1, exhibited LOX upregulation that was blocked by a RAGE inhibitor, thus confirming the ability of RAGE to promote LOX expression. Crucially, as a downstream effector of RAGE, LOX was found to mediate both the proinflammatory and matrix remodeling effects of AGE/RAGE, primarily through its ability to crosslink or stiffen matrix. Finally, using decellularized HREC-derived matrices and a mouse model of diabetes, we demonstrate that LOX-dependent matrix stiffening feeds back to enhance RAGE, thereby achieving its autoregulation and proinflammatory effects. Collectively, these findings provide fresh mechanistic insights into the regulation and proinflammatory role of LOX-dependent mechanical cues in diabetes while simultaneously implicating LOX as an alternative (downstream) target to block AGE/RAGE signaling in DR. ARTICLE HIGHLIGHTS We investigated the regulation and proinflammatory role of retinal endothelial lysyl oxidase (LOX) in diabetes. Findings reveal that LOX is upregulated by advanced glycation end products (AGE) and receptor for AGE (RAGE) and mediates AGE/RAGE-induced retinal endothelial cell activation and subendothelial matrix remodeling. We also show that LOX-dependent subendothelial matrix stiffening feeds back to enhance retinal endothelial RAGE. These findings implicate LOX as a key proinflammatory factor and an alternative (downstream) target to block AGE/RAGE signaling in diabetic retinopathy.
Collapse
Affiliation(s)
- Sathishkumar Chandrakumar
- Department of Bioengineering, University of California, Riverside, CA
- Department of Ophthalmology, University of California, Los Angeles, CA
- Doheny Eye Institute, Pasadena, CA
| | - Irene Santiago Tierno
- Department of Ophthalmology, University of California, Los Angeles, CA
- Doheny Eye Institute, Pasadena, CA
- Molecular, Cellular, and Integrated Physiology Interdepartmental PhD Program, University of California, Los Angeles, CA
| | - Mahesh Agarwal
- Department of Ophthalmology, University of California, Los Angeles, CA
- Doheny Eye Institute, Pasadena, CA
| | | | - Timothy S. Kern
- Department of Ophthalmology, University of California, Irvine, CA
- Gavin Herbert Eye Institute, University of California, Irvine, CA
| | - Kaustabh Ghosh
- Department of Bioengineering, University of California, Riverside, CA
- Department of Ophthalmology, University of California, Los Angeles, CA
- Doheny Eye Institute, Pasadena, CA
- Molecular, Cellular, and Integrated Physiology Interdepartmental PhD Program, University of California, Los Angeles, CA
| |
Collapse
|
8
|
Leone A, Nicolò A, Prevenzano I, Zatterale F, Longo M, Desiderio A, Spinelli R, Campitelli M, Conza D, Raciti GA, Beguinot F, Nigro C, Miele C. Methylglyoxal Impairs the Pro-Angiogenic Ability of Mouse Adipose-Derived Stem Cells (mADSCs) via a Senescence-Associated Mechanism. Cells 2023; 12:1741. [PMID: 37443775 PMCID: PMC10340470 DOI: 10.3390/cells12131741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Adipose-derived stem cells (ADSCs) play a crucial role in angiogenesis and repair of damaged tissues. However, in pathological conditions including diabetes, ADSC function is compromised. This work aims at evaluating the effect of Methylglyoxal (MGO), a product of chronic hyperglycemia, on mouse ADSCs' (mADSCs) pro-angiogenic function and the molecular mediators involved. The mADSCs were isolated from C57bl6 mice. MGO-adducts and p-p38 MAPK protein levels were evaluated by Western Blot. Human retinal endothelial cell (hREC) migration was analyzed by transwell assays. Gene expression was measured by qRT-PCR, and SA-βGal activity by cytofluorimetry. Soluble factor release was evaluated by multiplex assay. MGO treatment does not impair mADSC viability and induces MGO-adduct accumulation. hREC migration is reduced in response to both MGO-treated mADSCs and conditioned media from MGO-treated mADSCs, compared to untreated cells. This is associated with an increase of SA-βGal activity, SASP factor release and p53 and p21 expression, together with a VEGF- and PDGF-reduced release from MGO-treated mADSCs and a reduced p38-MAPK activation in hRECs. The MGO-induced impairment of mADSC function is reverted by senolytics. In conclusion, MGO impairs mADSCs' pro-angiogenic function through the induction of a senescent phenotype, associated with the reduced secretion of growth factors crucial for hREC migration.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Cecilia Nigro
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council & Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy; (A.L.); (A.N.); (I.P.)
| | | |
Collapse
|
9
|
An Overview towards Zebrafish Larvae as a Model for Ocular Diseases. Int J Mol Sci 2023; 24:ijms24065387. [PMID: 36982479 PMCID: PMC10048880 DOI: 10.3390/ijms24065387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 03/14/2023] Open
Abstract
Despite the obvious morphological differences in the visual system, zebrafish share a similar architecture and components of the same embryonic origin as humans. The zebrafish retina has the same layered structure and cell types with similar metabolic and phototransduction support as humans, and is functional 72 h after fertilization, allowing tests of visual function to be performed. The zebrafish genomic database supports genetic mapping studies as well as gene editing, both of which are useful in the ophthalmological field. It is possible to model ocular disorders in zebrafish, as well as inherited retinal diseases or congenital or acquired malformations. Several approaches allow the evaluation of local pathological processes derived from systemic disorders, such as chemical exposure to produce retinal hypoxia or glucose exposure to produce hyperglycemia, mimicking retinopathy of prematurity or diabetic retinopathy, respectively. The pathogenesis of ocular infections, autoimmune diseases, or aging can also be assessed in zebrafish larvae, and the preserved cellular and molecular immune mechanisms can be assessed. Finally, the zebrafish model for the study of the pathologies of the visual system complements certain deficiencies in experimental models of mammals since the regeneration of the zebrafish retina is a valuable tool for the study of degenerative processes and the discovery of new drugs and therapies.
Collapse
|
10
|
Matsumoto T, Yoshioka M, Yamada A, Taguchi K, Kobayashi T. Mechanisms underlying the methylglyoxal-induced enhancement of uridine diphosphate-mediated contraction in rat femoral artery. J Pharmacol Sci 2022; 150:100-109. [DOI: 10.1016/j.jphs.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/17/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
|
11
|
Stratmann B. Dicarbonyl Stress in Diabetic Vascular Disease. Int J Mol Sci 2022; 23:6186. [PMID: 35682865 PMCID: PMC9181283 DOI: 10.3390/ijms23116186] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/07/2023] Open
Abstract
Late vascular complications play a prominent role in the diabetes-induced increase in morbidity and mortality. Diabetes mellitus is recognised as a risk factor driving atherosclerosis and cardiovascular mortality; even after the normalisation of blood glucose concentration, the event risk is amplified-an effect called "glycolytic memory". The hallmark of this glycolytic memory and diabetic pathology are advanced glycation end products (AGEs) and reactive glucose metabolites such as methylglyoxal (MGO), a highly reactive dicarbonyl compound derived mainly from glycolysis. MGO and AGEs have an impact on vascular and organ structure and function, contributing to organ damage. As MGO is not only associated with hyperglycaemia in diabetes but also with other risk factors for diabetic vascular complications such as obesity, dyslipidaemia and hypertension, MGO is identified as a major player in the development of vascular complications in diabetes both on micro- as well as macrovascular level. In diabetes mellitus, the detoxifying system for MGO, the glyoxalase system, is diminished, accounting for the increased MGO concentration and glycotoxic load. This overview will summarise current knowledge on the effect of MGO and AGEs on vascular function.
Collapse
Affiliation(s)
- Bernd Stratmann
- Herz- und Diabeteszentrum NRW, Diabeteszentrum, Ruhr Universität Bochum, 32545 Bad Oeynhausen, Germany
| |
Collapse
|
12
|
Monnier VM, Sell DR, Gao X, Genuth SM, Lachin JM, Bebu I. Plasma advanced glycation end products and the subsequent risk of microvascular complications in type 1 diabetes in the DCCT/EDIC. BMJ Open Diabetes Res Care 2022; 10:10/1/e002667. [PMID: 35058313 PMCID: PMC8783825 DOI: 10.1136/bmjdrc-2021-002667] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/01/2021] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION To assess impact of glycemic control on plasma protein-bound advanced glycation end products (pAGEs) and their association with subsequent microvascular disease. RESEARCH DESIGN AND METHODS Eleven pAGEs were measured by liquid chromatography-mass spectrometry in banked plasma from 466 participants in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) study at three time points (TPs): DCCT year 4 (TP1) and year 8 (TP2) and EDIC year 5/6 (TP3). Correlation coefficients assessed cross-sectional associations, and Cox proportional hazards models assessed associations with subsequent risk of microvascular complications through EDIC year 24. RESULTS Glucose-derived glycation products fructose-lysine (FL), glucosepane (GSPN) and carboxymethyl-lysine (CML) decreased with intensive glycemic control at both TP1 and TP2 (p<0.0001) but were similar at TP3, and correlated with hemoglobin A1c (HbA1c). At TP1, the markers were associated with the subsequent risk of several microvascular outcomes. These associations did not remain significant after adjustment for HbA1c, except methionine sulfoxide (MetSOX), which remained associated with diabetic kidney disease. In unadjusted models using all 3 TPs, glucose-derived pAGEs were associated with subsequent risk of proliferative diabetic retinopathy (PDR, p<0.003), clinically significant macular edema (CSME, p<0.015) and confirmed clinical neuropathy (CCN, p<0.018, except CML, not significant (NS)). Adjusted for age, sex, body mass index, diabetes duration and mean updated HbA1c, the associations remained significant for PDR (FL: p<0.002, GSPN: p≤0.02, CML: p<0.003, pentosidine: p<0.02), CMSE (CML: p<0.03), albuminuria (FL: p<0.02, CML: p<0.03) and CCN (FL: p<0.005, GSPN : p<0.003). CONCLUSIONS pAGEs at TP1 are not superior to HbA1c for risk prediction, but glucose-derived pAGEs at three TPs and MetSOX remain robustly associated with progression of microvascular complications in type 1 diabetes even after adjustment for HbA1c and other factors.
Collapse
Affiliation(s)
- Vincent M Monnier
- Pathology and Biochemistry, Case Western Reserve University Department of Pathology, Cleveland, Ohio, USA
| | - David R Sell
- Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xiaoyu Gao
- The Biostatistics Center, The George Washington University, Rockville, Maryland, USA
| | - Saul M Genuth
- Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - John M Lachin
- The Biostatistics Center, The George Washington University, Rockville, Maryland, USA
| | - Ionut Bebu
- The Biostatistics Center, The George Washington University, Rockville, Maryland, USA
| |
Collapse
|
13
|
Yamazaki Y, Wake H, Nishinaka T, Hatipoglu OF, Liu K, Watanabe M, Toyomura T, Mori S, Yoshino T, Nishibori M, Takahashi H. Involvement of multiple scavenger receptors in advanced glycation end product-induced vessel tube formation in endothelial cells. Exp Cell Res 2021; 408:112857. [PMID: 34600900 DOI: 10.1016/j.yexcr.2021.112857] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/16/2021] [Accepted: 09/28/2021] [Indexed: 01/01/2023]
Abstract
Toxic advanced glycation end products (toxic AGEs) derived from glycolaldehyde (AGE3) have been implicated in the development of diabetic vascular complications such as retinopathy characterised by excessive angiogenesis. Different receptor types, such as receptor for AGEs (RAGE), Toll like receptor-4 and scavenger receptors, are expressed in endothelial cells and contribute to AGE-elicited alteration of cell function. In the present study, we examined the involvement of AGE-related receptors on AGE-induced angiogenesis in endothelial cells. The effects of pharmacological inhibitors or receptor neutralizing antibodies on AGE3-induced tube formation were investigated using the in vitro Matrigel tube formation assay in b.End5 cells (mouse endothelial cells). AGE3-induced signalling pathways and receptor expression changes were analysed by Western blot analysis and flow cytometry, respectively. Both FPS-ZM1, a RAGE inhibitor, and fucoidan, a ligand for scavenger receptors, suppressed AGE3-induced tube formation. Cocktails of neutralizing antibodies against the scavenger receptors CD36, CD163 and LOX-1 prevented AGE3-induced tube formation. AGE3 activated mTOR signalling, resulting in facilitation of tube formation. Activation of the AGE-RAGE pathway also led to the upregulation of scavenger receptors. Taken together, our findings suggest that the scavenger receptors CD36, CD163 and LOX-1 in conjunction with the RAGE receptor work together to mediate toxic AGE-induced facilitation of angiogenesis.
Collapse
Affiliation(s)
- Yui Yamazaki
- Department of Pharmacology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Hidenori Wake
- Department of Pharmacology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Takashi Nishinaka
- Department of Pharmacology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan.
| | - Omer Faruk Hatipoglu
- Department of Pharmacology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | | | - Masahiro Watanabe
- Department of Pharmacology, School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama, Japan
| | - Takao Toyomura
- Department of Pharmacology, School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama, Japan
| | - Shuji Mori
- Department of Pharmacology, School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama, Japan
| | - Tadashi Yoshino
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, Japan
| | | | - Hideo Takahashi
- Department of Pharmacology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| |
Collapse
|
14
|
Dammak A, Huete-Toral F, Carpena-Torres C, Martin-Gil A, Pastrana C, Carracedo G. From Oxidative Stress to Inflammation in the Posterior Ocular Diseases: Diagnosis and Treatment. Pharmaceutics 2021; 13:1376. [PMID: 34575451 PMCID: PMC8467715 DOI: 10.3390/pharmaceutics13091376] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022] Open
Abstract
Most irreversible blindness observed with glaucoma and retina-related ocular diseases, including age-related macular degeneration and diabetic retinopathy, have their origin in the posterior segment of the eye, making their physiopathology both complex and interconnected. In addition to the age factor, these diseases share the same mechanism disorder based essentially on oxidative stress. In this context, the imbalance between the production of reactive oxygen species (ROS) mainly by mitochondria and their elimination by protective mechanisms leads to chronic inflammation. Oxidative stress and inflammation share a close pathophysiological process, appearing simultaneously and suggesting a relationship between both mechanisms. The biochemical end point of these two biological alarming systems is the release of different biomarkers that can be used in the diagnosis. Furthermore, oxidative stress, initiating in the vulnerable tissue of the posterior segment, is closely related to mitochondrial dysfunction, apoptosis, autophagy dysfunction, and inflammation, which are involved in each disease progression. In this review, we have analyzed (1) the oxidative stress and inflammatory processes in the back of the eye, (2) the importance of biomarkers, detected in systemic or ocular fluids, for the diagnosis of eye diseases based on recent studies, and (3) the treatment of posterior ocular diseases, based on long-term clinical studies.
Collapse
Affiliation(s)
- Azza Dammak
- Ocupharm Group Research, Faculty of Optic and Optometry, University Complutense of Madrid, C/Arcos del Jalon 118, 28037 Madrid, Spain; (A.D.); (F.H.-T.); (C.C.-T.); (A.M.-G.); (C.P.)
| | - Fernando Huete-Toral
- Ocupharm Group Research, Faculty of Optic and Optometry, University Complutense of Madrid, C/Arcos del Jalon 118, 28037 Madrid, Spain; (A.D.); (F.H.-T.); (C.C.-T.); (A.M.-G.); (C.P.)
| | - Carlos Carpena-Torres
- Ocupharm Group Research, Faculty of Optic and Optometry, University Complutense of Madrid, C/Arcos del Jalon 118, 28037 Madrid, Spain; (A.D.); (F.H.-T.); (C.C.-T.); (A.M.-G.); (C.P.)
| | - Alba Martin-Gil
- Ocupharm Group Research, Faculty of Optic and Optometry, University Complutense of Madrid, C/Arcos del Jalon 118, 28037 Madrid, Spain; (A.D.); (F.H.-T.); (C.C.-T.); (A.M.-G.); (C.P.)
| | - Cristina Pastrana
- Ocupharm Group Research, Faculty of Optic and Optometry, University Complutense of Madrid, C/Arcos del Jalon 118, 28037 Madrid, Spain; (A.D.); (F.H.-T.); (C.C.-T.); (A.M.-G.); (C.P.)
| | - Gonzalo Carracedo
- Ocupharm Group Research, Faculty of Optic and Optometry, University Complutense of Madrid, C/Arcos del Jalon 118, 28037 Madrid, Spain; (A.D.); (F.H.-T.); (C.C.-T.); (A.M.-G.); (C.P.)
- Department of Optometry and Vsiion, Faculty of Optic and Optometry, University Complutense of Madrid, C/Arcos del Jalon 118, 28037 Madrid, Spain
| |
Collapse
|
15
|
In Vitro Evaluation of the Toxicological Profile and Oxidative Stress of Relevant Diet-Related Advanced Glycation End Products and Related 1,2-Dicarbonyls. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9912240. [PMID: 34422213 PMCID: PMC8371648 DOI: 10.1155/2021/9912240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/09/2021] [Accepted: 07/07/2021] [Indexed: 12/28/2022]
Abstract
During food processing and storage, and in tissues and fluids under physiological conditions, the Maillard reaction occurs. During this reaction, reactive 1,2-dicarbonyl compounds arise as intermediates that undergo further reactions to form advanced glycation end products (AGEs). Diet is the primary source of exogenous AGEs. Endogenously formed AGEs have been proposed as a risk factor in the pathogenesis of diet-related diseases such as diabetes, insulin resistance, cardiovascular diseases, or chronic disease. AGEs may differently contribute to the diet-related exacerbation of oxidative stress, inflammation, and protein modifications. Here, to understand the contribution of each compound, we tested individually, for the first time, the effect of five 1,2-dicarbonyl compounds 3-deoxyglucosone (3-DG), 3-deoxygalactosone (3-DGal), 3,4-dideoxyglucosone-3-ene (3,4-DGE), glyoxal (GO), and methylglyoxal (MGO) and four different glycated amino acids N-ε-(carboxyethyl)lysine (CEL), N-ε-(carboxymethyl)lysine (CML), methylglyoxal-derived hydroimidazolone-1 (MG-H1), and pyrraline (Pyrr) in a cell line of human keratinocytes (HaCaT). We found that most of the glycated amino acids, i.e., CEL, CML, and MG-H1, did not show any cytotoxicity. At the same time, 1,2-dicarbonyl compounds 3-DGal, 3,4-DGE, GO, and MGO increased the production of reactive oxygen species and induced cell death. MGO induced cell death by apoptosis, whereas 3-DGal and 3,4-DGE induced nuclear translocation of the proinflammatory NF-κB transcription pathway, and the activation of the pyroptosis-related NLRP3 inflammasome cascade. Overall, these results demonstrate the higher toxic impact of 1,2-dicarbonyl compounds on mucosal epithelial cells when compared to glycated amino acids and the selective activation of intracellular signaling pathways involved in the crosstalk mechanisms linking oxidative stress to excessive inflammation.
Collapse
|
16
|
Chen L, Chen Z, Xu Z, Feng W, Yang X, Qi Z. Polydatin protects Schwann cells from methylglyoxal induced cytotoxicity and promotes crushed sciatic nerves regeneration of diabetic rats. Phytother Res 2021; 35:4592-4604. [PMID: 34089208 DOI: 10.1002/ptr.7177] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 03/25/2021] [Accepted: 05/07/2021] [Indexed: 01/03/2023]
Abstract
Oxidative stress plays the main role in the pathogenesis of diabetes mellitus and peripheral neuropathy. Polydatin (PD) has been shown to exhibit strong antioxidative and antiinflammatory effects. At present, no research has focused on the possible effects of PD on Schwann cells and impaired peripheral nerves in diabetic models. Here, we used an in vitro Schwann cell damage model induced by methylglyoxal and an in vivo diabetic sciatic nerve crush model to study problems in such an area. In our experiment, we demonstrated that PD potently alleviated the decrease of cellular viability, prevented reactive oxygen species generation, and suppressed mitochondrial depolarization as well as cellular apoptosis in damaged Schwann cells. Moreover, we found that PD could upregulate Nrf2 and Glyoxalase 1 (GLO1) expression and inhibit Keap1 and receptor of AGEs (RAGE) expression of damaged Schwann cells. Finally, our in vivo experiment showed that PD could promote sciatic nerves repair of diabetic rats. Our results revealed that PD exhibited prominent neuroprotective effects on Schwann cells and sciatic nerves in diabetic models. The molecular mechanisms were associated with activating Nfr2 and GLO1 and inhibiting Keap1 and RAGE.
Collapse
Affiliation(s)
- Lulu Chen
- Department No.16 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zixiang Chen
- Department No.16 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuqiu Xu
- Department No.16 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weifeng Feng
- Department No.16 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaonan Yang
- Department No.16 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zuoliang Qi
- Department No.16 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Rabbani N, Thornalley PJ. Protein glycation - biomarkers of metabolic dysfunction and early-stage decline in health in the era of precision medicine. Redox Biol 2021; 42:101920. [PMID: 33707127 PMCID: PMC8113047 DOI: 10.1016/j.redox.2021.101920] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Protein glycation provides a biomarker in widespread clinical use, glycated hemoglobin HbA1c (A1C). It is a biomarker for diagnosis of diabetes and prediabetes and of medium-term glycemic control in patients with established diabetes. A1C is an early-stage glycation adduct of hemoglobin with glucose; a fructosamine derivative. Glucose is an amino group-directed glycating agent, modifying N-terminal and lysine sidechain amino groups. A similar fructosamine derivative of serum albumin, glycated albumin (GA), finds use as a biomarker of glycemic control, particularly where there is interference in use of A1C. Later stage adducts, advanced glycation endproducts (AGEs), are formed by the degradation of fructosamines and by the reaction of reactive dicarbonyl metabolites, such as methylglyoxal. Dicarbonyls are arginine-directed glycating agents forming mainly hydroimidazolone AGEs. Glucosepane and pentosidine, an intense fluorophore, are AGE covalent crosslinks. Cellular proteolysis of glycated proteins forms glycated amino acids, which are released into plasma and excreted in urine. Development of diagnostic algorithms by artificial intelligence machine learning is enhancing the applications of glycation biomarkers. Investigational glycation biomarkers are in development for: (i) healthy aging; (ii) risk prediction of vascular complications of diabetes; (iii) diagnosis of autism; and (iv) diagnosis and classification of early-stage arthritis. Protein glycation biomarkers are influenced by heritability, aging, decline in metabolic, vascular, renal and skeletal health, and other factors. They are applicable to populations of differing ethnicities, bridging the gap between genotype and phenotype. They are thereby likely to find continued and expanding clinical use, including in the current era of developing precision medicine, reporting on multiple pathogenic processes and supporting a precision medicine approach.
Collapse
Affiliation(s)
- Naila Rabbani
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Biomedical & Pharmaceutical Research Unit, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Paul J Thornalley
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110, Doha, Qatar.
| |
Collapse
|
18
|
Evaluation of Relevance between Advanced Glycation End Products and Diabetic Retinopathy Stages Using Skin Autofluorescence. Antioxidants (Basel) 2020; 9:antiox9111100. [PMID: 33182320 PMCID: PMC7695256 DOI: 10.3390/antiox9111100] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 12/23/2022] Open
Abstract
Advanced glycation end products (AGEs) are thought to play important roles in the pathogenesis of diabetic microangiopathy, particularly in the progression of diabetic retinopathy (DR). We assessed the levels of skin autofluorescence (sAF) to assess the association between AGEs and DR stages. A total of 394 eyes of 394 Japanese subjects (172 men, 222 women; mean age ± standard deviation [SD], 68.4 ± 13.7 years) comprised the study population, i.e., subjects with diabetes mellitus (DM) (n = 229) and non-diabetic controls (n = 165). The patients with DM were divided into those without DR (NDR, n = 101) and DR (n = 128). DR included simple (SDR, n = 36), pre-proliferative (PPDR, n = 25), and PDR (n = 67). Compared to controls (0.52 ± 0.12), the AGE scores were significantly higher in patients with DM (0.59 ± 0.17, p < 0.0001), NDR (0.58 ± 0.16, p = 0.0012), and DR (0.60 ± 0.18, p < 0.0001). The proportion of patients with PDR was significantly higher in the highest quartile of AGE scores than the other quartiles (p < 0.0001). Compared to those without PDR (SDR and PPDR), those with PDR were younger (p = 0.0006), more were pseudophakic (p < 0.0001), had worse visual acuity (VA) (p < 0.0001), had higher intraocular pressure (IOP) (p < 0.0001), and had higher AGE scores (p = 0.0016). Multivariate models also suggested that younger age, male gender, pseudophakia, worse VA, higher IOP, and higher AGE scores were risk factors for PDR. The results suggested that AGE scores were higher in patients with DM and were independently associated with progression of DR. In addition, more PDR was seen in the highest quartile of AGE scores. This study highlights the clinical use of the AGE score as a non-invasive, reliable marker to identity patients at risk of sight-threatening DR.
Collapse
|
19
|
Sanchis P, Rivera R, Fortuny R, Río C, Mas-Gelabert M, Gonzalez-Freire M, Grases F, Masmiquel L. Role of Advanced Glycation End Products on Aortic Calcification in Patients with Type 2 Diabetes Mellitus. J Clin Med 2020; 9:jcm9061751. [PMID: 32516928 PMCID: PMC7356630 DOI: 10.3390/jcm9061751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to evaluate the relationship between serum levels of advanced glycation end products (AGEs) and abdominal aortic calcification (AAC) in patients with type 2 diabetes mellitus (DM2). This was a prospective cross-sectional study. One-hundred and four consecutive patients with DM2 were given lateral lumbar X-rays in order to quantify abdominal aortic calcification (AAC). Circulating levels of AGEs and classical cardiovascular risk factors were determined. Clinical history was also registered. Patients with higher AGEs values had higher grades of aortic calcification and higher numbers of diabetic-related complications. Multivariate logistic regression analysis showed that being older, male and having high levels of AGEs and triglycerides were the independent risk factors associated to moderate-severe AAC when compared to no-mild AAC. Our results suggest that AGEs plays a role in the pathogenesis of aortic calcifications. In addition, the measurement of AGEs levels may be useful for assessing the severity of AAC in the setting of diabetic complications.
Collapse
Affiliation(s)
- Pilar Sanchis
- Vascular and Metabolic Diseases Research Group, Endocrinology Department, Son Llàtzer University Hospital, Health Research Institute of the Balearic Islands [IUNICS-IdISBa], 07198 Palma of Mallorca, Spain; (R.R.); (R.F.); (M.G.-F.)
- Laboratory of Renal Lithiasis Research, Deptartment of Chemistry, University of Balearic Islands, Health Research Institute of the Balearic Islands [IUNICS-IdISBa], 07122 Palma of Mallorca, Spain;
- The Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, 28046 Madrid, Spain
- Correspondence: (P.S.); (L.M.)
| | - Rosmeri Rivera
- Vascular and Metabolic Diseases Research Group, Endocrinology Department, Son Llàtzer University Hospital, Health Research Institute of the Balearic Islands [IUNICS-IdISBa], 07198 Palma of Mallorca, Spain; (R.R.); (R.F.); (M.G.-F.)
| | - Regina Fortuny
- Vascular and Metabolic Diseases Research Group, Endocrinology Department, Son Llàtzer University Hospital, Health Research Institute of the Balearic Islands [IUNICS-IdISBa], 07198 Palma of Mallorca, Spain; (R.R.); (R.F.); (M.G.-F.)
- Laboratory Department, Son Llàtzer University Hospital, 07198 Palma of Mallorca, Spain
| | - Carlos Río
- Proteomics department, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma of Mallorca, Spain;
| | - Miguel Mas-Gelabert
- Radiology Department, Son Llàtzer University Hospital, 07198 Palma of Mallorca, Spain;
| | - Marta Gonzalez-Freire
- Vascular and Metabolic Diseases Research Group, Endocrinology Department, Son Llàtzer University Hospital, Health Research Institute of the Balearic Islands [IUNICS-IdISBa], 07198 Palma of Mallorca, Spain; (R.R.); (R.F.); (M.G.-F.)
| | - Felix Grases
- Laboratory of Renal Lithiasis Research, Deptartment of Chemistry, University of Balearic Islands, Health Research Institute of the Balearic Islands [IUNICS-IdISBa], 07122 Palma of Mallorca, Spain;
- The Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, 28046 Madrid, Spain
| | - Luis Masmiquel
- Vascular and Metabolic Diseases Research Group, Endocrinology Department, Son Llàtzer University Hospital, Health Research Institute of the Balearic Islands [IUNICS-IdISBa], 07198 Palma of Mallorca, Spain; (R.R.); (R.F.); (M.G.-F.)
- Correspondence: (P.S.); (L.M.)
| |
Collapse
|
20
|
Autophagy Functions to Prevent Methylglyoxal-Induced Apoptosis in HK-2 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8340695. [PMID: 32566104 PMCID: PMC7292969 DOI: 10.1155/2020/8340695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/14/2020] [Accepted: 04/25/2020] [Indexed: 12/24/2022]
Abstract
Methylglyoxal (MGO), a reactive carbonyl species, causes cellular damage and is closely related to kidney disease, particularly diabetic nephropathy. Although MGO has been reported to induce autophagy and apoptosis, the relationships between the two pathways are unclear. Here, we evaluated whether autophagy may be the underlying mechanism inhibiting MGO-induced apoptosis. MGO treatment induced concentration- and time-dependent apoptosis in HK-2 cells. Moreover, MGO upregulated the autophagy markers p62 and LC3-II. Apoptosis caused by MGO was increased in ATG5-knockdown cells compared to that in wild-type cells. In contrast, autophagy activation by 5-aminoimidazole-4-carboxamide ribonucleotide resulted in reduced apoptosis, suggesting that autophagy played a role in protecting against MGO-induced cell death. To examine the mechanisms through which autophagy occurred following MGO stimulation, we investigated changes in AKT/mammalian target of rapamycin (mTOR) signaling. Autophagy induction by MGO treatment was not related to AKT/mTOR signaling; however, it did involve autophagy-related gene expression promoted by AMP-activated protein kinase-mediated transcription factors, such as forkhead box 1. Overall, our findings indicate that MGO-induced cellular damage can be mitigated by autophagy, suggesting that autophagy may be a potential therapeutic target for diseases such as diabetic nephropathy.
Collapse
|
21
|
Cepas V, Collino M, Mayo JC, Sainz RM. Redox Signaling and Advanced Glycation Endproducts (AGEs) in Diet-Related Diseases. Antioxidants (Basel) 2020; 9:antiox9020142. [PMID: 32041293 PMCID: PMC7070562 DOI: 10.3390/antiox9020142] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/19/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
Diets are currently characterized by elevated sugar intake, mainly due to the increased consumption of processed sweetened foods and drinks during the last 40 years. Diet is the main source of advanced glycation endproducts (AGEs). These are toxic compounds formed during the Maillard reaction, which takes place both in vivo, in tissues and fluids under physiological conditions, favored by sugar intake, and ex vivo during food preparation such as baking, cooking, frying or storage. Protein glycation occurs slowly and continuously through life, driving AGE accumulation in tissues during aging. For this reason, AGEs have been proposed as a risk factor in the pathogenesis of diet-related diseases such as diabetes, insulin resistance, cardiovascular diseases, kidney injury, and age-related and neurodegenerative diseases. AGEs are associated with an increase in oxidative stress since they mediate the production of reactive oxygen species (ROS), increasing the intracellular levels of hydrogen peroxide (H2O2), superoxide (O2−), and nitric oxide (NO). The interaction of AGEs with the receptor for AGEs (RAGE) enhances oxidative stress through ROS production by NADPH oxidases inside the mitochondria. This affects mitochondrial function and ultimately influences cell metabolism under various pathological conditions. This short review will summarize all evidence that relates AGEs and ROS production, their relationship with diet-related diseases, as well as the latest research about the use of natural compounds with antioxidant properties to prevent the harmful effects of AGEs on health.
Collapse
Affiliation(s)
- Vanesa Cepas
- Departamento de Morfologia y Biologia Celular, Redox Biology Group, Universidad de Oviedo, 33403 Oviedo, Spain;
- Instituto Universitario de Oncologia del Principado de Asturias (IUOPA), Universidad de Oviedo, 33403 Oviedo, Spain
| | - Massimo Collino
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy;
| | - Juan C. Mayo
- Departamento de Morfologia y Biologia Celular, Redox Biology Group, Universidad de Oviedo, 33403 Oviedo, Spain;
- Instituto Universitario de Oncologia del Principado de Asturias (IUOPA), Universidad de Oviedo, 33403 Oviedo, Spain
- Correspondence: (J.C.M.); (R.M.S.); Tel.: +34-985-10-2730 (J.C.M.); +34-985-10-3610 (R.M.S.)
| | - Rosa M. Sainz
- Departamento de Morfologia y Biologia Celular, Redox Biology Group, Universidad de Oviedo, 33403 Oviedo, Spain;
- Instituto Universitario de Oncologia del Principado de Asturias (IUOPA), Universidad de Oviedo, 33403 Oviedo, Spain
- Correspondence: (J.C.M.); (R.M.S.); Tel.: +34-985-10-2730 (J.C.M.); +34-985-10-3610 (R.M.S.)
| |
Collapse
|
22
|
Schalkwijk CG, Stehouwer CDA. Methylglyoxal, a Highly Reactive Dicarbonyl Compound, in Diabetes, Its Vascular Complications, and Other Age-Related Diseases. Physiol Rev 2020; 100:407-461. [DOI: 10.1152/physrev.00001.2019] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The formation and accumulation of methylglyoxal (MGO), a highly reactive dicarbonyl compound, has been implicated in the pathogenesis of type 2 diabetes, vascular complications of diabetes, and several other age-related chronic inflammatory diseases such as cardiovascular disease, cancer, and disorders of the central nervous system. MGO is mainly formed as a byproduct of glycolysis and, under physiological circumstances, detoxified by the glyoxalase system. MGO is the major precursor of nonenzymatic glycation of proteins and DNA, subsequently leading to the formation of advanced glycation end products (AGEs). MGO and MGO-derived AGEs can impact on organs and tissues affecting their functions and structure. In this review we summarize the formation of MGO, the detoxification of MGO by the glyoxalase system, and the biochemical pathways through which MGO is linked to the development of diabetes, vascular complications of diabetes, and other age-related diseases. Although interventions to treat MGO-associated complications are not yet available in the clinical setting, several strategies to lower MGO have been developed over the years. We will summarize several new directions to target MGO stress including glyoxalase inducers and MGO scavengers. Targeting MGO burden may provide new therapeutic applications to mitigate diseases in which MGO plays a crucial role.
Collapse
Affiliation(s)
- C. G. Schalkwijk
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands; and Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - C. D. A. Stehouwer
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands; and Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
23
|
The Mitochondria-Targeted Methylglyoxal Sequestering Compound, MitoGamide, Is Cardioprotective in the Diabetic Heart. Cardiovasc Drugs Ther 2019; 33:669-674. [PMID: 31654171 PMCID: PMC6994445 DOI: 10.1007/s10557-019-06914-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE Methylglyoxal, a by-product of glycolysis and a precursor in the formation of advanced glycation end-products, is significantly elevated in the diabetic myocardium. Therefore, we sought to investigate the mitochondria-targeted methylglyoxal scavenger, MitoGamide, in an experimental model of spontaneous diabetic cardiomyopathy. METHODS Male 6-week-old Akita or wild type mice received daily oral gavage of MitoGamide or vehicle for 10 weeks. Several morphological and systemic parameters were assessed, as well as cardiac function by echocardiography. RESULTS Akita mice were smaller in size than wild type counterparts in terms of body weight and tibial length. Akita mice exhibited elevated blood glucose and glycated haemoglobin. Total heart and individual ventricles were all smaller in Akita mice. None of the aforementioned parameters was impacted by MitoGamide treatment. Echocardiographic analysis confirmed that cardiac dimensions were smaller in Akita hearts. Diastolic dysfunction was evident in Akita mice, and notably, MitoGamide treatment preferentially improved several of these markers, including e'/a' ratio and E/e' ratio. CONCLUSIONS Our findings suggest that MitoGamide, a novel mitochondria-targeted approach, offers cardioprotection in experimental diabetes and therefore may offer therapeutic potential for the treatment of cardiomyopathy in patients with diabetes.
Collapse
|
24
|
Li Y, Zhao Y, Sang S, Leung T. Methylglyoxal-Induced Retinal Angiogenesis in Zebrafish Embryo: A Potential Animal Model of Neovascular Retinopathy. J Ophthalmol 2019; 2019:2746735. [PMID: 31143470 PMCID: PMC6501125 DOI: 10.1155/2019/2746735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/24/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023] Open
Abstract
Methylglyoxal (MG) is an intermediate of glucose metabolism and the precursor of advanced glycation end products (AGEs) found in high levels in blood or tissue of diabetic patients. MG and AGEs are thought to play a major role in the pathogenesis of diabetic retinopathy. In order to determine if zebrafish is valuable to help us understand more about retinopathy, we evaluate if MG induces abnormal vascular change and angiogenesis in zebrafish in a short incubation period. We also used an inhibitor of VEGFR (PTK787) to explore the mechanistic role of VEGF in MG-induced pathogenesis. A transgenic Tg(flk1:GFP) zebrafish line was used, and the embryos were incubated with MG solution and in combination with glucose (to mimic hyperglycemia). Retinal vascular structure visible with fluorescence signal was imaged using fluorescence microscopy. The percentage of vascular area was calculated and found elevated in the MG treatment groups than that in the control group (p < 0.01) which indicated increased angiogenesis induced by MG treatment. PTK787 blocked the proangiogenic effects of MG treatment. This study suggests that MG has a potential proangiogenic effect via VEGF signaling in the retina of zebrafish embryos. Therefore, this zebrafish model may be used to study neovascular retinopathy.
Collapse
Affiliation(s)
- Ying Li
- Department of Geriatrics, Qi-Lu Hospital of Shandong University, Jinan, Shandong Province 250012, China
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Kannapolis, NC 28081, USA
| | - Yantao Zhao
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina A&T State University, Kannapolis, NC 28081, USA
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina A&T State University, Kannapolis, NC 28081, USA
| | - TinChung Leung
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Kannapolis, NC 28081, USA
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA
| |
Collapse
|
25
|
Schlotterer A, Kolibabka M, Lin J, Acunman K, Dietrich N, Sticht C, Fleming T, Nawroth P, Hammes HP. Methylglyoxal induces retinopathy-type lesions in the absence of hyperglycemia: studies in a rat model. FASEB J 2018; 33:4141-4153. [PMID: 30485119 DOI: 10.1096/fj.201801146rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of this study was to evaluate whether damage to the neurovascular unit in diabetes depends on reactive metabolites such as methylglyoxal (MG), and to assess its impact on retinal gene expression. Male Wistar rats were supplied with MG (50 mM) by drinking water and compared with age-matched streptozotocin-diabetic animals and untreated controls. Retinal damage was evaluated for the accumulation of MG-derived advanced glycation end products, changes in hexosamine and PKC pathway activation, microglial activation, vascular alterations (pericyte loss and vasoregression), neuroretinal function assessed by electroretinogram, and neurodegeneration. Retinal gene regulation was studied by microarray analysis, and transcription factor involvement was identified by upstream regulator analysis. Systemic application of MG by drinking water increased retinal MG to levels comparable with diabetic animals. Elevated retinal MG resulted in MG-derived hydroimidazolone modifications in the ganglion cell layer, inner nuclear layer, and outer nuclear layer, a moderate activation of the hexosamine pathway, a pan-retinal activation of microglia, loss of pericytes, increased formation of acellular capillaries, decreased function of bipolar cells, and increased expression of the crystallin gene family. MG mimics important aspects of diabetic retinopathy and plays a pathogenic role in microglial activation, vascular damage, and neuroretinal dysfunction. In response to MG, the retina induces expression of neuroprotective crystallins.-Schlotterer, A., Kolibabka, M., Lin, J., Acunman, K., Dietrich, N., Sticht, C., Fleming, T., Nawroth, P., Hammes, H.-P. Methylglyoxal induces retinopathy-type lesions in the absence of hyperglycemia: studies in a rat model.
Collapse
Affiliation(s)
- Andrea Schlotterer
- Fifth Medical Department, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Matthias Kolibabka
- Fifth Medical Department, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Jihong Lin
- Fifth Medical Department, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Kübra Acunman
- Fifth Medical Department, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Nadine Dietrich
- Fifth Medical Department, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Carsten Sticht
- Medical Research Center, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany; and
| | - Thomas Fleming
- Department of Medicine I and Clinical Chemistry, Heidelberg University, Heidelberg, Germany
| | - Peter Nawroth
- Department of Medicine I and Clinical Chemistry, Heidelberg University, Heidelberg, Germany
| | - Hans-Peter Hammes
- Fifth Medical Department, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
26
|
Sahajpal NS, Goel RK, Chaubey A, Aurora R, Jain SK. Pathological Perturbations in Diabetic Retinopathy: Hyperglycemia, AGEs, Oxidative Stress and Inflammatory Pathways. Curr Protein Pept Sci 2018; 20:92-110. [DOI: 10.2174/1389203719666180928123449] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/10/2018] [Accepted: 08/29/2017] [Indexed: 01/02/2023]
Abstract
Diabetic retinopathy (DR) remains the leading cause of blindness in working-aged adults
around the world. The proliferative diabetic retinopathy (PDR) and diabetic macular edema (DME) are
the severe vision threatening stages of the disorder. Although, a huge body of research exists in elaborating
the pathological mechanisms that lead to the development of DR, the certainty and the correlation
amongst these pathways remain ambiguous. The complexity of DR lies in the multifactorial pathological
perturbations that are instrumental in both the disease development and its progression. Therefore, a holistic
perspective with an understanding of these pathways and their correlation may explain the pathogenesis
of DR as a unifying mechanism. Hyperglycemia, oxidative stress and inflammatory pathways
are the crucial components that are implicated in the pathogenesis of DR. Of these, hyperglycemia appears
to be the initiating central component around which other pathological processes operate. Thus,
this review discusses the role of hyperglycemia, oxidative stress and inflammation in the pathogenesis of
DR, and highlights the cross-talk amongst these pathways in an attempt to understand the complex interplay
of these mechanisms. Further, an effort has been made to identify the knowledge gap and the key
players in each pathway that may serve as potential therapeutic drug targets.
Collapse
Affiliation(s)
- Nikhil Shri Sahajpal
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Rajesh Kumar Goel
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Alka Chaubey
- Cytogenetics Laboratory, Greenwood Genetic Center, Greenwood, South Carolina, SC, United States
| | - Rohan Aurora
- The International School Bangalore, Karnataka, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
27
|
Eid BG, Abu-Sharib AT, El-Bassossy HM, Balamash K, Smirnov SV. Enhanced calcium entry via activation of NOX/PKC underlies increased vasoconstriction induced by methylglyoxal. Biochem Biophys Res Commun 2018; 506:1013-1018. [PMID: 30404736 DOI: 10.1016/j.bbrc.2018.10.171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 10/27/2018] [Indexed: 11/18/2022]
Abstract
Advanced glycation end-products (AGEs) play a pivotal role in macro- and micro-vascular diabetic complications. We investigated the mechanism by which methylglyoxal (an endogenous generator of AGEs) affects vascular contractility using the isolated artery technique. Contractile responses to vasoconstrictors phenylephrine (PE), angiotensin II (Ang II), vasopressin (VP) and KCl were measured in the isolated rat aorta following one-our exposure to methylglyoxal (50-200 μM). The perfused rat kidney was employed to confirm the effect of methylglyoxal on microvessels. Methylglyoxal-induced changes in cytosolic calcium were measured in the smooth muscle layer of the aorta with the calcium-sensing fluorophore Fluo-4 AM. Methylglyoxal significantly increased maximal contraction of the rat aorta to PE, Ang II and VP. Similar results were seen in response to the depolarizing vasoconstrictor KCl in macro and micro vessels. The methylglyoxal-induced increases in aortic contraction mediated by the agonist and KCl were endothelium independent. Methylglyoxal-induced increases in KCl-dependent aortic contraction were abolished after the removal of extracellular calcium or in the presence of the calcium channel blocker nifedipine. Incubation with the antioxidant N-acetyl-l-cysteine (NAC), apocynin (a nonselective NADPH oxidase (NOX) inhibitor) or chelerythrine (a protein kinase C (PKC) inhibitor) prior to methylglyoxal pre-treatment reversed the methylglyoxal-induced increases in the rat aortic contractility. In conclusion, the formation of AGEs increases vasoconstriction of both macro- and micro-vessels by increasing the voltage-activated calcium entry in vascular smooth muscles in a NOX and PKC dependent manner.
Collapse
Affiliation(s)
- Basma G Eid
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Alaa T Abu-Sharib
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hany M El-Bassossy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Egypt
| | - Khadijah Balamash
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sergey V Smirnov
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| |
Collapse
|
28
|
Methylglyoxal: A Relevant Marker of Disease Activity in Patients with Rheumatoid Arthritis. DISEASE MARKERS 2018; 2018:8735926. [PMID: 29606988 PMCID: PMC5828101 DOI: 10.1155/2018/8735926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/01/2018] [Indexed: 12/29/2022]
Abstract
Background The contribution of methylglyoxal (MGO) and soluble receptor for advanced glycation end products (sRAGE) in the presence of rheumatoid arthritis (RA) is still unknown. We investigated whether serum MGO and sRAGE were related to the presence of disease activity in RA. Methods 80 patients with RA and 30 control subjects were included in a cross-sectional study. The severity of RA was assessed using the disease activity score for 28 joints (DAS28). Serum MGO and sRAGE were measured by ELISA. Results Serum MGO levels were significantly higher in patients with RA versus control subjects (P < 0.001) and were increased in RA patients with higher disease activity versus RA patients with moderate disease activity (P = 0.019). Serum sRAGE concentrations were significantly decreased in RA patients with higher disease activity versus RA patients with moderate disease activity and versus control subjects (P = 0.004; P = 0.002, resp.). A multiple logistic regression analysis demonstrated that MGO was independently associated with the presence of activity disease in RA (OR = 1.17, 95% CI: 1.02–1.31, P = 0.01). Conclusion Serum MGO and sRAGE levels are inversely related to the activity of RA, and MGO is independently associated with a higher disease activity of RA.
Collapse
|
29
|
The pathological role of advanced glycation end products-downregulated heat shock protein 60 in islet β-cell hypertrophy and dysfunction. Oncotarget 2018; 7:23072-87. [PMID: 27056903 PMCID: PMC5029611 DOI: 10.18632/oncotarget.8604] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 03/29/2016] [Indexed: 01/09/2023] Open
Abstract
Heat shock protein 60 (HSP60) is a mitochondrial chaperone. Advanced glycation end products (AGEs) have been shown to interfere with the β-cell function. We hypothesized that AGEs induced β-cell hypertrophy and dysfunction through a HSP60 dysregulation pathway during the stage of islet/β-cell hypertrophy of type-2-diabetes. We investigated the role of HSP60 in AGEs-induced β-cell hypertrophy and dysfunction using the models of diabetic mice and cultured β-cells. Hypertrophy, increased levels of p27Kip1, AGEs, and receptor for AGEs (RAGE), and decreased levels of HSP60, insulin, and ATP content were obviously observed in pancreatic islets of 12-week-old db/db diabetic mice. Low-concentration AGEs significantly induced the cell hypertrophy, increased the p27Kip1 expression, and decreased the HSP60 expression, insulin secretion, and ATP content in cultured β-cells, which could be reversed by RAGE neutralizing antibody. HSP60 overexpression significantly reversed AGEs-induced hypertrophy, dysfunction, and ATP reduction in β-cells. Oxidative stress was also involved in the AGEs-decreased HSP60 expression in β-cells. Pancreatic sections from diabetic patient showed islet hypertrophy, increased AGEs level, and decreased HSP60 level as compared with normal subject. These findings highlight a novel mechanism by which a HSP60-correlated signaling pathway contributes to the AGEs-RAGE axis-induced β-cell hypertrophy and dysfunction under diabetic hyperglycemia.
Collapse
|
30
|
Chen YH, Chen ZW, Li HM, Yan XF, Feng B. AGE/RAGE-Induced EMP Release via the NOX-Derived ROS Pathway. J Diabetes Res 2018; 2018:6823058. [PMID: 29744367 PMCID: PMC5878883 DOI: 10.1155/2018/6823058] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/15/2017] [Accepted: 12/12/2017] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Diabetes is associated with accelerated formation of advanced glycation end products (AGEs) that are extensively found in circulating endothelial microparticles (EMPs). This study aimed to investigate whether AGEs have a direct effect on EMP formation and the possible underlying mechanism. METHODS In vitro, cultured human umbilical vein endothelial cells (HUVECs) were incubated with AGEs (200 and 400 μg/ml) for 24 hours with or without pretreatment with anti-RAGE antibody, NOX inhibitor, or ROS scavenger. The number of CD31-positive EMPs was assessed by flow cytometry. RESULTS The number of EMPs was significantly increased in HUVECs stimulated by AGEs in a dose-dependent manner. In addition, receptors for AGEs (RAGE), NAD(P)H oxidase (NOX), and reactive oxygen species (ROS) were increased by AGEs as compared to the control group. These changes could be reversed when HUVECs were pretreated with anti-RAGE antibody. Moreover, inhibition of NOX as well as antioxidant treatment reduced the release of EMPs induced by AGEs. CONCLUSION Our study suggested that AGEs increased EMP generation, which was mediated by RAGE signaling through NOX-derived ROS.
Collapse
Affiliation(s)
- Ying-Hua Chen
- Department of Endocrinology, East Hospital, Tongji University, Shanghai 200120, China
| | - Zhang-Wei Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hong-Mei Li
- Department of Endocrinology, East Hospital, Tongji University, Shanghai 200120, China
| | - Xin-Feng Yan
- Department of Endocrinology, East Hospital, Tongji University, Shanghai 200120, China
| | - Bo Feng
- Department of Endocrinology, East Hospital, Tongji University, Shanghai 200120, China
| |
Collapse
|
31
|
Santos SAAD, Porto Amorim EM, Ribeiro LM, Rinaldi JC, Delella FK, Justulin LA, Felisbino SL. Hyperglycemic condition during puberty increases collagen fibers deposition in the prostatic stroma and reduces MMP-2 activity. Biochem Biophys Res Commun 2017; 493:1581-1586. [DOI: 10.1016/j.bbrc.2017.10.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 10/04/2017] [Indexed: 11/26/2022]
|
32
|
Suh KS, Chon S, Jung WW, Choi EM. Magnolol protects pancreatic β-cells against methylglyoxal-induced cellular dysfunction. Chem Biol Interact 2017; 277:101-109. [DOI: 10.1016/j.cbi.2017.09.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/28/2017] [Accepted: 09/13/2017] [Indexed: 12/17/2022]
|
33
|
Methylglyoxal-induced dicarbonyl stress in aging and disease: first steps towards glyoxalase 1-based treatments. Clin Sci (Lond) 2017; 130:1677-96. [PMID: 27555612 DOI: 10.1042/cs20160025] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 06/03/2016] [Indexed: 12/20/2022]
Abstract
Dicarbonyl stress is the abnormal accumulation of dicarbonyl metabolites leading to increased protein and DNA modification contributing to cell and tissue dysfunction in aging and disease. It is produced by increased formation and/or decreased metabolism of dicarbonyl metabolites. MG (methylglyoxal) is a dicarbonyl metabolite of relatively high flux of formation and precursor of the most quantitatively and functionally important spontaneous modifications of protein and DNA clinically. Major MG-derived adducts are arginine-derived hydroimidazolones of protein and deoxyguanosine-derived imidazopurinones of DNA. These are formed non-oxidatively. The glyoxalase system provides an efficient and essential basal and stress-response-inducible enzymatic defence against dicarbonyl stress by the reduced glutathione-dependent metabolism of methylglyoxal by glyoxalase 1. The GLO1 gene encoding glyoxalase 1 has low prevalence duplication and high prevalence amplification in some tumours. Dicarbonyl stress contributes to aging, disease and activity of cytotoxic chemotherapeutic agents. It is found at a low, moderate and severe level in obesity, diabetes and renal failure respectively, where it contributes to the development of metabolic and vascular complications. Increased glyoxalase 1 expression confers multidrug resistance to cancer chemotherapy and has relatively high prevalence in liver, lung and breast cancers. Studies of dicarbonyl stress are providing improved understanding of aging and disease and the basis for rational design of novel pharmaceuticals: glyoxalase 1 inducers for obesity, diabetes and cardiovascular disease and glyoxalase 1 inhibitors for multidrug-resistant tumours. The first clinical trial of a glyoxalase 1 inducer in overweight and obese subjects showed improved glycaemic control, insulin resistance and vascular function.
Collapse
|
34
|
Bentata R, Cougnard-Grégoire A, Delyfer MN, Delcourt C, Blanco L, Pupier E, Rougier MB, Rajaobelina K, Hugo M, Korobelnik JF, Rigalleau V. Skin autofluorescence, renal insufficiency and retinopathy in patients with type 2 diabetes. J Diabetes Complications 2017; 31:619-623. [PMID: 28063765 DOI: 10.1016/j.jdiacomp.2016.10.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/17/2016] [Accepted: 10/26/2016] [Indexed: 01/16/2023]
Abstract
OBJECTIVES Advanced glycation end-products (AGEs) are involved in diabetic retinopathy (DR). Their accumulation in tissues can be analyzed by measuring the skin autofluorescence (sAF). We hypothesized that renal insufficiency, another cause of high sAF, may disturb the relation between sAF and DR. RESEARCH DESIGN AND METHODS We measured sAF with an AGE-Reader in 444 patients with type 2 diabetes (T2D), and we analyzed their retinal status. The associations of sAF with DR, and interaction with renal insufficiency were estimated by multivariate logistic regression analysis. RESULTS Mean age was 62years (standard deviation (SD) 10years), diabetes duration 13 (9) years and mean HbA1C 8.9% (1.8). The prevalence of DR was 21.4% and increased with age, diabetes duration, arterial hypertension, renal parameters (serum creatinine and albumin excretion rates), and sAF. The prevalence of macular edema (ME) was 8.6% and increased with the duration of diabetes, but not with sAF (p=0.11). There was a significant interaction between renal insufficiency and sAF for the relation with DR or ME (p=0.02). For the 83% patients without renal insufficiency (estimated GFR>60mL/min/1.73m2), sAF was related to DR or ME after multivariate adjustment: OR 1.87 (1.09-3.19). The 17% patients with renal insufficiency had the highest rates of DR or ME (38.6%) and the highest sAF, unrelated to each other. CONCLUSIONS In T2D patients with renal insufficiency, the high sAF does not relate to retinopathy, which should be systematically searched due to its high frequency. For other patients, a high sAF argues for DR screening.
Collapse
Affiliation(s)
- Rabia Bentata
- CHU de Bordeaux, Service d'Ophtalmologie, Bordeaux, F-33000, France; CHU de Bordeaux, Department of Nutrition-Diabetology, Bordeaux, F-33000, France.
| | - Audrey Cougnard-Grégoire
- Univ. Bordeaux, ISPED, F-33000 Bordeaux, France; Inserm, U1219 - Bordeaux Population Health Research Center, F-33000 Bordeaux, France
| | - Marie Noëlle Delyfer
- CHU de Bordeaux, Service d'Ophtalmologie, Bordeaux, F-33000, France; Univ. Bordeaux, ISPED, F-33000 Bordeaux, France; Inserm, U1219 - Bordeaux Population Health Research Center, F-33000 Bordeaux, France
| | - Cécile Delcourt
- Univ. Bordeaux, ISPED, F-33000 Bordeaux, France; Inserm, U1219 - Bordeaux Population Health Research Center, F-33000 Bordeaux, France
| | - Laurence Blanco
- CHU de Bordeaux, Department of Nutrition-Diabetology, Bordeaux, F-33000, France
| | - Emilie Pupier
- CHU de Bordeaux, Department of Nutrition-Diabetology, Bordeaux, F-33000, France
| | - Marie Bénédicte Rougier
- CHU de Bordeaux, Service d'Ophtalmologie, Bordeaux, F-33000, France; Univ. Bordeaux, ISPED, F-33000 Bordeaux, France; Inserm, U1219 - Bordeaux Population Health Research Center, F-33000 Bordeaux, France
| | - Kalina Rajaobelina
- Univ. Bordeaux, ISPED, F-33000 Bordeaux, France; Inserm, U1219 - Bordeaux Population Health Research Center, F-33000 Bordeaux, France
| | - Marie Hugo
- CHU de Bordeaux, Department of Nutrition-Diabetology, Bordeaux, F-33000, France
| | - Jean François Korobelnik
- CHU de Bordeaux, Service d'Ophtalmologie, Bordeaux, F-33000, France; Univ. Bordeaux, ISPED, F-33000 Bordeaux, France; Inserm, U1219 - Bordeaux Population Health Research Center, F-33000 Bordeaux, France
| | - Vincent Rigalleau
- CHU de Bordeaux, Department of Nutrition-Diabetology, Bordeaux, F-33000, France; Univ. Bordeaux, ISPED, F-33000 Bordeaux, France; Inserm, U1219 - Bordeaux Population Health Research Center, F-33000 Bordeaux, France
| |
Collapse
|
35
|
Jaramillo R, Shuck SC, Chan YS, Liu X, Bates SE, Lim PP, Tamae D, Lacoste S, O'Connor TR, Termini J. DNA Advanced Glycation End Products (DNA-AGEs) Are Elevated in Urine and Tissue in an Animal Model of Type 2 Diabetes. Chem Res Toxicol 2017; 30:689-698. [PMID: 28107623 DOI: 10.1021/acs.chemrestox.6b00414] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
More precise identification and treatment monitoring of prediabetic/diabetic individuals will require additional biomarkers to complement existing diagnostic tests. Candidates include hyperglycemia-induced adducts such as advanced glycation end products (AGEs) of proteins, lipids, and DNA. The potential for DNA-AGEs as diabetic biomarkers was examined in a longitudinal study using the Leprdb/db animal model of metabolic syndrome. The DNA-AGE, N2-(1-carboxyethyl)-2'-deoxyguanosine (CEdG) was quantified by mass spectrometry using isotope dilution from the urine and tissue of hyperglycemic and normoglycemic mice. Hyperglycemic mice (fasting plasma glucose, FPG, ≥ 200 mg/dL) displayed a higher median urinary CEdG value (238.4 ± 112.8 pmol/24 h) than normoglycemic mice (16.1 ± 11.8 pmol/24 h). Logistic regression analysis revealed urinary CEdG to be an independent predictor of hyperglycemia. Urinary CEdG was positively correlated with FPG in hyperglycemic animals and with HbA1c for all mice. Average tissue-derived CEdG was also higher in hyperglycemic mice (18.4 CEdG/106 dG) than normoglycemic mice (4.4 CEdG/106 dG). Urinary CEdG was significantly elevated in Leprdb/db mice relative to Leprwt/wt, and tissue CEdG values increased in the order Leprwt/wt < Leprwt/db < Leprdb/db. These data suggest that urinary CEdG measurement may provide a noninvasive quantitative index of glycemic status and augment existing biomarkers for the diagnosis and monitoring of diabetes.
Collapse
Affiliation(s)
- Richard Jaramillo
- Departments of Molecular Medicine, ‡Biostatistics, and §Cancer Biology, Beckman Research Institute at City of Hope , Duarte, California 91010, United States
| | - Sarah C Shuck
- Departments of Molecular Medicine, ‡Biostatistics, and §Cancer Biology, Beckman Research Institute at City of Hope , Duarte, California 91010, United States
| | - Yin S Chan
- Departments of Molecular Medicine, ‡Biostatistics, and §Cancer Biology, Beckman Research Institute at City of Hope , Duarte, California 91010, United States
| | - Xueli Liu
- Departments of Molecular Medicine, ‡Biostatistics, and §Cancer Biology, Beckman Research Institute at City of Hope , Duarte, California 91010, United States
| | - Steven E Bates
- Departments of Molecular Medicine, ‡Biostatistics, and §Cancer Biology, Beckman Research Institute at City of Hope , Duarte, California 91010, United States
| | - Punnajit P Lim
- Departments of Molecular Medicine, ‡Biostatistics, and §Cancer Biology, Beckman Research Institute at City of Hope , Duarte, California 91010, United States
| | - Daniel Tamae
- Departments of Molecular Medicine, ‡Biostatistics, and §Cancer Biology, Beckman Research Institute at City of Hope , Duarte, California 91010, United States
| | - Sandrine Lacoste
- Departments of Molecular Medicine, ‡Biostatistics, and §Cancer Biology, Beckman Research Institute at City of Hope , Duarte, California 91010, United States
| | - Timothy R O'Connor
- Departments of Molecular Medicine, ‡Biostatistics, and §Cancer Biology, Beckman Research Institute at City of Hope , Duarte, California 91010, United States
| | - John Termini
- Departments of Molecular Medicine, ‡Biostatistics, and §Cancer Biology, Beckman Research Institute at City of Hope , Duarte, California 91010, United States
| |
Collapse
|
36
|
Welsh KJ, Kirkman MS, Sacks DB. Role of Glycated Proteins in the Diagnosis and Management of Diabetes: Research Gaps and Future Directions. Diabetes Care 2016; 39:1299-306. [PMID: 27457632 PMCID: PMC4955935 DOI: 10.2337/dc15-2727] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/13/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Kerry J Welsh
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD
| | - M Sue Kirkman
- Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD
| |
Collapse
|
37
|
Suzawa S, Takahashi K, Shimada T, Ohta T. Carbonyl stress-induced 5-hydroxytriptamine secretion from RIN-14B, rat pancreatic islet tumor cells, via the activation of transient receptor potential ankyrin 1. Brain Res Bull 2016; 125:181-6. [DOI: 10.1016/j.brainresbull.2016.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/07/2016] [Accepted: 07/12/2016] [Indexed: 02/06/2023]
|
38
|
Pusparajah P, Lee LH, Abdul Kadir K. Molecular Markers of Diabetic Retinopathy: Potential Screening Tool of the Future? Front Physiol 2016; 7:200. [PMID: 27313539 PMCID: PMC4887489 DOI: 10.3389/fphys.2016.00200] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/17/2016] [Indexed: 12/13/2022] Open
Abstract
Diabetic retinopathy (DR) is among the leading causes of new onset blindness in adults. Effective treatment may delay the onset and progression of this disease provided it is diagnosed early. At present retinopathy can only be diagnosed via formal examination of the eye by a trained specialist, which limits the population that can be effectively screened. An easily accessible, reliable screening biomarker of diabetic retinopathy would be of tremendous benefit in detecting the population in need of further assessment and treatment. This review highlights specific biomarkers that show promise as screening markers to detect early diabetic retinopathy or even to detect patients at increased risk of DR at the time of diagnosis of diabetes. The pathobiology of DR is complex and multifactorial giving rise to a wide array of potential biomarkers. This review provides an overview of these pathways and looks at older markers such as advanced glycation end products (AGEs), inflammatory markers, vascular endothelial growth factor (VEGF) as well as other newer proteins with a role in the pathogenesis of DR including neuroprotective factors such as brain derived neurotrophic factor (BDNF) and Pigment Epithelium Derived Factor (PEDF); SA100A12, pentraxin 3, brain natriuretic peptide, apelin 3, and chemerin as well as various metabolites such as lipoprotein A, folate, and homocysteine. We also consider the possible role of proteins identified through proteomics work whose levels are altered in the sera of patients with DR as screening markers though their role in pathophysiology remains to be characterized. The role of microRNA as a promising new screening marker is also discussed.
Collapse
Affiliation(s)
- Priyia Pusparajah
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Bandar Sunway, Malaysia
| | - Learn-Han Lee
- School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| | - Khalid Abdul Kadir
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Bandar Sunway, Malaysia
| |
Collapse
|
39
|
Chen HJC, Chen YC, Hsiao CF, Chen PF. Mass Spectrometric Analysis of Glyoxal and Methylglyoxal-Induced Modifications in Human Hemoglobin from Poorly Controlled Type 2 Diabetes Mellitus Patients. Chem Res Toxicol 2015; 28:2377-89. [DOI: 10.1021/acs.chemrestox.5b00380] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hauh-Jyun Candy Chen
- Department
of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi 62142, Taiwan
| | - Yu-Chin Chen
- Department
of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi 62142, Taiwan
| | - Chiung-Fong Hsiao
- Department
of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi 62142, Taiwan
| | - Pin-Fan Chen
- Buddhist Dalin Tzu Chi General Hospital, No.2, Minsheng Road, Dalin, Chia-Yi 622, Taiwan
| |
Collapse
|
40
|
Coucha M, Elshaer SL, Eldahshan WS, Mysona BA, El-Remessy AB. Molecular mechanisms of diabetic retinopathy: potential therapeutic targets. Middle East Afr J Ophthalmol 2015; 22:135-44. [PMID: 25949069 PMCID: PMC4411608 DOI: 10.4103/0974-9233.154386] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Diabetic retinopathy (DR) is the leading cause of blindness in working-age adults in United States. Research indicates an association between oxidative stress and the development of diabetes complications. However, clinical trials with general antioxidants have failed to prove effective in diabetic patients. Mounting evidence from experimental studies that continue to elucidate the damaging effects of oxidative stress and inflammation in both vascular and neural retina suggest its critical role in the pathogenesis of DR. This review will outline the current management of DR as well as present potential experimental therapeutic interventions, focusing on molecules that link oxidative stress to inflammation to provide potential therapeutic targets for treatment or prevention of DR. Understanding the biochemical changes and the molecular events under diabetic conditions could provide new effective therapeutic tools to combat the disease.
Collapse
Affiliation(s)
- Maha Coucha
- Department of Clinical Pharmacy, Program in Clinical and Experimental Therapeutics, University of Georgia, Georgia, USA ; Culver Vision Discovery Institute, Georgia Regents University, Georgia, USA ; Research Service, Charlie Norwood VA Medical Center, Augusta 30912, Georgia, USA
| | - Sally L Elshaer
- Department of Clinical Pharmacy, Program in Clinical and Experimental Therapeutics, University of Georgia, Georgia, USA ; Culver Vision Discovery Institute, Georgia Regents University, Georgia, USA ; Research Service, Charlie Norwood VA Medical Center, Augusta 30912, Georgia, USA
| | - Wael S Eldahshan
- Department of Clinical Pharmacy, Program in Clinical and Experimental Therapeutics, University of Georgia, Georgia, USA ; Culver Vision Discovery Institute, Georgia Regents University, Georgia, USA ; Research Service, Charlie Norwood VA Medical Center, Augusta 30912, Georgia, USA
| | - Barbara A Mysona
- Department of Clinical Pharmacy, Program in Clinical and Experimental Therapeutics, University of Georgia, Georgia, USA ; Culver Vision Discovery Institute, Georgia Regents University, Georgia, USA ; Research Service, Charlie Norwood VA Medical Center, Augusta 30912, Georgia, USA
| | - Azza B El-Remessy
- Department of Clinical Pharmacy, Program in Clinical and Experimental Therapeutics, University of Georgia, Georgia, USA ; Culver Vision Discovery Institute, Georgia Regents University, Georgia, USA ; Research Service, Charlie Norwood VA Medical Center, Augusta 30912, Georgia, USA
| |
Collapse
|
41
|
Generation and characterization of antibodies against arginine-derived advanced glycation endproducts. Bioorg Med Chem Lett 2015; 25:4881-4886. [PMID: 26117561 DOI: 10.1016/j.bmcl.2015.06.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/02/2015] [Indexed: 11/22/2022]
Abstract
Although antibodies reagents have been widely employed for studying advanced glycation end-products (AGEs), these materials have been produced using complex mixtures of immunogens. Consequently, their epitope specificity remains unknown. Here we have generated the first antibodies capable of recognizing each of the three isomers of the methylglyoxal hydroimidazolones (MG-Hs) by using chemical synthesis to create homogenous immunogens. Furthermore, we have thoroughly characterized the epitope specificity of both our antibodies and that of two existing monoclonals by implementing a direct ELISA protocol employing synthetic MG-H antigens. Finally, we employed the reported anti-MG-H antibodies to the detection of MG-Hs in cellular systems using immunofluorescence microscopy. These studies have demonstrated that anti-MG-H1 and anti-MG-H3 staining is concentrated within the nucleus, while anti-MG-H2 affords only minimal signal. These observations are consistent with reported formation preferences for MG-Hs, and may suggest novel nuclear targets for non-enzymatic posttranslational modification. The antibody reagents reported herein, as well as the strategy employed for their creation, are likely to prove useful for the immunochemical study of AGEs in biological systems.
Collapse
|
42
|
Association between Advanced Glycation End Products and Impaired Fasting Glucose: Results from the SALIA Study. PLoS One 2015; 10:e0128293. [PMID: 26018950 PMCID: PMC4446029 DOI: 10.1371/journal.pone.0128293] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/27/2015] [Indexed: 12/25/2022] Open
Abstract
Advanced glycation end products (AGEs) may contribute to the development of type 2 diabetes and related complications, whereas their role in the early deterioration of glycaemia is unknown. While previous studies used antibody-based methods to quantify AGEs, data from tandem mass spectrometry coupled liquid chromatography (LC-MS/MS)-based measurements are limited to patients with known diabetes. Here, we used the LC-MS/MS method to test the hypothesis that plasma AGE levels are higher in individuals with impaired fasting glucose (IFG) than in those with normal fasting glucose (NFG). Secondary aims were to assess correlations of plasma AGEs with quantitative markers of glucose metabolism and biomarkers of subclinical inflammation. This study included on 60 women with NFG or IFG (n = 30 each, mean age 74 years) from the German SALIA cohort. Plasma levels of free metabolites (3-deoxyfructose, 3-deoxypentosone, 3-deoxypentulose), two hydroimidazolones, oxidised adducts (carboxymethyllysine, carboxyethyllysine, methionine sulfoxide) and Nε-fructosyllysine were measured using LC-MS/MS. Plasma concentrations of all tested AGEs did not differ between the NFG and IFG groups (all p>0.05). Associations between plasma levels of AGEs and fasting glucose, insulin and HOMA-IR as a measure of insulin resistance were weak (r between -0.2 and 0.2, all p>0.05). The association between 3-deoxyglucosone-derived hydroimidazolone with several proinflammatory biomarkers disappeared upon adjustment for multiple testing. In conclusion, plasma AGEs assessed by LC-MS/MS were neither increased in IFG nor associated with parameters of glucose metabolism and subclinical inflammation in our study. Thus, these data argue against strong effects of AGEs in the early stages of deterioration of glucose metabolism.
Collapse
|
43
|
Klaassen I, van Geest RJ, Kuiper EJ, van Noorden CJF, Schlingemann RO. The role of CTGF in diabetic retinopathy. Exp Eye Res 2015; 133:37-48. [PMID: 25819453 DOI: 10.1016/j.exer.2014.10.016] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 10/23/2022]
Abstract
Connective tissue growth factor (CTGF, CCN2) contributes to fibrotic responses in diabetic retinopathy, both before clinical manifestations occur in the pre-clinical stage of diabetic retinopathy (PCDR) and in proliferative diabetic retinopathy (PDR), the late clinical stage of the disease. CTGF is a secreted protein that modulates the actions of many growth factors and extracellular matrix (ECM) proteins, leading to tissue reorganization, such as ECM formation and remodeling, basal lamina (BL) thickening, pericyte apoptosis, angiogenesis, wound healing and fibrosis. In PCDR, CTGF contributes to thickening of the retinal capillary BL and is involved in loss of pericytes. In this stage, CTGF expression is induced by advanced glycation end products, and by growth factors such as vascular endothelial growth factor (VEGF) and transforming growth factor (TGF)-β. In PDR, the switch from neovascularization to a fibrotic phase - the angio-fibrotic switch - in PDR is driven by CTGF, in a critical balance with vascular endothelial growth factor (VEGF). We discuss here the roles of CTGF in the pathogenesis of DR in relation to ECM remodeling and wound healing mechanisms, and explore whether CTGF may be a potential novel therapeutic target in the clinical management of early as well as late stages of DR.
Collapse
Affiliation(s)
- Ingeborg Klaassen
- Ocular Angiogenesis Group, Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Rob J van Geest
- Ocular Angiogenesis Group, Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Esther J Kuiper
- Ocular Angiogenesis Group, Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Cornelis J F van Noorden
- Ocular Angiogenesis Group, Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Reinier O Schlingemann
- Ocular Angiogenesis Group, Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Netherlands Institute for Neuroscience, Royal Academy of Sciences, Amsterdam, The Netherlands
| |
Collapse
|
44
|
The role of methylglyoxal and the glyoxalase system in diabetes and other age-related diseases. Clin Sci (Lond) 2015; 128:839-61. [PMID: 25818485 DOI: 10.1042/cs20140683] [Citation(s) in RCA: 230] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The formation and accumulation of advanced glycation endproducts (AGEs) are related to diabetes and other age-related diseases. Methylglyoxal (MGO), a highly reactive dicarbonyl compound, is the major precursor in the formation of AGEs. MGO is mainly formed as a byproduct of glycolysis. Under physiological circumstances, MGO is detoxified by the glyoxalase system into D-lactate, with glyoxalase I (GLO1) as the key enzyme in the anti-glycation defence. New insights indicate that increased levels of MGO and the major MGO-derived AGE, methylglyoxal-derived hydroimidazolone 1 (MG-H1), and dysfunctioning of the glyoxalase system are linked to several age-related health problems, such as diabetes, cardiovascular disease, cancer and disorders of the central nervous system. The present review summarizes the mechanisms through which MGO is formed, its detoxification by the glyoxalase system and its effect on biochemical pathways in relation to the development of age-related diseases. Although several scavengers of MGO have been developed over the years, therapies to treat MGO-associated complications are not yet available for application in clinical practice. Small bioactive inducers of GLO1 can potentially form the basis for new treatment strategies for age-related disorders in which MGO plays a pivotal role.
Collapse
|
45
|
Nowotny K, Jung T, Höhn A, Weber D, Grune T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules 2015; 5:194-222. [PMID: 25786107 PMCID: PMC4384119 DOI: 10.3390/biom5010194] [Citation(s) in RCA: 734] [Impact Index Per Article: 73.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/06/2015] [Accepted: 03/02/2015] [Indexed: 12/25/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a very complex and multifactorial metabolic disease characterized by insulin resistance and β cell failure leading to elevated blood glucose levels. Hyperglycemia is suggested to be the main cause of diabetic complications, which not only decrease life quality and expectancy, but are also becoming a problem regarding the financial burden for health care systems. Therefore, and to counteract the continually increasing prevalence of diabetes, understanding the pathogenesis, the main risk factors, and the underlying molecular mechanisms may establish a basis for prevention and therapy. In this regard, research was performed revealing further evidence that oxidative stress has an important role in hyperglycemia-induced tissue injury as well as in early events relevant for the development of T2DM. The formation of advanced glycation end products (AGEs), a group of modified proteins and/or lipids with damaging potential, is one contributing factor. On the one hand it has been reported that AGEs increase reactive oxygen species formation and impair antioxidant systems, on the other hand the formation of some AGEs is induced per se under oxidative conditions. Thus, AGEs contribute at least partly to chronic stress conditions in diabetes. As AGEs are not only formed endogenously, but also derive from exogenous sources, i.e., food, they have been assumed as risk factors for T2DM. However, the role of AGEs in the pathogenesis of T2DM and diabetic complications—if they are causal or simply an effect—is only partly understood. This review will highlight the involvement of AGEs in the development and progression of T2DM and their role in diabetic complications.
Collapse
Affiliation(s)
- Kerstin Nowotny
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| | - Tobias Jung
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| | - Annika Höhn
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| |
Collapse
|
46
|
Chen SJ, Aikawa C, Matsui T. Quantitative Analysis of Methylglyoxal, Glyoxal and Free Advanced Glycation End-Products in the Plasma of Wistar Rats during the Oral Glucose Tolerance Test. Biol Pharm Bull 2015; 38:336-9. [DOI: 10.1248/bpb.b14-00698] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Si Jing Chen
- Division of Bioscience and Bioenvironmental Sciences, Faculty of Agriculture, Graduate School of Kyushu University
| | - Chiwa Aikawa
- Division of Bioscience and Bioenvironmental Sciences, Faculty of Agriculture, Graduate School of Kyushu University
| | - Toshiro Matsui
- Division of Bioscience and Bioenvironmental Sciences, Faculty of Agriculture, Graduate School of Kyushu University
| |
Collapse
|
47
|
Figarola JL, Singhal J, Rahbar S, Awasthi S, Singhal SS. LR-90 prevents methylglyoxal-induced oxidative stress and apoptosis in human endothelial cells. Apoptosis 2014; 19:776-88. [PMID: 24615331 DOI: 10.1007/s10495-014-0974-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Methylglyoxal (MGO) is a highly reactive dicarbonyl compound known to induce cellular injury and cytoxicity, including apoptosis in vascular cells. Vascular endothelial cell apoptosis has been implicated in the pathophysiology and progression of atherosclerosis. We investigated whether the advanced glycation end-product inhibitor LR-90 could prevent MGO-induced apoptosis in human umbilical vascular endothelial cells (HUVECs). HUVECs were pre-treated with LR-90 and then stimulated with MGO. Cell morphology, cytotoxicity and apoptosis were evaluated by light microscopy, MTT assay, and Annexin V-FITC and propidium iodide double staining, respectively. Levels of Bax, Bcl-2, cytochrome c, mitogen-activated protein kinases (MAPKs) and caspase activities were assessed by Western blotting. Reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP) were measured with fluorescent probes. LR-90 dose-dependently prevented MGO-associated HUVEC cytotoxicity and apoptotic biochemical changes such as loss of MMP, increased Bax/Bcl-2 protein ratio, mitochondrial cytochrome c release and activation of caspase-3 and 9. Additionally, LR-90 blocked intracellular ROS formation and MAPK (p44/p42, p38, JNK) activation, though the latter seem to be not directly involved in MGO-induced HUVEC apoptosis. LR-90 prevents MGO-induced HUVEC apoptosis by inhibiting ROS and associated mitochondrial-dependent apoptotic signaling cascades, suggesting that LR-90 possess cytoprotective ability which could be beneficial in prevention of diabetic related-atherosclerosis.
Collapse
Affiliation(s)
- James L Figarola
- Departments of Diabetes and Metabolic Diseases Research, Beckman Research Institute of the City of Hope National Medical Center, NCI Designated Comprehensive Cancer Center, Gonda North, RM # 2108, 1500 E. Duarte Rd, Duarte, CA, 91010, USA
| | | | | | | | | |
Collapse
|
48
|
Kong X, Ma MZ, Huang K, Qin L, Zhang HM, Yang Z, Li XY, Su Q. Increased plasma levels of the methylglyoxal in patients with newly diagnosed type 2 diabetes 2. J Diabetes 2014; 6:535-40. [PMID: 24720446 DOI: 10.1111/1753-0407.12160] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/09/2014] [Accepted: 04/07/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Methylglyoxal (MG) is a reactive-dicarbonyl that is thought to contribute to the development of diabetes either as a precursor for advanced glycation end products or as a direct toxin. The present study was designed to determine plasma MG level in patients with newly diagnosed type 2 diabetes mellitus (T2DM) and to evaluate the relationship between MG and other parameters, such as oxidative stress and metabolic indices. METHODS Methylglyoxal was measured by high-performance liquid chromatographic/tandem mass spectrometry in plasma from 48 subjects with newly diagnosed T2DM. The relationship between two variables was analyzed using Spearman's correlation analysis. Multiple stepwise linear regression analysis was used to assess the association of plasma MG and other parameters. RESULTS Plasma MG level in patients with newly diagnosed T2DM (65.2 ± 19.2 ng/mL) were significantly higher than that in control individuals (40.1 ± 11.1 ng/mL, P < 0.05). The plasma level of MG was positively correlated with the glycosylated hemoglobin A1c (HbA1c, r = 0.670, P < 0.01) and malondialdehyde (MDA, r = 0.694, P < 0.01). Multiple linear regression analysis revealed that both HbA1c and MDA are significant independent determinants of plasma MG level. CONCLUSIONS These findings suggest that increased plasma MG level is associated with the elevation of HbA1c and MDA in newly diagnosed T2DM patients.
Collapse
Affiliation(s)
- Xiang Kong
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Pharmacology, Wannan Medical College, Wuhu, China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Raghav A, Ahmad J. Glycated serum albumin: a potential disease marker and an intermediate index of diabetes control. Diabetes Metab Syndr 2014; 8:245-251. [PMID: 25311816 DOI: 10.1016/j.dsx.2014.09.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glycation is a non-enzymatic spontaneous process in proteins which has remarkable impact on its physical and functional aspect. This alteration with addition of carbohydrate residue to human serum albumin leads to several pathological events such as diabetic nephropathy, neuropathy, retinopathy and cardiovascular complications. Human serum albumin is the major protein and is most susceptible to non-enzymatic glycation. Structural and biological properties of functional albumin alter due to the addition of reducing carbohydrate to free amino terminal residues vivo. These irreversible changes in functional albumin are stable which makes this modified albumin as new gold standard future diagnostic marker in diabetes associated complications. Glycated albumin can be used to determine the glycemic control due to short half life than erythrocytes which makes it an alternate reliable disease marker in diabetes. In this review, Human serum albumin glycation has been overviewed, stating concept of glycation and sites that are prone to this modifications. Impact of non-enzymatic addition of carbohydrate to albumin's structural and biological properties has also been elaborated. Accurate measurements of glycated albumin with implications of new highly sensitive techniques have also been described briefly. Interestingly human serum albumin imposed glycation can serve as future tool not for diagnosing diabetes but also its potential in assessment of diabetes associated complications.
Collapse
Affiliation(s)
- Alok Raghav
- Rajiv Gandhi Centre for Diabetes and Endocrinology, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Jamal Ahmad
- Rajiv Gandhi Centre for Diabetes and Endocrinology, Aligarh Muslim University, Aligarh 202002, UP, India.
| |
Collapse
|
50
|
Emerging role of advanced glycation-end products (AGEs) in the pathobiology of eye diseases. Prog Retin Eye Res 2014; 42:85-102. [PMID: 24905859 DOI: 10.1016/j.preteyeres.2014.05.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/20/2014] [Accepted: 05/24/2014] [Indexed: 12/27/2022]
Abstract
Advanced glycation end products (AGEs) have been implicated in vision loss associated with macula degeneration, cataract formation, diabetic retinopathy and glaucoma. This pathogenic potential is mainly attributed to their accumulation in ocular tissues where they mediate aberrant crosslinking of extracellular matrix proteins and disruption of endothelial junctional complexes that affects cell permeability, mediates angiogenesis and breakdown of the inner blood-retinal barrier. Furthermore, AGEs severely affect cellular metabolism by disrupting ATP production, enhancing oxidative stress and modulating gene expression of anti-angiogenic and anti-inflammatory genes. Elucidation of AGE-induced mechanisms of action in different eye compartments will help in the understanding of the complex cellular and molecular processes associated with eye diseases. Several pharmaceutical agents with anti-glycating and anti-oxidant properties as well as AGE crosslink 'breakers' have been currently applied to eye diseases. The role of diet and the beneficial effects of certain nutriceuticals provide an alternative way to manage chronic visual disorders that affect the quality of life of millions of people.
Collapse
|