1
|
Guldan M, Unlu S, Abdel-Rahman SM, Ozbek L, Gaipov A, Covic A, Soler MJ, Covic A, Kanbay M. Understanding the Role of Sex Hormones in Cardiovascular Kidney Metabolic Syndrome: Toward Personalized Therapeutic Approaches. J Clin Med 2024; 13:4354. [PMID: 39124622 PMCID: PMC11312746 DOI: 10.3390/jcm13154354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Cardiovascular kidney metabolic (CKM) syndrome represents a complex interplay of cardiovascular disease (CVD), chronic kidney disease (CKD), and metabolic comorbidities, posing a significant public health challenge. Gender exerts a critical influence on CKM syndrome, affecting the disease severity and onset through intricate interactions involving sex hormones and key physiological pathways such as the renin-angiotensin system, oxidative stress, inflammation, vascular disease and insulin resistance. It is widely known that beyond the contribution of traditional risk factors, men and women exhibit significant differences in CKM syndrome and its components, with distinct patterns observed in premenopausal women and postmenopausal women compared to men. Despite women generally experiencing a lower incidence of CVD, their outcomes following cardiovascular events are often worse compared to men. The disparities also extend to the treatment approaches for kidney failure, with a higher prevalence of dialysis among men despite women exhibiting higher rates of CKD. The impact of endogenous sex hormones, the correlations between CKM and its components, as well as the long-term effects of treatment modalities using sex hormones, including hormone replacement therapies and gender-affirming therapies, have drawn attention to this topic. Current research on CKM syndrome is hindered by the scarcity of large-scale studies and insufficient integration of gender-specific considerations into treatment strategies. The underlying mechanisms driving the gender disparities in the pathogenesis of CKM syndrome, including the roles of estrogen, progesterone and testosterone derivatives, remain poorly understood, thus limiting their application in personalized therapeutic interventions. This review synthesizes existing knowledge to clarify the intricate relationship between sex hormones, gender disparities, and the progression of CVD within CKM syndrome. By addressing these knowledge gaps, this study aims to guide future research efforts and promote tailored approaches for effectively managing CKD syndrome.
Collapse
Affiliation(s)
- Mustafa Guldan
- Department of Medicine, Koç University School of Medicine, 34450 Istanbul, Turkey; (M.G.); (S.U.); (S.M.A.-R.); (L.O.)
| | - Selen Unlu
- Department of Medicine, Koç University School of Medicine, 34450 Istanbul, Turkey; (M.G.); (S.U.); (S.M.A.-R.); (L.O.)
| | - Sama Mahmoud Abdel-Rahman
- Department of Medicine, Koç University School of Medicine, 34450 Istanbul, Turkey; (M.G.); (S.U.); (S.M.A.-R.); (L.O.)
| | - Laşin Ozbek
- Department of Medicine, Koç University School of Medicine, 34450 Istanbul, Turkey; (M.G.); (S.U.); (S.M.A.-R.); (L.O.)
| | - Abduzhappar Gaipov
- Department of Medicine, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan;
| | - Andreea Covic
- Department of Nephrology, Grigore T. Popa University of Medicine, 700115 Iasi, Romania;
| | - Maria José Soler
- Nephrology Department, Vall d’Hebron University Hospital, Vall d’Hebron Institute of Research, 08035 Barcelona, Spain;
- Centro de Referencia en Enfermedad, Glomerular Compleja del Sistema Nacional de Salud de España (CSUR), RICORS2040 (Kidney Disease), 08003 Barcelona, Spain
- GEENDIAB (Grupo Español de Estudio de la Nefropatía Diabética), 39008 Santander, Spain
| | - Adrian Covic
- Department of Nephrology, Grigore T. Popa University of Medicine, 700115 Iasi, Romania;
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koç University School of Medicine, 34450 Istanbul, Turkey;
| |
Collapse
|
2
|
Jacome-Sosa M, Hu Q, Manrique-Acevedo CM, Phair RD, Parks EJ. Human intestinal lipid storage through sequential meals reveals faster dinner appearance is associated with hyperlipidemia. JCI Insight 2021; 6:e148378. [PMID: 34369385 PMCID: PMC8489663 DOI: 10.1172/jci.insight.148378] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022] Open
Abstract
Background It is increasingly recognized that intestinal cells can store lipids after a meal, yet the effect of this phenomenon on lipid absorption patterns in insulin resistance remains unknown. Methods The kinetics of meal fat appearance were measured in insulin-sensitive (IS, n = 8) and insulin-resistant (IR, n = 8) subjects after sequential, isotopically labeled lunch and dinner meals. Plasma dynamics on triacylglycerol-rich (TAG-rich) lipoproteins and plasma hormones were analyzed using a nonlinear, non–steady state kinetic model. Results At the onset of dinner, IS subjects showed an abrupt plasma appearance of lunch lipid consistent with the “second-meal effect,” followed by slower appearance of dinner fat in plasma, resulting in reduced accumulation of dinner TAG of 48% compared with lunch. By contrast, IR subjects exhibited faster meal TAG appearance rates after both lunch and dinner. This effect of lower enterocyte storage between meals was associated with greater nocturnal and next-morning hyperlipidemia. The biochemical data and the kinetic analysis of second-meal effect dynamics are consistent with rapid secretion of stored TAG bypassing lipolysis and resynthesis. In addition, the data are consistent with a role for the diurnal pattern of plasma leptin in regulating the processing of dietary lipid. Conclusion These data support the concept that intestinal lipid storage may be physiologically beneficial in IS subjects. Trial registration ClinicalTrials.gov NCT02020343. Funding This study was supported by a grant from the American Diabetes Association (grant 1-13-TS-12).
Collapse
Affiliation(s)
| | - Qiong Hu
- Department of Nutrition and Exercise Physiology and
| | | | - Robert D Phair
- Integrative Bioinformatics, Inc., Mountain View, California, USA
| | - Elizabeth J Parks
- Department of Nutrition and Exercise Physiology and.,Division of Gastroenterology and Hepatology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
3
|
Pedicelli S, de Palma L, Pelosini C, Cappa M. Metreleptin for the treatment of progressive encephalopathy with/without lipodystrophy (PELD) in a child with progressive myoclonic epilepsy: a case report. Ital J Pediatr 2020; 46:158. [PMID: 33099310 PMCID: PMC7585287 DOI: 10.1186/s13052-020-00916-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/05/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND A number of genetic syndromes associated with variants in the BSCL2/seipin gene have been identified. Variants that cause skipping of exon 7 are associated with progressive encephalopathy with/without lipodystrophy (PELD), which is characterized by the development of progressive myoclonic epilepsy at a young age, severe progressive neurological impairment, and early death, often in childhood. Because the genetic basis of PELD is similar to that of congenital lipodystrophy type 2, we hypothesized that a patient with PELD may respond to treatments approved for other congenital lipodystrophic syndromes. CASE PRESENTATION We describe a 5-year-old boy with an extremely rare phenotype involving severe progressive myoclonic epilepsy who received metreleptin (a recombinant analogue of leptin) to control metabolic abnormalities. At the age of two, he had no subcutaneous adipose tissue, with hypertriglyceridemia, hypertransaminasemia and hepatic steatosis. He also had a moderate psychomotor delay and generalized tonic seizures. At 4 years, he had insulin resistance, hypercholesterolemia, hypertriglyceridemia, mild hepatosplenomegaly and mild hepatic steatosis; he began a hypolipidemic diet. Severe psychomotor delay and myoclonic/myoclonic atonic seizures with absences was evident. At 5 years of age, metreleptin 0.06 mg/kg/day was initiated; after 2 months, the patient's lipid profile improved and insulin resistance resolved. After 1 year of treatment, hepatic steatosis improved and abdominal ultrasound showed only mild hepatomegaly. Seizure frequency decreased but was not eliminated during metreleptin therapy. CONCLUSIONS Metreleptin may be used to control metabolic disturbances and may lead to better seizure control in children with PELD.
Collapse
Affiliation(s)
| | - Luca de Palma
- Rare and Complex Epilepsy, Department of Neuroscience, Bambino Gesù Children Hospital, Rome, Italy
| | - Caterina Pelosini
- Chemistry and Endocrinology Laboratory, University Hospital of Pisa, Pisa, Italy
| | - Marco Cappa
- Unit of Endocrinology, Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
4
|
Baykal AP, Parks EJ, Shamburek R, Syed-Abdul MM, Chacko S, Cochran E, Startzell M, Gharib AM, Ouwerkerk R, Abd-Elmoniem KZ, Walter PJ, Walter M, Muniyappa R, Chung ST, Brown RJ. Leptin decreases de novo lipogenesis in patients with lipodystrophy. JCI Insight 2020; 5:137180. [PMID: 32573497 DOI: 10.1172/jci.insight.137180] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/10/2020] [Indexed: 01/14/2023] Open
Abstract
De novo lipogenesis (DNL) plays a role in the development of hepatic steatosis. In humans with lipodystrophy, reduced adipose tissue causes lower plasma leptin, insulin resistance, dyslipidemia, and ectopic triglyceride (TG) accumulation. We hypothesized that recombinant leptin (metreleptin) for 6 months in 11 patients with lipodystrophy would reduce DNL by decreasing insulin resistance and glycemia, thus reducing circulating TG and hepatic TG. The percentage of TG in TG-rich lipoprotein particle (TRLP-TG) derived from DNL (%DNL) was measured by deuterium incorporation from body water into palmitate. At baseline, DNL was elevated, similar to levels previously shown in obesity-associated nonalcoholic fatty liver disease (NAFLD). After metreleptin, DNL decreased into the normal range. Similarly, absolute DNL (TRLP-TG × %DNL) decreased by 88% to near-normal levels. Metreleptin improved peripheral insulin sensitivity (hyperinsulinemic-euglycemic clamp) and lowered hemoglobin A1c and hepatic TG. Both before and after metreleptin, DNL positively correlated with insulin resistance, insulin doses, and hepatic TG, supporting the hypothesis that hyperinsulinemia stimulates DNL and that elevated DNL is integral to the pathogenesis of lipodystrophy-associated NAFLD. These data suggest that leptin-mediated improvement in insulin sensitivity increases clearance of blood glucose by peripheral tissues, reduces hepatic carbohydrate flux, and lowers insulinemia, resulting in DNL reductions and improvements in hepatic steatosis and dyslipidemia.
Collapse
Affiliation(s)
- Annah P Baykal
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Elizabeth J Parks
- Department of Nutrition and Exercise Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Robert Shamburek
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Majid M Syed-Abdul
- Department of Nutrition and Exercise Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Shaji Chacko
- Department of Pediatrics, Children's Nutrition Research Center, US Department of Agriculture/Agricultural Research Service, Baylor College of Medicine, Houston, Texas, USA
| | - Elaine Cochran
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Megan Startzell
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Ahmed M Gharib
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Ronald Ouwerkerk
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Khaled Z Abd-Elmoniem
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Peter J Walter
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Mary Walter
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Ranganath Muniyappa
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Stephanie T Chung
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Rebecca J Brown
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
5
|
A low-carbohydrate ketogenic diet induces the expression of very-low-density lipoprotein receptor in liver and affects its associated metabolic abnormalities. NPJ Sci Food 2019; 3:25. [PMID: 31815184 PMCID: PMC6889268 DOI: 10.1038/s41538-019-0058-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/30/2019] [Indexed: 11/21/2022] Open
Abstract
A low-carbohydrate ketogenic diet (LCKD) promotes the progression of hepatic steatosis in C57BL/6 wild-type mice, but improves the condition in leptin-deficient obese (ob/ob) mice. Here, we show a novel effect of LCKD associated with the conflicting effects on these mice. Gene expression microarray analyses showed that expression of the Vldlr gene, which encodes the very-low-density lipoprotein receptor (VLDLR), was induced in LCKD-fed ob/ob mice. Although the VLDLR is not normally expressed in the liver, the LCKD led to VLDLR expression in both ob/ob and wild-type mice. To clarify this effect on VLDL dynamics, we analyzed the lipid content of serum lipoproteins and found a marked decrease in VLDL-triglycerides only in LCKD-fed wild-type mice. Further analyses suggested that transport of triglycerides via VLDL from the liver to extrahepatic tissues was inhibited by LCKD-induced hepatic VLDLR expression, but rescued under conditions of leptin deficiency.
Collapse
|
6
|
Emerging awareness on the importance of skeletal muscle in liver diseases: time to dig deeper into mechanisms! Clin Sci (Lond) 2019; 133:465-481. [DOI: 10.1042/cs20180421] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/09/2019] [Accepted: 01/23/2019] [Indexed: 02/07/2023]
Abstract
Abstract
Skeletal muscle is a tissue that represents 30–40% of total body mass in healthy humans and contains up to 75% of total body proteins. It is thus the largest organ in non-obese subjects. The past few years have seen increasing awareness of the prognostic value of appreciating changes in skeletal muscle compartment in various chronic diseases. Hence, a low muscle mass, a low muscle function and muscle fatty infiltration are linked with poor outcomes in many pathological conditions. In particular, an affluent body of evidence links the severity, the complications and mortality of chronic liver disease (CLD) with skeletal muscle depletion. Yet it is still not clear whether low muscle mass is a cause, an aggravating factor, a consequence of the ongoing disease, or an epiphenomenon reflecting general alteration in the critically ill patient. The mechanisms by which the muscle compartment influences disease prognosis are still largely unknown. In addition, whether muscle alterations contribute to liver disease progression is an unanswered question. Here, we first review basic knowledge about muscle compartment to draw a conceptual framework for interpreting skeletal muscle alteration in CLD. We next describe recent literature on muscle wasting in cirrhosis and liver transplantation. We then discuss the implication of skeletal muscle compartment in non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH), focusing on plausible metabolic disruption in muscle compartment that might participate in NAFLD progression. Finally, we discuss shortcomings and challenges we need to address in the near future prior to designate the muscle compartment as a therapeutic target in CLD.
Collapse
|
7
|
Brown RJ, Valencia A, Startzell M, Cochran E, Walter PJ, Garraffo HM, Cai H, Gharib AM, Ouwerkerk R, Courville AB, Bernstein S, Brychta RJ, Chen KY, Walter M, Auh S, Gorden P. Metreleptin-mediated improvements in insulin sensitivity are independent of food intake in humans with lipodystrophy. J Clin Invest 2018; 128:3504-3516. [PMID: 29723161 DOI: 10.1172/jci95476] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 05/01/2018] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Recombinant leptin (metreleptin) ameliorates hyperphagia and metabolic abnormalities in leptin-deficient humans with lipodystrophy. We aimed to determine whether metreleptin improves glucose and lipid metabolism in humans when food intake is held constant. METHODS Patients with lipodystrophy were hospitalized for 19 days, with food intake held constant by a controlled diet in an inpatient metabolic ward. In a nonrandomized, crossover design, patients previously treated with metreleptin (n = 8) were continued on metreleptin for 5 days and then taken off metreleptin for the next 14 days (withdrawal cohort). This order was reversed in metreleptin-naive patients (n = 14), who were reevaluated after 6 months of metreleptin treatment on an ad libitum diet (initiation cohort). Outcome measurements included insulin sensitivity by hyperinsulinemic-euglycemic clamp, fasting glucose and triglyceride levels, lipolysis measured using isotopic tracers, and liver fat by magnetic resonance spectroscopy. RESULTS With food intake constant, peripheral insulin sensitivity decreased by 41% after stopping metreleptin for 14 days (withdrawal cohort) and increased by 32% after treatment with metreleptin for 14 days (initiation cohort). In the initiation cohort only, metreleptin decreased fasting glucose by 11% and triglycerides by 41% and increased hepatic insulin sensitivity. Liver fat decreased from 21.8% to 18.7%. In the initiation cohort, changes in lipolysis were not independent of food intake, but after 6 months of metreleptin treatment on an ad libitum diet, lipolysis decreased by 30% (palmitate turnover) to 35% (glycerol turnover). CONCLUSION Using lipodystrophy as a human model of leptin deficiency and replacement, we show that metreleptin improves insulin sensitivity and decreases hepatic and circulating triglycerides and that these improvements are independent of its effects on food intake. TRIAL REGISTRATION ClinicalTrials.gov NCT01778556FUNDING. This research was supported by the intramural research program of the NIDDK.
Collapse
Affiliation(s)
- Rebecca J Brown
- Diabetes, Endocrinology, and Obesity Branch (DEOB), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Areli Valencia
- Diabetes, Endocrinology, and Obesity Branch (DEOB), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Megan Startzell
- Diabetes, Endocrinology, and Obesity Branch (DEOB), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Elaine Cochran
- Diabetes, Endocrinology, and Obesity Branch (DEOB), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | | | | | | | - Ahmed M Gharib
- Biomedical and Metabolic Imaging Branch, NIDDK, NIH, Bethesda, Maryland, USA
| | - Ronald Ouwerkerk
- Biomedical and Metabolic Imaging Branch, NIDDK, NIH, Bethesda, Maryland, USA
| | | | - Shanna Bernstein
- Nutrition Department, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Robert J Brychta
- Diabetes, Endocrinology, and Obesity Branch (DEOB), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Kong Y Chen
- Diabetes, Endocrinology, and Obesity Branch (DEOB), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | | | - Sungyoung Auh
- Office of the Clinical Director, NIDDK, NIH, Bethesda, Maryland, USA
| | - Phillip Gorden
- Diabetes, Endocrinology, and Obesity Branch (DEOB), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Wang X, Zhang X, Hu L, Li H. Exogenous leptin affects sperm parameters and impairs blood testis barrier integrity in adult male mice. Reprod Biol Endocrinol 2018; 16:55. [PMID: 29855380 PMCID: PMC5984414 DOI: 10.1186/s12958-018-0368-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/09/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Serum leptin levels are augmented in obese infertile men and in men with azoospermia. They also correlate inversely with sperm concentration, motility and normal forms. The mechanisms underlying the adverse effects of excess leptin on male reproductive function remain unclear. The present study aimed to evaluate the effects of exogenous leptin on sperm parameters in mice and to explore the underlying mechanisms. METHODS We treated normal adult male mice with saline, 0.1, 0.5 or 3 mg/kg leptin daily for 2 weeks. After treatment, serum leptin levels, serum testosterone levels, sperm parameters and testicular cell apoptosis were evaluated. Blood testis barrier integrity and the expression of tight junction-associated proteins in testes were also assessed. We further verified the direct effects of leptin on tight junction-associated proteins in Sertoli cells and the possible leptin signaling pathways involved in this process. RESULTS After treatment, there were no significant differences in body weights, reproductive organ weights, serum leptin levels and serum testosterone levels between leptin-treated mice and control mice. Administration of 3 mg/kg leptin reduced sperm concentration, motility and progressive motility while increasing the percentage of abnormal sperm and testicular cell apoptosis. Mice treated with 3 mg/kg leptin also had impaired blood testis barrier integrity, which was related to decreased tight junction-associated proteins in testes. Leptin directly reduced tight junction-associated proteins in Sertoli cells, JAK2/STAT, PI3K and ERK pathways were suggested to be involved in this process. CONCLUSIONS Exogenous leptin negatively affects sperm parameters and impairs blood testis barrier integrity in mice. Leptin reduced tight junction-associated proteins in Sertoli cells, indicating that leptin has a direct role in impairing blood testis barrier integrity. Given the function of blood testis barrier in maintaining normal spermatogenesis, leptin-induced blood testis barrier impairment may be one of the mechanisms contributing to male subfertility and infertility.
Collapse
Affiliation(s)
- Xiaotong Wang
- 0000 0004 0368 7223grid.33199.31Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Xiaoke Zhang
- 0000 0004 0368 7223grid.33199.31Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- grid.412719.8Center for Reproductive Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Lian Hu
- 0000 0004 0368 7223grid.33199.31Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Honggang Li
- 0000 0004 0368 7223grid.33199.31Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| |
Collapse
|
9
|
Richards L, Li M, van Esch B, Garssen J, Folkerts G. The effects of short-chain fatty acids on the cardiovascular system. PHARMANUTRITION 2016. [DOI: 10.1016/j.phanu.2016.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Mc Auley MT, Mooney KM. Lipid metabolism and hormonal interactions: impact on cardiovascular disease and healthy aging. Expert Rev Endocrinol Metab 2014; 9:357-367. [PMID: 30763995 DOI: 10.1586/17446651.2014.921569] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Populations in developed nations are aging gradually; it is predicted that by 2050 almost a quarter of the world's population will be over 60 years old, more than twice the figure at the turn of the 20th century. Although we are living longer, this does not mean the extra years will be spent in good health. Cardiovascular diseases are the primary cause of ill health and their prevalence increases with age. Traditionally, lipid biomarkers have been utilized to stratify disease risk and predict the onset of cardiovascular events. However, recent evidence suggests that hormonal interplay with lipid metabolism could have a significant role to play in modulating cardiovascular disease risk. This review will explore recent findings which have investigated the role hormones have on the dynamics of lipid metabolism. The aim is to offer an insight into potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Mark T Mc Auley
- a School of Health Sciences, Liverpool Hope University, Taggart Avenue, Liverpool, L16 1JD, UK
| | - Kathleen M Mooney
- b Faculty of Health and Social Care, Edge Hill University, St Helens Road, Ormskirk, Lancashire, L39 4QP, UK
| |
Collapse
|
11
|
Cornall LM, Mathai ML, Hryciw DH, McAinch AJ. The therapeutic potential of GPR43: a novel role in modulating metabolic health. Cell Mol Life Sci 2013; 70:4759-70. [PMID: 23852543 PMCID: PMC11113592 DOI: 10.1007/s00018-013-1419-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/09/2013] [Accepted: 06/28/2013] [Indexed: 02/07/2023]
Abstract
GPR43 is a receptor for short-chain fatty acids. Preliminary data suggest a putative role for GPR43 in regulating systemic health via processes including inflammation, carcinogenesis, gastrointestinal function, and adipogenesis. GPR43 is involved in secretion of gastrointestinal peptides, which regulate appetite and gastrointestinal motility. This suggests GPR43 may have a role in weight control. Moreover, GPR43 regulates plasma lipid profile and inflammatory processes, which further indicates that GPR43 could have the ability to modulate the etiology and pathogenesis of metabolic diseases such as obesity, type 2 diabetes mellitus, and cardiovascular disease. This review summarizes the current evidence regarding the ability of GPR43 to mediate both systemic and tissue specific functions and how GPR43 may be modulated in the treatment of metabolic disease.
Collapse
Affiliation(s)
- Lauren M Cornall
- Biomedical and Lifestyle Diseases Unit, College of Health and Biomedicine, Victoria University, PO Box 14428, Melbourne, VIC, 8001, Australia,
| | | | | | | |
Collapse
|
12
|
Paruthi J, Gill N, Mantzoros CS. Adipokines in the HIV/HAART-associated lipodystrophy syndrome. Metabolism 2013; 62:1199-205. [PMID: 23706880 DOI: 10.1016/j.metabol.2013.04.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 04/15/2013] [Accepted: 04/25/2013] [Indexed: 01/26/2023]
Abstract
The use of highly active antiretroviral therapy (HAART) in the treatment of human immunodeficiency virus has dramatically altered both the landscape of this disease and the prognosis for those affected. With more patients now receiving HAART, adverse effects such as lipodystrophy and metabolic syndrome have emerged. In HIV/HAART-associated lipodystrophy syndrome (HALS), patients demonstrate fat maldistribution with dyslipidemia, insulin resistance, and other metabolic complications. Recent studies have contributed to the elucidation of the pathophysiological abnormalities seen in this syndrome and have provided guidance for the study and use of potential treatments for these patients, but widely accepted guidelines have not yet been established. Two adipokines, leptin and adiponectin, are decreased in patients with HALS and lipoatrophy or lipodystrophy. Further, recent proof-of-concept clinical trials have proven the efficacy of leptin replacement and medications that increase circulating adiponectin levels in improving the metabolic profile of HALS patients. This review article highlights recent evidence on leptin replacement and compares leptin's efficacy to that of other treatments, including metformin and thiazolidinediones, on metabolic abnormalities such as impaired insulin-glucose homeostasis associated with lipodystrophy in patients receiving HAART. It is hoped that forthcoming large phase III clinical trials will allow the addition of leptin to our therapeutic armamentarium for use in patients suffering from this disease state.
Collapse
Affiliation(s)
- Jason Paruthi
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
13
|
Siegrist M, Rank M, Wolfarth B, Langhof H, Haller B, Koenig W, Halle M. Leptin, adiponectin, and short-term and long-term weight loss after a lifestyle intervention in obese children. Nutrition 2013; 29:851-7. [PMID: 23422541 DOI: 10.1016/j.nut.2012.12.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/22/2012] [Accepted: 12/06/2012] [Indexed: 12/29/2022]
Abstract
OBJECTIVE In overweight children, high leptin levels are independently associated with higher risk for cardiovascular disease, whereas adiponectin seems to be protective against type 2 diabetes and atherosclerosis. The study examines the predictive value of leptin for weight loss after a 4- to 6-wk inpatient therapy and again after 1 y; as well as the association among weight loss, leptin, and adiponectin levels and changes in cardiometabolic risk factors after therapy. METHODS Body mass index (BMI), blood pressure, Tanner stage, and cardiometabolic risk factors were studied in 402 children (59.2% females, 13.9 ± 2.3 y, BMI 33.8 ± 5.7 kg/m(2)) before and after a 4-to 6-wk inpatient intervention (exercise, diet, and behavioral therapy) and BMI 1 y later (n = 206). RESULTS BMI was reduced from 33.8 ± 5.7 to 30.5 ± 5.1 kg/m(2) (P < 0.001) during the lifestyle intervention and remained unchanged after 1 y. Baseline BMI was positively associated with leptin (r = 0.60; P < 0.001) and cardiometabolic risk factors (blood pressure, high-density lipoprotein [HDL] cholesterol, triglycerides). Baseline leptin was associated with BMI and triglycerides (r = 0.39; P < 0.001), baseline adiponectin with HDL-cholesterol (r = 0.40; P < 0.001). Baseline BMI explained 40.7% of the variance in weight loss during therapy. The combination of BMI, sex, and leptin explained 50.4% of the variance. Neither BMI nor leptin predicted weight changes over the long term. CONCLUSIONS Overweight children maintained a substantial amount of weight loss after participation in a short-term inpatient lifestyle intervention. Baseline BMI was positively associated with weight reduction during the intervention, whereas baseline leptin had only a minor predictive value.
Collapse
Affiliation(s)
- Monika Siegrist
- Department of Prevention, Rehabilitation and Sports Medicine, Technische Universität München, Klinikum rechts der Isar, Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
14
|
Nyrén R, Chang CL, Lindström P, Barmina A, Vorrsjö E, Ali Y, Juntti-Berggren L, Bensadoun A, Young SG, Olivecrona T, Olivecrona G. Localization of lipoprotein lipase and GPIHBP1 in mouse pancreas: effects of diet and leptin deficiency. BMC PHYSIOLOGY 2012. [PMID: 23186339 PMCID: PMC3537605 DOI: 10.1186/1472-6793-12-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Lipoprotein lipase (LPL) hydrolyzes triglycerides in plasma lipoproteins and enables uptake of lipolysis products for energy production or storage in tissues. Our aim was to study the localization of LPL and its endothelial anchoring protein glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1) in mouse pancreas, and effects of diet and leptin deficiency on their expression patterns. For this, immunofluorescence microscopy was used on pancreatic tissue from C57BL/6 mouse embryos (E18), adult mice on normal or high-fat diet, and adult ob/ob-mice treated or not with leptin. The distribution of LPL and GPIHBP1 was compared to insulin, glucagon and CD31. Heparin injections were used to discriminate between intracellular and extracellular LPL. RESULTS In the exocrine pancreas LPL was found in capillaries, and was mostly co-localized with GPIHBP1. LPL was releasable by heparin, indicating localization on cell surfaces. Within the islets, most of the LPL was associated with beta cells and could not be released by heparin, indicating that the enzyme remained mostly within cells. Staining for LPL was found also in the glucagon-producing alpha cells, both in embryos (E18) and in adult mice. Only small amounts of LPL were found together with GPIHBP1 within the capillaries of islets. Neither a high fat diet nor fasting/re-feeding markedly altered the distribution pattern of LPL or GPIHBP1 in mouse pancreas. Islets from ob/ob mice appeared completely deficient of LPL in the beta cells, while LPL-staining was normal in alpha cells and in the exocrine pancreas. Leptin treatment of ob/ob mice for 12 days reversed this pattern, so that most of the islets expressed LPL in beta cells. CONCLUSIONS We conclude that both LPL and GPIHBP1 are present in mouse pancreas, and that LPL expression in beta cells is dependent on leptin.
Collapse
Affiliation(s)
- Rakel Nyrén
- Department of Medical Biosciences/Physiological Chemistry, Umeå University, Umeå, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Foo JP, Mantzoros CS. Leptin in congenital or HIV-associated lipodystrophy and metabolic syndrome: a need for more mechanistic studies and large, randomized, placebo-controlled trials. Metabolism 2012; 61:1331-6. [PMID: 22592129 DOI: 10.1016/j.metabol.2012.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 04/12/2012] [Indexed: 11/27/2022]
|
16
|
Berglund ED, Vianna CR, Donato J, Kim MH, Chuang JC, Lee CE, Lauzon DA, Lin P, Brule LJ, Scott MM, Coppari R, Elmquist JK. Direct leptin action on POMC neurons regulates glucose homeostasis and hepatic insulin sensitivity in mice. J Clin Invest 2012; 122:1000-9. [PMID: 22326958 DOI: 10.1172/jci59816] [Citation(s) in RCA: 255] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 01/04/2012] [Indexed: 01/01/2023] Open
Abstract
Leptin action on its receptor (LEPR) stimulates energy expenditure and reduces food intake, thereby lowering body weight. One leptin-sensitive target cell mediating these effects on energy balance is the proopiomelano-cortin (POMC) neuron. Recent evidence suggests that the action of leptin on POMC neurons regulates glucose homeostasis independently of its effects on energy balance. Here, we have dissected the physiological impact of direct leptin action on POMC neurons using a mouse model in which endogenous LEPR expression was prevented by a LoxP-flanked transcription blocker (loxTB), but could be reactivated by Cre recombinase. Mice homozygous for the Lepr(loxTB) allele were obese and exhibited defects characteristic of LEPR deficiency. Reexpression of LEPR only in POMC neurons in the arcuate nucleus of the hypothalamus did not reduce food intake, but partially normalized energy expenditure and modestly reduced body weight. Despite the moderate effects on energy balance and independent of changes in body weight, restoring LEPR in POMC neurons normalized blood glucose and ameliorated hepatic insulin resistance, hyperglucagonemia, and dyslipidemia. Collectively, these results demonstrate that direct leptin action on POMC neurons does not reduce food intake, but is sufficient to normalize glucose and glucagon levels in mice otherwise lacking LEPR.
Collapse
Affiliation(s)
- Eric D Berglund
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical School, Dallas, Texas 75390-9051, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Trombley S, Maugars G, Kling P, Björnsson BT, Schmitz M. Effects of long-term restricted feeding on plasma leptin, hepatic leptin expression and leptin receptor expression in juvenile Atlantic salmon (Salmo salar L.). Gen Comp Endocrinol 2012; 175:92-9. [PMID: 22019478 DOI: 10.1016/j.ygcen.2011.10.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/26/2011] [Accepted: 10/03/2011] [Indexed: 10/16/2022]
Abstract
Leptin is a pleiotropic hormone and plays a key role in body weight regulation, energy homeostasis and lipid store utilization in mammals. In this study, we investigated the effect of feed-restriction on leptin genes (lepa1 and lepa2), leptin receptor (lepr) gene expression and plasma leptin levels in juvenile Atlantic salmon parr. Feed restriction was performed from late April to mid-June, in order to gain insight into the role of the leptin system in energy balance regulation and adiposity in juvenile salmon. A significant increase in lepa1 expression as well as higher levels of plasma leptin was found in feed-restricted fish in June compared to fully fed controls, while lepa2 gene expression decreased in both groups during the treatment period. Lepa2 was, however significantly higher in the feed-restricted group in June. Leptin receptor expression was up regulated during the period of enhanced growth and lipid deposition in the fully fed control, indicating a seasonal effect on the receptor expression in the brain. Both lepa1 and lepa2 genes very mainly expressed in the liver in juvenile salmon, while lepr was expressed in the brain but showed also considerable expression in various peripheral tissues. The study provides evidence that the leptin system is sensitive to the metabolic status of the fish as both season and restricted feeding affect lepa1 and lepa2 gene expression in the liver and brain leptin receptor expression, however, for lepa1 expression and leptin plasma level in an opposite way as that observed in the mammalian system.
Collapse
Affiliation(s)
- Susanne Trombley
- Evolutionary Biology Centre, Department of Organismal Biology/Comparative Physiology, Uppsala University, SE-752 36 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
18
|
Yang R, Sikka G, Larson J, Watts VL, Niu X, Ellis CL, Miller KL, Camara A, Reinke C, Savransky V, Polotsky VY, O'Donnell CP, Berkowitz DE, Barouch LA. Restoring leptin signaling reduces hyperlipidemia and improves vascular stiffness induced by chronic intermittent hypoxia. Am J Physiol Heart Circ Physiol 2011; 300:H1467-76. [PMID: 21278136 DOI: 10.1152/ajpheart.00604.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chronic intermittent hypoxia (IH) during sleep can result from obstructive sleep apnea (OSA), a disorder that is particularly prevalent in obesity. OSA is associated with high levels of circulating leptin, cardiovascular dysfunction, and dyslipidemia. Relationships between leptin and cardiovascular function in OSA and chronic IH are poorly understood. We exposed lean wild-type (WT) and obese leptin-deficient ob/ob mice to IH for 4 wk, with and without leptin infusion, and measured cardiovascular indices including aortic vascular stiffness, endothelial function, cardiac myocyte morphology, and contractile properties. At baseline, ob/ob mice had decreased vascular compliance and endothelial function vs. WT mice. We found that 4 wk of IH decreased vascular compliance and endothelial relaxation responses to acetylcholine in both WT and leptin-deficient ob/ob animals. Recombinant leptin infusion in both strains restored IH-induced vascular abnormalities toward normoxic WT levels. Cardiac myocyte morphology and function were unaltered by IH. Serum cholesterol and triglyceride levels were significantly decreased by leptin treatment in IH mice, as was hepatic stearoyl-Coenzyme A desaturase 1 expression. Taken together, these data suggest that restoring normal leptin signaling can reduce vascular stiffness, increase endothelial relaxation, and correct dyslipidemia associated with IH.
Collapse
Affiliation(s)
- Ronghua Yang
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|