1
|
Zhou X, Li S, Wang L, Wang J, Zhang P, Chen X. The emerging role of exercise preconditioning in preventing skeletal muscle atrophy. Front Physiol 2025; 16:1559594. [PMID: 40206380 PMCID: PMC11979144 DOI: 10.3389/fphys.2025.1559594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/10/2025] [Indexed: 04/11/2025] Open
Abstract
Skeletal muscle atrophy, characterized by the loss of muscle mass and function, can result from disuse, aging, disease, drug. Exercise preconditioning-a form of exercise training performed before these harmful threats-induces notable remodeling and extensive biochemical adaptations in skeletal muscle, creating a protective phenotype in muscle fibers, and thus serving as an effective intervention for preventing skeletal muscle atrophy. Here, we review the current understanding relating to how exercise preconditioning protects skeletal muscle from damage caused by inactivity, sarcopenia, disease, or pharmacological intervention, with an emphasis on the cellular mechanisms involved. Key mechanisms highlighted as making a significant contribution to the protective effects of exercise on skeletal muscle fibers include mitochondria; the expression of cytoprotective proteins such as HSP72, SOD2, SESN2, PGC-1α and AMPK; and the regulation of oxidative stress. These findings underscore the potential of exercise preconditioning as a non-pharmacological intervention for preserving muscle mass and function, as well as preventing muscular atrophy, ultimately improving the quality of life for at-risk populations.
Collapse
Affiliation(s)
- Xu Zhou
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China
| | - Shiming Li
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Lu Wang
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China
| | - Jun Wang
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Peng Zhang
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Xiaoping Chen
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China
| |
Collapse
|
2
|
Samadi M, Daryanoosh F, Mojtahedi Z, Samsamy Pour A, Nobari H, Zarifkar AH, Khoramipour K. Resistance Training and Resveratrol Supplementation Improve Cancer Cachexia and Tumor Volume in Muscle Tissue of Male Mice Bearing Colon Cancer CT26 Cell Tumors. Cell Biochem Biophys 2025; 83:619-631. [PMID: 39412707 DOI: 10.1007/s12013-024-01491-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 03/03/2025]
Abstract
Losing muscle functions due to reducing muscle mass and quality is one of the main features of cancer cachexia that impairs patients' quality of life and decrease their survival. This study aimed to investigate the synergistic effects of resistance training and resveratrol supplementation on cachexia induced by CT26 tumors in male mice. Forty-eight mice were divided into eight groups randomly: healthy sedentary vehicle (HSV), healthy exercise vehicle (HEV), healthy sedentary resveratrol (HSR), healthy exercise resveratrol (HER), CT-26 tumor-bearing sedentary vehicle (TSV), CT-26 tumor-bearing exercise vehicle (TEV), CT-26 tumor-bearing sedentary resveratrol (TSR) and CT-26 tumor-bearing exercise resveratrol (TER). Training groups performed ladder climbing with weights tied to their tails, for six weeks. Resveratrol-treated groups received 50 mg/kg daily by gavage. The results showed muscle weight, and mTORC1 phosphorylation decreased in TSV compared to the HSV group. mTORC1 phosphorylation was increased in TER compared to TSV, TEV, and TSR. In addition, AMPK phosphorylation was more elevated in HER compared to HSV, HEV, and HSR. LC3BII/I ratio was higher in TSV than HSV group. Tumor volume was increased in all groups, with the lowest increase in TER group. In tumor tissue, mTORC1 phosphorylation was decreased in TER than in TSV, TEV, and TSR groups; AMPK phosphorylation and LC3BII/I ratio were increased in TSV than in TEV, TSR, and TER groups. In conclusion, the synergistic effect of resistance training and resveratrol supplementation is the most effective in reducing tumor volume. These advantages were mostly in line with molecular findings.
Collapse
Affiliation(s)
- Mahdi Samadi
- Department of Sports Sciences, Shiraz University, Shiraz, Iran
| | | | - Zahra Mojtahedi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Hadi Nobari
- Department of Exercise Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, 5619911367, Iran
| | - Amir Hossein Zarifkar
- Cellular and Molecular Biology Research Center, Larestan University of Medical Sciences, Larestan, Iran.
| | - Kayvan Khoramipour
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid, 47012, Spain.
| |
Collapse
|
3
|
Sun N, Krauss T, Seeliger C, Kunzke T, Stöckl B, Feuchtinger A, Zhang C, Voss A, Heisz S, Prokopchuk O, Martignoni ME, Janssen KP, Claussnitzer M, Hauner H, Walch A. Inter-organ cross-talk in human cancer cachexia revealed by spatial metabolomics. Metabolism 2024; 161:156034. [PMID: 39299512 DOI: 10.1016/j.metabol.2024.156034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Cancer cachexia (CCx) presents a multifaceted challenge characterized by negative protein and energy balance and systemic inflammatory response activation. While previous CCx studies predominantly focused on mouse models or human body fluids, there's an unmet need to elucidate the molecular inter-organ cross-talk underlying the pathophysiology of human CCx. METHODS Spatial metabolomics were conducted on liver, skeletal muscle, subcutaneous and visceral adipose tissue, and serum from cachectic and control cancer patients. Organ-wise comparisons were performed using component, pathway enrichment and correlation network analyses. Inter-organ correlations in CCx altered pathways were assessed using Circos. Machine learning on tissues and serum established classifiers as potential diagnostic biomarkers for CCx. RESULTS Distinct metabolic pathway alteration was detected in CCx, with adipose tissues and liver displaying the most significant (P ≤ 0.05) metabolic disturbances. CCx patients exhibited increased metabolic activity in visceral and subcutaneous adipose tissues and liver, contrasting with decreased activity in muscle and serum compared to control patients. Carbohydrate, lipid, amino acid, and vitamin metabolism emerged as highly interacting pathways across different organ systems in CCx. Muscle tissue showed decreased (P ≤ 0.001) energy charge in CCx patients, while liver and adipose tissues displayed increased energy charge (P ≤ 0.001). We stratified CCx patients by severity and metabolic changes, finding that visceral adipose tissue is most affected, especially in cases of severe cachexia. Morphometric analysis showed smaller (P ≤ 0.05) adipocyte size in visceral adipose tissue, indicating catabolic processes. We developed tissue-based classifiers for cancer cachexia specific to individual organs, facilitating the transfer of patient serum as minimally invasive diagnostic markers of CCx in the constitution of the organs. CONCLUSIONS These findings support the concept of CCx as a multi-organ syndrome with diverse metabolic alterations, providing insights into the pathophysiology and organ cross-talk of human CCx. This study pioneers spatial metabolomics for CCx, demonstrating the feasibility of distinguishing cachexia status at the organ level using serum.
Collapse
Affiliation(s)
- Na Sun
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Tanja Krauss
- Else Kröner Fresenius Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Claudine Seeliger
- Else Kröner Fresenius Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany; ZIEL Institute for Food and Health, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Thomas Kunzke
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Barbara Stöckl
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany; Else Kröner Fresenius Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Chaoyang Zhang
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andreas Voss
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Simone Heisz
- Else Kröner Fresenius Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Olga Prokopchuk
- Department of Surgery, Klinikum rechts der Isar, University Hospital of the Technical University of Munich, Munich, Germany
| | - Marc E Martignoni
- Department of Surgery, Klinikum rechts der Isar, University Hospital of the Technical University of Munich, Munich, Germany
| | - Klaus-Peter Janssen
- Department of Surgery, Klinikum rechts der Isar, University Hospital of the Technical University of Munich, Munich, Germany
| | - Melina Claussnitzer
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Institute of Nutritional Science, University of Hohenheim, 70599 Stuttgart, Germany; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Hans Hauner
- Else Kröner Fresenius Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany; ZIEL Institute for Food and Health, Technical University of Munich, Freising-Weihenstephan, Germany; Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany.
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
4
|
Tamayo-Torres E, Garrido A, de Cabo R, Carretero J, Gómez-Cabrera MC. Molecular mechanisms of cancer cachexia. Role of exercise training. Mol Aspects Med 2024; 99:101293. [PMID: 39059039 DOI: 10.1016/j.mam.2024.101293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Cancer-associated cachexia represents a multifactorial syndrome mainly characterized by muscle mass loss, which causes both a decrease in quality of life and anti-cancer therapy failure, among other consequences. The definition and diagnostic criteria of cachexia have changed and improved over time, including three different stages (pre-cachexia, cachexia, and refractory cachexia) and objective diagnostic markers. This metabolic wasting syndrome is characterized by a negative protein balance, and anti-cancer drugs like chemotherapy or immunotherapy exacerbate it through relatively unknown mechanisms. Due to its complexity, cachexia management involves a multidisciplinary strategy including not only nutritional and pharmacological interventions. Physical exercise has been proposed as a strategy to counteract the effects of cachexia on skeletal muscle, as it influences the mechanisms involved in the disease such as protein turnover, inflammation, oxidative stress, and mitochondrial dysfunction. This review will summarize the experimental and clinical evidence of the impact of physical exercise on cancer-associated cachexia.
Collapse
Affiliation(s)
- Eva Tamayo-Torres
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100, Burjassot, Spain; Freshage Research Group. Department of Physiology. Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Amanda Garrido
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Julián Carretero
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100, Burjassot, Spain.
| | - María Carmen Gómez-Cabrera
- Freshage Research Group. Department of Physiology. Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| |
Collapse
|
5
|
Shorter E, Engman V, Lanner JT. Cancer-associated muscle weakness - From triggers to molecular mechanisms. Mol Aspects Med 2024; 97:101260. [PMID: 38457901 DOI: 10.1016/j.mam.2024.101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/10/2024]
Abstract
Skeletal muscle weakness is a debilitating consequence of many malignancies. Muscle weakness has a negative impact on both patient wellbeing and outcome in a range of cancer types and can be the result of loss of muscle mass (i.e. muscle atrophy, cachexia) and occur independently of muscle atrophy or cachexia. There are multiple cancer specific triggers that can initiate the progression of muscle weakness, including the malignancy itself and the tumour environment, as well as chemotherapy, radiotherapy and malnutrition. This can induce weakness via different routes: 1) impaired intrinsic capacity (i.e., contractile dysfunction and intramuscular impairments in excitation-contraction coupling or crossbridge cycling), 2) neuromuscular disconnection and/or 3) muscle atrophy. The mechanisms that underlie these pathways are a complex interplay of inflammation, autophagy, disrupted protein synthesis/degradation, and mitochondrial dysfunction. The current lack of therapies to treat cancer-associated muscle weakness highlight the critical need for novel interventions (both pharmacological and non-pharmacological) and mechanistic insight. Moreover, most research in the field has placed emphasis on directly improving muscle mass to improve muscle strength. However, accumulating evidence suggests that loss of muscle function precedes atrophy. This review primarily focuses on cancer-associated muscle weakness, independent of cachexia, and provides a solid background on the underlying mechanisms, methodology, current interventions, gaps in knowledge, and limitations of research in the field. Moreover, we have performed a mini-systematic review of recent research into the mechanisms behind muscle weakness in specific cancer types, along with the main pathways implicated.
Collapse
Affiliation(s)
- Emily Shorter
- Karolinska Institutet, Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology, Biomedicum, Stockholm, Sweden
| | - Viktor Engman
- Karolinska Institutet, Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology, Biomedicum, Stockholm, Sweden
| | - Johanna T Lanner
- Karolinska Institutet, Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology, Biomedicum, Stockholm, Sweden.
| |
Collapse
|
6
|
Tamura Y, Kouzaki K, Kotani T, Nakazato K. Coculture with Colon-26 cancer cells decreases the protein synthesis rate and shifts energy metabolism toward glycolysis dominance in C2C12 myotubes. Am J Physiol Cell Physiol 2024; 326:C1520-C1542. [PMID: 38557354 DOI: 10.1152/ajpcell.00179.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
Cancer cachexia is the result of complex interorgan interactions initiated by cancer cells and changes in patient behavior such as decreased physical activity and energy intake. Therefore, it is crucial to distinguish between the direct and indirect effects of cancer cells on muscle mass regulation and bioenergetics to identify novel therapeutic targets. In this study, we investigated the direct effects of Colon-26 cancer cells on the molecular regulating machinery of muscle mass and its bioenergetics using a coculture system with C2C12 myotubes. Our results demonstrated that coculture with Colon-26 cells induced myotube atrophy and reduced skeletal muscle protein synthesis and its regulating mechanistic target of rapamycin complex 1 signal transduction. However, we did not observe any activating effects on protein degradation pathways including ubiquitin-proteasome and autophagy-lysosome systems. From a bioenergetic perspective, coculture with Colon-26 cells decreased the complex I-driven, but not complex II-driven, mitochondrial ATP production capacity, while increasing glycolytic enzyme activity and glycolytic metabolites, suggesting a shift in energy metabolism toward glycolysis dominance. Gene expression profiling by RNA sequencing showed that the increased activity of glycolytic enzymes was consistent with changes in gene expression. However, the decreased ATP production capacity of mitochondria was not in line with the gene expression. The potential direct interaction between cancer cells and skeletal muscle cells revealed in this study may contribute to a better fundamental understanding of the complex pathophysiology of cancer cachexia.NEW & NOTEWORTHY We explored the potential direct interplay between colon cancer cells (Colon-26) and skeletal muscle cells (C2C12 myotubes) employing a noncontact coculture experimental model. Our findings reveal that coculturing with Colon-26 cells substantially impairs the protein synthesis rate, concurrently instigating a metabolic shift toward glycolytic dominance in C2C12 myotubes. This research unveils critical insights into the intricate cellular cross talk underpinning the complex pathophysiology of cancer cachexia.
Collapse
Affiliation(s)
- Yuki Tamura
- Faculty of Sport Science, Nippon Sport Science University, Tokyo, Japan
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
- High Performance Center, Nippon Sport Science University, Tokyo, Japan
- Sport Training Center, Nippon Sport Science University, Tokyo, Japan
- Center for Coaching Excellence, Nippon Sport Science University, Tokyo, Japan
| | - Karina Kouzaki
- Faculty of Medical Science, Nippon Sport Science University, Tokyo, Japan
- Graduate School of Medical and Health Science, Nippon Sport Science University, Tokyo, Japan
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Takaya Kotani
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
- Department of Sports Sciences, The University of Tokyo, Tokyo, Japan
| | - Koichi Nakazato
- Faculty of Medical Science, Nippon Sport Science University, Tokyo, Japan
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
- Graduate School of Medical and Health Science, Nippon Sport Science University, Tokyo, Japan
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
| |
Collapse
|
7
|
Papadopetraki A, Giannopoulos A, Maridaki M, Zagouri F, Droufakou S, Koutsilieris M, Philippou A. The Role of Exercise in Cancer-Related Sarcopenia and Sarcopenic Obesity. Cancers (Basel) 2023; 15:5856. [PMID: 38136400 PMCID: PMC10741686 DOI: 10.3390/cancers15245856] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/03/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
One of the most common adverse effects of cancer and its therapeutic strategies is sarcopenia, a condition which is characterised by excess muscle wasting and muscle strength loss due to the disrupted muscle homeostasis. Moreover, cancer-related sarcopenia may be combined with the increased deposition of fat mass, a syndrome called cancer-associated sarcopenic obesity. Both clinical conditions have significant clinical importance and can predict disease progression and survival. A growing body of evidence supports the claim that physical exercise is a safe and effective complementary therapy for oncology patients which can limit the cancer- and its treatment-related muscle catabolism and promote the maintenance of muscle mass. Moreover, even after the onset of sarcopenia, exercise interventions can counterbalance the muscle mass loss and improve the clinical appearance and quality of life of cancer patients. The aim of this narrative review was to describe the various pathophysiological mechanisms, such as protein synthesis, mitochondrial function, inflammatory response, and the hypothalamic-pituitary-adrenal axis, which are regulated by exercise and contribute to the management of sarcopenia and sarcopenic obesity. Moreover, myokines, factors produced by and released from exercising muscles, are being discussed as they appear to play an important role in mediating the beneficial effects of exercise against sarcopenia.
Collapse
Affiliation(s)
- Argyro Papadopetraki
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.P.)
| | - Antonios Giannopoulos
- Section of Sports Medicine, Department of Community Medicine & Rehabilitation, Umeå University, 901 87 Umeå, Sweden;
- National Centre for Sport and Exercise Medicine (NCSEM), School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire LE11 3TU, UK
| | - Maria Maridaki
- Faculty of Physical Education and Sport Science, National and Kapodistrian University of Athens, 172 37 Dafne, Greece
| | - Flora Zagouri
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece
| | | | - Michael Koutsilieris
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.P.)
| | - Anastassios Philippou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.P.)
| |
Collapse
|
8
|
Directo D, Lee SR. Cancer Cachexia: Underlying Mechanisms and Potential Therapeutic Interventions. Metabolites 2023; 13:1024. [PMID: 37755304 PMCID: PMC10538050 DOI: 10.3390/metabo13091024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Cancer cachexia, a multifactorial metabolic syndrome developed during malignant tumor growth, is characterized by an accelerated loss of body weight accompanied by the depletion of skeletal muscle mass. This debilitating condition is associated with muscle degradation, impaired immune function, reduced functional capacity, compromised quality of life, and diminished survival in cancer patients. Despite the lack of the known capability of fully reversing or ameliorating this condition, ongoing research is shedding light on promising preclinical approaches that target the disrupted mechanisms in the pathophysiology of cancer cachexia. This comprehensive review delves into critical aspects of cancer cachexia, including its underlying pathophysiological mechanisms, preclinical models for studying the progression of cancer cachexia, methods for clinical assessment, relevant biomarkers, and potential therapeutic strategies. These discussions collectively aim to contribute to the evolving foundation for effective, multifaceted counteractive strategies against this challenging condition.
Collapse
Affiliation(s)
| | - Sang-Rok Lee
- Department of Kinesiology, New Mexico State University, Las Cruces, NM 88003, USA;
| |
Collapse
|
9
|
Oliveira LDC, Morais GP, de Oliveira FP, Mata MM, Vera ASC, da Rocha AL, Elias LLK, Teixeira GR, de Moraes C, Cintra DE, Ropelle ER, de Moura LP, Pauli JR, de Freitas EC, Rorato R, da Silva ASR. Intermittent fasting combined with exercise training reduces body mass and alleviates hypothalamic disorders induced by high-fat diet intake. J Nutr Biochem 2023:109372. [PMID: 37169229 DOI: 10.1016/j.jnutbio.2023.109372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/20/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023]
Abstract
High-fat diet consumption causes hypothalamic inflammation, dysregulating the leptin pathway, which, in turn, compromises the modulation of hypothalamic neuronal activities and predisposes obesity development. Intermittent fasting (IF) and exercise training (ET) have been demonstrated as efficient interventions to modulate hypothalamic inflammation and neuronal activity. However, no studies have evaluated whether combining these interventions could induce better results in reestablishing hypothalamic homeostasis disrupted by high-fat diet intake. The 8-week-old male C57BL/6 mice were randomly assigned into two groups: sedentary mice fed a standard diet (CT), and sedentary mice fed a high-fat diet (HF). After 8 weeks of an HF diet, part of the HF group (now 16 weeks old) was randomly subjected to different interventions for 6 weeks: HF-IF = HF diet mice submitted to IF; HF-T = HF diet mice submitted to ET; HF-IFT = HF diet mice submitted to IF and ET. All interventions decreased the body weight gain induced by high-fat diet intake, associated with reduced calorie consumption in week 14. Only the HF-IFT group presented improved serum insulin, leptin, resistin, and Tnf-alpha levels concomitantly with decreased hypothalamic inflammation. The HF-IFT group also demonstrated increased Pomc mRNA expression associated with enhanced pSTAT3 expression in the hypothalamic arcuate and ventromedial hypothalamic nuclei. Our data indicate that the beneficial effects of the combination of IF and ET on energy homeostasis are associated with increased leptin sensitivity in the hypothalamic arcuate nucleus and ventromedial hypothalamic nucleus, which is likely due to an improvement in hypothalamic inflammatory pathways in these nuclei.
Collapse
Affiliation(s)
- Luciana da Costa Oliveira
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Gustavo Paroschi Morais
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Franciane Pereira de Oliveira
- Laboratory of Stress Neuroendocrinology, Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Milene Montavoni Mata
- Departament of Physiology, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Allice Santos Cruz Vera
- Multicenter Graduate Program in Physiological Sciences, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Alisson Luiz da Rocha
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | | | - Giovana Rampazzo Teixeira
- Multicenter Graduate Program in Physiological Sciences, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Camila de Moraes
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Dennys E Cintra
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Eduardo R Ropelle
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Leandro P de Moura
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - José R Pauli
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Ellen C de Freitas
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Rodrigo Rorato
- Laboratory of Stress Neuroendocrinology, Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Adelino Sanchez R da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil.; Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil..
| |
Collapse
|
10
|
Miyazaki M, Sawada A, Sawamura D, Yoshida S. Decreased insulin-like growth factor-1 expression in response to mechanical loading is associated with skeletal muscle anabolic resistance in cancer cachexia. Growth Horm IGF Res 2023; 69-70:101536. [PMID: 37229943 DOI: 10.1016/j.ghir.2023.101536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
OBJECTIVE Cachexia is a systemic metabolic syndrome characterized by loss of body weight and skeletal muscle mass during chronic wasting diseases, such as cancer. Skeletal muscle in cancer cachexia is less responsive to anabolic factors including mechanical loading; however, the precise molecular mechanism is largely unknown. In this study, we examined the underlying mechanism of anabolic resistance in skeletal muscle in a cancer cachexia model. METHODS CD2F1 mice (male, 8 weeks old) were subcutaneously transplanted (1 × 106 cells per mouse) with a mouse colon cancer-derived cell line (C26) as a model of cancer cachexia. Mechanical overload of the plantaris muscle by synergist tenotomy was performed during the 2nd week and the plantaris muscle was sampled at the 4th week following C26 transplantation. RESULTS The hypertrophic response of skeletal muscle (increased skeletal muscle weight/protein synthesis efficiency and activation of mechanistic target of rapamycin complex 1 signaling) associated with mechanical overload was significantly suppressed during cancer cachexia. Screening of gene expression profile and pathway analysis using microarray revealed that blunted muscle protein synthesis was associated with cancer cachexia and was likely induced by downregulation of insulin-like growth factor-1 (IGF-1) and impaired activation of IGF-1-dependent signaling. CONCLUSIONS These observations indicate that cancer cachexia induces resistance to muscle protein synthesis, which may be a factor for inhibiting the anabolic adaptation of skeletal muscle to physical exercise in cancer patients.
Collapse
Affiliation(s)
- Mitsunori Miyazaki
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan; Department of Physical Therapy, School of Rehabilitation Sciences, Health Sciences University of Hokkaido, Japan.
| | - Atsushi Sawada
- Department of Physical Therapy, School of Rehabilitation Sciences, Health Sciences University of Hokkaido, Japan
| | - Daisuke Sawamura
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Japan
| | - Susumu Yoshida
- Department of Physical Therapy, School of Rehabilitation Sciences, Health Sciences University of Hokkaido, Japan
| |
Collapse
|
11
|
Cai Z, He B. Adipose tissue aging: An update on mechanisms and therapeutic strategies. Metabolism 2023; 138:155328. [PMID: 36202221 DOI: 10.1016/j.metabol.2022.155328] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022]
Abstract
Aging is a complex biological process characterized by a progressive loss of physiological integrity and increased vulnerability to age-related diseases. Adipose tissue plays central roles in the maintenance of whole-body metabolism homeostasis and has recently attracted significant attention as a biological driver of aging and age-related diseases. Here, we review the most recent advances in our understanding of the molecular and cellular mechanisms underlying age-related decline in adipose tissue function. In particular, we focus on the complex inter-relationship between metabolism, immune, and sympathetic nervous system within adipose tissue during aging. Moreover, we discuss the rejuvenation strategies to delay aging and extend lifespan, including senescent cell ablation (senolytics), dietary intervention, physical exercise, and heterochronic parabiosis. Understanding the pathological mechanisms that underlie adipose tissue aging will be critical for the development of new intervention strategies to slow or reverse aging and age-related diseases.
Collapse
Affiliation(s)
- Zhaohua Cai
- Heart Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Ben He
- Heart Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China.
| |
Collapse
|
12
|
Murphy BT, Mackrill JJ, O'Halloran KD. Impact of cancer cachexia on respiratory muscle function and the therapeutic potential of exercise. J Physiol 2022; 600:4979-5004. [PMID: 36251564 PMCID: PMC10091733 DOI: 10.1113/jp283569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/09/2022] [Indexed: 01/05/2023] Open
Abstract
Cancer cachexia is defined as a multi-factorial syndrome characterised by an ongoing loss of skeletal muscle mass and progressive functional impairment, estimated to affect 50-80% of patients and responsible for 20% of cancer deaths. Elevations in the morbidity and mortality rates of cachectic cancer patients has been linked to respiratory failure due to atrophy and dysfunction of the ventilatory muscles. Despite this, there is a distinct scarcity of research investigating the structural and functional condition of the respiratory musculature in cancer, with the majority of studies exclusively focusing on limb muscle. Treatment strategies are largely ineffective in mitigating the cachectic state. It is now widely accepted that an efficacious intervention will likely combine elements of pharmacology, nutrition and exercise. However, of these approaches, exercise has received comparatively little attention. Therefore, it is unlikely to be implemented optimally, whether in isolation or combination. In consideration of these limitations, the current review describes the mechanistic basis of cancer cachexia and subsequently explores the available respiratory- and exercise-focused literature within this context. The molecular basis of cachexia is thoroughly reviewed. The pivotal role of inflammatory mediators is described. Unravelling the mechanisms of exercise-induced support of muscle via antioxidant and anti-inflammatory effects in addition to promoting efficient energy metabolism via increased mitochondrial biogenesis, mitochondrial function and muscle glucose uptake provide avenues for interventional studies. Currently available pre-clinical mouse models including novel transgenic animals provide a platform for the development of multi-modal therapeutic strategies to protect respiratory muscles in people with cancer.
Collapse
Affiliation(s)
- Ben T. Murphy
- Department of PhysiologySchool of MedicineCollege of Medicine and HealthUniversity College CorkCorkIreland
| | - John J. Mackrill
- Department of PhysiologySchool of MedicineCollege of Medicine and HealthUniversity College CorkCorkIreland
| | - Ken D. O'Halloran
- Department of PhysiologySchool of MedicineCollege of Medicine and HealthUniversity College CorkCorkIreland
| |
Collapse
|
13
|
Hardee JP, Carson JA. Muscular contraction's therapeutic potential for cancer-induced wasting. Am J Physiol Cell Physiol 2022; 323:C378-C384. [PMID: 35704693 PMCID: PMC9359654 DOI: 10.1152/ajpcell.00021.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skeletal muscle atrophy and dysfunction contribute to cancer patient morbidity and mortality. Cachexia pathophysiology is highly complex, given that perturbations to the systemic cancer environment and the interaction with diverse tissues can contribute to wasting processes. Systemic interleukin 6 (IL-6) and glycoprotein 130 (gp130) receptor signaling have established roles in some types of cancer-induced muscle wasting through disruptions to protein turnover and oxidative capacity. While exercise has documented benefits for cancer prevention and patient survival, there are significant gaps in our understanding of muscle adaptation and plasticity during severe cachexia. Preclinical models have provided valuable insight into the adaptive potential of muscle to contraction within the cancer environment. We summarize the current understanding of how resistance-type exercise impacts mechanisms involved in cancer-induced muscle atrophy and dysfunction. Specifically, the role of IL-6 and gp130 receptor in the pathophysiology of muscle wasting and the adaptive response to exercise is explained. The discussion includes current knowledge gaps and future research directions needed to improve preclinical research and accelerate clinical translation in human cancer patients.
Collapse
Affiliation(s)
- Justin P Hardee
- Centre for Muscle Research, Department of Anatomy & Physiology, University of Melbourne, Parkville, VIC, Australia
| | - James A Carson
- Center for Muscle Metabolism & Neuropathology, Division of Rehabilitation Sciences, University of Tennessee Health Science Center, Memphis, TN, United States.,College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
14
|
Exercise Counteracts the Deleterious Effects of Cancer Cachexia. Cancers (Basel) 2022; 14:cancers14102512. [PMID: 35626116 PMCID: PMC9139714 DOI: 10.3390/cancers14102512] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary This review provides an overview of the effects of exercise training on the major mechanisms related to cancer cachexia (CC). The review also discusses how cancer comorbidities can influence the ability of patients/animals with cancer to perform exercise training and what precautions should be taken when they exercise. The contribution of other factors, such as exercise modality and biological sex, to exercise effectiveness in ameliorating CC are also elaborated in the final sections. We provide meticulous evidence for how advantageous exercise training can be in patients/animals with CC at molecular and cellular levels. Finally, we emphasise what factors should be considered to optimise and personalise an exercise training program in CC. Abstract Cancer cachexia (CC) is a multifactorial syndrome characterised by unintentional loss of body weight and muscle mass in patients with cancer. The major hallmarks associated with CC development and progression include imbalanced protein turnover, inflammatory signalling, mitochondrial dysfunction and satellite cell dysregulation. So far, there is no effective treatment to counteract muscle wasting in patients with CC. Exercise training has been proposed as a potential therapeutic approach for CC. This review provides an overview of the effects of exercise training in CC-related mechanisms as well as how factors such as cancer comorbidities, exercise modality and biological sex can influence exercise effectiveness in CC. Evidence in mice and humans suggests exercise training combats all of the hallmarks of CC. Several exercise modalities induce beneficial adaptations in patients/animals with CC, but concurrent resistance and endurance training is considered the optimal type of exercise. In the case of cancer patients presenting comorbidities, exercise training should be performed only under specific guidelines and precautions to avoid adverse effects. Observational comparison of studies in CC using different biological sex shows exercise-induced adaptations are similar between male and female patients/animals with cancer, but further studies are needed to confirm this.
Collapse
|
15
|
Jiang Z, Zhang L, Yao Z, Cao W, Ma S, Chen Y, Guang L, Zheng Z, Li C, Yu K, Shyh-Chang N. Machine learning-based phenotypic screening for postmitotic growth inducers uncover vitamin D3 metabolites as small molecule ribosome agonists. Cell Prolif 2022; 55:e13214. [PMID: 35411556 PMCID: PMC9136510 DOI: 10.1111/cpr.13214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives To restore tissue growth without increasing the risk for cancer during aging, there is a need to identify small molecule drugs that can increase cell growth without increasing cell proliferation. While there have been numerous high‐throughput drug screens for cell proliferation, there have been few screens for post‐mitotic anabolic growth. Materials and Methods A machine learning (ML)‐based phenotypic screening strategy was used to discover metabolites that boost muscle growth. Western blot, qRT‐PCR and immunofluorescence staining were used to evaluate myotube hypertrophy/maturation or protein synthesis. Mass spectrometry (MS)‐based thermal proteome profiling‐temperature range (TPP‐TR) technology was used to identify the protein targets that bind the metabolites. Ribo‐MEGA size exclusion chromatography (SEC) analysis was used to verify whether the ribosome proteins bound to calcitriol. Results We discovered both the inactive cholecalciferol and the bioactive calcitriol are amongst the top hits that boost post‐mitotic growth. A large number of ribosomal proteins' melting curves were affected by calcitriol treatment, suggesting that calcitriol binds to the ribosome complex directly. Purified ribosomes directly bound to pure calcitriol. Moreover, we found that calcitriol could increase myosin heavy chain (MHC) protein translation and overall nascent protein synthesis in a cycloheximide‐sensitive manner, indicating that calcitriol can directly bind and enhance ribosomal activity to boost muscle growth. Conclusion Through the combined strategy of ML‐based phenotypic screening and MS‐based omics, we have fortuitously discovered a new class of metabolite small molecules that can directly activate ribosomes to promote post‐mitotic growth.
Collapse
Affiliation(s)
- Zongmin Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Liping Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ziyue Yao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenhua Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shilin Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yu Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lu Guang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zipeng Zheng
- Department of Clinical Nutrition, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), Beijing, China
| | - Chunwei Li
- Department of Clinical Nutrition, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), Beijing, China
| | - Kang Yu
- Department of Clinical Nutrition, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), Beijing, China
| | - Ng Shyh-Chang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Clemente-Suárez VJ, Redondo-Flórez L, Rubio-Zarapuz A, Martínez-Guardado I, Navarro-Jiménez E, Tornero-Aguilera JF. Nutritional and Exercise Interventions in Cancer-Related Cachexia: An Extensive Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4604. [PMID: 35457471 PMCID: PMC9025820 DOI: 10.3390/ijerph19084604] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 01/27/2023]
Abstract
One of the common traits found in cancer patients is malnutrition and cachexia, which affects between 25% to 60% of the patients, depending on the type of cancer, diagnosis, and treatment. Given the lack of current effective pharmacological solutions for low muscle mass and sarcopenia, holistic interventions are essential to patient care, as well as exercise and nutrition. Thus, the present narrative review aimed to analyze the nutritional, pharmacological, ergonutritional, and physical exercise strategies in cancer-related cachexia. The integration of multidisciplinary interventions could help to improve the final intervention in patients, improving their prognosis, quality of life, and life expectancy. To reach these aims, an extensive narrative review was conducted. The databases used were MedLine (PubMed), Cochrane (Wiley), Embase, PsychINFO, and CinAhl. Cancer-related cachexia is a complex multifactorial phenomenon in which systemic inflammation plays a key role in the development and maintenance of the symptomatology. Pharmacological interventions seem to produce a positive effect on inflammatory state and cachexia. Nutritional interventions are focused on a high-energy diet with high-density foods and the supplementation with antioxidants, while physical activity is focused on strength-based training. The implementation of multidisciplinary non-pharmacological interventions in cancer-related cachexia could be an important tool to improve traditional treatments and improve patients' quality of life.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain; (L.R.-F.); (A.R.-Z.); (J.F.T.-A.)
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Laura Redondo-Flórez
- Faculty of Sports Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain; (L.R.-F.); (A.R.-Z.); (J.F.T.-A.)
| | - Alejandro Rubio-Zarapuz
- Faculty of Sports Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain; (L.R.-F.); (A.R.-Z.); (J.F.T.-A.)
| | - Ismael Martínez-Guardado
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248 Madrid, Spain;
| | | | | |
Collapse
|
17
|
Khamoui AV, Tokmina-Roszyk D, Feresin RG, Fields GB, Visavadiya NP. Skeletal muscle proteome expression differentiates severity of cancer cachexia in mice and identifies loss of fragile X mental retardation syndrome-related protein 1. Proteomics 2022; 22:e2100157. [PMID: 35289490 DOI: 10.1002/pmic.202100157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 11/08/2022]
Abstract
TMT-based quantitative proteomics was used to examine protein expression in skeletal muscle from mice with moderate and severe cancer cachexia to study mechanisms underlying varied cachexia severity. Weight loss of 10% (moderate) and 20% (severe) was induced by injection of colon-26 cancer cells in 10-week old Balb/c mice. In moderate cachexia, enriched pathways reflected fibrin formation, integrin/MAPK signaling, and innate immune system, suggesting an acute phase response and fibrosis. These pathways remained enriched in severe cachexia, however, energy-yielding pathways housed in mitochondria were prominent additions to the severe state. These enrichments suggest distinct muscle proteome expression patterns that differentiate cachexia severity. When analyzed with two other mouse models, eight differentially expressed targets were shared including Serpina3n, Sypl2, Idh3a, Acox1, Col6a1, Myoz3, Ugp2, and Slc41a3. Acox1 and Idh3a control lipid oxidation and NADH generation in the TCA cycle, respectively, and Col6a1 comprises part of type VI collagen with reported profibrotic functions, suggesting influential roles in cachexia. A potential target was identified in FXR1, an RNA-binding protein not previously implicated in cancer cachexia. FXR1 decreased in cachexia and related linearly with weight change and myofiber size. These findings suggest distinct mechanisms associated with cachexia severity and potential biomarkers and therapeutic targets. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Andy V Khamoui
- Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL, USA.,Institute for Human Health & Disease Intervention, Florida Atlantic University, Jupiter, FL, USA
| | - Dorota Tokmina-Roszyk
- Institute for Human Health & Disease Intervention, Florida Atlantic University, Jupiter, FL, USA.,Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL, USA
| | | | - Gregg B Fields
- Institute for Human Health & Disease Intervention, Florida Atlantic University, Jupiter, FL, USA.,Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL, USA.,Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Nishant P Visavadiya
- Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
18
|
Bordignon C, dos Santos BS, Rosa DD. Impact of Cancer Cachexia on Cardiac and Skeletal Muscle: Role of Exercise Training. Cancers (Basel) 2022; 14:cancers14020342. [PMID: 35053505 PMCID: PMC8773522 DOI: 10.3390/cancers14020342] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/27/2021] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Cachexia is a syndrome that can be present in many patients diagnosed with cancer, especially in those with metastatic or very advanced tumors. The patient may present with weight loss, loss of muscle mass, and even cardiac dysfunction as a result of it. The aim of this review is to understand how cachexia manifests and whether physical exercise has any role in trying to prevent or reverse this syndrome in cancer patients. Abstract Cachexia is a multifactorial syndrome that presents with, among other characteristics, progressive loss of muscle mass and anti-cardiac remodeling effect that may lead to heart failure. This condition affects about 80% of patients with advanced cancer and contributes to worsening patients’ tolerance to anticancer treatments and to their premature death. Its pathogenesis involves an imbalance in metabolic homeostasis, with increased catabolism and inflammatory cytokines levels, leading to proteolysis and lipolysis, with insufficient food intake. A multimodal approach is indicated for patients with cachexia, with the aim of reducing the speed of muscle wasting and improving their quality of life, which may include nutritional, physical, pharmacologic, and psychological support. This review aims to outline the mechanisms of muscle loss, as well as to evaluate the current clinical evidence of the use of physical exercise in patients with cachexia.
Collapse
Affiliation(s)
- Cláudia Bordignon
- Oncology Center, Hospital Moinhos de Vento, Porto Alegre 90560-030, Brazil;
- Graduate Program in Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-070, Brazil
| | - Bethânia S. dos Santos
- Department of Clinical Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro 20560-121, Brazil;
- Rede D’Or São Luiz, Rio de Janeiro 22271-110, Brazil
| | - Daniela D. Rosa
- Oncology Center, Hospital Moinhos de Vento, Porto Alegre 90560-030, Brazil;
- Graduate Program in Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-070, Brazil
- Brazilian Breast Cancer Study Group (GBECAM), Porto Alegre 90619-900, Brazil
- Correspondence:
| |
Collapse
|
19
|
Hsueh HY, Pita-Grisanti V, Gumpper-Fedus K, Lahooti A, Chavez-Tomar M, Schadler K, Cruz-Monserrate Z. A review of physical activity in pancreatic ductal adenocarcinoma: Epidemiology, intervention, animal models, and clinical trials. Pancreatology 2022; 22:98-111. [PMID: 34750076 PMCID: PMC8748405 DOI: 10.1016/j.pan.2021.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 01/03/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest types of cancer, and the increasing incidence of PDAC may be related to the prevalence of obesity. Physical activity (PA), a method known to mitigate obesity by increasing total energy expenditure, also modifies multiple cellular pathways associated with cancer hallmarks. Epidemiologic evidence has shown that PA can lower the risk of developing a variety of cancers, reduce some of the detrimental side effects of treatments, and improve patient's quality of life during cancer treatment. However, little is known about the pathways underlying the correlations observed between PA interventions and PDAC. Moreover, there is no standard dose of PA intervention that is ideal for PDAC prevention or as an adjuvant of cancer treatments. In this review, we summarize relevant literature showing how PDAC patients can benefit from PA, the potential of PA as an adjuvant treatment for PDAC, the studies using preclinical models of PDAC to study PA, and the clinical trials to date assessing the effects of PA in PDAC.
Collapse
Affiliation(s)
- Hsiang-Yin Hsueh
- Division of Gastroenterology, Hepatology, and Nutrition, Division of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, USA
| | - Valentina Pita-Grisanti
- Division of Gastroenterology, Hepatology, and Nutrition, Division of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, USA
| | - Kristyn Gumpper-Fedus
- Division of Gastroenterology, Hepatology, and Nutrition, Division of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, USA
| | - Ali Lahooti
- Division of Gastroenterology, Hepatology, and Nutrition, Division of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, USA
| | - Myrriah Chavez-Tomar
- Division of Gastroenterology, Hepatology, and Nutrition, Division of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, USA
| | - Keri Schadler
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology, and Nutrition, Division of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
20
|
Pereira MG, Voltarelli VA, Tobias GC, de Souza L, Borges GS, Paixão AO, de Almeida NR, Bowen TS, Demasi M, Miyabara EH, Brum PC. Aerobic Exercise Training and In Vivo Akt Activation Counteract Cancer Cachexia by Inducing a Hypertrophic Profile through eIF-2α Modulation. Cancers (Basel) 2021; 14:cancers14010028. [PMID: 35008195 PMCID: PMC8750332 DOI: 10.3390/cancers14010028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 01/15/2023] Open
Abstract
Simple Summary Chronic disease-related muscle atrophy is a serious public health problem since it reduces mobility and contributes to increases in hospitalization costs. Unfortunately, there is no approved treatment for muscle wasting at present. Thus, an understanding of the mechanisms underlying the control of muscle mass and function under chronic diseases can pave the way for the discovery of innovative therapeutic strategies to counteract muscle wasting. Since numerous types of cancer induce cachexia, which has no cure nor an effective treatment, the main proposal here was to study the effects of AET in cancer cachexia, and to investigate, through in vivo manipulation of the Akt/mTORC1 pathway, whether the cachectic muscle still presents conditions to respond adaptively to hypertrophic stimuli. Our results could provide a basis for innovative research lines to better understand muscle plasticity and to investigate potential therapeutic approaches necessary to prevent muscle loss. Abstract Cancer cachexia is a multifactorial and devastating syndrome characterized by severe skeletal muscle mass loss and dysfunction. As cachexia still has neither a cure nor an effective treatment, better understanding of skeletal muscle plasticity in the context of cancer is of great importance. Although aerobic exercise training (AET) has been shown as an important complementary therapy for chronic diseases and associated comorbidities, the impact of AET on skeletal muscle mass maintenance during cancer progression has not been well documented yet. Here, we show that previous AET induced a protective mechanism against tumor-induced muscle wasting by modulating the Akt/mTORC1 signaling and eukaryotic initiation factors, specifically eIF2-α. Thereafter, it was determined whether the in vivo Akt activation would induce a hypertrophic profile in cachectic muscles. As observed for the first time, Akt-induced hypertrophy was able and sufficient to either prevent or revert cancer cachexia by modulating both Akt/mTORC1 pathway and the eIF-2α activation, and induced a better muscle functionality. These findings provide evidence that skeletal muscle tissue still preserves hypertrophic potential to be stimulated by either AET or gene therapy to counteract cancer cachexia.
Collapse
Affiliation(s)
- Marcelo G. Pereira
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508030, Brazil; (V.A.V.); (G.C.T.); (L.d.S.); (G.S.B.); (A.O.P.); (N.R.d.A.)
- Leeds School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK;
- Correspondence: (M.G.P.); (P.C.B.)
| | - Vanessa A. Voltarelli
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508030, Brazil; (V.A.V.); (G.C.T.); (L.d.S.); (G.S.B.); (A.O.P.); (N.R.d.A.)
- Sirio-Libanes Hospital, Sao Paulo 01308050, Brazil
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Gabriel C. Tobias
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508030, Brazil; (V.A.V.); (G.C.T.); (L.d.S.); (G.S.B.); (A.O.P.); (N.R.d.A.)
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lara de Souza
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508030, Brazil; (V.A.V.); (G.C.T.); (L.d.S.); (G.S.B.); (A.O.P.); (N.R.d.A.)
| | - Gabriela S. Borges
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508030, Brazil; (V.A.V.); (G.C.T.); (L.d.S.); (G.S.B.); (A.O.P.); (N.R.d.A.)
| | - Ailma O. Paixão
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508030, Brazil; (V.A.V.); (G.C.T.); (L.d.S.); (G.S.B.); (A.O.P.); (N.R.d.A.)
| | - Ney R. de Almeida
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508030, Brazil; (V.A.V.); (G.C.T.); (L.d.S.); (G.S.B.); (A.O.P.); (N.R.d.A.)
| | - Thomas Scott Bowen
- Leeds School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK;
| | - Marilene Demasi
- Biochemistry and Biophysics Laboratory, Butantan Institute, Sao Paulo 05503900, Brazil;
| | - Elen H. Miyabara
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508000, Brazil;
| | - Patricia C. Brum
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508030, Brazil; (V.A.V.); (G.C.T.); (L.d.S.); (G.S.B.); (A.O.P.); (N.R.d.A.)
- Correspondence: (M.G.P.); (P.C.B.)
| |
Collapse
|
21
|
van der Ende M, Plas RLC, van Dijk M, Dwarkasing JT, van Gemerden F, Sarokhani A, Swarts HJM, van Schothorst EM, Grefte S, Witkamp RF, van Norren K. Effects of whole-body vibration training in a cachectic C26 mouse model. Sci Rep 2021; 11:21563. [PMID: 34732809 PMCID: PMC8566567 DOI: 10.1038/s41598-021-98665-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/20/2021] [Indexed: 12/02/2022] Open
Abstract
Targeted exercise combined with nutritional and pharmacological strategies is commonly considered to be the most optimal strategy to reduce the development and progression of cachexia. For COPD patients, this multi-targeted treatment has shown beneficial effects. However, in many, physical activity is seriously hampered by frailty and fatigue. In the present study, effects of whole-body-vibration-training (WBV) were investigated, as potential alternative to active exercise, on body mass, muscle mass and function in tumour bearing mice. Twenty-four male CD2F1-mice (6–8 weeks, 21.5 ± 0.2 g) were stratified into four groups: control, control + WBV, C26 tumour-bearing, and C26 tumour-bearing + WBV. From day 1, whole-body-vibration was daily performed for 19 days (15 min, 45 Hz, 1.0 g acceleration). General outcome measures included body mass and composition, daily activity, blood analysis, assessments of muscle histology, function, and whole genome gene expression in m. soleus (SOL), m. extensor digitorum longus (EDL), and heart. Body mass, lean and fat mass and EDL mass were all lower in tumour bearing mice compared to controls. Except from improved contractility in SOL, no effects of vibration training were found on cachexia related general outcomes in control or tumour groups, as PCA analysis did not result in a distinction between corresponding groups. However, analysis of transcriptome data clearly revealed a distinction between tumour and trained tumour groups. WBV reduced the tumour-related effects on muscle gene expression in EDL, SOL and heart. Gene Set Enrichment Analysis showed that these effects were associated with attenuation of the upregulation of the proteasome pathway in SOL. These data suggest that WBV had minor effects on cachexia related general outcomes in the present experimental set-up, while muscle transcriptome showed changes associated with positive effects. This calls for follow-up studies applying longer treatment periods of WBV as component of a multiple-target intervention.
Collapse
Affiliation(s)
- Miranda van der Ende
- Division Human Nutrition and Health, Nutritional Biology and Health, Wageningen University & Research, Wageningen, The Netherlands.,Human and Animal Physiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Rogier L C Plas
- Division Human Nutrition and Health, Nutritional Biology and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Miriam van Dijk
- Nutricia Research, Nutricia Advanced Medical Nutrition, Utrecht, The Netherlands
| | - Jvalini T Dwarkasing
- Division Human Nutrition and Health, Nutritional Biology and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Frans van Gemerden
- Division Human Nutrition and Health, Nutritional Biology and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Attusa Sarokhani
- Division Human Nutrition and Health, Nutritional Biology and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Hans J M Swarts
- Human and Animal Physiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Evert M van Schothorst
- Human and Animal Physiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Sander Grefte
- Human and Animal Physiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Renger F Witkamp
- Division Human Nutrition and Health, Nutritional Biology and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Klaske van Norren
- Division Human Nutrition and Health, Nutritional Biology and Health, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
22
|
Olson B, Norgard MA, Levasseur PR, Zhu X, Marks DL. Physiologic and molecular characterization of a novel murine model of metastatic head and neck cancer cachexia. J Cachexia Sarcopenia Muscle 2021; 12:1312-1332. [PMID: 34231343 PMCID: PMC8517353 DOI: 10.1002/jcsm.12745] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/19/2021] [Accepted: 06/08/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Cancer cachexia is a metabolic disorder characterized by the progressive loss of fat and lean mass that results in significant wasting, ultimately leading to reduced quality of life and increased mortality. Effective therapies for cachexia are lacking, potentially owing to the mismatch in clinically relevant models of cachexia. Specifically, cachexia observed in a clinical setting is commonly associated with advanced or late-stage cancers that are metastatic, yet pre-clinical metastatic models of cachexia are limited. Furthermore, the prevalence of cachexia in head and neck cancer patients is high, yet few pre-clinical models of head and neck cancer cachexia exist. In addition to these shortcomings, cachexia is also heterogeneous among any given cancer, whereas patients with similar disease burden may experience significantly different degrees of cachexia symptoms. In order to address these issues, we characterize a metastatic model of human papilloma virus (HPV) positive head and neck squamous cell carcinoma that recapitulates the cardinal clinical and molecular features of cancer cachexia. METHODS Male and female C57BL/6 mice were implanted subcutaneously with oropharyngeal squamous cell carcinoma cells stably transformed with HPV16 E6 and E7 together with hRas and luciferase (mEERL) that metastasizes to the lungs (MLM). We then robustly characterize the physiologic, behavioural, and molecular signatures during tumour development in two MLM subclones. RESULTS Mice injected with MLM tumour cells rapidly developed primary tumours and eventual metastatic lesions to the lungs. MLM3, but not MLM5, engrafted mice progressively lost fat and lean mass during tumour development despite the absence of anorexia (P < 0.05). Behaviourally, MLM3-implanted mice displayed decreased locomotor behaviours and impaired nest building (P < 0.05). Muscle catabolism programmes associated with cachexia, including E3 ubiquitin ligase and autophagy up-regulation, along with progressive adipose wasting and accompanying browning gene signatures, were observed. Tumour progression also corresponded with hypothalamic and peripheral organ inflammation, as well as an elevation in neutrophil-to-lymphocyte ratio (P < 0.05). Finally, we characterize the fat and lean mass sparing effects of voluntary wheel running on MLM3 cachexia (P < 0.05). CONCLUSIONS This syngeneic MLM3 allograft model of metastatic cancer cachexia is reliable, consistent, and readily recapitulates key clinical and molecular features and heterogeneity of cancer cachexia. Because few metastatic models of cachexia exist-even though cachexia often accompanies metastatic progression-we believe this model more accurately captures cancer cachexia observed in a clinical setting and thus is well suited for future mechanistic studies and pre-clinical therapy development for this crippling metabolic disorder.
Collapse
Affiliation(s)
- Brennan Olson
- Papé Family Pediatric Research InstituteOregon Health & Science UniversityPortlandORUSA
- Medical Scientist Training ProgramOregon Health & Science UniversityPortlandORUSA
| | - Mason A. Norgard
- Papé Family Pediatric Research InstituteOregon Health & Science UniversityPortlandORUSA
| | - Peter R. Levasseur
- Papé Family Pediatric Research InstituteOregon Health & Science UniversityPortlandORUSA
| | - Xinxia Zhu
- Papé Family Pediatric Research InstituteOregon Health & Science UniversityPortlandORUSA
| | - Daniel L. Marks
- Papé Family Pediatric Research InstituteOregon Health & Science UniversityPortlandORUSA
- Brenden‐Colson Center for Pancreatic CareOregon Health and & Science University PortlandORUSA
- Knight Cancer InstituteOregon Health & Science UniversityPortlandORUSA
| |
Collapse
|
23
|
Niels T, Tomanek A, Freitag N, Schumann M. Can Exercise Counteract Cancer Cachexia? A Systematic Literature Review and Meta-Analysis. Integr Cancer Ther 2021; 19:1534735420940414. [PMID: 32954861 PMCID: PMC7503012 DOI: 10.1177/1534735420940414] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: Cancer-cachexia is associated with chronic inflammation, impaired muscle metabolism and body mass loss, all of which are classical targets of physical exercise. Objectives: This systematic review and meta-analysis aimed to determine the effects of exercise on body and muscle mass in cachectic cancer hosts. Data Sources: PubMed/Medline, EMBASE, CINHAL, ISI Web of Science, and Cochrane Library were searched until July 2019. Study Selection: Trials had to be randomized controlled trials or controlled trials including cancer patients or animal models with cachexia-inducing tumors. Only sole exercise interventions over at least 7 days performed in a controlled environment were included. Data Extraction: Risk of bias was assessed and a random-effects model was used to pool effect sizes by standardized mean differences (SMD). Results: All eligible 20 studies were performed in rodents. Studies prescribed aerobic (n = 15), strength (n = 3) or combined training (n = 2). No statistical differences were observed for body mass and muscle weight of the gastrocnemius, soleus, and tibialis muscles between the exercise and control conditions (SMD = ‒0.05, 95%CI-0.64-0.55, P = 0.87). Exercise duration prior to tumor inoculation was a statistical moderator for changes in body mass under tumor presence (P = 0.04). Limitations: No human trials were identified. A large study heterogeneity was present, probably due to different exercise modalities and outcome reporting. Conclusion: Exercise does not seem to affect cancer-cachexia in rodents. However, the linear regression revealed that exercise duration prior to tumor inoculation led to reduced cachexia-severity, possibly strengthening the rationale for the use of exercise in cancer patients at cachexia risk.
Collapse
Affiliation(s)
- Timo Niels
- University Hospital of Cologne, Cologne, Germany
| | | | - Nils Freitag
- German Sport University Cologne, Cologne, Germany
| | | |
Collapse
|
24
|
The Role of Autophagy Modulated by Exercise in Cancer Cachexia. Life (Basel) 2021; 11:life11080781. [PMID: 34440525 PMCID: PMC8402221 DOI: 10.3390/life11080781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer cachexia is a syndrome experienced by many patients with cancer. Exercise can act as an autophagy modulator, and thus holds the potential to be used to treat cancer cachexia. Autophagy imbalance plays an important role in cancer cachexia, and is correlated to skeletal and cardiac muscle atrophy and energy-wasting in the liver. The molecular mechanism of autophagy modulation in different types of exercise has not yet been clearly defined. This review aims to elaborate on the role of exercise in modulating autophagy in cancer cachexia. We evaluated nine studies in the literature and found a potential correlation between the type of exercise and autophagy modulation. Combined exercise or aerobic exercise alone seems more beneficial than resistance exercise alone in cancer cachexia. Looking ahead, determining the physiological role of autophagy modulated by exercise will support the development of a new medical approach for treating cancer cachexia. In addition, the harmonization of the exercise type, intensity, and duration might play a key role in optimizing the autophagy levels to preserve muscle function and regulate energy utilization in the liver.
Collapse
|
25
|
Padilha CS, Cella PS, Chimin P, Voltarelli FA, Marinello PC, Testa MTDEJ, Guirro PB, Duarte JAR, Cecchini R, Guarnier FA, Deminice R. Resistance Training's Ability to Prevent Cancer-induced Muscle Atrophy Extends Anabolic Stimulus. Med Sci Sports Exerc 2021; 53:1572-1582. [PMID: 33731662 DOI: 10.1249/mss.0000000000002624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE This study aimed to determine the role of mammalian target of rapamycin (mTORC1) activation and catabolic markers in resistance training's (RT) antiatrophy effect during cachexia-induced muscle loss. METHODS Myofiber atrophy was induced by injecting Walker 256 tumor cells into rats exposed or not exposed to the RT protocol of ladder climbing. The role of RT-induced anabolic stimulation was investigated in tumor-bearing rats with the mTORC1 inhibitor rapamycin, and cross-sectional areas of skeletal muscle were evaluated to identify atrophy or hypertrophy. Components of the mTORC1 and ubiquitin-proteasome pathways were assessed by real-time polymerase chain reaction or immunoblotting. RESULTS Although RT prevented myofiber atrophy and impaired the strength of tumor-bearing rats, in healthy rats, it promoted activated mTORC1, as demonstrated by p70S6K's increased phosphorylation and myofiber's enlarged cross-sectional area. However, RT promoted no changes in the ratio of p70S6K to phospho-p70S6K protein expression while prevented myofiber atrophy in tumor-bearing rats. Beyond that, treatment with rapamycin did not preclude RT's preventive effect on myofiber atrophy in tumor-bearing rats. Thus, RT's ability to prevent cancer-induced myofiber atrophy seems to be independent of mTORC1's and p70S6K's activation. Indeed, RT's preventive effect on cancer-induced myofiber atrophy was associated with its capacity to attenuate elevated tumor necrosis factor α and interleukin 6 as well as to prevent oxidative damage in muscles and an elevated abundance of atrogin-1. CONCLUSIONS By inducing attenuated myofiber atrophy independent of mTORC1's signaling activation, RT prevents muscle atrophy during cancer by reducing inflammation, oxidative damage, and atrogin-1 expression.
Collapse
Affiliation(s)
| | - Paola S Cella
- Department of Physical Education, State University of Londrina, Londrina, PR, BRAZIL
| | - Patrícia Chimin
- Department of Physical Education, State University of Londrina, Londrina, PR, BRAZIL
| | - Fabrício A Voltarelli
- Federal University of Mato Grosso, Graduate Program of Health Sciences, Faculty of Medicine, Cuiabá, BRAZIL
| | | | | | - Philippe B Guirro
- Department of Physical Education, State University of Londrina, Londrina, PR, BRAZIL
| | - José A R Duarte
- University of Porto, CIAFEL, Faculty of Sport, Porto, PORTUGAL
| | - Rubens Cecchini
- State University of Londrina, Department of General Pathology, Londrina, PR, BRAZIL
| | - Flávia A Guarnier
- State University of Londrina, Department of General Pathology, Londrina, PR, BRAZIL
| | - Rafael Deminice
- Department of Physical Education, State University of Londrina, Londrina, PR, BRAZIL
| |
Collapse
|
26
|
Kitaoka Y, Miyazaki M, Kikuchi S. Voluntary exercise prevents abnormal muscle mitochondrial morphology in cancer cachexia mice. Physiol Rep 2021; 9:e15016. [PMID: 34427401 PMCID: PMC8383714 DOI: 10.14814/phy2.15016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
This study aimed to examine the effects of voluntary wheel running on cancer cachexia-induced mitochondrial alterations in mouse skeletal muscle. Mice bearing colon 26 adenocarcinoma (C26) were used as a model of cancer cachexia. C26 mice showed a lower gastrocnemius and plantaris muscle weight, but 4 weeks of voluntary exercise rescued these changes. Further, voluntary exercise attenuated observed declines in the levels of oxidative phosphorylation proteins and activities of citrate synthase and cytochrome c oxidase in the skeletal muscle of C26 mice. Among mitochondrial morphology regulatory proteins, mitofusin 2 (Mfn2) and dynamin-related protein 1 (Drp1) were decreased in the skeletal muscle of C26 mice, but exercise resulted in similar improvements as seen in markers of mitochondrial content. In isolated mitochondria, 4-hydroxynonenal and protein carbonyls were elevated in C26 mice, but exercise blunted the increases in these markers of oxidative stress. In addition, electron microscopy revealed that exercise alleviated the observed increase in the percentage of damaged mitochondria in C26 mice. These results suggest that voluntary exercise effectively counteracts mitochondrial dysfunction to mitigate muscle loss in cachexia.
Collapse
Affiliation(s)
- Yu Kitaoka
- Department of Human SciencesKanagawa UniversityYokohamaJapan
| | - Mitsunori Miyazaki
- Department of Integrative PhysiologyGraduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
- Department of Physical TherapySchool of Rehabilitation SciencesHealth Sciences University of HokkaidoIshikari‐TobetsuJapan
| | - Shin Kikuchi
- Department of Anatomy 1Sapporo Medical University School of MedicineSapporoJapan
| |
Collapse
|
27
|
Checklist de Mobilização Precoce: construção de uma ferramenta para facilitar sua aplicação na Unidade de Terapia Intensiva. CONSCIENTIAE SAÚDE 2021. [DOI: 10.5585/20.2021.19500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Introdução: Um extenso período imóvel no leito, ocasionalmente, leva à síndrome do imobilismo, comum em Unidades de Terapia Intensiva. Contrapondo-se as complicações, a mobilização precoce proporciona melhora ventilatória, circulatória e metabólica. Objetivo: Construir um instrumento (checklist) que aponte os principais achados clínicos para nortear a atuação fisioterapêutica no combate ao imobilismo prolongado. Métodos: Elaborar Checklist com achados particulares e na literatura, aperfeiçoando escolhas no protocolo cinesioterapêutico em pacientes críticos admitidos no Mario Palmério Hospital Universitário, em Uberaba-MG. Mediante Revisão Integrativa para fundamentação do instrumento Checklist para Mobilização Precoce, somada à Pesquisa Experimental para adequações no referido serviço hospitalar. Resultados: 24 pacientes, coleta beira-leito e prontuários eletrônicos, idade média de 66anos (±25) distribuído igualmente em ambos os gêneros. Discussão: A ferramenta promoveu apoio na atuação da equipe de fisioterapia, não havendo divergência nos parâmetros cardiorrespiratórios entre beira-leito e prontuário eletrônico. Conclusão: A utilização de uma ferramenta avaliativa é fundamental ao tratamento, favorecendo a conduta individualizada ao paciente crítico.
Collapse
|
28
|
Visavadiya NP, Rossiter HB, Khamoui AV. Distinct glycolytic pathway regulation in liver, tumour and skeletal muscle of mice with cancer cachexia. Cell Biochem Funct 2021; 39:802-812. [PMID: 34129243 DOI: 10.1002/cbf.3652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/13/2021] [Accepted: 05/25/2021] [Indexed: 12/31/2022]
Abstract
Energetically inefficient inter-organ substrate shuttles are proposed contributors to cachexia-related weight loss. Here, we examined glycolytic pathway metabolites, enzyme activity and transport proteins in skeletal muscle, liver and tumours of mice with cachexia-related weight loss induced by colon-26 cancer cells. Skeletal muscle of cachexic mice had increased [L-lactate]/[pyruvate], LDH activity and lactate transporter MCT1. Cachexic livers also showed increased MCT1. This is consistent with the proposal that the rate of muscle-derived lactate shuttling to liver for use in gluconeogenesis is increased, that is, an increased Cori cycle flux in weight-losing cachexic mice. A second shuttle between liver and tumour may also contribute to disrupted energy balance and weight loss. We found increased high-affinity glucose transporter GLUT1 in tumours, suggesting active glucose uptake, tumour MCT1 detection and decreased intratumour [L-lactate]/[pyruvate], implying increased lactate efflux and/or intratumour lactate oxidation. Last, high [L-lactate]/[pyruvate] and MCT1 in cachexic muscle provides a potential muscle-derived lactate supply for the tumour (a 'reverse Warburg effect'), supporting tumour growth and consequent cachexia. Our findings suggest several substrate shuttles among liver, skeletal muscle and tumour contribute to metabolic disruption and weight loss. Therapies that aim to normalize dysregulated substrate shuttling among energy-regulating tissues may alleviate unintended weight loss in cancer cachexia. SIGNIFICANCE OF THE STUDY: Cachexia is a serious complication of cancer characterized by severe weight loss, muscle atrophy and frailty. Cachexia occurs in roughly half of all cancer patients, and in up to 80% of patients with advanced disease. Cachexia independently worsens patient prognosis, lowers treatment efficacy, increases hospitalization cost and length of stay, and accounts for 20-30% of cancer-related deaths. There are no effective treatments. Our findings suggest several substrate shuttles among liver, skeletal muscle and tumour contribute to metabolic disruption and weight loss in cancer cachexia. Identifying therapies that normalize dysregulated substrate shuttling among energy-regulating tissues may protect against cachexia-related weight loss.
Collapse
Affiliation(s)
- Nishant P Visavadiya
- Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, Florida, USA
| | - Harry B Rossiter
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Andy V Khamoui
- Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, Florida, USA.,Institute for Human Health and Disease Intervention, Florida Atlantic University, Jupiter, FL, USA.,Brain Institute, Florida Atlantic University, Jupiter, Florida, USA
| |
Collapse
|
29
|
Gouvêa AL, Gracindo Silva M, Cabral B, Martinez CG, Lauthartte LC, Rodrigues Bastos W, Kurtenbach E. Progressive resistance exercise prevents muscle strength loss due to muscle atrophy induced by methylmercury systemic intoxication. JCSM CLINICAL REPORTS 2021. [DOI: 10.1002/crt2.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- André Luiz Gouvêa
- Instituto de Biofísica Carlos Chagas Filho Universidade Federal do Rio de Janeiro Rio de Janeiro Rio de Janeiro 21941‐902 Brazil
- Instituto de Bioquímica Médica Leopoldo de Meis Universidade Federal do Rio de Janeiro Rio de Janeiro Rio de Janeiro 21941‐902 Brazil
| | - Marcia Gracindo Silva
- Instituto de Biofísica Carlos Chagas Filho Universidade Federal do Rio de Janeiro Rio de Janeiro Rio de Janeiro 21941‐902 Brazil
- Instituto de Bioquímica Médica Leopoldo de Meis Universidade Federal do Rio de Janeiro Rio de Janeiro Rio de Janeiro 21941‐902 Brazil
| | - Bruno Cabral
- Instituto de Biofísica Carlos Chagas Filho Universidade Federal do Rio de Janeiro Rio de Janeiro Rio de Janeiro 21941‐902 Brazil
| | - Camila Guerra Martinez
- Instituto de Biofísica Carlos Chagas Filho Universidade Federal do Rio de Janeiro Rio de Janeiro Rio de Janeiro 21941‐902 Brazil
| | | | - Waderley Rodrigues Bastos
- Laboratório de Biogeoquímica Ambiental Universidade Federal de Rondônia Porto Velho Rondônia 76801‐974 Brazil
| | - Eleonora Kurtenbach
- Instituto de Biofísica Carlos Chagas Filho Universidade Federal do Rio de Janeiro Rio de Janeiro Rio de Janeiro 21941‐902 Brazil
| |
Collapse
|
30
|
Exercise-A Panacea of Metabolic Dysregulation in Cancer: Physiological and Molecular Insights. Int J Mol Sci 2021; 22:ijms22073469. [PMID: 33801684 PMCID: PMC8037630 DOI: 10.3390/ijms22073469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolic dysfunction is a comorbidity of many types of cancers. Disruption of glucose metabolism is of concern, as it is associated with higher cancer recurrence rates and reduced survival. Current evidence suggests many health benefits from exercise during and after cancer treatment, yet only a limited number of studies have addressed the effect of exercise on cancer-associated disruption of metabolism. In this review, we draw on studies in cells, rodents, and humans to describe the metabolic dysfunctions observed in cancer and the tissues involved. We discuss how the known effects of acute exercise and exercise training observed in healthy subjects could have a positive outcome on mechanisms in people with cancer, namely: insulin resistance, hyperlipidemia, mitochondrial dysfunction, inflammation, and cachexia. Finally, we compile the current limited knowledge of how exercise corrects metabolic control in cancer and identify unanswered questions for future research.
Collapse
|
31
|
Morinaga M, Sako N, Isobe M, Lee-Hotta S, Sugiura H, Kametaka S. Aerobic Exercise Ameliorates Cancer Cachexia-Induced Muscle Wasting through Adiponectin Signaling. Int J Mol Sci 2021; 22:3110. [PMID: 33803685 PMCID: PMC8002946 DOI: 10.3390/ijms22063110] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 12/22/2022] Open
Abstract
Cachexia is a multifactorial syndrome characterized by muscle loss that cannot be reversed by conventional nutritional support. To uncover the molecular basis underlying the onset of cancer cachectic muscle wasting and establish an effective intervention against muscle loss, we used a cancer cachectic mouse model and examined the effects of aerobic exercise. Aerobic exercise successfully suppressed muscle atrophy and activated adiponectin signaling. Next, a cellular model for cancer cachectic muscle atrophy using C2C12 myotubes was prepared by treating myotubes with a conditioned medium from a culture of colon-26 cancer cells. Treatment of the atrophic myotubes with recombinant adiponectin was protective against the thinning of cells through the increased production of p-mTOR and suppression of LC3-II. Altogether, these findings suggest that the activation of adiponectin signaling could be part of the molecular mechanisms by which aerobic exercise ameliorates cancer cachexia-induced muscle wasting.
Collapse
MESH Headings
- Adiponectin/genetics
- Adiponectin/metabolism
- Animals
- Cachexia/complications
- Cachexia/metabolism
- Cell Line, Tumor
- Culture Media, Conditioned/pharmacology
- Disease Models, Animal
- Female
- Mice, Inbred BALB C
- Microtubule-Associated Proteins/metabolism
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/pathology
- Muscular Atrophy/complications
- Muscular Atrophy/metabolism
- Muscular Atrophy/pathology
- Phosphorylation/drug effects
- Physical Conditioning, Animal
- Protein Biosynthesis/drug effects
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Proteins/pharmacology
- Signal Transduction
- Mice
Collapse
Affiliation(s)
- Makoto Morinaga
- Division of Biofunctional Sciences, Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, Aichi 461-0047, Japan
| | - Naoki Sako
- Division of Biofunctional Sciences, Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, Aichi 461-0047, Japan
| | - Mari Isobe
- Division of Morphological Sciences, Kagoshima University Graduate School of Medicine and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Sachiko Lee-Hotta
- Division of Creative Physical Therapy, Field of Prevention and Rehabilitation Sciences, Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, Aichi 461-0047, Japan
| | - Hideshi Sugiura
- Division of Biofunctional Sciences, Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, Aichi 461-0047, Japan
| | - Satoshi Kametaka
- Division of Biofunctional Sciences, Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, Aichi 461-0047, Japan
| |
Collapse
|
32
|
Hiroux C, Dalle S, Koppo K, Hespel P. Voluntary exercise does not improve muscular properties or functional capacity during C26-induced cancer cachexia in mice. J Muscle Res Cell Motil 2021; 42:169-181. [PMID: 33606189 DOI: 10.1007/s10974-021-09599-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 12/24/2022]
Abstract
Exercise training is considered as a potential intervention to counteract muscle degeneration in cancer cachexia. However, evidence to support such intervention is equivocal. Therefore, we investigated the effect of exercise training, i.e. voluntary wheel running, on muscle wasting, functional capacity, fiber type composition and vascularization during experimental cancer cachexia in mice. Balb/c mice were injected with PBS (CON) or C26 colon carcinoma cells to induce cancer cachexia (C26). Mice had free access to a running wheel in their home cage (CONEX and C26EX, n = 8-9) or were sedentary (CONS and C26S, n = 8-9). Mice were sacrificed 18 days upon tumor cell injection. Immunohistochemical analyes were performed on m. gastrocnemius and quadriceps, and ex vivo contractile properties were assessed in m. soleus and extensor digitorum longus (EDL). Compared with CON, C26 mice exhibited body weight loss (~ 20 %), muscle atrophy (~ 25 %), reduced grip strength (~ 25 %), and lower twitch and tetanic force (~ 20 %) production in EDL but not in m. soleus. Furthermore, muscle of C26 mice were characterizd by a slow-to-fast fiber type shift (type IIx fibers: +57 %) and increased capillary density (~ 30 %). In C26 mice, wheel running affect neither body weight loss, nor muscle atrophy or functional capacity, nor inhibited tumor growth. However, wheel running induced a type IIb to type IIa fiber shift in m. quadriceps from both CON and C26, but not in m. gastrocnemius. Wheel running does not exacerbate muscular degeneration in cachexic mice, but, when voluntary, is insufficient to improve the muscle phenotype.
Collapse
Affiliation(s)
- Charlotte Hiroux
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, box 1500, 3001, Leuven, Belgium
| | - Sebastiaan Dalle
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, box 1500, 3001, Leuven, Belgium
| | - Katrien Koppo
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, box 1500, 3001, Leuven, Belgium
| | - Peter Hespel
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, box 1500, 3001, Leuven, Belgium.
| |
Collapse
|
33
|
Leal LG, Lopes MA, Peres SB, Batista ML. Exercise Training as Therapeutic Approach in Cancer Cachexia: A Review of Potential Anti-inflammatory Effect on Muscle Wasting. Front Physiol 2021; 11:570170. [PMID: 33613297 PMCID: PMC7890241 DOI: 10.3389/fphys.2020.570170] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Cachexia is a multifactorial inflammatory syndrome with high prevalence in cancer patients. It is characterized by a metabolic chaos culminating in drastic reduction in body weight, mainly due to skeletal muscle and fat depletion. Currently, there is not a standard intervention for cachexia, but it is believed that a dynamic approach should be applied early in the course of the disease to maintain or slow the loss of physical function. The present review sought to explain the different clinical and experimental applications of different models of exercise and their contribution to a better prognosis of the disease. Here the advances in knowledge about the application of physical training in experimental models are elucidated, tests that contribute substantially to elucidate the cellular and biochemical mechanisms of exercise in different ways, as well as clinical trials that present not only the impacts of exercise in front cachexia but also the challenges of its application in clinical practice.
Collapse
Affiliation(s)
- Luana G Leal
- Integrated Group of Biotechnology, Laboratory of Adipose Tissue Biology, University of Mogi das Cruzes, Mogi das Cruzes, Brazil.,Technological Research Group, University of Mogi das Cruzes, Mogi das Cruzes, Brazil
| | - Magno A Lopes
- Laboratory of Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Sidney B Peres
- Department of Physiological Sciences, State University of Maringá, Maringá, Brazil
| | - Miguel L Batista
- Integrated Group of Biotechnology, Laboratory of Adipose Tissue Biology, University of Mogi das Cruzes, Mogi das Cruzes, Brazil.,Technological Research Group, University of Mogi das Cruzes, Mogi das Cruzes, Brazil
| |
Collapse
|
34
|
Aquila G, Re Cecconi AD, Brault JJ, Corli O, Piccirillo R. Nutraceuticals and Exercise against Muscle Wasting during Cancer Cachexia. Cells 2020; 9:E2536. [PMID: 33255345 PMCID: PMC7760926 DOI: 10.3390/cells9122536] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cachexia (CC) is a debilitating multifactorial syndrome, involving progressive deterioration and functional impairment of skeletal muscles. It affects about 80% of patients with advanced cancer and causes premature death. No causal therapy is available against CC. In the last few decades, our understanding of the mechanisms contributing to muscle wasting during cancer has markedly increased. Both inflammation and oxidative stress (OS) alter anabolic and catabolic signaling pathways mostly culminating with muscle depletion. Several preclinical studies have emphasized the beneficial roles of several classes of nutraceuticals and modes of physical exercise, but their efficacy in CC patients remains scant. The route of nutraceutical administration is critical to increase its bioavailability and achieve the desired anti-cachexia effects. Accumulating evidence suggests that a single therapy may not be enough, and a bimodal intervention (nutraceuticals plus exercise) may be a more effective treatment for CC. This review focuses on the current state of the field on the role of inflammation and OS in the pathogenesis of muscle atrophy during CC, and how nutraceuticals and physical activity may act synergistically to limit muscle wasting and dysfunction.
Collapse
Affiliation(s)
- Giorgio Aquila
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| | - Andrea David Re Cecconi
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| | - Jeffrey J. Brault
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Oscar Corli
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
- Oncology Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy
| | - Rosanna Piccirillo
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| |
Collapse
|
35
|
da Rocha AL, Pinto AP, Morais GP, Marafon BB, Rovina RL, Veras ASC, Teixeira GR, Pauli JR, de Moura LP, Cintra DE, Ropelle ER, Rivas DA, da Silva ASR. Moderate, but Not Excessive, Training Attenuates Autophagy Machinery in Metabolic Tissues. Int J Mol Sci 2020; 21:ijms21228416. [PMID: 33182536 PMCID: PMC7697344 DOI: 10.3390/ijms21228416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/30/2020] [Accepted: 10/09/2020] [Indexed: 12/13/2022] Open
Abstract
The protective effects of chronic moderate exercise-mediated autophagy include the prevention and treatment of several diseases and the extension of lifespan. In addition, physical exercise may impair cellular structures, requiring the action of the autophagy mechanism for clearance and renovation of damaged cellular components. For the first time, we investigated the adaptations on basal autophagy flux in vivo in mice's liver, heart, and skeletal muscle tissues submitted to four different chronic exercise models: endurance, resistance, concurrent, and overtraining. Measuring the autophagy flux in vivo is crucial to access the functionality of the autophagy pathway since changes in this pathway can occur in more than five steps. Moreover, the responses of metabolic, performance, and functional parameters, as well as genes and proteins related to the autophagy pathway, were addressed. In summary, the regular exercise models exhibited normal/enhanced adaptations with reduced autophagy-related proteins in all tissues. On the other hand, the overtrained group presented higher expression of Sqstm1 and Bnip3 with negative morphological and physical performance adaptations for the liver and heart, respectively. The groups showed different adaptions in autophagy flux in skeletal muscle, suggesting the activation or inhibition of basal autophagy may not always be related to improvement or impairment of performance.
Collapse
Affiliation(s)
- Alisson L. da Rocha
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto 14040-900, São Paulo, Brazil; (A.L.d.R.); (A.P.P.); (G.P.M.)
| | - Ana P. Pinto
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto 14040-900, São Paulo, Brazil; (A.L.d.R.); (A.P.P.); (G.P.M.)
| | - Gustavo P. Morais
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto 14040-900, São Paulo, Brazil; (A.L.d.R.); (A.P.P.); (G.P.M.)
| | - Bruno B. Marafon
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto 14040-900, São Paulo, Brazil; (B.B.M.); (R.L.R.)
| | - Rafael L. Rovina
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto 14040-900, São Paulo, Brazil; (B.B.M.); (R.L.R.)
| | - Allice S. C. Veras
- Postgraduate Program in Movement Sciences, São Paulo State University (UNESP), Presidente Prudente 19060-900, São Paulo, Brazil; (A.S.C.V.); (G.R.T.)
| | - Giovana R. Teixeira
- Postgraduate Program in Movement Sciences, São Paulo State University (UNESP), Presidente Prudente 19060-900, São Paulo, Brazil; (A.S.C.V.); (G.R.T.)
- Department of Physical Education, State University of São Paulo (UNESP), Presidente Prudente 19060-900, São Paulo, Brazil
| | - José R. Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira 13484-350, São Paulo, Brazil; (J.R.P.); (L.P.d.M.); (D.E.C.); (E.R.R.)
| | - Leandro P. de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira 13484-350, São Paulo, Brazil; (J.R.P.); (L.P.d.M.); (D.E.C.); (E.R.R.)
| | - Dennys E. Cintra
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira 13484-350, São Paulo, Brazil; (J.R.P.); (L.P.d.M.); (D.E.C.); (E.R.R.)
| | - Eduardo R. Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira 13484-350, São Paulo, Brazil; (J.R.P.); (L.P.d.M.); (D.E.C.); (E.R.R.)
| | - Donato A. Rivas
- Nutrition, Exercise, Physiology, and Sarcopenia Laboratory, United States, Tufts University, Boston, MA 02111, USA;
| | - Adelino S. R. da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto 14040-900, São Paulo, Brazil; (A.L.d.R.); (A.P.P.); (G.P.M.)
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto 14040-900, São Paulo, Brazil; (B.B.M.); (R.L.R.)
- Correspondence: ; Tel.: +55-1633150522
| |
Collapse
|
36
|
Yang W, Huang J, Wu H, Wang Y, Du Z, Ling Y, Wang W, Wu Q, Gao W. Molecular mechanisms of cancer cachexia‑induced muscle atrophy (Review). Mol Med Rep 2020; 22:4967-4980. [PMID: 33174001 PMCID: PMC7646947 DOI: 10.3892/mmr.2020.11608] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/09/2020] [Indexed: 12/20/2022] Open
Abstract
Muscle atrophy is a severe clinical problem involving the loss of muscle mass and strength that frequently accompanies the development of numerous types of cancer, including pancreatic, lung and gastric cancers. Cancer cachexia is a multifactorial syndrome characterized by a continuous decline in skeletal muscle mass that cannot be reversed by conventional nutritional therapy. The pathophysiological characteristic of cancer cachexia is a negative protein and energy balance caused by a combination of factors, including reduced food intake and metabolic abnormalities. Numerous necessary cellular processes are disrupted by the presence of abnormal metabolites, which mediate several intracellular signaling pathways and result in the net loss of cytoplasm and organelles in atrophic skeletal muscle during various states of cancer cachexia. Currently, the clinical morbidity and mortality rates of patients with cancer cachexia are high. Once a patient enters the cachexia phase, the consequences are difficult to reverse and the treatment methods for cancer cachexia are very limited. The present review aimed to summarize the recent discoveries regarding the pathogenesis of cancer cachexia-induced muscle atrophy and provided novel ideas for the comprehensive treatment to improve the prognosis of affected patients.
Collapse
Affiliation(s)
- Wei Yang
- Department of Oncology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Jianhui Huang
- Department of Oncology, Lishui Municipal Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Hui Wu
- Department of Clinical Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Yuqing Wang
- Department of Clinical Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Zhiyin Du
- Department of Clinical Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Yuanbo Ling
- Department of Clinical Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Weizhuo Wang
- Department of Clinical Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Qian Wu
- Department of Oncology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Wenbin Gao
- Department of Oncology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| |
Collapse
|
37
|
Kim DH, Klemp A, Salazar G, Hwang HS, Yeh M, Panton LB, Kim JS. High-dose vitamin D administration and resistance exercise training attenuate the progression of obesity and improve skeletal muscle function in obese p62-deficient mice. Nutr Res 2020; 84:14-24. [PMID: 33199033 DOI: 10.1016/j.nutres.2020.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 01/06/2023]
Abstract
Vitamin D (VitD) possesses antiadipogenic and ergogenic properties that could be effective to counteract obesity-related adverse health consequences. Therefore, our overall hypothesis was that VitD could ameliorate obesity-induced insulin resistance, systemic inflammation, and loss of skeletal muscle mass and function in an obesity animal model, p62-deficient mice. Furthermore, it was hypothesized that resistance exercise training (RT) could enhance the benefits of VitD by upregulating protein expression of vitamin D receptor in skeletal muscle. Forty 24-week-old male p62-deficient mice were assigned to the following 4 groups (10/group) for a 10-week intervention: control (p62C, no treatment), VitD (VD, 1000 IU vitamin D3/kg/d), RT (ladder climbing, 3 times per week), or combined treatment (VRT, VD + RT). Serum VitD levels increased in VD and VRT (P < .05). Total body mass increased in p62C, VD, and VRT, but fat mass increased only in p62C (P < .05). Loss of skeletal muscle function was reported only in p62C (P < .05). Improved blood glucose levels and lower spleen mass were reported in RT and VRT compared to p62C (P < .05). However, the hindlimb muscle wet weights; myofiber cross-sectional area; and expression levels of the regulatory proteins for insulin signaling, inflammation, and muscle growth were not changed by any intervention. In conclusion, VitD administration attenuated the progression of obesity and preserved skeletal muscle function in p62-deficient mice. However, the obese mice improved systemic insulin sensitivity and inflammation only when the intervention involved RT.
Collapse
Affiliation(s)
- Do-Houn Kim
- Department of Nutrition, Food and Exercise Sciences, Florida State University, 120 Convocation Way, Tallahassee, FL 32306; The Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, 120 Convocation Way, Tallahassee, FL 32306
| | - Alex Klemp
- Department of Nutrition, Food and Exercise Sciences, Florida State University, 120 Convocation Way, Tallahassee, FL 32306; The Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, 120 Convocation Way, Tallahassee, FL 32306
| | - Gloria Salazar
- Department of Nutrition, Food and Exercise Sciences, Florida State University, 120 Convocation Way, Tallahassee, FL 32306; The Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, 120 Convocation Way, Tallahassee, FL 32306
| | - Hyun-Seok Hwang
- Department of Nutrition, Food and Exercise Sciences, Florida State University, 120 Convocation Way, Tallahassee, FL 32306
| | - Mingchia Yeh
- Department of Nutrition, Food and Exercise Sciences, Florida State University, 120 Convocation Way, Tallahassee, FL 32306; The Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, 120 Convocation Way, Tallahassee, FL 32306
| | - Lynn B Panton
- Department of Nutrition, Food and Exercise Sciences, Florida State University, 120 Convocation Way, Tallahassee, FL 32306; The Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, 120 Convocation Way, Tallahassee, FL 32306
| | - Jeong-Su Kim
- Department of Nutrition, Food and Exercise Sciences, Florida State University, 120 Convocation Way, Tallahassee, FL 32306; The Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, 120 Convocation Way, Tallahassee, FL 32306.
| |
Collapse
|
38
|
Mitochondrial dynamics and quality control are altered in a hepatic cell culture model of cancer cachexia. Mol Cell Biochem 2020; 476:23-34. [PMID: 32797334 DOI: 10.1007/s11010-020-03882-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/07/2020] [Indexed: 01/06/2023]
Abstract
Hepatic mitochondrial function loss is associated with cancer cachexia pathology in vivo. Here, we examined if hepatic mitochondrial defects observed in vivo in the cachexic liver also recapitulate during the in vitro treatment of mouse hepatocytes with tumor conditioned media. In vitro experiments were combined with proteome-wide expression analysis of cachexic liver tissue curated for mitochondrial dynamics and quality control proteins, to determine the fidelity of hepatic mitochondrial maladaptation in cancer cachexia pathology. AML12 hepatocytes were exposed to colon-26 (C26) and Lewis lung carcinoma (LLC) conditioned media for 6-72 h and assayed for cell viability, membrane potential, respiratory function, H2O2 production, total ROS/RNS, and mitochondrial dynamics and quality control proteins by immunoblotting. Liver tissue from cachexic C26 mice was analyzed by TMT-based quantitative proteomics for in vivo comparison. Cell viability, membrane potential, H2O2 production, total ROS/RNS, and respiration were decreased 48-72 h after exposure to C26 and/or LLC. Protein expression of treated hepatocytes and cachexic liver tissue showed altered mitochondrial dynamics and quality control, in a manner that suggests limited fusion and content mixing, but also impaired ability to fragment and clear damaged mitochondria. Two strategies to maintain mitochondrial health, therefore, may not be functioning sufficiently in the cachexic liver. Together these findings imply adverse effects of C26 and LLC exposure on hepatocyte health, due to impaired mitochondrial function and remodeling. Exposure of mouse hepatocytes to tumor conditioned media models aspects of cachexic liver mitochondria dysfunction in vivo and validates the importance of hepatic mitochondrial maladaptation in cancer cachexia pathology.
Collapse
|
39
|
Murach KA, McCarthy JJ, Peterson CA, Dungan CM. Making Mice Mighty: recent advances in translational models of load-induced muscle hypertrophy. J Appl Physiol (1985) 2020; 129:516-521. [PMID: 32673155 DOI: 10.1152/japplphysiol.00319.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The ability to genetically manipulate mice allows for gain- and loss-of-function in vivo, making them an ideal model for elucidating mechanisms of skeletal muscle mass regulation. Combining genetic models with mechanical muscle loading enables identification of specific factors involved in the hypertrophic response as well as the ability to test the requirement of those factors for adaptation, thereby informing performance and therapeutic interventions. Until recently, approaches for inducing mechanically mediated muscle hypertrophy (i.e., resistance-training analogs) have been limited and considered "nontranslatable" to humans. This mini-review outlines recent translational advances in loading-mediated strategies for inducing muscle hypertrophy in mice, and highlights the advantages and disadvantages of each method. The skeletal muscle field is poised for new breakthroughs in understanding mechanisms regulating load-induced muscle growth given the numerous murine tools that have very recently been described.
Collapse
Affiliation(s)
- Kevin A Murach
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky.,Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - John J McCarthy
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky.,Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Charlotte A Peterson
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky.,Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky.,Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Cory M Dungan
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky.,Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
40
|
Khamoui AV, Tokmina-Roszyk D, Rossiter HB, Fields GB, Visavadiya NP. Hepatic proteome analysis reveals altered mitochondrial metabolism and suppressed acyl-CoA synthetase-1 in colon-26 tumor-induced cachexia. Physiol Genomics 2020; 52:203-216. [PMID: 32146873 DOI: 10.1152/physiolgenomics.00124.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cachexia is a life-threatening complication of cancer traditionally characterized by weight loss and muscle dysfunction. Cachexia, however, is a systemic disease that also involves remodeling of nonmuscle organs. The liver exerts major control over systemic metabolism, yet its role in cancer cachexia is not well understood. To advance the understanding of how the liver contributes to cancer cachexia, we used quantitative proteomics and bioinformatics to identify hepatic pathways and cellular processes dysregulated in mice with moderate and severe colon-26 tumor-induced cachexia; ~300 differentially expressed proteins identified during the induction of moderate cachexia were also differentially regulated in the transition to severe cachexia. KEGG pathway enrichment revealed representation by oxidative phosphorylation, indicating altered hepatic mitochondrial function as a common feature across cachexia severity. Glycogen catabolism was also observed in cachexic livers along with decreased pyruvate dehydrogenase protein X component (Pdhx), increased lactate dehydrogenase A chain (Ldha), and increased lactate transporter Mct1. Together this suggests altered lactate metabolism and transport in cachexic livers, which may contribute to energetically inefficient interorgan lactate cycling. Acyl-CoA synthetase-1 (ACSL1), known for activating long-chain fatty acids, was decreased in moderate and severe cachexia based on LC-MS/MS analysis and immunoblotting. ACSL1 showed strong linear relationships with percent body weight change and muscle fiber size (R2 = 0.73-0.76, P < 0.01). Mitochondrial coupling efficiency, which is compromised in cachexic livers to potentially increase energy expenditure and weight loss, also showed a linear relationship with ACSL1. Findings suggest altered mitochondrial and substrate metabolism of the liver in cancer cachexia, and possible hepatic targets for intervention.
Collapse
Affiliation(s)
- Andy V Khamoui
- Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, Florida.,Institute for Human Health & Disease Intervention, Florida Atlantic University, Jupiter, Florida
| | - Dorota Tokmina-Roszyk
- Institute for Human Health & Disease Intervention, Florida Atlantic University, Jupiter, Florida.,Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, Florida
| | - Harry B Rossiter
- Division of Respiratory and Critical Care Physiology and Medicine, Department of Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California.,Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Gregg B Fields
- Institute for Human Health & Disease Intervention, Florida Atlantic University, Jupiter, Florida.,Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, Florida.,Department of Chemistry, The Scripps Research Institute, Jupiter, Florida
| | - Nishant P Visavadiya
- Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, Florida
| |
Collapse
|
41
|
Ranjbar K, Ballarò R, Bover Q, Pin F, Beltrà M, Penna F, Costelli P. Combined Exercise Training Positively Affects Muscle Wasting in Tumor-Bearing Mice. Med Sci Sports Exerc 2020; 51:1387-1395. [PMID: 30724848 DOI: 10.1249/mss.0000000000001916] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Cancer cachexia is characterized by loss of muscle mass and function. Increased protein catabolism, inflammation, impaired anabolism, and mitochondrial function markedly contribute to the pathogenesis of this syndrome. Physical activity has been suggested as a useful tool to prevent or at least delay the onset and progression of cancer-induced muscle wasting. Two main types of exercise can be adopted, namely, resistance and endurance training. The present study is aimed to investigate the effectiveness of a combined (resistance + endurance) exercise protocol in preventing/reverting cancer-induced muscle wasting. METHODS Mice bearing the C26 colon carcinoma have been used as a model of cancer cachexia. They have been exposed to combined exercise training during 6 wk (4 before tumor implantation, 2 during tumor growth). Climbing a 1-m ladder inclined at 85° has been used for resistance training, while aerobic (endurance) exercise has been carried out on the same day using a motorized wheel. RESULTS In C26-bearing mice, both muscle mass and strength are improved by combined training, while just the latter increased in exercised healthy animals. Such a pattern is associated with modulations of two markers of autophagy, namely, LC3B-I/II ratio, increased in sedentary tumor hosts and reduced in exercised C26-bearing mice, and p62, steadily increased in both sedentary and trained tumor-bearing animals. Finally, combined training is not able to modify PGC-1α protein levels, but it improves succinate dehydrogenase activity, both reduced in the muscle of the C26 hosts. CONCLUSION The data reported in the present study show that combined training improves muscle mass and function in the C26 hosts, likely modulating autophagy and improving mitochondrial function; these observations suggest that combined exercise might become part of a multimodal approach to treat cancer cachexia.
Collapse
Affiliation(s)
- Kia Ranjbar
- Department of Clinical and Biological Sciences, University of Turin, Turin, ITALY.,Physical Education and Sport Sciences Department, Tarbiat Modares University, Teheran, IRAN
| | - Riccardo Ballarò
- Department of Clinical and Biological Sciences, University of Turin, Turin, ITALY.,Interuniversity Institute of Myology, Urbino, ITALY
| | - Quim Bover
- Department of Clinical and Biological Sciences, University of Turin, Turin, ITALY
| | - Fabrizio Pin
- Department of Clinical and Biological Sciences, University of Turin, Turin, ITALY.,Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Marc Beltrà
- Department of Clinical and Biological Sciences, University of Turin, Turin, ITALY.,Interuniversity Institute of Myology, Urbino, ITALY
| | - Fabio Penna
- Department of Clinical and Biological Sciences, University of Turin, Turin, ITALY.,Interuniversity Institute of Myology, Urbino, ITALY
| | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Turin, Turin, ITALY.,Interuniversity Institute of Myology, Urbino, ITALY
| |
Collapse
|
42
|
Guo S, Huang Y, Zhang Y, Huang H, Hong S, Liu T. Impacts of exercise interventions on different diseases and organ functions in mice. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:53-73. [PMID: 31921481 PMCID: PMC6943779 DOI: 10.1016/j.jshs.2019.07.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/09/2019] [Accepted: 04/29/2019] [Indexed: 05/20/2023]
Abstract
Background In recent years, much evidence has emerged to indicate that exercise can benefit people when performed properly. This review summarizes the exercise interventions used in studies involving mice as they are related to special diseases or physiological status. To further understand the effects of exercise interventions in treating or preventing diseases, it is important to establish a template for exercise interventions that can be used in future exercise-related studies. Methods PubMed was used as the data resource for articles. To identify studies related to the effectiveness of exercise interventions for treating various diseases and organ functions in mice, we used the following search language: (exercise [Title] OR training [Title] OR physical activity [Title]) AND (mice [title/abstract] OR mouse [title/abstract] OR mus [title/abstract]). To limit the range of search results, we included 2 filters: one that limited publication dates to "in 10 years" and one that sorted the results as "best match". Then we grouped the commonly used exercise methods according to their similarities and differences. We then evaluated the effectiveness of the exercise interventions for their impact on diseases and organ functions in 8 different systems. Results A total of 331 articles were included in the analysis procedure. The articles were then segmented into 8 systems for which the exercise interventions were used in targeting and treating disorders: motor system (60 studies), metabolic system (45 studies), cardio-cerebral vascular system (58 studies), nervous system (74 studies), immune system (32 studies), respiratory system (7 studies), digestive system (1 study), and the system related to the development of cancer (54 studies). The methods of exercise interventions mainly involved the use of treadmills, voluntary wheel-running, forced wheel-running, swimming, and resistance training. It was found that regardless of the specific exercise method used, most of them demonstrated positive effects on various systemic diseases and organ functions. Most diseases were remitted with exercise regardless of the exercise method used, although some diseases showed the best remission effects when a specific method was used. Conclusion Our review strongly suggests that exercise intervention is a cornerstone in disease prevention and treatment in mice. Because exercise interventions in humans typically focus on chronic diseases, national fitness, and body weight loss, and typically have low intervention compliance rates, it is important to use mice models to investigate the molecular mechanisms underlying the health benefits from exercise interventions in humans.
Collapse
Affiliation(s)
- Shanshan Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yiru Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Yan Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - He Huang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University, Changchun 130012, China
| | - Shangyu Hong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Tiemin Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
- Department of Endocrinology and Metabolism, State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
43
|
Antoun S, Raynard B. Muscle protein anabolism in advanced cancer patients: response to protein and amino acids support, and to physical activity. Ann Oncol 2019; 29 Suppl 2:ii10-ii17. [PMID: 29506227 DOI: 10.1093/annonc/mdx809] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In the field of oncology, it is well recognized that a decrease in mass, density, strength, or function of skeletal muscle is associated to increased treatment toxicities and postoperative complications, as well as poor progression-free survival and overall survival. The ability of amino acids to stimulate protein synthesis in cancer patients is reduced. Considering nutritional intervention, this anabolic resistance could be in a part counteracted by increasing protein or by giving specific amino acids. In particular, Leucine might counteract this anabolic resistance not only by increasing substrate availability, but also by directly modulating the anabolic signal pathway. Few studies showed the possibility of increasing muscle protein synthesis by specific nutriments and/or by increasing amino acids or protein administration. In addition, whereas many studies provide evidence of a benefit of adapted physical activity in advanced cancer patients, it is difficult to specify the most appropriate type of exercise, and the optimum rhythm and intensity. Moreover, the benefits of physical activities and of protein support seem greater when it is started at the precachexia stage rather than at the cachexia stage, and their benefits are limited or nonexistent at the stage of refractory cachexia. Future approaches should integrate the combination of several complementary treatments in order to prevent (or improve) cachexia and/or sarcopenia in cancer patients.
Collapse
Affiliation(s)
- S Antoun
- Département Ambulatoire, Gustave-Roussy, Université Paris-Saclay, Villejuif, France
| | - B Raynard
- Département Interdisciplinaire de Soins de Support, Gustave Roussy, Université Paris-Saclay, Chevilly-Larue, France
| |
Collapse
|
44
|
Cardial Tobias G, Lucas Penteado Gomes J, Paula Renó Soci U, Fernandes T, Menezes de Oliveira E. A Landscape of Epigenetic Regulation by MicroRNAs to the Hallmarks of Cancer and Cachexia: Implications of Physical Activity to Tumor Regression. Epigenetics 2019. [DOI: 10.5772/intechopen.84847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
45
|
Therapeutic Approaches in Mitochondrial Dysfunction, Inflammation, and Autophagy in Uremic Cachexia: Role of Aerobic Exercise. Mediators Inflamm 2019; 2019:2789014. [PMID: 31530994 PMCID: PMC6721269 DOI: 10.1155/2019/2789014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/15/2019] [Accepted: 07/02/2019] [Indexed: 12/21/2022] Open
Abstract
Chronic kidney disease (CKD) causes several systemic changes, including muscular homeostasis, and eventually results in muscle atrophy. CKD-induced muscle atrophy is highly prevalent, and exercise is well known to enhance muscle function in these cases, although the exact mechanism remains unclear. Here, we aim to assess whether the protective effect of aerobic exercise in 5/6 nephrectomized (CKD) mice is associated with mitochondrial dysfunction, autophagy, or inflammation. C57BL/6J mice were randomly allocated into 3 different experimental groups: Sham, CKD, and CKD+aerobic exercise (CKD+AE). Renal function was assessed via serum creatinine and urea levels, and histological PAS and Masson staining were performed. Muscle wasting was determined based on grip strength, cross-sectional area (CSA), and MyHC protein expression. We also measured mitochondrial dysfunction in mice by assessing mtDNA, ROS, ATP production, and mitochondrial configuration. Autophagy was determined via assessments for Atg7, LC3, and SQSTM1 on western blotting. Inflammation was identified via proinflammatory cytokines and NLRP3 inflammasome components using real-time PCR and western blotting. We found that CKD mice exhibited higher BUN and creatinine levels and more severe glomerulosclerosis in the glomeruli and renal tubulointerstitial fibrosis, relative to the Sham group; all these effects were relieved by aerobic exercise. Moreover, grip strength, CSA, and MyHC protein expression were improved after 8 weeks of aerobic exercise. Furthermore, aerobic exercise significantly decreased MDA levels, increased SOD2 activity and ATP production, and improved mitochondrial configuration, relative to the CKD group. In addition, aerobic exercise downregulated the overexpression of proinflammatory cytokines and NLRP3 inflammasome components and balanced the mitochondrial biogenesis and autophagy-lysosomal system. Thus, we observed that aerobic exercise may ameliorate CKD-induced muscle wasting by improving mitochondrial dysfunction, inflammation, and autophagy-lysosomal system in uremic cachexia.
Collapse
|
46
|
Halle JL, Pena GS, Paez HG, Castro AJ, Rossiter HB, Visavadiya NP, Whitehurst MA, Khamoui AV. Tissue-specific dysregulation of mitochondrial respiratory capacity and coupling control in colon-26 tumor-induced cachexia. Am J Physiol Regul Integr Comp Physiol 2019; 317:R68-R82. [PMID: 31017805 DOI: 10.1152/ajpregu.00028.2019] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In addition to skeletal muscle dysfunction, cancer cachexia is a systemic disease involving remodeling of nonmuscle organs such as adipose and liver. Impairment of mitochondrial function is associated with multiple chronic diseases. The tissue-specific control of mitochondrial function in cancer cachexia is not well defined. This study determined mitochondrial respiratory capacity and coupling control of skeletal muscle, white adipose tissue (WAT), and liver in colon-26 (C26) tumor-induced cachexia. Tissues were collected from PBS-injected weight-stable mice, C26 weight-stable mice and C26 mice with moderate (10% weight loss) and severe cachexia (20% weight loss). The respiratory control ratio [(RCR) an index of oxidative phosphorylation (OXPHOS) coupling efficiency] was low in WAT during the induction of cachexia because of high nonphosphorylating LEAK respiration. Liver RCR was low in C26 weight-stable and moderately cachexic mice because of reduced OXPHOS. Liver RCR was further reduced with severe cachexia, where Ant2 but not Ucp2 expression was increased. Ant2 was inversely correlated with RCR in the liver (r = -0.547, P < 0.01). Liver cardiolipin increased in moderate and severe cachexia, suggesting this early event may also contribute to mitochondrial uncoupling. Impaired skeletal muscle mitochondrial respiration occurred predominantly in severe cachexia, at complex I. These findings suggest that mitochondrial function is subject to tissue-specific control during cancer cachexia, whereby remodeling in WAT and liver arise early and may contribute to altered energy balance, followed by impaired skeletal muscle respiration. We highlight an under-recognized role of liver and WAT mitochondrial function in cancer cachexia and suggest mitochondrial function of multiple tissues to be therapeutic targets.
Collapse
Affiliation(s)
- Jessica L Halle
- Department of Exercise Science and Health Promotion, Florida Atlantic University , Boca Raton, Florida
| | - Gabriel S Pena
- Department of Exercise Science and Health Promotion, Florida Atlantic University , Boca Raton, Florida
| | - Hector G Paez
- Department of Exercise Science and Health Promotion, Florida Atlantic University , Boca Raton, Florida
| | - Adrianna J Castro
- Department of Exercise Science and Health Promotion, Florida Atlantic University , Boca Raton, Florida
| | - Harry B Rossiter
- Division of Respiratory and Critical Care Physiology and Medicine, Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-University of California Los Angeles Medical Center , Torrance, California.,Faculty of Biological Sciences, University of Leeds , Leeds , United Kingdom
| | - Nishant P Visavadiya
- Department of Exercise Science and Health Promotion, Florida Atlantic University , Boca Raton, Florida
| | - Michael A Whitehurst
- Department of Exercise Science and Health Promotion, Florida Atlantic University , Boca Raton, Florida
| | - Andy V Khamoui
- Department of Exercise Science and Health Promotion, Florida Atlantic University , Boca Raton, Florida
| |
Collapse
|
47
|
Moderate Exercise Improves Experimental Cancer Cachexia by Modulating the Redox Homeostasis. Cancers (Basel) 2019; 11:cancers11030285. [PMID: 30823492 PMCID: PMC6468783 DOI: 10.3390/cancers11030285] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/20/2019] [Accepted: 02/23/2019] [Indexed: 12/19/2022] Open
Abstract
Cachexia is a debilitating syndrome that complicates the management of cancer patients. Muscle wasting, one of the main features of cachexia, is associated with hyper-activation of protein degradative pathways and altered mitochondrial function that could both result from impaired redox homeostasis. This study aimed to investigate the contribution of oxidative stress to cancer-induced cachexia in the presence or in the absence of moderate exercise training. Mice bearing the colon C26 carcinoma, either sedentary or exercised, were used. The former showed muscle wasting and redox imbalance, with the activation of an antioxidant response and with upregulation of markers of proteasome-dependent protein degradation and autophagy. Moderate exercise was able to relieve muscle wasting and prevented the loss of muscle strength; such a pattern was associated with reduced levels of Reactive Oxygen Species (ROS), carbonylated proteins and markers of autophagy and with improved antioxidant capacity. The muscle of sedentary tumor hosts also showed increased levels of molecular markers of mitophagy and reduced mitochondrial mass. Conversely, exercise in the C26 hosts led to increased mitochondrial mass. In conclusion, moderate exercise could be an effective non-pharmacological approach to prevent muscle wasting in cancer patients, decreasing muscle protein catabolism and oxidative stress and preserving mitochondria.
Collapse
|
48
|
Ballarò R, Beltrà M, De Lucia S, Pin F, Ranjbar K, Hulmi JJ, Costelli P, Penna F. Moderate exercise in mice improves cancer plus chemotherapy-induced muscle wasting and mitochondrial alterations. FASEB J 2019; 33:5482-5494. [PMID: 30653354 DOI: 10.1096/fj.201801862r] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cancer cachexia is a multifactorial syndrome characterized by anorexia, body wasting, and muscle and adipose tissue loss, impairing patient's tolerance to anticancer treatments and survival. The aim of the present study was to compare the effects induced in mice by tumor growth alone (C26) or in combination with chemotherapy [C26 oxaliplatin and 5-fluorouracil (oxfu)] and to evaluate the potential of moderate exercise. Oxfu administration to C26 mice exacerbated muscle wasting and triggered autophagy or mitophagy, decreased protein synthesis, and induced mitochondrial alterations. Exercise in C26 oxfu mice counteracted the loss of muscle mass and strength, partially rescuing autophagy and mitochondrial function. Nevertheless, exercise worsened survival in C26 oxfu mice in late stages of cachexia. In summary, chemotherapy further impinges on cancer-induced alterations, worsening muscle wasting. An ideal multifactorial and early intervention to prevent cancer cachexia could take advantage of exercise, improving patient's energy metabolism, mobility, and quality of life.-Ballarò, R., Beltrà, M., De Lucia, S., Pin, F., Ranjbar, K., Hulmi, J. J., Costelli, P., Penna, F. Moderate exercise in mice improves cancer plus chemotherapy-induced muscle wasting and mitochondrial alterations.
Collapse
Affiliation(s)
- Riccardo Ballarò
- Department of Clinical and Biological Sciences, Experimental Medicine and Clinical Pathology Unit, University of Torino, Torino, Italy.,Interuniversity Institute of Myology, Assisi, Italy
| | - Marc Beltrà
- Department of Clinical and Biological Sciences, Experimental Medicine and Clinical Pathology Unit, University of Torino, Torino, Italy.,Interuniversity Institute of Myology, Assisi, Italy
| | - Serena De Lucia
- Department of Clinical and Biological Sciences, Experimental Medicine and Clinical Pathology Unit, University of Torino, Torino, Italy.,Interuniversity Institute of Myology, Assisi, Italy
| | - Fabrizio Pin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kia Ranjbar
- Department of Exercise Physiology, Faculty of Physical Education and Sport Science, University of Tarbiat Modares, Tehran, Iran
| | - Juha J Hulmi
- Neuromuscular Research Center, Biology of Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Paola Costelli
- Department of Clinical and Biological Sciences, Experimental Medicine and Clinical Pathology Unit, University of Torino, Torino, Italy.,Interuniversity Institute of Myology, Assisi, Italy
| | - Fabio Penna
- Department of Clinical and Biological Sciences, Experimental Medicine and Clinical Pathology Unit, University of Torino, Torino, Italy.,Interuniversity Institute of Myology, Assisi, Italy
| |
Collapse
|
49
|
Hardee JP, Counts BR, Carson JA. Understanding the Role of Exercise in Cancer Cachexia Therapy. Am J Lifestyle Med 2019; 13:46-60. [PMID: 30627079 PMCID: PMC6311610 DOI: 10.1177/1559827617725283] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/12/2017] [Accepted: 07/19/2017] [Indexed: 12/17/2022] Open
Abstract
Cachexia, the unintentional loss of body weight, is prevalent in many cancer types, and the associated skeletal muscle mass depletion increases patient morbidity and mortality. While anorexia can be present, cachexia is not reversible with nutritional therapies alone. Pharmacological agents have been proposed to treat this condition, but there are currently no approved treatments. Nonetheless, the hallmark characteristics associated with cancer cachexia remain viable foundations for future therapies. Regular physical activity holds a promising future as a nonpharmacological alternative to improve patient survival through cachexia prevention. Evidence suggests exercise training is beneficial during cancer treatment and survival. However, the mechanistic examination of cachectic skeletal muscle's response to exercise is both needed and justified. The primary objective of this review is to discuss the role of exercise for the prevention and treatment of cancer-associated muscle wasting. Initially, we provide an overview of systemic alterations induced by cancer and their role in the regulation of wasting processes during cachexia progression. We then discuss how exercise could alter disrupted regulatory pathways related to growth and metabolism during cancer-induced muscle atrophy. Last, we outline current exercise prescription guidelines and how exercise could be a potential behavioral therapy to curtail cachexia development in cancer patients.
Collapse
Affiliation(s)
- Justin P. Hardee
- Department of Exercise Science (JPH, BRC, JAC), University of South Carolina, Columbia, South Carolina
- Center for Colon Cancer Research (JAC), University of South Carolina, Columbia, South Carolina
| | - Brittany R. Counts
- Department of Exercise Science (JPH, BRC, JAC), University of South Carolina, Columbia, South Carolina
- Center for Colon Cancer Research (JAC), University of South Carolina, Columbia, South Carolina
| | - James A. Carson
- James A. Carson, PhD, Department of Exercise Science, University of South Carolina, 921 Assembly Street, Public Health Research Center, Rm 301, Columbia, SC 29208; e-mail:
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW Cancer cachexia is a frequent syndrome that affects patient quality of life, anticancer treatment effectiveness, and overall survival. The lack of anticancer cachexia therapies likely relies on the complexity of the syndrome that renders difficult to design appropriate clinical trials and, conversely, on the insufficient knowledge of the underlying pathogenetic mechanisms. The aim of this review is to collect the most relevant latest information regarding cancer cachexia with a special focus on the experimental systems adopted for modeling the disease in translational studies. RECENT FINDINGS The scenario of preclinical models for the study of cancer cachexia is not static and is rapidly evolving in parallel with new prospective treatment options. The well established syngeneic models using rodent cancer cells injected ectopically are now used alongside new ones featuring orthotopic injection, human cancer cell or patient-derived xenograft, or spontaneous tumors in genetically engineered mice. SUMMARY The use of more complex animal models that better resemble cancer cachexia, ideally including also the administration of chemotherapy, will expand the understanding of the underlying mechanisms and will allow a more reliable evaluation of prospective drugs for translational purposes.
Collapse
|