1
|
Sokolowski EK, Kursawe R, Selvam V, Bhuiyan RM, Thibodeau A, Zhao C, Spracklen CN, Ucar D, Stitzel ML. Multi-omic human pancreatic islet endoplasmic reticulum and cytokine stress response mapping provides type 2 diabetes genetic insights. Cell Metab 2024:S1550-4131(24)00370-X. [PMID: 39383866 DOI: 10.1016/j.cmet.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/14/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024]
Abstract
Endoplasmic reticulum (ER) and inflammatory stress responses contribute to islet dysfunction in type 2 diabetes (T2D). Comprehensive genomic understanding of these human islet stress responses and whether T2D-associated genetic variants modulate them is lacking. Here, comparative transcriptome and epigenome analyses of human islets exposed ex vivo to these stressors revealed 30% of expressed genes and 14% of islet cis-regulatory elements (CREs) as stress responsive, modulated largely in an ER- or cytokine-specific fashion. T2D variants overlapped 86 stress-responsive CREs, including 21 induced by ER stress. We linked the rs6917676-T T2D risk allele to increased islet ER-stress-responsive CRE accessibility and allele-specific β cell nuclear factor binding. MAP3K5, the ER-stress-responsive putative rs6917676 T2D effector gene, promoted stress-induced β cell apoptosis. Supporting its pro-diabetogenic role, MAP3K5 expression correlated inversely with human islet β cell abundance and was elevated in T2D β cells. This study provides genome-wide insights into human islet stress responses and context-specific T2D variant effects.
Collapse
Affiliation(s)
- Eishani K Sokolowski
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Romy Kursawe
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Vijay Selvam
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Redwan M Bhuiyan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Asa Thibodeau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Chi Zhao
- Department of Biostatistics and Epidemiology, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Cassandra N Spracklen
- Department of Biostatistics and Epidemiology, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Duygu Ucar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA; Institute of Systems Genomics, University of Connecticut, Farmington, CT 06032, USA.
| | - Michael L Stitzel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA; Institute of Systems Genomics, University of Connecticut, Farmington, CT 06032, USA.
| |
Collapse
|
2
|
Deng H, Chen Y, Wu M, Zhang T. ERCC1 which affects lipids metabolism and actin dynamics in coal workers' pneumoconiosis is a candidate biomarker for early warning and diagnosis. PLoS One 2024; 19:e0308082. [PMID: 39283905 PMCID: PMC11404792 DOI: 10.1371/journal.pone.0308082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/16/2024] [Indexed: 09/20/2024] Open
Abstract
The single-nucleotide polymorphisms of genes related to DNA damage repair and inflammasomes and mutated gene expression in coal workers' pneumoconiosis (CWP) were analysed to identify the risk factors of CWP and potential biomarkers for early warning and diagnosis. Further, mutated gene pathways were analysed based on proteome and metabolome. Han Chinese male subjects were randomly selected and divided into 4 or 5 groups according to the process of CWP. MassARRAY was used to sequence single-nucleotide polymorphism genotypes. Mutated gene expression in plasma was tested using enzyme-linked immunosorbent assay (ELISA). Odds ratios (ORs) and receiver operating characteristic curves (ROC) were calculated. The serum different proteins and metabolites were identified by Ultra Performance Liquid Chromatography Quadrupole time of flight/Mass Spectrum (UPLC-Q-TOF/MS) and analysed using bioinformation software. As CWP progressed, the CC and CA genotypes of ERCC1 rs3212986 decreased and increased significantly, respectively. AA (OR = 3.016) and CA (OR = 2.130) genotypes were identified as risk factors for stage II. ERCC1 significantly decreased in processing of CWP. The cutoff value of ERCC1 was 5.265 pg/ml, with a sensitivity of 90.0% and specificity of 86.7%. ERCC1 had an indirect interaction with activator protein-1 and insulin and its pathways were mainly made with molecules related to lipid metabolism and actin dynamics. ERCC1 is a candidate biomarker for detection and precise intervention in CWP. If it reaches the threshold, workers will change other jobs in time and will not develop and diagnose as pneumoconiosis and will help the employers spend less money. Meanwhile, the signal molecules of ERCC1 pathway could be as a candidate target for drug discovery.
Collapse
Affiliation(s)
- Hao Deng
- Department of Occupational Diseases, Guiyang Public Health Clinical Center, Guiyang, GuiZhou, China
| | - Yan Chen
- Institute of Public Health, Guizhou CDC, Guiyang, GuiZhou, China
| | - Mali Wu
- College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, GuiZhou, China
| | - Tao Zhang
- Department of Occupational Diseases, Guiyang Public Health Clinical Center, Guiyang, GuiZhou, China
| |
Collapse
|
3
|
Guan H, Tian J, Wang Y, Niu P, Zhang Y, Zhang Y, Fang X, Miao R, Yin R, Tong X. Advances in secondary prevention mechanisms of macrovascular complications in type 2 diabetes mellitus patients: a comprehensive review. Eur J Med Res 2024; 29:152. [PMID: 38438934 PMCID: PMC10910816 DOI: 10.1186/s40001-024-01739-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) poses a significant global health burden. This is particularly due to its macrovascular complications, such as coronary artery disease, peripheral vascular disease, and cerebrovascular disease, which have emerged as leading contributors to morbidity and mortality. This review comprehensively explores the pathophysiological mechanisms underlying these complications, protective strategies, and both existing and emerging secondary preventive measures. Furthermore, we delve into the applications of experimental models and methodologies in foundational research while also highlighting current research limitations and future directions. Specifically, we focus on the literature published post-2020 concerning the secondary prevention of macrovascular complications in patients with T2DM by conducting a targeted review of studies supported by robust evidence to offer a holistic perspective.
Collapse
Affiliation(s)
- Huifang Guan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Ying Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Ping Niu
- Rehabilitation Department, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Yuxin Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yanjiao Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xinyi Fang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Ruiyang Yin
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
4
|
Rossi A, Oosterveer MH, van Dijk TH, Bleeker A, Koehorst M, Weinstein DA, Bakker BM, Derks TGJ. Endogenous Glucose Production in Patients With Glycogen Storage Disease Type Ia Estimated by Oral D-[6,6-2H2]-glucose. J Clin Endocrinol Metab 2024; 109:389-401. [PMID: 37690115 PMCID: PMC10795891 DOI: 10.1210/clinem/dgad537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/26/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
CONTEXT Glycogen storage disease type Ia (GSDIa) is an inborn metabolic disorder characterized by impaired endogenous glucose production (EGP). Monitoring of patients with GSDIa is prioritized because of ongoing treatment developments. Stable isotope tracers may enable reliable EGP monitoring. OBJECTIVE The aim of this study was to prospectively assess the rate of appearance of endogenous glucose into the bloodstream (Ra) in patients with GSDIa after a single oral D-[6,6-2H2]-glucose dose. METHODS Ten adult patients with GSDIa and 10 age-, sex-, and body mass index-matched healthy volunteers (HVs) were enrolled. For each participant, 3 oral glucose tracer tests were performed: (1) preprandial/fasted, (2) postprandial, and (3) randomly fed states. Dried blood spots were collected before D-[6,6-2H2]-glucose administration and 10, 20, 30, 40, 50, 60, 75, 90, and 120 minutes thereafter. RESULTS Glucose Ra in fasted HVs was consistent with previously reported data. The time-averaged glucose Ra was significantly higher in (1) preprandial/fasted patients with GSDIa than HV and (2) postprandial HV compared with fasted HV(P < .05). A progressive decrease in glucose Ra was observed in preprandial/fasted patients with GSDIa; the change in glucose Ra time-course was directly correlated with the change in capillary glucose (P < .05). CONCLUSION This is the first study to quantify glucose Ra in patients with GSDIa using oral D-[6,6-2H2] glucose. The test can reliably estimate EGP under conditions in which fasting tolerance is unaffected but does not discriminate between relative contributions of EGP (eg, liver, kidney) and exogenous sources (eg, dietary cornstarch). Future application is warranted for longitudinal monitoring after novel genome based treatments in patients with GSDIa in whom nocturnal dietary management can be discontinued.
Collapse
Affiliation(s)
- Alessandro Rossi
- Department of Pediatrics, Section of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Department of Translational Medicine, Section of Pediatrics, University of Naples “Federico II”, 80131 Naples, Italy
| | - Maaike H Oosterveer
- Department of Pediatrics, Laboratory of Pediatrics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Theo H van Dijk
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Aycha Bleeker
- Department of Pediatrics, Laboratory of Pediatrics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Martijn Koehorst
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - David A Weinstein
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Barbara M Bakker
- Department of Pediatrics, Laboratory of Pediatrics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Terry G J Derks
- Department of Pediatrics, Section of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
5
|
Yousefzadeh MJ, Huerta Guevara AP, Postmus AC, Flores RR, Sano T, Jurdzinski A, Angelini L, McGowan SJ, O’Kelly RD, Wade EA, Gonzalez-Espada LV, Henessy-Wack D, Howard S, Rozgaja TA, Trussoni CE, LaRusso NF, Eggen BJ, Jonker JW, Robbins PD, Niedernhofer LJ, Kruit JK. Failure to repair endogenous DNA damage in β-cells causes adult-onset diabetes in mice. AGING BIOLOGY 2023; 1:20230015. [PMID: 38124711 PMCID: PMC10732477 DOI: 10.59368/agingbio.20230015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Age is the greatest risk factor for the development of type 2 diabetes mellitus (T2DM). Age-related decline in organ function is attributed to the accumulation of stochastic damage, including damage to the nuclear genome. Islets of T2DM patients display increased levels of DNA damage. However, whether this is a cause or consequence of the disease has not been elucidated. Here, we asked if spontaneous, endogenous DNA damage in β-cells can drive β-cell dysfunction and diabetes, via deletion of Ercc1, a key DNA repair gene, in β-cells. Mice harboring Ercc1-deficient β-cells developed adult-onset diabetes as demonstrated by increased random and fasted blood glucose levels, impaired glucose tolerance, and reduced insulin secretion. The inability to repair endogenous DNA damage led to an increase in oxidative DNA damage and apoptosis in β-cells and a significant loss of β-cell mass. Using electron microscopy, we identified β-cells in clear distress that showed an increased cell size, enlarged nuclear size, reduced number of mature insulin granules, and decreased number of mitochondria. Some β-cells were more affected than others consistent with the stochastic nature of spontaneous DNA damage. Ercc1-deficiency in β-cells also resulted in loss of β-cell function as glucose-stimulated insulin secretion and mitochondrial function were impaired in islets isolated from mice harboring Ercc1-deficient β-cells. These data reveal that unrepaired endogenous DNA damage is sufficient to drive β-cell dysfunction and provide a mechanism by which age increases the risk of T2DM.
Collapse
Affiliation(s)
- Matthew J. Yousefzadeh
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way #3B3, Jupiter FL, 33458, USA
- Department of Biochemistry, Molecular Biology and Biophysics and Institute on the Biology of Aging and Metabolism, University of Minnesota, 6-155 Jackson Hall, 321 Church St., Minneapolis, MN 55455, USA
| | - Ana P. Huerta Guevara
- Department of Pediatrics, Section Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Andrea C. Postmus
- Department of Pediatrics, Section Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rafael R. Flores
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way #3B3, Jupiter FL, 33458, USA
- Department of Biochemistry, Molecular Biology and Biophysics and Institute on the Biology of Aging and Metabolism, University of Minnesota, 6-155 Jackson Hall, 321 Church St., Minneapolis, MN 55455, USA
| | - Tokio Sano
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way #3B3, Jupiter FL, 33458, USA
| | - Angelika Jurdzinski
- Department of Pediatrics, Section Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Luise Angelini
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way #3B3, Jupiter FL, 33458, USA
- Department of Biochemistry, Molecular Biology and Biophysics and Institute on the Biology of Aging and Metabolism, University of Minnesota, 6-155 Jackson Hall, 321 Church St., Minneapolis, MN 55455, USA
| | - Sara J. McGowan
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way #3B3, Jupiter FL, 33458, USA
- Department of Biochemistry, Molecular Biology and Biophysics and Institute on the Biology of Aging and Metabolism, University of Minnesota, 6-155 Jackson Hall, 321 Church St., Minneapolis, MN 55455, USA
| | - Ryan D. O’Kelly
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way #3B3, Jupiter FL, 33458, USA
- Department of Biochemistry, Molecular Biology and Biophysics and Institute on the Biology of Aging and Metabolism, University of Minnesota, 6-155 Jackson Hall, 321 Church St., Minneapolis, MN 55455, USA
| | - Erin A. Wade
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way #3B3, Jupiter FL, 33458, USA
| | - Lisa V. Gonzalez-Espada
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way #3B3, Jupiter FL, 33458, USA
| | - Danielle Henessy-Wack
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way #3B3, Jupiter FL, 33458, USA
| | - Shannon Howard
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way #3B3, Jupiter FL, 33458, USA
| | - Tania A. Rozgaja
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way #3B3, Jupiter FL, 33458, USA
| | - Christy E. Trussoni
- Division of Gastroenterology and Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN 55905, USA
| | - Nicholas F. LaRusso
- Division of Gastroenterology and Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN 55905, USA
| | - Bart J.L. Eggen
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Johan W. Jonker
- Department of Pediatrics, Section Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Paul D. Robbins
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way #3B3, Jupiter FL, 33458, USA
- Department of Biochemistry, Molecular Biology and Biophysics and Institute on the Biology of Aging and Metabolism, University of Minnesota, 6-155 Jackson Hall, 321 Church St., Minneapolis, MN 55455, USA
| | - Laura J. Niedernhofer
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way #3B3, Jupiter FL, 33458, USA
- Department of Biochemistry, Molecular Biology and Biophysics and Institute on the Biology of Aging and Metabolism, University of Minnesota, 6-155 Jackson Hall, 321 Church St., Minneapolis, MN 55455, USA
| | - Janine K. Kruit
- Department of Pediatrics, Section Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Cha J, Aguayo-Mazzucato C, Thompson PJ. Pancreatic β-cell senescence in diabetes: mechanisms, markers and therapies. Front Endocrinol (Lausanne) 2023; 14:1212716. [PMID: 37720527 PMCID: PMC10501801 DOI: 10.3389/fendo.2023.1212716] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Cellular senescence is a response to a wide variety of stressors, including DNA damage, oncogene activation and physiologic aging, and pathologically accelerated senescence contributes to human disease, including diabetes mellitus. Indeed, recent work in this field has demonstrated a role for pancreatic β-cell senescence in the pathogenesis of Type 1 Diabetes, Type 2 Diabetes and monogenic diabetes. Small molecule or genetic targeting of senescent β-cells has shown promise as a novel therapeutic approach for preventing and treating diabetes. Despite these advances, major questions remain around the molecular mechanisms driving senescence in the β-cell, identification of molecular markers that distinguish senescent from non-senescent β-cell subpopulations, and translation of proof-of-concept therapies into novel treatments for diabetes in humans. Here, we summarize the current state of the field of β-cell senescence, highlighting insights from mouse models as well as studies on human islets and β-cells. We identify markers that have been used to detect β-cell senescence to unify future research efforts in this field. We discuss emerging concepts of the natural history of senescence in β-cells, heterogeneity of senescent β-cells subpopulations, role of sex differences in senescent responses, and the consequences of senescence on integrated islet function and microenvironment. As a young and developing field, there remain many open research questions which need to be addressed to move senescence-targeted approaches towards clinical investigation.
Collapse
Affiliation(s)
- Jeeyeon Cha
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, United States
| | | | - Peter J. Thompson
- Diabetes Research Envisioned and Accomplished in Manitoba Theme, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Physiology & Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
7
|
Varun K, Zoltan K, Alba S, Manuel B, Elisabeth K, Dimitrios T, Jan B G, Maik B, Khurrum S, Berend I, Stephen H, Thomas F, Julia S, Peter N, Stefan K. Elevated markers of DNA damage and senescence are associated with the progression of albuminuria and restrictive lung disease in patients with type 2 diabetes. EBioMedicine 2023; 90:104516. [PMID: 36934657 PMCID: PMC10025008 DOI: 10.1016/j.ebiom.2023.104516] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/09/2023] [Accepted: 02/22/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND This study was conducted to investigate the cascade involving DNA damage, senescence, and senescence-associated secretory phenotype (SASP) in experimental diabetes and in a four-year follow-up study in patients with pre-diabetes and type 2 diabetes. METHODS Kidney, lung, and liver were studied in 4 months diabetic db/db mice and age-matched controls for the presence of DNA damage and fibrosis. DNA damage (comet-tail-length and ɤH2Ax-positivity in white blood cells), urinary p21-excretion, and plasma IL-6 and TGF-β1 were determined from 115 healthy participants, 34 patients with pre-diabetes and 221 with type 2 diabetes. Urinary albumin-creatinine-ratio, lung function, and transient elastography of the liver were performed in a prospective follow-up study over 4 years. FINDINGS db/db mice showed an increased nuclear ɤH2AX signal in all tissues as compared to the background control. Markers for DNA damage, senescence, and SASP were increased in patients with diabetes. The presence of nephropathy, restrictive lung disease (RLD), and increased liver stiffness was in a cross-sectional design associated with increased markers for DNA damage, senescence, and SASP. The progression of nephropathy over 4 years was predicted by increased DNA damage, senescence, and SASP, while the progression of RLD was associated with increased DNA damage and IL-6 only. The progression of liver stiffness was not associated with any of these parameters. HbA1c was not predictive for progression. INTERPRETATION In db/db mice, the cascade of DNA damage is associated with diabetes-related complications. In patients with diabetes, the progression of complications in the kidney and lung is predicted by markers reflecting DNA damage, and senescence-triggered organ fibrosis. FUNDING This work was supported by the German Research Foundation (DFG) in the CRC 1118 and CRC 1158, by the GRK DIAMICOM, by the German Center for Diabetes Research (DZD e.V.), and by the Ministry of Science, Research and the Arts, Baden-Württemberg (Kompetenznetzwerk Präventivmedizin).
Collapse
Affiliation(s)
- Kumar Varun
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; European Molecular Biology Laboratory, Advanced Light Microscopy Facility, Heidelberg, Germany
| | - Kender Zoltan
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Sulaj Alba
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Blume Manuel
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany
| | - Kliemank Elisabeth
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Tsilingiris Dimitrios
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Groener Jan B
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Medicover Neuroendokrinologie, Munich, Germany
| | - Brune Maik
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany
| | - Shahzad Khurrum
- Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital of Leipzig, Germany
| | - Isermann Berend
- Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital of Leipzig, Germany
| | - Herzig Stephen
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Helmholtz Diabetes Center, Institute for Diabetes and Cancer, Helmholtz Center Munich, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine I, Heidelberg University Hospital, Heidelberg, Germany
| | - Fleming Thomas
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Szendroedi Julia
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Nawroth Peter
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine I, Heidelberg University Hospital, Heidelberg, Germany
| | - Kopf Stefan
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| |
Collapse
|
8
|
Martins Peçanha FL, Jaafar R, Werneck-de-Castro JP, Apostolopolou CC, Bhushan A, Bernal-Mizrachi E. The Transcription Factor YY1 Is Essential for Normal DNA Repair and Cell Cycle in Human and Mouse β-Cells. Diabetes 2022; 71:1694-1705. [PMID: 35594378 PMCID: PMC9490361 DOI: 10.2337/db21-0908] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 04/21/2022] [Indexed: 11/13/2022]
Abstract
Identifying the mechanisms behind the β-cell adaptation to failure is important to develop strategies to manage type 2 diabetes (T2D). Using db/db mice at early stages of the disease process, we took advantage of unbiased RNA sequencing to identify genes/pathways regulated by insulin resistance in β-cells. We demonstrate herein that islets from 4-week-old nonobese and nondiabetic leptin receptor-deficient db/db mice exhibited downregulation of several genes involved in cell cycle regulation and DNA repair. We identified the transcription factor Yin Yang 1 (YY1) as a common gene between both pathways. The expression of YY1 and its targeted genes was decreased in the db/db islets. We confirmed the reduction in YY1 expression in β-cells from diabetic db/db mice, mice fed a high-fat diet (HFD), and individuals with T2D. Chromatin immunoprecipitation sequencing profiling in EndoC-βH1 cells, a human pancreatic β-cell line, indicated that YY1 binding regions regulate cell cycle control and DNA damage recognition and repair. We then generated mouse models with constitutive and inducible YY1 deficiency in β-cells. YY1-deficient mice developed diabetes early in life due to β-cell loss. β-Cells from these mice exhibited higher DNA damage, cell cycle arrest, and cell death as well as decreased maturation markers. Tamoxifen-induced YY1 deficiency in mature β-cells impaired β-cell function and induced DNA damage. In summary, we identified YY1 as a critical factor for β-cell DNA repair and cell cycle progression.
Collapse
Affiliation(s)
| | - Rami Jaafar
- Diabetes Center, University of California, San Francisco, San Francisco, CA
| | - Joao Pedro Werneck-de-Castro
- Division of Endocrinology, Diabetes and Metabolism, University of Miami, Miller School of Medicine, Miami, FL
- Miami Veterans Affairs Health Care System, Miami, FL
| | | | - Anil Bhushan
- Diabetes Center, University of California, San Francisco, San Francisco, CA
| | - Ernesto Bernal-Mizrachi
- Division of Endocrinology, Diabetes and Metabolism, University of Miami, Miller School of Medicine, Miami, FL
- Miami Veterans Affairs Health Care System, Miami, FL
- Corresponding author: Ernesto Bernal-Mizrachi,
| |
Collapse
|
9
|
Hu H, Zhao R, He Q, Cui C, Song J, Guo X, Zang N, Yang M, Zou Y, Yang J, Li J, Wang L, Xia L, Wang L, He F, Hou X, Yan F, Chen L. cGAS-STING mediates cytoplasmic mitochondrial-DNA-induced inflammatory signal transduction during accelerated senescence of pancreatic β-cells induced by metabolic stress. FASEB J 2022; 36:e22266. [PMID: 35357035 DOI: 10.1096/fj.202101988r] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/21/2022] [Accepted: 03/08/2022] [Indexed: 12/17/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is an age-related disease characterized by impaired pancreatic β cell function and insulin resistance. Recent studies have shown that the accumulation of senescent β cells under metabolic stress conditions leads to the progression of T2DM, while senolysis can improve the prognosis. However, the specific mechanism of β cell senescence is still unclear. In this study, we found that the increased load of senescence pancreatic β cells in both older mice and obese mice induced by high-fat diet (HFD) (DIO mice) was accompanied by activation of the Cyclic GMP-AMP synthase (cGAS) - stimulator of interferon genes (STING) pathway and using cGAS or STING small interfering RNA or STING inhibitor C176 to downregulate this pathway reduced the senescence-associated secretion profile (SASP) and senescence of Min6 cells treated with palmitic acid or hydrogen peroxide. C176 intervention in DIO mice also significantly reduced the inflammation and senescence of the islets, thereby protecting the function of pancreatic β cell and glucose metabolism. Our study further revealed that mitochondrial DNA (mtDNA) leakage under metabolic stress conditions was critical for the activation of the cGAS-STING pathway, which can be reversed by the mtDNA depleting agent ethidium bromide. Consistently, mtDNA leakage was more severe in older mice and was accelerated by a chronic HFD. In conclusion, we demonstrate that cytoplasmic mtDNA activates the cGAS-STING pathway to mediate SASP during the accelerated senescence of pancreatic β-cells induced by metabolic stress, and this process can be downregulated by the STING inhibitor C176.
Collapse
Affiliation(s)
- Huiqing Hu
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ruxing Zhao
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China.,Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, China
| | - Qin He
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chen Cui
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jia Song
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinghong Guo
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Nan Zang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengmeng Yang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ying Zou
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingwen Yang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jinquan Li
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Liming Wang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Longqing Xia
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lingshu Wang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China.,Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, China
| | - Falian He
- Nuolai Biomedical Technology Co., Ltd., Taian, China
| | - Xinguo Hou
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China.,Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, China
| | - Fei Yan
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China.,Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China.,Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, China.,Nuolai Biomedical Technology Co., Ltd., Taian, China
| |
Collapse
|
10
|
Chatzidoukaki O, Stratigi K, Goulielmaki E, Niotis G, Akalestou-Clocher A, Gkirtzimanaki K, Zafeiropoulos A, Altmüller J, Topalis P, Garinis GA. R-loops trigger the release of cytoplasmic ssDNAs leading to chronic inflammation upon DNA damage. SCIENCE ADVANCES 2021; 7:eabj5769. [PMID: 34797720 PMCID: PMC8604417 DOI: 10.1126/sciadv.abj5769] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
How DNA damage leads to chronic inflammation and tissue degeneration with aging remains to be fully resolved. Here, we show that DNA damage leads to cellular senescence, fibrosis, loss-of-tissue architecture, and chronic pancreatitis in mice with an inborn defect in the excision repair cross complementation group 1 (Ercc1) gene. We find that DNA damage-driven R-loops causally contribute to the active release and buildup of single-stranded DNAs (ssDNAs) in the cytoplasm of cells triggering a viral-like immune response in progeroid and naturally aged pancreata. To reduce the proinflammatory load, we developed an extracellular vesicle (EV)-based strategy to deliver recombinant S1 or ribonuclease H nucleases in inflamed Ercc1−/− pancreatic cells. Treatment of Ercc1−/− animals with the EV-delivered nuclease cargo eliminates DNA damage-induced R-loops and cytoplasmic ssDNAs alleviating chronic inflammation. Thus, DNA damage-driven ssDNAs causally contribute to tissue degeneration, Ercc1−/− paving the way for novel rationalized intervention strategies against age-related chronic inflammation.
Collapse
Affiliation(s)
- Ourania Chatzidoukaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, GR70013 Heraklion, Crete, Greece
- Medical School, University of Crete, Heraklion, Crete, Greece
| | - Kalliopi Stratigi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, GR70013 Heraklion, Crete, Greece
| | - Evi Goulielmaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, GR70013 Heraklion, Crete, Greece
| | - George Niotis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, GR70013 Heraklion, Crete, Greece
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Alexia Akalestou-Clocher
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, GR70013 Heraklion, Crete, Greece
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Katerina Gkirtzimanaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, GR70013 Heraklion, Crete, Greece
| | | | - Janine Altmüller
- Cologne Center for Genomics (CCG), Institute for Genetics, University of Cologne, 50931 Cologne, Germany
| | - Pantelis Topalis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, GR70013 Heraklion, Crete, Greece
| | - George A. Garinis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, GR70013 Heraklion, Crete, Greece
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Corresponding author.
| |
Collapse
|