1
|
Cha S, Cho K, Lim N, Oh H, Choi E, Shim S, Lee SH, Hahn JS. Enhancement of fermentation traits in industrial Baker's yeast for low or high sugar environments. Food Microbiol 2025; 125:104643. [PMID: 39448153 DOI: 10.1016/j.fm.2024.104643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 10/26/2024]
Abstract
Saccharomyces cerevisiae SPC-SNU 70-1 is a commercial diploid baking yeast strain valued for its excellent bread-making qualities, including superior leavening capabilities and the production of flavor-enhancing volatile organic acids. Despite its benefits, this strain faces challenges in fermenting both lean (low-sugar) and sweet (high-sugar) doughs. To address these issues, we employed the CRISPR/Cas9 genome editing system to modify genes without leaving any genetic scars. For lean doughs, we enhanced the yeast's ability to utilize maltose over glucose by deleting a gene involved in glucose repression. For sweet doughs, we increased glycerol production by overexpressing glycerol biosynthetic genes and optimizing redox balance, thereby improving the tolerence to osmotic stress during fermentation. Additionally, the glycerol-overproducing strain demonstrated enhanced freeze tolerance, and bread made from this strain exhibited improved storage properties. This study demonstrates the feasibility and benefits of using engineered yeast strains, created solely by editing their own genes without introducing foreign genes, to enhance bread making.
Collapse
Affiliation(s)
- Seungwoo Cha
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Kijoo Cho
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Nayoung Lim
- Research Institute of Food and Biotechnology, SPC Group Co., 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hyewon Oh
- Research Institute of Food and Biotechnology, SPC Group Co., 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Eunji Choi
- Research Institute of Food and Biotechnology, SPC Group Co., 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Sangmin Shim
- Research Institute of Food and Biotechnology, SPC Group Co., 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Sung-Ho Lee
- Research Institute of Food and Biotechnology, SPC Group Co., 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Ji-Sook Hahn
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
Stovicek V, Lengeler KB, Wendt T, Rasmussen M, Katz M, Förster J. Modifying flavor profiles of Saccharomyces spp. for industrial brewing using FIND-IT, a non-GMO approach for metabolic engineering of yeast. N Biotechnol 2024; 82:92-106. [PMID: 38788897 DOI: 10.1016/j.nbt.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Species of Saccharomyces genus have played an irreplaceable role in alcoholic beverage and baking industry for centuries. S. cerevisiae has also become an organism of choice for industrial production of alcohol and other valuable chemicals and a model organism shaping the rise of modern genetics and genomics in the past few decades. Today´s brewing industry faces challenges of decreasing consumption of traditional beer styles and increasing consumer demand for new styles, flavors and aromas. The number of currently used brewer's strains and their genetic diversity is yet limited and implementation of more genetic and phenotypic variation is seen as a solution to cope with the market challenges. This requires modification of current production strains or introduction of novel strains from other settings, e.g. industrial or wild habitats into the brewing industry. Due to legal regulation in many countries and negative customer perception of GMO organisms, the production of food and beverages requires non-GMO production organisms, whose development can be difficult and time-consuming. Here, we apply FIND-IT (Fast Identification of Nucleotide variants by DigITal PCR), an ultrafast genome-mining method, for isolation of novel yeast variants with varying flavor profiles. The FIND-IT method uses combination of random mutagenesis, droplet digital PCR with probes that target a specific desired mutation and a sub-isolation of the mutant clone. Such an approach allows the targeted identification and isolation of specific mutant strains with eliminated production of certain flavor and off-flavors and/or changes in the strain metabolism. We demonstrate that the technology is useful for the identification of loss-of function or gain of function mutations in unrelated industrial and wild strains differing in ploidy. Where no other phenotypic selection exists, this technology serves together with standard breeding techniques as a modern tool facilitating a modification of (brewer's) yeast strains leading to diversification of the product portfolio.
Collapse
Affiliation(s)
- Vratislav Stovicek
- Carlsberg Research Laboratory, Carlsberg A/S, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| | - Klaus B Lengeler
- Carlsberg Research Laboratory, Carlsberg A/S, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| | - Toni Wendt
- Carlsberg Research Laboratory, Carlsberg A/S, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark; Traitomic A/S, J.C. Jacobsens Gade 1, DK-1799 Copenhagen V, Denmark
| | - Magnus Rasmussen
- Carlsberg Research Laboratory, Carlsberg A/S, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| | - Michael Katz
- Carlsberg Research Laboratory, Carlsberg A/S, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark.
| | - Jochen Förster
- Carlsberg Research Laboratory, Carlsberg A/S, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark; DTU Biosustain, The Novo Nordisk Foundation Center for Biosustainability, Søltofts Plads, Building 220, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
3
|
Liang Y, Gao S, Qi X, Valentovich LN, An Y. Progress in Gene Editing and Metabolic Regulation of Saccharomyces cerevisiae with CRISPR/Cas9 Tools. ACS Synth Biol 2024; 13:428-448. [PMID: 38326929 DOI: 10.1021/acssynbio.3c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The CRISPR/Cas9 systems have been developed as tools for genetic engineering and metabolic engineering in various organisms. In this review, various aspects of CRISPR/Cas9 in Saccharomyces cerevisiae, from basic principles to practical applications, have been summarized. First, a comprehensive review has been conducted on the history of CRISPR/Cas9, successful cases of gene disruptions, and efficiencies of multiple DNA fragment insertions. Such advanced systems have accelerated the development of microbial engineering by reducing time and labor, and have enhanced the understanding of molecular genetics. Furthermore, the research progress of the CRISPR/Cas9-based systems in the production of high-value-added chemicals and the improvement of stress tolerance in S. cerevisiae have been summarized, which should have an important reference value for genetic and synthetic biology studies based on S. cerevisiae.
Collapse
Affiliation(s)
- Yaokun Liang
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110065, China
| | - Song Gao
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110065, China
| | - Xianghui Qi
- School of Life Sciences, Guangzhou University, Guangdong 511370, China
| | - Leonid N Valentovich
- Institute of Microbiology, National Academy of Sciences of Belarus, Minsk 220072, Belarus
| | - Yingfeng An
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110065, China
| |
Collapse
|
4
|
Strucko T, Gadar-Lopez AE, Frøhling FB, Frost ET, Iversen EF, Olsson H, Jarczynska ZD, Mortensen UH. Oligonucleotide-based CRISPR-Cas9 toolbox for efficient engineering of Komagataella phaffii. FEMS Yeast Res 2024; 24:foae026. [PMID: 39179418 PMCID: PMC11364938 DOI: 10.1093/femsyr/foae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/31/2024] [Accepted: 08/22/2024] [Indexed: 08/26/2024] Open
Abstract
Komagataella phaffii (Pichia pastoris) is a methylotrophic yeast that is favored by industry and academia mainly for expression of heterologous proteins. However, its full potential as a host for bioproduction of valuable compounds cannot be fully exploited as genetic tools are lagging behind those that are available for baker's yeast. The emergence of CRISPR-Cas9 technology has significantly improved the efficiency of gene manipulations of K. phaffii, but improvements in gene-editing methods are desirable to further accelerate engineering of this yeast. In this study, we have developed a versatile vector-based CRISPR-Cas9 method and showed that it works efficiently at different genetic loci using linear DNA fragments with very short targeting sequences including single-stranded oligonucleotides. Notably, we performed site-specific point mutations and full gene deletions using short (90 nt) single-stranded oligonucleotides at very high efficiencies. Lastly, we present a strategy for transient inactivation of nonhomologous end-joining (NHEJ) pathway, where KU70 gene is disrupted by a visual marker (uidA gene). This system enables precise CRISPR-Cas9-based editing (including multiplexing) and facilitates simple reversion to NHEJ-proficient genotype. In conclusion, the tools presented in this study can be applied for easy and efficient engineering of K. phaffii strains and are compatible with high-throughput automated workflows.
Collapse
Affiliation(s)
- Tomas Strucko
- Section for Synthetic Biology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, 2800 Kongens Lyngby, Denmark
| | - Adrian-E Gadar-Lopez
- Section for Synthetic Biology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, 2800 Kongens Lyngby, Denmark
| | - Frederik B Frøhling
- Section for Synthetic Biology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, 2800 Kongens Lyngby, Denmark
| | - Emma T Frost
- Section for Synthetic Biology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, 2800 Kongens Lyngby, Denmark
| | - Esther F Iversen
- Section for Synthetic Biology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, 2800 Kongens Lyngby, Denmark
| | - Helen Olsson
- Section for Synthetic Biology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, 2800 Kongens Lyngby, Denmark
| | - Zofia D Jarczynska
- Section for Synthetic Biology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, 2800 Kongens Lyngby, Denmark
| | - Uffe H Mortensen
- Section for Synthetic Biology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
5
|
Procópio DP, Lee JW, Shin J, Tramontina R, Ávila PF, Brenelli LB, Squina FM, Damasio A, Rabelo SC, Goldbeck R, Franco TT, Leak D, Jin YS, Basso TO. Metabolic engineering of Saccharomyces cerevisiae for second-generation ethanol production from xylo-oligosaccharides and acetate. Sci Rep 2023; 13:19182. [PMID: 37932303 PMCID: PMC10628280 DOI: 10.1038/s41598-023-46293-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023] Open
Abstract
Simultaneous intracellular depolymerization of xylo-oligosaccharides (XOS) and acetate fermentation by engineered Saccharomyces cerevisiae offers significant potential for more cost-effective second-generation (2G) ethanol production. In the present work, the previously engineered S. cerevisiae strain, SR8A6S3, expressing enzymes for xylose assimilation along with an optimized route for acetate reduction, was used as the host for expressing two β-xylosidases, GH43-2 and GH43-7, and a xylodextrin transporter, CDT-2, from Neurospora crassa, yielding the engineered SR8A6S3-CDT-2-GH34-2/7 strain. Both β-xylosidases and the transporter were introduced by replacing two endogenous genes, GRE3 and SOR1, that encode aldose reductase and sorbitol (xylitol) dehydrogenase, respectively, and catalyse steps in xylitol production. The engineered strain, SR8A6S3-CDT-2-GH34-2/7 (sor1Δ gre3Δ), produced ethanol through simultaneous XOS, xylose, and acetate co-utilization. The mutant strain produced 60% more ethanol and 12% less xylitol than the control strain when a hemicellulosic hydrolysate was used as a mono- and oligosaccharide source. Similarly, the ethanol yield was 84% higher for the engineered strain using hydrolysed xylan, compared with the parental strain. Xylan, a common polysaccharide in lignocellulosic residues, enables recombinant strains to outcompete contaminants in fermentation tanks, as XOS transport and breakdown occur intracellularly. Furthermore, acetic acid is a ubiquitous toxic component in lignocellulosic hydrolysates, deriving from hemicellulose and lignin breakdown. Therefore, the consumption of XOS, xylose, and acetate expands the capabilities of S. cerevisiae for utilization of all of the carbohydrate in lignocellulose, potentially increasing the efficiency of 2G biofuel production.
Collapse
Affiliation(s)
- Dielle Pierotti Procópio
- Department of Chemical Engineering, Escola Politécnica, Universidade de São Paulo (USP), São Paulo, SP, 05508-010, Brazil
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo), São Paulo, SP, 05508-900, Brazil
| | - Jae Won Lee
- DOE Center for Advanced Bioenergy and Bioproducts Innovation (CABER), University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign (UIUC), Urbana, IL, 61801, USA
| | - Jonghyeok Shin
- DOE Center for Advanced Bioenergy and Bioproducts Innovation (CABER), University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign (UIUC), Urbana, IL, 61801, USA
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Robson Tramontina
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
- Environment and Technological Processes Program, University of Sorocaba (UNISO), Sorocaba, SP, 18023-000, Brazil
| | - Patrícia Felix Ávila
- School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
| | - Lívia Beatriz Brenelli
- Interdisciplinary Centre of Energy Planning, University of Campinas (UNICAMP), Campinas, SP, 13083-896, Brazil
| | - Fabio Márcio Squina
- Environment and Technological Processes Program, University of Sorocaba (UNISO), Sorocaba, SP, 18023-000, Brazil
| | - André Damasio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
| | - Sarita Cândida Rabelo
- Departament of Bioprocesses and Biotechnology, School of Agriculture, Sao Paulo State University (UNESP), Botucatu, SP, 18618-687, Brazil
| | - Rosana Goldbeck
- School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
| | - Telma Teixeira Franco
- Interdisciplinary Centre of Energy Planning, University of Campinas (UNICAMP), Campinas, SP, 13083-896, Brazil
- School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, 13083-852, Brazil
| | - David Leak
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Yong-Su Jin
- DOE Center for Advanced Bioenergy and Bioproducts Innovation (CABER), University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign (UIUC), Urbana, IL, 61801, USA
| | - Thiago Olitta Basso
- Department of Chemical Engineering, Escola Politécnica, Universidade de São Paulo (USP), São Paulo, SP, 05508-010, Brazil.
| |
Collapse
|
6
|
Cachera P, Olsson H, Coumou H, Jensen ML, Sánchez B, Strucko T, van den Broek M, Daran JM, Jensen M, Sonnenschein N, Lisby M, Mortensen U. CRI-SPA: a high-throughput method for systematic genetic editing of yeast libraries. Nucleic Acids Res 2023; 51:e91. [PMID: 37572348 PMCID: PMC10516668 DOI: 10.1093/nar/gkad656] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 07/07/2023] [Accepted: 08/10/2023] [Indexed: 08/14/2023] Open
Abstract
Biological functions are orchestrated by intricate networks of interacting genetic elements. Predicting the interaction landscape remains a challenge for systems biology and new research tools allowing simple and rapid mapping of sequence to function are desirable. Here, we describe CRI-SPA, a method allowing the transfer of chromosomal genetic features from a CRI-SPA Donor strain to arrayed strains in large libraries of Saccharomyces cerevisiae. CRI-SPA is based on mating, CRISPR-Cas9-induced gene conversion, and Selective Ploidy Ablation. CRI-SPA can be massively parallelized with automation and can be executed within a week. We demonstrate the power of CRI-SPA by transferring four genes that enable betaxanthin production into each strain of the yeast knockout collection (≈4800 strains). Using this setup, we show that CRI-SPA is highly efficient and reproducible, and even allows marker-free transfer of genetic features. Moreover, we validate a set of CRI-SPA hits by showing that their phenotypes correlate strongly with the phenotypes of the corresponding mutant strains recreated by reverse genetic engineering. Hence, our results provide a genome-wide overview of the genetic requirements for betaxanthin production. We envision that the simplicity, speed, and reliability offered by CRI-SPA will make it a versatile tool to forward systems-level understanding of biological processes.
Collapse
Affiliation(s)
- Paul Cachera
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark
| | - Helén Olsson
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark
| | - Hilde Coumou
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Denmark
| | - Mads L Jensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Denmark
| | - Benjamín J Sánchez
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Denmark
| | - Tomas Strucko
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Denmark
| | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Michael K Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark
| | - Nikolaus Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Denmark
| | - Michael Lisby
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Uffe H Mortensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Denmark
| |
Collapse
|
7
|
Chen J, Liu Y, Mahadevan R. Genetic Engineering of Acidithiobacillus ferridurans Using CRISPR Systems To Mitigate Toxic Release in Biomining. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12315-12324. [PMID: 37556825 DOI: 10.1021/acs.est.3c02492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Biomining processes utilize microorganisms, such as Acidithiobacillus, to extract valuable metals by producing sulfuric acid and ferric ions that dissolve sulfidic minerals. However, excessive production of these compounds can result in metal structure corrosion and groundwater contamination. Synthetic biology offers a promising solution to improve Acidithiobacillus strains for sustainable, eco-friendly, and cost-effective biomining, but genetic engineering of these slow-growing microorganisms is challenging with current inefficient and time-consuming methods. To address this, we established a CRISPR-dCas9 system for gene knockdown in A. ferridurans JAGS, successfully downregulating the transcriptional levels of two genes involved in sulfur oxidation. More importantly, we constructed an all-in-one CRISPR-Cas9 system for fast and efficient genome editing in A. ferridurans JAGS, achieving seamless gene deletion (HdrB3), promoter substitution (Prus to Ptac), and exogenous gene insertion (GFP). Additionally, we created a HdrB-Rus double-edited strain and performed biomining experiments to extract Ni from pyrrhotite tailings. The engineered strain demonstrated a similar Ni recovery rate to wild-type A. ferridurans JAGS but with significantly lower production of iron ions and sulfuric acid in leachate. These high-efficient CRISPR systems provide a powerful tool for studying gene functions and creating useful recombinants for synthetic biology-assisted biomining applications in the future.
Collapse
Affiliation(s)
- Jinjin Chen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Yilan Liu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
8
|
Tu S, Xiao F, Mei C, Li S, Qiao P, Huang Z, He Y, Gong Z, Zhong W. De novo biosynthesis of sakuranetin from glucose by engineered Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12564-7. [PMID: 37148336 DOI: 10.1007/s00253-023-12564-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/08/2023]
Abstract
Sakuranetin is a plant-natural product, which has increasingly been utilized in cosmetic and pharmaceutical industries for its extensive anti-inflammatory, anti-tumor, and immunomodulatory effects. Sakuranetin was mostly produced by extraction technology from plants, which is limited to natural conditions and biomass supply. In this study, a de novo biosynthesis pathway of sakuranetin by engineered S. cerevisiae was constructed. After a series of heterogenous gene integration, a biosynthetic pathway of sakuranetin from glucose was successfully constructed in S. cerevisiae whose sakuranetin yield reached only 4.28 mg/L. Then, a multi-module metabolic engineering strategy was applied for improving sakuranetin yield in S. cerevisiae: (1) adjusting the copy number of sakuranetin synthesis genes, (2) removing the rate-limiting factor of aromatic amino acid pathway and optimizing the synthetic pathway of aromatic amino acids to enhance the supply of carbon flux for sakuranetin, and (3) introducing acetyl-CoA carboxylase mutants ACC1S659A,S1157A and knocking out YPL062W to strengthen the supply of malonyl-CoA which is another synthetic precursor of sakuranetin. The resultant mutant S. cerevisiae exhibited a more than tenfold increase of sakuranetin titer (50.62 mg/L) in shaking flasks. Furthermore, the sakuranetin titer increased to 158.65 mg/L in a 1-L bioreactor. To our knowledge, it is the first report on the sakuranetin de novo synthesis from glucose in S. cerevisiae. KEY POINTS: • De novo biosynthesis of sakuranetin was constructed by engineered S. cerevisiae. • Sakuranetin production was enhanced by multi-module metabolic engineering strategy. • It is the first report on the sakuranetin de novo synthesis in S. cerevisiae.
Collapse
Affiliation(s)
- Shuai Tu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Feng Xiao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Chengyu Mei
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shuang Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Pei Qiao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ziyan Huang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yan He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhixing Gong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
9
|
Park JH, Bassalo MC, Lin GM, Chen Y, Doosthosseini H, Schmitz J, Roubos JA, Voigt CA. Design of Four Small-Molecule-Inducible Systems in the Yeast Chromosome, Applied to Optimize Terpene Biosynthesis. ACS Synth Biol 2023; 12:1119-1132. [PMID: 36943773 PMCID: PMC10127285 DOI: 10.1021/acssynbio.2c00607] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The optimization of cellular functions often requires the balancing of gene expression, but the physical construction and screening of alternative designs are costly and time-consuming. Here, we construct a strain of Saccharomyces cerevisiae that contains a "sensor array" containing bacterial regulators that respond to four small-molecule inducers (vanillic acid, xylose, aTc, IPTG). Four promoters can be independently controlled with low background and a 40- to 5000-fold dynamic range. These systems can be used to study the impact of changing the level and timing of gene expression without requiring the construction of multiple strains. We apply this approach to the optimization of a four-gene heterologous pathway to the terpene linalool, which is a flavor and precursor to energetic materials. Using this approach, we identify bottlenecks in the metabolic pathway. This work can aid the rapid automated strain development of yeasts for the bio-manufacturing of diverse products, including chemicals, materials, fuels, and food ingredients.
Collapse
Affiliation(s)
- Jong Hyun Park
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Marcelo C Bassalo
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Geng-Min Lin
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Ye Chen
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Hamid Doosthosseini
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Joep Schmitz
- DSM Science & Innovation, Biodata & Translational Sciences, P.O. Box 1, 2600 MA Delft, The Netherlands
| | - Johannes A Roubos
- DSM Science & Innovation, Biodata & Translational Sciences, P.O. Box 1, 2600 MA Delft, The Netherlands
| | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Abbate E, Andrion J, Apel A, Biggs M, Chaves J, Cheung K, Ciesla A, Clark-ElSayed A, Clay M, Contridas R, Fox R, Hein G, Held D, Horwitz A, Jenkins S, Kalbarczyk K, Krishnamurthy N, Mirsiaghi M, Noon K, Rowe M, Shepherd T, Tarasava K, Tarasow TM, Thacker D, Villa G, Yerramsetty K. Optimizing the strain engineering process for industrial-scale production of bio-based molecules. J Ind Microbiol Biotechnol 2023; 50:kuad025. [PMID: 37656881 PMCID: PMC10548853 DOI: 10.1093/jimb/kuad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Biomanufacturing could contribute as much as ${\$}$30 trillion to the global economy by 2030. However, the success of the growing bioeconomy depends on our ability to manufacture high-performing strains in a time- and cost-effective manner. The Design-Build-Test-Learn (DBTL) framework has proven to be an effective strain engineering approach. Significant improvements have been made in genome engineering, genotyping, and phenotyping throughput over the last couple of decades that have greatly accelerated the DBTL cycles. However, to achieve a radical reduction in strain development time and cost, we need to look at the strain engineering process through a lens of optimizing the whole cycle, as opposed to simply increasing throughput at each stage. We propose an approach that integrates all 4 stages of the DBTL cycle and takes advantage of the advances in computational design, high-throughput genome engineering, and phenotyping methods, as well as machine learning tools for making predictions about strain scale-up performance. In this perspective, we discuss the challenges of industrial strain engineering, outline the best approaches to overcoming these challenges, and showcase examples of successful strain engineering projects for production of heterologous proteins, amino acids, and small molecules, as well as improving tolerance, fitness, and de-risking the scale-up of industrial strains.
Collapse
Affiliation(s)
- Eric Abbate
- Inscripta, Inc., 5720 Stoneridge Dr, Suite 300, Pleasanton, CA 94588, USA
| | - Jennifer Andrion
- Inscripta, Inc., 5720 Stoneridge Dr, Suite 300, Pleasanton, CA 94588, USA
| | - Amanda Apel
- Inscripta, Inc., 5720 Stoneridge Dr, Suite 300, Pleasanton, CA 94588, USA
| | - Matthew Biggs
- Inscripta, Inc., 5720 Stoneridge Dr, Suite 300, Pleasanton, CA 94588, USA
| | - Julie Chaves
- Inscripta, Inc., 5720 Stoneridge Dr, Suite 300, Pleasanton, CA 94588, USA
| | - Kristi Cheung
- Inscripta, Inc., 5720 Stoneridge Dr, Suite 300, Pleasanton, CA 94588, USA
| | - Anthony Ciesla
- Inscripta, Inc., 5720 Stoneridge Dr, Suite 300, Pleasanton, CA 94588, USA
| | - Alia Clark-ElSayed
- Inscripta, Inc., 5720 Stoneridge Dr, Suite 300, Pleasanton, CA 94588, USA
| | - Michael Clay
- Inscripta, Inc., 5720 Stoneridge Dr, Suite 300, Pleasanton, CA 94588, USA
| | - Riarose Contridas
- Inscripta, Inc., 5720 Stoneridge Dr, Suite 300, Pleasanton, CA 94588, USA
| | - Richard Fox
- Inscripta, Inc., 5720 Stoneridge Dr, Suite 300, Pleasanton, CA 94588, USA
| | - Glenn Hein
- Inscripta, Inc., 5720 Stoneridge Dr, Suite 300, Pleasanton, CA 94588, USA
| | - Dan Held
- Inscripta, Inc., 5720 Stoneridge Dr, Suite 300, Pleasanton, CA 94588, USA
| | - Andrew Horwitz
- Inscripta, Inc., 5720 Stoneridge Dr, Suite 300, Pleasanton, CA 94588, USA
| | - Stefan Jenkins
- Inscripta, Inc., 5720 Stoneridge Dr, Suite 300, Pleasanton, CA 94588, USA
| | | | | | - Mona Mirsiaghi
- Inscripta, Inc., 5720 Stoneridge Dr, Suite 300, Pleasanton, CA 94588, USA
| | - Katherine Noon
- Inscripta, Inc., 5720 Stoneridge Dr, Suite 300, Pleasanton, CA 94588, USA
| | - Mike Rowe
- Inscripta, Inc., 5720 Stoneridge Dr, Suite 300, Pleasanton, CA 94588, USA
| | - Tyson Shepherd
- Inscripta, Inc., 5720 Stoneridge Dr, Suite 300, Pleasanton, CA 94588, USA
| | - Katia Tarasava
- Inscripta, Inc., 5720 Stoneridge Dr, Suite 300, Pleasanton, CA 94588, USA
| | - Theodore M Tarasow
- Inscripta, Inc., 5720 Stoneridge Dr, Suite 300, Pleasanton, CA 94588, USA
| | - Drew Thacker
- Inscripta, Inc., 5720 Stoneridge Dr, Suite 300, Pleasanton, CA 94588, USA
| | - Gladys Villa
- Inscripta, Inc., 5720 Stoneridge Dr, Suite 300, Pleasanton, CA 94588, USA
| | | |
Collapse
|
11
|
Zhao F, Zhang Y, Hu J, Shi C, Ao X, Wang S, Lin Y, Sun Z, Han S. Disruption of phosphate metabolism and sterol transport-related genes conferring yeast resistance to vanillin and rapid ethanol production. BIORESOURCE TECHNOLOGY 2023; 369:128489. [PMID: 36528179 DOI: 10.1016/j.biortech.2022.128489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Vanillin is a potent growth-inhibiting factor in Saccharomyces cerevisiae during lignocellulose biorefineries. Here, a haploid gene-deletion library was screened to search for vanillin-tolerant mutants and explain the possible tolerance mechanisms. Twenty-two deletion mutants were identified. The deleted genes in these mutants were involved in phosphate and inositol polyphosphate metabolism and intracellular sterol transport. Activation of the phosphate signaling pathway is not conducive to yeast against the pressure of vanillin. Furthermore, the findings indicate the role of inositol polyphosphates in altering vanillin tolerance by regulating phosphate metabolism. Meanwhile, reducing the transport of sterols from the plasma membrane enhanced tolerance to vanillin. In the presence of vanillin, the representative yeast deletions, pho84Δ and lam3Δ, showed good growth performance and promoted rapid ethanol production. Overall, this study identifies robust yeast strain alternatives for ethanol fermentation of cellulose and provides guidance for further genomic reconstruction of yeast strains.
Collapse
Affiliation(s)
- Fengguang Zhao
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yaping Zhang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jian Hu
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ce Shi
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiang Ao
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shengding Wang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhongwei Sun
- Fleming Biological Pharmaceutical Limited Company, Nanning, 530031, China
| | - Shuangyan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
12
|
Maestroni L, Butti P, Senatore VG, Branduardi P. pCEC-red: a new vector for easier and faster CRISPR-Cas9 genome editing in Saccharomyces cerevisiae. FEMS Yeast Res 2023; 23:foad002. [PMID: 36640150 PMCID: PMC9906608 DOI: 10.1093/femsyr/foad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/23/2022] [Accepted: 01/13/2023] [Indexed: 01/15/2023] Open
Abstract
CRISPR-Cas9 technology is widely used for precise and specific editing of Saccharomyces cerevisiae genome to obtain marker-free engineered hosts. Targeted double-strand breaks are controlled by a guide RNA (gRNA), a chimeric RNA containing a structural segment for Cas9 binding and a 20-mer guide sequence that hybridises to the genomic DNA target. Introducing the 20-mer guide sequence into gRNA expression vectors often requires complex, time-consuming, and/or expensive cloning procedures. We present a new plasmid for CRISPR-Cas9 genome editing in S. cerevisiae, pCEC-red. This tool allows to (i) transform yeast with both Cas9 and gRNA expression cassettes in a single plasmid and (ii) insert the 20-mer sequence in the plasmid with high efficiency, thanks to Golden Gate Assembly and (iii) a red chromoprotein-based screening to speed up the selection of correct plasmids. We tested genome-editing efficiency of pCEC-red by targeting the ADE2 gene. We chose three different 20-mer targets and designed two types of repair fragments to test pCEC-red for precision editing and for large DNA region replacement procedures. We obtained high efficiencies (∼90%) for both engineering procedures, suggesting that the pCEC system can be used for fast and reliable marker-free genome editing.
Collapse
Affiliation(s)
- Letizia Maestroni
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Pietro Butti
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Vittorio Giorgio Senatore
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Paola Branduardi
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
13
|
Daboussi F, Lindley ND. Challenges to Ensure a Better Translation of Metabolic Engineering for Industrial Applications. Methods Mol Biol 2023; 2553:1-20. [PMID: 36227536 DOI: 10.1007/978-1-0716-2617-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metabolic engineering has evolved towards creating cell factories with increasingly complex pathways as economic criteria push biotechnology to higher value products to provide a sustainable source of speciality chemicals. Optimization of such pathways often requires high combinatory exploration of best pathway balance, and this has led to increasing use of high-throughput automated strain construction platforms or novel optimization techniques. In addition, the low catalytic efficiency of such pathways has shifted emphasis from gene expression strategies towards novel protein engineering to increase specific activity of the enzymes involved so as to limit the metabolic burden associated with excessively high pressure on ribosomal machinery when using massive overexpression systems. Metabolic burden is now generally recognized as a major hurdle to be overcome with consequences on genetic stability but also on the intensified performance needed industrially to attain the economic targets for successful product launch. Increasing awareness of the need to integrate novel genetic information into specific sites within the genome which not only enhance genetic stability (safe harbors) but also enable maximum expression profiles has led to genome-wide assessment of best integration sites, and bioinformatics will facilitate the identification of most probable landing pads within the genome.To facilitate the transfer of novel biotechnological potential to industrial-scale production, more attention, however, has to be paid to engineering metabolic fitness adapted to the specific stress conditions inherent to large-scale fermentation and the inevitable heterogeneity that will occur due to mass transfer limitations and the resulting deviation away from ideal conditions as seen in laboratory-scale validation of the engineered cells. To ensure smooth and rapid transfer of novel cell lines to industry with an accelerated passage through scale-up, better coordination is required form the onset between the biochemical engineers involved in process technology and the genetic engineers building the new strain so as to have an overall strategy able to maximize innovation at all levels. This should be one of our key objectives when building fermentation-friendly chassis organisms.
Collapse
Affiliation(s)
- Fayza Daboussi
- Toulouse White Biotechnology, Toulouse cedex 4, France
- Toulouse Biotechnology Institute, Toulouse cedex 4, France
| | - Nic D Lindley
- Toulouse White Biotechnology, Toulouse cedex 4, France.
- Toulouse Biotechnology Institute, Toulouse cedex 4, France.
- ASTAR Singapore Institute of Food and Biotechnology Innovation (SIFBI), Singapore, Singapore.
| |
Collapse
|
14
|
Jung JY, Kang MJ, Hwang HS, Baek KR, Seo SO. Reduction of Ethyl Carbamate in an Alcoholic Beverage by CRISPR/Cas9-Based Genome Editing of the Wild Yeast. Foods 2022; 12:foods12010102. [PMID: 36613317 PMCID: PMC9818936 DOI: 10.3390/foods12010102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Ethyl carbamate (EC) is a naturally occurring substance in alcoholic beverages from the reaction of ethanol with urea during fermentation and storage. EC can cause dizziness and vomiting when consumed in small quantities and develop kidney cancer when consumed in excess. Thus, the reduction of EC formation in alcoholic beverages is important for food safety and human health. One of the strategies for reducing EC contents in alcoholic beverages is developing a new yeast starter strain to enable less formation of EC during fermentation. In this study, we isolated a polyploid wild-type yeast Saccharomyces cerevisiae strain from the Nuruk (Korean traditional grain-based inoculum of wild yeast and mold) and developed a starter culture by genome engineering to reduce EC contents in alcoholic beverages. We deleted multiple copies of the target genes involved in the EC formation in the S. cerevisiae by a CRISPR/Cas9-based genome editing tool. First, the CAR1 gene encoding for the arginase enzyme responsible for the formation of urea was completely deleted in the genome of S. cerevisiae. Additionally, the GZF3 gene encoding the transcription factor controlling expression levels of several genes (DUR1, 2, and DUR3) related to urea absorption and degradation was deleted in S. cerevisiae to further reduce the EC formation. The effects of gene deletion were validated by RT-qPCR to confirm changes in transcriptional levels of the EC-related genes. The resulting strain of S. cerevisiae carrying a double deletion of CAR1 and GZF3 genes successfully reduced the EC contents in the fermentation medium without significant changes in alcohol contents and fermentation profiles when compared to the wild-type strain. Finally, we brewed the Korean traditional rice wine Makgeolli using the double deletion strain of S. cerevisiae dCAR1&GZF3, resulting in a significant reduction of the EC content in Makgeolli up to 41.6% when compared to the wild-type strain. This study successfully demonstrated the development of a starter culture to reduce the EC formation in an alcoholic beverage by CRISPR/Cas9 genome editing of the wild yeast.
Collapse
Affiliation(s)
| | | | | | | | - Seung-Oh Seo
- Correspondence: ; Tel.: +82-2-2164-4316; Fax: +82-2-2164-6583
| |
Collapse
|
15
|
Spasskaya DS, Davletshin AI, Tutyaeva VV, Kulagin KA, Garbuz DG, Karpov DS. A Test System for Assessment of the Activity of Mutant Cas9 Variants in Saccharomyces cerevisiae. Mol Biol 2022. [DOI: 10.1134/s0026893322060164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Yuan H, Zhou Y, Lin Y, Tu R, Guo Y, Zhang Y, Wang Q. Microfluidic screening and genomic mutation identification for enhancing cellulase production in Pichia pastoris. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:50. [PMID: 35568955 PMCID: PMC9107654 DOI: 10.1186/s13068-022-02150-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/05/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Pichia pastoris is a widely used host organism for heterologous production of industrial proteins, such as cellulases. Although great progress has been achieved in improving protein expression in P. pastoris, the potential of the P. pastoris expression system has not been fully explored due to unknown genomic impact factors. Recently, whole-cell directed evolution, employing iterative rounds of genome-wide diversity generation and high-throughput screening (HTS), has been considered to be a promising strategy in strain improvement at the genome level.
Results
In this study, whole-cell directed evolution of P. pastoris, employing atmospheric and room temperature plasma (ARTP) mutagenesis and droplet-based microfluidic HTS, was developed to improve heterogenous cellulase production. The droplet-based microfluidic platform based on a cellulase-catalyzed reaction of releasing fluorescence was established to be suitable for methanol-grown P. pastoris. The validation experiment showed a positive sorting efficiency of 94.4% at a sorting rate of 300 droplets per second. After five rounds of iterative ARTP mutagenesis and microfluidic screening, the best mutant strain was obtained and exhibited the cellulase activity of 11,110 ± 523 U/mL, an approximately twofold increase compared to the starting strain. Whole-genome resequencing analysis further uncovered three accumulated genomic alterations in coding region. The effects of point mutations and mutant genes on cellulase production were verified using reconstruction of point mutations and gene deletions. Intriguingly, the point mutation Rsc1G22V was observed in all the top-performing producers selected from each round, and gene deletion analysis confirmed that Rsc1, a component of the RSC chromatin remodeling complex, might play an important role in cellulase production.
Conclusions
We established a droplet-based microfluidic HTS system, thereby facilitating whole-cell directed evolution of P. pastoris for enhancing cellulase production, and meanwhile identified genomic alterations by whole-genome resequencing and genetic validation. Our approaches and findings would provide guides to accelerate whole-cell directed evolution of host strains and enzymes of high industrial interest.
Collapse
|
17
|
Wang Y, Chen H, Ma L, Gong M, Wu Y, Bao D, Zou G. Use of CRISPR-Cas tools to engineer Trichoderma species. Microb Biotechnol 2022; 15:2521-2532. [PMID: 35908288 PMCID: PMC9518982 DOI: 10.1111/1751-7915.14126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 11/27/2022] Open
Abstract
Given their lignocellulose degradability and biocontrol activities, fungi of the ubiquitously distributed genus Trichoderma have multiple industrial and agricultural applications. Genetic manipulation plays a valuable role in tailoring novel engineered strains with enhanced target traits. Nevertheless, as applied to fungi, the classic tools of genetic manipulation tend to be time-consuming and tedious. However, the recent development of the CRISPR-Cas system for gene editing has enabled researchers to achieve genome-wide gene disruptions, gene replacements, and precise editing, and this technology has emerged as a primary focus for novel developments in engineered strains of Trichoderma. Here, we provide a brief overview of the traditional approaches to genetic manipulation, the different strategies employed in establishing CRSIPR-Cas systems, the utilization of these systems to develop engineered strains of Trichoderma for desired applications, and the future trends in biotechnology.
Collapse
Affiliation(s)
- Ying Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible FungiShanghai Academy of Agricultural SciencesShanghaiChina
| | - Hongyu Chen
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible FungiShanghai Academy of Agricultural SciencesShanghaiChina
| | - Liang Ma
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural SciencesZhejiang A&F UniversityLin'an HangzhouChina
| | - Ming Gong
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible FungiShanghai Academy of Agricultural SciencesShanghaiChina
| | - Yingying Wu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible FungiShanghai Academy of Agricultural SciencesShanghaiChina
| | - Dapeng Bao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible FungiShanghai Academy of Agricultural SciencesShanghaiChina
| | - Gen Zou
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible FungiShanghai Academy of Agricultural SciencesShanghaiChina
| |
Collapse
|
18
|
Polygenic Analysis of Tolerance to Carbon Dioxide Inhibition of Isoamyl Acetate "Banana" Flavor Production in Yeast Reveals MDS3 as Major Causative Gene. Appl Environ Microbiol 2022; 88:e0081422. [PMID: 36073947 PMCID: PMC9499027 DOI: 10.1128/aem.00814-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The introduction in modern breweries of tall cylindroconical fermentors, replacing the traditional open fermentation vats, unexpectedly revealed strong inhibition of flavor production by the high CO2 pressure in the fermentors. We have screened our collection of Saccharomyces cerevisiae strains for strains displaying elevated tolerance to inhibition of flavor production by +0.65 bar CO2, using a laboratory scale CO2 pressurized fermentation system. We focused on the production of isoamyl acetate, a highly desirable flavor compound conferring fruity banana flavor in beer and other alcoholic beverages, from its precursor isoamyl alcohol (IAAc/Alc ratio). We selected the most tolerant Saccharomyces cerevisiae strain, saké yeast Kyokai no. 1, isolated a stable haploid segregant seg63 with the same high IAAc/Alc ratio under CO2 pressure, crossed seg63 with the unrelated inferior strain ER7A and phenotyped 185 haploid segregants, of which 28 displaying a high IAAc/Alc ratio were pooled. Mapping of Quantitative Trait Loci (QTLs) by whole-genome sequence analysis based on SNP variant frequency revealed two QTLs. In the major QTL, reciprocal hemizygosity analysis identified MDS3 as the causative mutant gene, a putative member of the TOR signaling pathway. The MDS3Seg.63 allele was dominant and contained a single causative point mutation, T2171C, resulting in the F274S substitution. Introduction of MDS3Seg.63 in an industrial tetraploid lager yeast with CRISPR/Cas9 enhanced isoamyl acetate production by 145% under CO2 pressure. This work shows the strong potential of polygenic analysis and targeted genetic modification for creation of cisgenic industrial brewer's yeast strains with specifically improved traits. IMPORTANCE The upscaling of fermentation to very tall cylindroconical tanks is known to negatively impact beer flavor. Most notably, the increased CO2 pressure in such tanks compromises production by the yeast of the desirable fruity “banana” flavor (isoamyl acetate). The cause of the CO2 inhibition of yeast flavor production has always remained enigmatic. Our work has brought the first insight into its molecular-genetic basis and provides a specific gene tool for yeast strain improvement. We first identified a yeast strain with superior tolerance to CO2 inhibition of flavor production, and applied polygenic analysis to identify the responsible gene. We narrowed down the causative element to a single nucleotide difference, MDS3T2171C, and showed that it can be engineered into brewing yeast to obtain strains with superior flavor production in high CO2 pressure conditions, apparently without affecting other traits relevant for beer brewing. Alternatively, such a strain could be obtained through marker-assisted breeding.
Collapse
|
19
|
Costa CE, Romaní A, Teixeira JA, Domingues L. Resveratrol production for the valorisation of lactose-rich wastes by engineered industrial Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2022; 359:127463. [PMID: 35710047 DOI: 10.1016/j.biortech.2022.127463] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Resveratrol is an antioxidant with applications in the food and cosmetic industries. Its biosynthesis can side the hindrances of its extraction from plants. The dairy industry generates tonnes of lactose-rich wastes, which can be a carbon source. Saccharomyces cerevisiae is an industrial workhorse for biotechnological processes, being unable to naturally metabolise lactose. Here, an S. cerevisiae strain was engineered for de novo production of resveratrol from lactose. A resveratrol titre of 210 mg/L from 100 g/L of lactose in synthetic media was achieved. Process optimization increased by 35% the production by a two-stage process, one favouring ethanol production and a subsequent one with stronger agitation favouring ethanol and lactose consumption with conversion into resveratrol. Resveratrol production from cheese whey was further attained. To the best knowledge of the authors, this is the first report on resveratrol production from lactose, relevant in dairy wastes, establishing grounds for future resveratrol-producing lactose-based processes.
Collapse
Affiliation(s)
- Carlos E Costa
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Aloia Romaní
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain
| | - José A Teixeira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
20
|
Cai G, Lin Z, Shi S. Development and expansion of the CRISPR/Cas9 toolboxes for powerful genome engineering in yeast. Enzyme Microb Technol 2022; 159:110056. [PMID: 35561628 DOI: 10.1016/j.enzmictec.2022.110056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 01/09/2023]
Abstract
Yeasts represent a group of the microorganisms most frequently seen in biotechnology. Recently, the class 2 type II CRISPR system (CRISPR/Cas9) has become the principal toolbox for genome editing. By efficiently implementing genetic manipulations such as gene integration/knockout, base editor, and transcription regulation, the development of biotechnological applications in yeasts has been extensively promoted. The genome-level tools based on CRISPR/Cas9, used for screening and identifying functional genes/gene clusters, are also advancing. In general, CRISPR/Cas9-assisted editing tools have gradually become standardized and function as host-orthogonal genetic systems, which results in time-saving for strain engineering and biotechnological application processes. In this review, we summarize the key points of the basic elements in the CRISPR/Cas9 system, including Cas9 variants, guide RNA, donors, and effectors. With a focus on yeast, we have also introduced the development of various CRISPR/Cas9 systems and discussed their future possibilities.
Collapse
Affiliation(s)
- Guang Cai
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zhenquan Lin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
21
|
de Mélo AHF, Nunes AL, Carvalho PH, da Silva MF, Teixeira GS, Goldbeck R. Evaluation of Saccharomyces cerevisiae modified via CRISPR/Cas9 as a cellulosic platform microorganism in simultaneously saccharification and fermentation processes. Bioprocess Biosyst Eng 2022:10.1007/s00449-022-02765-1. [PMID: 35932337 DOI: 10.1007/s00449-022-02765-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/26/2022] [Indexed: 11/26/2022]
Abstract
The nonrenewable character and deleterious effects of fossil fuels foster the need for cleaner and more inexhaustible energy sources, such as bioethanol. Especially from lignocellulosic biomasses. However, the economic viability of this product in the market depends on process optimization and cost reduction. This research applied a sequential experimental project to investigate the process of enzymatic saccharification and simultaneous fermentation to produce ethanol with sugarcane bagasse. The differential of the work was the application of the strain of Saccharomyces cerevisiae AGY001 which was improved by evolutionary engineering to become thermotolerant and by a heterologous expression based on genomic integration by CRISPR/Cas9 to produce endoglucanase and β-glucosidase (AsENDO-AsBGL). The maximum ethanol yield found was 89% of the maximum theoretical yield (released sugars), obtained at temperature concentrations, sugarcane bagasse and inoculum at 40 °C, 16.5%, and 4.0 g/L, respectively (12.5 FPU/g bagasse). The mathematical model obtained can predict approximately 83% of the data set with 95% confidence. Therefore, these findings demonstrated the potential of sugarcane bagasse and S. cerevisiae AGY001 strain (CRISPR/Cas9 modified) in bioethanol production without the need for impractical selection media on an industrial scale, in addition to providing useful insights for the development of SSF processes.
Collapse
Affiliation(s)
- Allan H F de Mélo
- Bioprocess and Metabolic Engineering Laboratory, Food Engineering and Technology Department, School of Food Engineering, University of Campinas, Campinas, Campinas, SP, Brazil
| | - Alexia L Nunes
- Bioprocess and Metabolic Engineering Laboratory, Food Engineering and Technology Department, School of Food Engineering, University of Campinas, Campinas, Campinas, SP, Brazil
| | - Priscila H Carvalho
- Bioprocess and Metabolic Engineering Laboratory, Food Engineering and Technology Department, School of Food Engineering, University of Campinas, Campinas, Campinas, SP, Brazil
| | - Marcos F da Silva
- Bioprocess and Metabolic Engineering Laboratory, Food Engineering and Technology Department, School of Food Engineering, University of Campinas, Campinas, Campinas, SP, Brazil
| | - Gleidson S Teixeira
- Bioprocess and Metabolic Engineering Laboratory, Food Engineering and Technology Department, School of Food Engineering, University of Campinas, Campinas, Campinas, SP, Brazil
| | - Rosana Goldbeck
- Bioprocess and Metabolic Engineering Laboratory, Food Engineering and Technology Department, School of Food Engineering, University of Campinas, Campinas, Campinas, SP, Brazil.
| |
Collapse
|
22
|
Mendoza B, Fry T, Dooley D, Herman J, Trinh CT. CASPER: An Integrated Software Platform for Rapid Development of CRISPR Tools. CRISPR J 2022; 5:609-617. [PMID: 35833799 DOI: 10.1089/crispr.2022.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Both academic and enterprise software solutions exist for designing CRISPR targets. They offer advantages when designing guide RNAs (gRNAs) but often focus on a select number of model organisms. Those that offer a wide variety of organisms can be limited in support of alternative endonucleases and downstream analyses such as multitargeting and population analyses to interrogate a microbiome. To accommodate broad CRISPR utilization, we developed a flexible platform software CRISPR Associated Software for Pathway Engineering and Research (CASPER) for gRNA generation and analysis in any organism and with any CRISPR-Cas system. CASPER combines traditional gRNA design tools with unique functions such as multiple Cas-type gRNA generation and evaluation of spacer redundancy in a single species or microbiome. The analyses have implications for strain-, species-, or genus-specific CRISPR diagnostic probe design and microbiome manipulation. The novel features of CASPER are packaged in a user-friendly interface to create a computational environment for researchers to streamline the utility of CRISPR-Cas systems.
Collapse
Affiliation(s)
- Brian Mendoza
- Department of Chemical and Biomolecular Engineering and University of Tennessee, Knoxville, Tennessee, USA
| | - Tanner Fry
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee, USA
| | - David Dooley
- Department of Chemical and Biomolecular Engineering and University of Tennessee, Knoxville, Tennessee, USA
| | - Josh Herman
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee, USA
| | - Cong T Trinh
- Department of Chemical and Biomolecular Engineering and University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
23
|
Proteomics Analysis of Zygosaccharomyces mellis in Response to Sugar Stress. Processes (Basel) 2022. [DOI: 10.3390/pr10061193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The high-osmotic-pressure environment of honey is not suitable for the survival of microorganisms, except for osmotic-tolerant fungal and bacterial spores. In this study, shotgun metagenomic sequencing technology was used to identify yeast species present in honey samples. As a result, Zygosaccharomyces spp. yeast, including Zygosaccharomyces rouxii, Z. mellis and Z. siamensis, were isolated. The intracellular trehalose and glycerin concentrations of yeast, as well as the antioxidant-related CAT, SOD and POD enzyme activities, increased under a high-glucose environment (60%, w/v). To learn more about the osmotic resistance of Z. mellis, iTRAQ-based proteomic technology was used to investigate the related molecular mechanism at the protein level, yielding 522 differentially expressed proteins, of which 303 (58.05%) were upregulated and 219 (41.95%) were downregulated. The iTRAQ data showed that the proteins involved in the pathway of the cell membrane and cell-wall synthesis, as well as those related to trehalose and glycerin degradation, were all downregulated, while the proteins in the respiratory chain and TCA cycle were upregulated. In addition, formate dehydrogenase 1 (FDH1), which is involved in NADH generation, displayed a great difference in response to a high-sugar environment. Furthermore, the engineered Saccharomyces cerevisiae strains BY4741△scFDH1 with a knocked-out FDH1 gene were constructed using the CRISPR/Cas9 method. In addition, the FDH1 from Z. mellis was expressed in BY4741△scFDH1 to construct the mutant strain BY4717zmFDH1. The CAT, SOD and POD enzyme activities, as well as the content of trehalose, glycerin, ATP and NADH, were decreased in BY4741△scFDH1. However, those were all increased in BY4717zmFDH1. This study revealed that Z. mellis could increase the contents of trehalose and glycerin and promote energy metabolism to improve hypertonic tolerance. In addition, FDH1 had a significant effect on yeast hypertonic tolerance.
Collapse
|
24
|
The same genetic regulation strategy produces inconsistent effects in different Saccharomyces cerevisiae strains for 2-phenylethanol production. Appl Microbiol Biotechnol 2022; 106:4041-4052. [PMID: 35665835 DOI: 10.1007/s00253-022-11993-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 04/19/2022] [Accepted: 05/18/2022] [Indexed: 11/02/2022]
Abstract
A CRISPR/Cas9 system with gene editing efficiency of 100% in the industrial diploid Saccharomyces cerevisiae CWY-132 strain for 2-phenylethanol (2-PE) production was constructed. The effect of deletion of acetyltransferase gene ATF1 in the Ehrlich pathway on 2-PE synthesis was studied for the first time in S. cerevisiae. Laboratory and industrial strains were compared for the deletion effect of ATF1 and acetaldehyde dehydrogenase genes ALD2 and ALD3 involved in competing branches of the Ehrlich pathway on the 2-PE titer. The results showed that in 2-PE low-yielding haploid strain PK-2C, the ATF1∆ mutant produced 2-PE of 0.45 g/L, an increase of 114%, whereas in CWY-132, the 2-PE yield of ATF1∆ decreased significantly from 3.50 to 0.83 g/L. In PK-2C, the 2-PE yield of ALD2∆ increased from 0.21 to 1.20 g/L, whereas in CWY-132, it decreased from 3.50 to 3.02 and 2.93 g/L in ALD2∆ and ALD3∆ mutants, respectively, and to 1.65 g/L in ALD2∆ALD3∆. These results indicate that the same genetic manipulation strategy used for strains with different 2-PE yield backgrounds produces significantly different or even opposite effects. Moreover, we found that a supply of NADH or GSH increased the 2-PE production in S. cerevisiae. The correlation between the synthesis of 2-PE and ethanol was also revealed, and the tolerance of cells to 2-PE and ethanol was suggested to be a key limiting factor for further increase of 2-PE production in high-yielding strains. KEY POINTS: • Deletion of genes competing for 2-PE synthesis produces different effects in S. cerevisiae strains. • The ATF1∆, ALD2∆, or ALD3∆ increased 2-PE production in laboratory strains but not industrial strains. • The supply of NADH or GSH increased the titer of 2-PE in S. cerevisiae.
Collapse
|
25
|
Antony JS, Hinz JM, Wyrick JJ. Tips, Tricks, and Potential Pitfalls of CRISPR Genome Editing in Saccharomyces cerevisiae. Front Bioeng Biotechnol 2022; 10:924914. [PMID: 35706506 PMCID: PMC9190257 DOI: 10.3389/fbioe.2022.924914] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/16/2022] [Indexed: 12/26/2022] Open
Abstract
The versatility of clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) genome editing makes it a popular tool for many research and biotechnology applications. Recent advancements in genome editing in eukaryotic organisms, like fungi, allow for precise manipulation of genetic information and fine-tuned control of gene expression. Here, we provide an overview of CRISPR genome editing technologies in yeast, with a particular focus on Saccharomyces cerevisiae. We describe the tools and methods that have been previously developed for genome editing in Saccharomyces cerevisiae and discuss tips and experimental tricks for promoting efficient, marker-free genome editing in this model organism. These include sgRNA design and expression, multiplexing genome editing, optimizing Cas9 expression, allele-specific editing in diploid cells, and understanding the impact of chromatin on genome editing. Finally, we summarize recent studies describing the potential pitfalls of using CRISPR genome targeting in yeast, including the induction of background mutations.
Collapse
Affiliation(s)
- Jacob S. Antony
- School of Molecular Biosciences, Washington State University, Pullman, WA, United States
| | - John M. Hinz
- School of Molecular Biosciences, Washington State University, Pullman, WA, United States
| | - John J. Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA, United States
- Center for Reproductive Biology, Washington State University, Pullman, WA, United States
- *Correspondence: John J. Wyrick,
| |
Collapse
|
26
|
de Mello FDSB, Maneira C, Suarez FUL, Nagamatsu S, Vargas B, Vieira C, Secches T, Coradini ALV, Silvello MADC, Goldbeck R, Pereira GAG, Teixeira GS. Rational engineering of industrial S. cerevisiae: towards xylitol production from sugarcane straw. J Genet Eng Biotechnol 2022; 20:80. [PMID: 35612634 PMCID: PMC9133290 DOI: 10.1186/s43141-022-00359-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/02/2022] [Indexed: 12/15/2022]
Abstract
Background Sugarcane hemicellulosic material is a compelling source of usually neglected xylose that could figure as feedstock to produce chemical building blocks of high economic value, such as xylitol. In this context, Saccharomyces cerevisiae strains typically used in the Brazilian bioethanol industry are a robust chassis for genetic engineering, given their robustness towards harsh operational conditions and outstanding fermentation performance. Nevertheless, there are no reports on the use of these strains for xylitol production using sugarcane hydrolysate. Results Potential single-guided RNA off-targets were analyzed in two preeminent industrial strains (PE-2 and SA-1), providing a database of 5′-NGG 20 nucleotide sequences and guidelines for the fast and cost-effective CRISPR editing of such strains. After genomic integration of a NADPH-preferring xylose reductase (XR), FMYX (SA-1 hoΔ::xyl1) and CENPKX (CEN.PK-122 hoΔ::xyl1) were tested in varying cultivation conditions for xylitol productivity to infer influence of the genetic background. Near-theoretical yields were achieved for all strains; however, the industrial consistently outperformed the laboratory strain. Batch fermentation of raw sugarcane straw hydrolysate with remaining solid particles represented a challenge for xylose metabolization, and 3.65 ± 0.16 g/L xylitol titer was achieved by FMYX. Finally, quantification of NADPH — cofactor implied in XR activity — revealed that FMYX has 33% more available cofactors than CENPKX. Conclusions Although widely used in several S. cerevisiae strains, this is the first report of CRISPR-Cas9 editing major yeast of the Brazilian bioethanol industry. Fermentative assays of xylose consumption revealed that NADPH availability is closely related to mutant strains’ performance. We also pioneer the use of sugarcane straw as a substrate for xylitol production. Finally, we demonstrate how industrial background SA-1 is a compelling chassis for the second-generation industry, given its inhibitor tolerance and better redox environment that may favor production of reduced sugars. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-022-00359-8.
Collapse
Affiliation(s)
| | - Carla Maneira
- Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Frank Uriel Lizarazo Suarez
- Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil.,School of Basic Sciences, University of Pamplona, Pamplona, Colombia
| | - Sheila Nagamatsu
- Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Beatriz Vargas
- Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Carla Vieira
- Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Thais Secches
- Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Alessando L V Coradini
- Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | | | - Rosana Goldbeck
- School of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Gonçalo Amarante Guimarães Pereira
- Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil.
| | - Gleidson Silva Teixeira
- Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil.,School of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
27
|
Walker RSK, Pretorius IS. Synthetic biology for the engineering of complex wine yeast communities. NATURE FOOD 2022; 3:249-254. [PMID: 37118192 DOI: 10.1038/s43016-022-00487-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/11/2022] [Indexed: 04/30/2023]
Abstract
Wine fermentation is a representation of complex higher-order microbial interactions. Despite the beneficial properties that these communities bring to wine, their complexity poses challenges in predicting the nature and outcome of fermentation. Technological developments in synthetic biology enable the potential to engineer synthetic microbial communities for new purposes. Here we present the challenges and applications of engineered yeast communities in the context of a wine fermentation vessel, how this represents a model system to enable novel solutions for winemaking and introduce the concept of a 'synthetic' terroir. Furthermore, we introduce our vision for the application of control engineering.
Collapse
Affiliation(s)
- Roy S K Walker
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia.
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia.
| | - Isak S Pretorius
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia.
| |
Collapse
|
28
|
Genetic bases for the metabolism of the DMS precursor S-methylmethionine by Saccharomyces cerevisiae. Food Microbiol 2022; 106:104041. [DOI: 10.1016/j.fm.2022.104041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023]
|
29
|
Data mining of Saccharomyces cerevisiae mutants engineered for increased tolerance towards inhibitors in lignocellulosic hydrolysates. Biotechnol Adv 2022; 57:107947. [DOI: 10.1016/j.biotechadv.2022.107947] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 12/15/2022]
|
30
|
Stovicek V, Dato L, Almqvist H, Schöpping M, Chekina K, Pedersen LE, Koza A, Figueira D, Tjosås F, Ferreira BS, Forster J, Lidén G, Borodina I. Rational and evolutionary engineering of Saccharomyces cerevisiae for production of dicarboxylic acids from lignocellulosic biomass and exploring genetic mechanisms of the yeast tolerance to the biomass hydrolysate. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:22. [PMID: 35219341 PMCID: PMC8882276 DOI: 10.1186/s13068-022-02121-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/12/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Lignosulfonates are significant wood chemicals with a $700 million market, produced by sulfite pulping of wood. During the pulping process, spent sulfite liquor (SSL) is generated, which in addition to lignosulfonates contains hemicellulose-derived sugars-in case of hardwoods primarily the pentose sugar xylose. The pentoses are currently underutilized. If they could be converted into value-added chemicals, overall economic profitability of the process would increase. SSLs are typically very inhibitory to microorganisms, which presents a challenge for a biotechnological process. The aim of the present work was to develop a robust yeast strain able to convert xylose in SSL to carboxylic acids. RESULTS The industrial strain Ethanol Red of the yeast Saccharomyces cerevisiae was engineered for efficient utilization of xylose in a Eucalyptus globulus lignosulfonate stream at low pH using CRISPR/Cas genome editing and adaptive laboratory evolution. The engineered strain grew in synthetic medium with xylose as sole carbon source with maximum specific growth rate (µmax) of 0.28 1/h. Selected evolved strains utilized all carbon sources in the SSL at pH 3.5 and grew with µmax between 0.05 and 0.1 1/h depending on a nitrogen source supplement. Putative genetic determinants of the increased tolerance to the SSL were revealed by whole genome sequencing of the evolved strains. In particular, four top-candidate genes (SNG1, FIT3, FZF1 and CBP3) were identified along with other gene candidates with predicted important roles, based on the type and distribution of the mutations across different strains and especially the best performing ones. The developed strains were further engineered for production of dicarboxylic acids (succinic and malic acid) via overexpression of the reductive branch of the tricarboxylic acid cycle (TCA). The production strain produced 0.2 mol and 0.12 mol of malic acid and succinic acid, respectively, per mol of xylose present in the SSL. CONCLUSIONS The combined metabolic engineering and adaptive evolution approach provided a robust SSL-tolerant industrial strain that converts fermentable carbon content of the SSL feedstock into malic and succinic acids at low pH.in production yields reaching 0.1 mol and 0.065 mol per mol of total consumed carbon sources.. Moreover, our work suggests potential genetic background of the tolerance to the SSL stream pointing out potential gene targets for improving the tolerance to inhibitory industrial feedstocks.
Collapse
Affiliation(s)
- Vratislav Stovicek
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kgs. Lyngby, Denmark
| | - Laura Dato
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kgs. Lyngby, Denmark.,River Stone Biotech ApS, Fruebjergvej 3, 2100, Copenhagen, Denmark
| | - Henrik Almqvist
- Department of Chemical Engineering, Lund University, P.O. Box 124, 221 00, Lund, Sweden
| | - Marie Schöpping
- Department of Chemical Engineering, Lund University, P.O. Box 124, 221 00, Lund, Sweden.,Chr. Hansen A/S, Boge Alle 10-12, 2970, Hørsholm, Denmark.,Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Ksenia Chekina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kgs. Lyngby, Denmark
| | - Lasse Ebdrup Pedersen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kgs. Lyngby, Denmark
| | - Anna Koza
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kgs. Lyngby, Denmark.,Chr. Hansen A/S, Boge Alle 10-12, 2970, Hørsholm, Denmark
| | - Diogo Figueira
- Biotrend S.A., Biocant Park Núcleo 04, Lote 2, 3060-197, Cantanhede, Portugal
| | - Freddy Tjosås
- Borregaard ApS, Hjalmar Wessels vei 6, 1721, Sarpsborg, Norway
| | | | - Jochen Forster
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kgs. Lyngby, Denmark
| | - Gunnar Lidén
- Department of Chemical Engineering, Lund University, P.O. Box 124, 221 00, Lund, Sweden
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
31
|
Xiao F, Lian J, Tu S, Xie L, Li J, Zhang F, Linhardt RJ, Huang H, Zhong W. Metabolic Engineering of Saccharomyces cerevisiae for High-Level Production of Chlorogenic Acid from Glucose. ACS Synth Biol 2022; 11:800-811. [PMID: 35107250 DOI: 10.1021/acssynbio.1c00487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chlorogenic acid (CGA), a major dietary phenolic compound, has been increasingly used in the food and pharmaceutical industries because of its ready availability and extensive biological and pharmacological activities. Traditionally, extraction from plants has been the main approach for the commercial production of CGA. This study reports the first efficient microbial production of CGA by engineering the yeast, Saccharomyces cerevisiae, on a simple mineral medium. First, an optimized de novo biosynthetic pathway for CGA was reconstructed in S. cerevisiae from glucose with a CGA titer of 36.6 ± 2.4 mg/L. Then, a multimodule engineering strategy was employed to improve CGA production: (1) unlocking the shikimate pathway and optimizing carbon distribution; (2) optimizing the l-Phe branch and pathway balancing; and (3) increasing the copy number of CGA pathway genes. The combination of these interventions resulted in an about 6.4-fold improvement of CGA titer up to 234.8 ± 11.1 mg/L in shake flask cultures. CGA titers of 806.8 ± 1.7 mg/L were achieved in a 1 L fed-batch fermenter. This study opens a route to effectively produce CGA from glucose in S. cerevisiae and establishes a platform for the biosynthesis of CGA-derived value-added metabolites.
Collapse
Affiliation(s)
- Feng Xiao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Shuai Tu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Linlin Xie
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Robert J. Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Haichan Huang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
32
|
Engineering precursor supply for the high-level production of ergothioneine in Saccharomyces cerevisiae. Metab Eng 2022; 70:129-142. [DOI: 10.1016/j.ymben.2022.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/10/2022] [Accepted: 01/21/2022] [Indexed: 12/31/2022]
|
33
|
Otto M, Skrekas C, Gossing M, Gustafsson J, Siewers V, David F. Expansion of the Yeast Modular Cloning Toolkit for CRISPR-Based Applications, Genomic Integrations and Combinatorial Libraries. ACS Synth Biol 2021; 10:3461-3474. [PMID: 34860007 PMCID: PMC8689691 DOI: 10.1021/acssynbio.1c00408] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Indexed: 01/04/2023]
Abstract
Standardisation of genetic parts has become a topic of increasing interest over the last decades. The promise of simplifying molecular cloning procedures, while at the same time making them more predictable and reproducible has led to the design of several biological standards, one of which is modular cloning (MoClo). The Yeast MoClo toolkit provides a large library of characterised genetic parts combined with a comprehensive and flexible assembly strategy. Here we aimed to (1) simplify the adoption of the standard by providing a simple design tool for including new parts in the MoClo library, (2) characterise the toolkit further by demonstrating the impact of a BglII site in promoter parts on protein expression, and (3) expand the toolkit to enable efficient construction of gRNA arrays, marker-less integration cassettes and combinatorial libraries. These additions make the toolkit more applicable for common engineering tasks and will further promote its adoption in the yeast biological engineering community.
Collapse
Affiliation(s)
- Maximilian Otto
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, Gothenburg SE-41296, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg SE-41296, Sweden
| | - Christos Skrekas
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, Gothenburg SE-41296, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg SE-41296, Sweden
| | - Michael Gossing
- Discovery
Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg SE-43150, Sweden
| | - Johan Gustafsson
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, Gothenburg SE-41296, Sweden
- Wallenberg
Center for Protein Research, Chalmers University
of Technology, Gothenburg SE-41296, Sweden
| | - Verena Siewers
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, Gothenburg SE-41296, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg SE-41296, Sweden
| | - Florian David
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, Gothenburg SE-41296, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg SE-41296, Sweden
| |
Collapse
|
34
|
Javaid N, Choi S. CRISPR/Cas System and Factors Affecting Its Precision and Efficiency. Front Cell Dev Biol 2021; 9:761709. [PMID: 34901007 PMCID: PMC8652214 DOI: 10.3389/fcell.2021.761709] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022] Open
Abstract
The diverse applications of genetically modified cells and organisms require more precise and efficient genome-editing tool such as clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas). The CRISPR/Cas system was originally discovered in bacteria as a part of adaptive-immune system with multiple types. Its engineered versions involve multiple host DNA-repair pathways in order to perform genome editing in host cells. However, it is still challenging to get maximum genome-editing efficiency with fewer or no off-targets. Here, we focused on factors affecting the genome-editing efficiency and precision of CRISPR/Cas system along with its defense-mechanism, orthologues, and applications.
Collapse
Affiliation(s)
- Nasir Javaid
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
- S&K Therapeutics, Ajou University Campus Plaza, Suwon, South Korea
| |
Collapse
|
35
|
Becerra-Rodríguez C, Taghouti G, Portier P, Dequin S, Casal M, Paiva S, Galeote V. Yeast Plasma Membrane Fungal Oligopeptide Transporters Display Distinct Substrate Preferences despite Their High Sequence Identity. J Fungi (Basel) 2021; 7:jof7110963. [PMID: 34829250 PMCID: PMC8625066 DOI: 10.3390/jof7110963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 01/10/2023] Open
Abstract
Fungal Oligopeptide Transporters (Fot) Fot1, Fot2 and Fot3 have been found in Saccharomyces cerevisiae wine strains, but not in strains from other environments. In the S. cerevisiae wine strain EC1118, Fot1 and Fot2 are responsible for a broader range of oligopeptide utilization in comparison with strains not containing any Fot. This leads to better fermentation efficiency and an increased production of desirable organoleptic compounds in wine. Despite the benefits associated with Fot activity in S. cerevisiae within the wine environment, little is known about this family of transporters in yeast. The presence of Fot1, Fot2 and Fot3 in S. cerevisiae wine strains is due to horizontal gene transfer from the yeast Torulaspora microellipsoides, which harbors Fot2Tm, FotX and FotY proteins. Sequence analyses revealed that Fot family members have a high sequence identity in these yeast species. In this work, we aimed to further characterize the different Fot family members in terms of subcellular localization, gene expression in enological fermentation and substrate specificity. Using CRISPR/Cas9, we constructed S. cerevisiae wine strains containing each different Fot as the sole oligopeptide transporter to analyze their oligopeptide preferences by phenotype microarrays. The results of oligopeptide consumption show that Fot counterparts have different di-/tripeptide specificities, suggesting that punctual sequence divergence between FOT genes can be crucial for substrate recognition, binding and transport activity. FOT gene expression levels in different S. cerevisiae wine strains during enological fermentation, together with predicted binding motifs for transcriptional regulators in nitrogen metabolism, indicate that these transporters may be under the control of the Nitrogen Catabolite Repression (NCR) system. Finally, we demonstrated that Fot1 is located in the yeast plasma membrane. This work contributes to a better understanding of this family of oligopeptide transporters, which have demonstrated a key role in the utilization of oligopeptides by S. cerevisiae in enological fermentation.
Collapse
Affiliation(s)
- Carmen Becerra-Rodríguez
- SPO, Univ. Montpellier, INRAE, Institut Agro, F-34060 Montpellier, France; (C.B.-R.); (S.D.)
- Centre of Environmental and Molecular Biology, Department of Biology, Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; (M.C.); (S.P.)
| | - Géraldine Taghouti
- Univ. Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, CIRM-CFBP, F-49000 Angers, France; (G.T.); (P.P.)
| | - Perrine Portier
- Univ. Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, CIRM-CFBP, F-49000 Angers, France; (G.T.); (P.P.)
| | - Sylvie Dequin
- SPO, Univ. Montpellier, INRAE, Institut Agro, F-34060 Montpellier, France; (C.B.-R.); (S.D.)
| | - Margarida Casal
- Centre of Environmental and Molecular Biology, Department of Biology, Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; (M.C.); (S.P.)
| | - Sandra Paiva
- Centre of Environmental and Molecular Biology, Department of Biology, Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; (M.C.); (S.P.)
| | - Virginie Galeote
- SPO, Univ. Montpellier, INRAE, Institut Agro, F-34060 Montpellier, France; (C.B.-R.); (S.D.)
- Correspondence:
| |
Collapse
|
36
|
Wang S, Zhang H, Ruan C, Yi L, Deng L, Zeng K. Metschnikowia citriensis FL01 antagonize Geotrichum citri-aurantii in citrus fruit through key action of iron depletion. Int J Food Microbiol 2021; 357:109384. [PMID: 34517294 DOI: 10.1016/j.ijfoodmicro.2021.109384] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/23/2021] [Accepted: 09/03/2021] [Indexed: 12/29/2022]
Abstract
Metschnikowia citriensis FL01 has great potential for biocontrol applications for its excellent biocontrol efficacy on postharvest diseases of citrus fruit, and the iron depletion by pulcherriminic acid (PA) and then formation of insoluble pigment pulcherrimin had been speculated as an important action mechanism. To identify the genes involved in pulcherrimin synthesis and reutilization in M. citriensis FL01, we de novo assembled the genome of M. citriensis FL01 based on long-read PacBio sequencing. The final assembled genome consisted of 12 contigs with a genome size of 25.74 Mb, G + C content of 49.16% and 9310 protein-coding genes. The genome-wide BLAST of the PUL genes of M. pulcherrima APC 1.2 showed that the four PUL genes were clustered and located on Contig 4 of M. citriensis FL01. In order to further clarify the role of pulcherrimin pigment on biocontrol of M. citriensis FL01, CRISPR/cas9 technology was used to knock out PUL2 gene that was responsible for PA synthesis and the pigmentless mutants with stable phenotype were obtained. The mutant strains of M. citriensis FL01 lost the ability to produce pulcherrimin pigment, and simultaneously lost the ability to inhibit the growth of Geotrichum citri-aurantii in vitro. Moreover, the biocontrol efficacy of pigmentless mutant strains against sour rot was about 80% lower than that of wild-type M. citriensis FL01. These results directly proved that the iron depletion was an important mechanism of M. citriensis FL01.
Collapse
Affiliation(s)
- Shupei Wang
- College of Food Science, Southwest University, Chongqing 400715, PR China; College of Environmental and Life Sciences, Nanning Normal university, Nanning 530001, PR China
| | - Hongyan Zhang
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Changqing Ruan
- College of Food Science, Southwest University, Chongqing 400715, PR China; Food Storage and Logistics Research Center, Southwest University, Chongqing 400715, PR China
| | - Lanhua Yi
- College of Food Science, Southwest University, Chongqing 400715, PR China; Food Storage and Logistics Research Center, Southwest University, Chongqing 400715, PR China
| | - Lili Deng
- College of Food Science, Southwest University, Chongqing 400715, PR China; Key Laboratory of Plant Hormones and Development Regulation of Chongqing, 401331 Chongqing, PR China
| | - Kaifang Zeng
- College of Food Science, Southwest University, Chongqing 400715, PR China; Food Storage and Logistics Research Center, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
37
|
Morowvat MH. CRISPeering: Bioengineering the Host Cells through CRISPR-Cas9 Genome Editing System as the Next-Generation of Cell Factories. Recent Pat Biotechnol 2021; 15:137-147. [PMID: 33874877 DOI: 10.2174/1872208315666210419102117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/09/2020] [Accepted: 03/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nowadays, CRISPR-Cas9 genome editing system has become a popular bioengineering-based tool for various applications. Owing to its high-target specificity, efficiency, versatility and simplicity, it has gained attraction as a robust tool for molecular biology research, which unveils the biological functions of unstudied genes. As well as engineering the metabolic pathways. Chinese hamster ovary (CHO) cells, and Escherichia coli, are regarded as the most commonly used expression platforms for industrial-scale production of recombinant proteins. The immergence of CRISPR-Cas9 genome editing system, will promote the current status of expression hosts towards controllable and predictable strains. OBJECTIVES Here, I present the current status of expression hosts for biopharmaceuticals production. Some major accomplishments in utilization of CRISPR-Cas9 genome editing tool in different prokaryotic and eukaryotic system will be discussed and more importantly the future directions of this newly arrived technology to make the next-generation cell factories with improved or novel properties will be suggested. Besides, the challenges facing with recent patents on this field is discussed as well. RESULTS AND CONCLUSION The CRISPR-Cas9 genome-editing tool has been adopted to be utilized in some major expression platforms. CRISPeering has been successfully employed for genome editing in different prokaryotic and eukaryotic host cells. The immergence of systems metabolic engineering, systems biology and synthetic biology will fortify the current situation of CRISPR-Cas9 genome editing system.
Collapse
Affiliation(s)
- Mohammad Hossein Morowvat
- Pharmaceutical Sciences Research Centre, Shiraz University of Medical Sciences, P.O. Box 71468-64685, Shiraz. Iran
| |
Collapse
|
38
|
Dacquay LC, McMillen DR. Improving the design of an oxidative stress sensing biosensor in yeast. FEMS Yeast Res 2021; 21:6232160. [PMID: 33864457 PMCID: PMC8088429 DOI: 10.1093/femsyr/foab025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/15/2021] [Indexed: 12/23/2022] Open
Abstract
Transcription factor (TF)-based biosensors have proven useful for increasing biomanufacturing yields, large-scale functional screening, and in environmental monitoring. Most yeast TF-based biosensors are built from natural promoters, resulting in large DNA parts retaining considerable homology to the host genome, which can complicate biological engineering efforts. There is a need to explore smaller, synthetic biosensors to expand the options for regulating gene expression in yeast. Here, we present a systematic approach to improving the design of an existing oxidative stress sensing biosensor in Saccharomyces cerevisiae based on the Yap1 transcription factor. Starting from a synthetic core promoter, we optimized the activity of a Yap1-dependent promoter through rational modification of a minimalist Yap1 upstream activating sequence. Our novel promoter achieves dynamic ranges of activation surpassing those of the previously engineered Yap1-dependent promoter, while reducing it to only 171 base pairs. We demonstrate that coupling the promoter to a positive-feedback-regulated TF further improves the biosensor by increasing its dynamic range of activation and reducing its limit of detection. We have illustrated the robustness and transferability of the biosensor by reproducing its activity in an unconventional probiotic yeast strain, Saccharomyces boulardii. Our findings can provide guidance in the general process of TF-based biosensor design.
Collapse
Affiliation(s)
- Louis C Dacquay
- Dept of Cell and Systems Biology, University of Toronto, 25 Harbord St, Toronto, ON M5S 3G5, Canada.,Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga ON L5L 1C6, Canada
| | - David R McMillen
- Dept of Cell and Systems Biology, University of Toronto, 25 Harbord St, Toronto, ON M5S 3G5, Canada.,Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga ON L5L 1C6, Canada.,Departments of Chemistry and Physics, University of Toronto, 80 St. George St., Toronto ON M5S 3H6, Canada
| |
Collapse
|
39
|
Singh R, Chandel S, Ghosh A, Dey D, Chakravarti R, Roy S, Ravichandiran V, Ghosh D. Application of CRISPR/Cas System in the Metabolic Engineering of Small Molecules. Mol Biotechnol 2021; 63:459-476. [PMID: 33774733 DOI: 10.1007/s12033-021-00310-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/14/2021] [Indexed: 12/18/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated Cas protein technology area is rapidly growing technique for genome editing and modulation of transcription of several microbes. Successful engineering in microbes requires an emphasis on the aspect of efficiency and targeted aiming, which can be employed using CRISPR/Cas system. Hence, this type of system is used to modify the genome of several microbes such as yeast and bacteria. In recent years, CRISPR/Cas systems have been chosen for metabolic engineering in microbes due to their specificity, orthogonality, and efficacy. Therefore, we need to review the scheme which was acquired for the execution of the CRISPR/Cas system for the modification and metabolic engineering in yeast and bacteria. In this review, we highlighted the application of the CRISPR/Cas system which has been used for the production of small molecules in the microbial system that is chemically and biologically important.
Collapse
Affiliation(s)
- Rajveer Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, India
| | - Shivani Chandel
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, India
| | - Arijit Ghosh
- Department of Chemistry, University of Calcutta, Kolkata, 700009, India
| | - Dhritiman Dey
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, India
| | - Rudra Chakravarti
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, India
| | - Syamal Roy
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, India
| | - V Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, India
| | - Dipanjan Ghosh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, India.
| |
Collapse
|
40
|
Dong C, Schultz JC, Liu W, Lian J, Huang L, Xu Z, Zhao H. Identification of novel metabolic engineering targets for S-adenosyl-L-methionine production in Saccharomyces cerevisiae via genome-scale engineering. Metab Eng 2021; 66:319-327. [PMID: 33713797 DOI: 10.1016/j.ymben.2021.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022]
Abstract
S-Adenosyl-L-methionine (SAM) is an important intracellular metabolite and widely used for treatment of various diseases. Although high level production of SAM had been achieved in yeast, novel metabolic engineering strategies are needed to further enhance SAM production for industrial applications. Here genome-scale engineering (GSE) was performed to identify new targets for SAM overproduction using the multi-functional genome-wide CRISPR (MAGIC) system, and the effects of these newly identified targets were further validated in industrial yeast strains. After 3 rounds of FACS screening and characterization, numerous novel targets for enhancing SAM production were identified. In addition, transcriptomic and metabolomic analyses were performed to investigate the molecular mechanisms for enhanced SAM accumulation. The best combination (upregulation of SNZ3, RFC4, and RPS18B) improved SAM productivity by 2.2-fold and 1.6-fold in laboratory and industrial yeast strains, respectively. Using GSE of laboratory yeast strains to guide industrial yeast strain engineering presents an effective approach to design microbial cell factories for industrial applications.
Collapse
Affiliation(s)
- Chang Dong
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - J Carl Schultz
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Wei Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China.
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
41
|
Baptista SL, Costa CE, Cunha JT, Soares PO, Domingues L. Metabolic engineering of Saccharomyces cerevisiae for the production of top value chemicals from biorefinery carbohydrates. Biotechnol Adv 2021; 47:107697. [PMID: 33508428 DOI: 10.1016/j.biotechadv.2021.107697] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
The implementation of biorefineries for a cost-effective and sustainable production of energy and chemicals from renewable carbon sources plays a fundamental role in the transition to a circular economy. The US Department of Energy identified a group of key target compounds that can be produced from biorefinery carbohydrates. In 2010, this list was revised and included organic acids (lactic, succinic, levulinic and 3-hydroxypropionic acids), sugar alcohols (xylitol and sorbitol), furans and derivatives (hydroxymethylfurfural, furfural and furandicarboxylic acid), biohydrocarbons (isoprene), and glycerol and its derivatives. The use of substrates like lignocellulosic biomass that impose harsh culture conditions drives the quest for the selection of suitable robust microorganisms. The yeast Saccharomyces cerevisiae, widely utilized in industrial processes, has been extensively engineered to produce high-value chemicals. For its robustness, ease of handling, genetic toolbox and fitness in an industrial context, S. cerevisiae is an ideal platform for the founding of sustainable bioprocesses. Taking these into account, this review focuses on metabolic engineering strategies that have been applied to S. cerevisiae for converting renewable resources into the previously identified chemical targets. The heterogeneity of each chemical and its manufacturing process leads to inevitable differences between the development stages of each process. Currently, 8 of 11 of these top value chemicals have been already reported to be produced by recombinant S. cerevisiae. While some of them are still in an early proof-of-concept stage, others, like xylitol or lactic acid, are already being produced from lignocellulosic biomass. Furthermore, the constant advances in genome-editing tools, e.g. CRISPR/Cas9, coupled with the application of innovative process concepts such as consolidated bioprocessing, will contribute for the establishment of S. cerevisiae-based biorefineries.
Collapse
Affiliation(s)
- Sara L Baptista
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal
| | - Carlos E Costa
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal
| | - Joana T Cunha
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal
| | - Pedro O Soares
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal.
| |
Collapse
|
42
|
Rainha J, Rodrigues JL, Rodrigues LR. CRISPR-Cas9: A Powerful Tool to Efficiently Engineer Saccharomyces cerevisiae. Life (Basel) 2020; 11:13. [PMID: 33375364 PMCID: PMC7823794 DOI: 10.3390/life11010013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/27/2022] Open
Abstract
Saccharomyces cerevisiae has been for a long time a common model for fundamental biological studies and a popular biotechnological engineering platform to produce chemicals, fuels, and pharmaceuticals due to its peculiar characteristics. Both lines of research require an effective editing of the native genetic elements or the inclusion of heterologous pathways into the yeast genome. Although S. cerevisiae is a well-known host with several molecular biology tools available, a more precise tool is still needed. The clustered, regularly interspaced, short palindromic repeats-associated Cas9 (CRISPR-Cas9) system is a current, widespread genome editing tool. The implementation of a reprogrammable, precise, and specific method, such as CRISPR-Cas9, to edit the S. cerevisiae genome has revolutionized laboratory practices. Herein, we describe and discuss some applications of the CRISPR-Cas9 system in S. cerevisiae from simple gene knockouts to more complex processes such as artificial heterologous pathway integration, transcriptional regulation, or tolerance engineering.
Collapse
Affiliation(s)
| | | | - Lígia R. Rodrigues
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (J.R.); (J.L.R.)
| |
Collapse
|
43
|
Ceccato-Antonini SR, Covre EA. From baker's yeast to genetically modified budding yeasts: the scientific evolution of bioethanol industry from sugarcane. FEMS Yeast Res 2020; 20:6021367. [PMID: 33406233 DOI: 10.1093/femsyr/foaa065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/02/2020] [Indexed: 12/22/2022] Open
Abstract
The peculiarities of Brazilian fuel ethanol fermentation allow the entry of native yeasts that may dominate over the starter strains of Saccharomyces cerevisiae and persist throughout the sugarcane harvest. The switch from the use of baker's yeast as starter to selected budding yeasts obtained by a selective pressure strategy was followed by a wealth of genomic information that enabled the understanding of the superiority of selected yeast strains. This review describes how the process of yeast selection evolved in the sugarcane-based bioethanol industry, the selection criteria and recent advances in genomics that could advance the fermentation process. The prospective use of genetically modified yeast strains, specially designed for increased robustness and product yield, with special emphasis on those obtained by the CRISPR (clustered regularly interspaced palindromic repeats)-Cas9 (CRISPR-associated protein 9) genome-editing approach, is discussed as a possible solution to confer higher performance and stability to the fermentation process for fuel ethanol production.
Collapse
Affiliation(s)
- Sandra Regina Ceccato-Antonini
- Laboratory of Agricultural and Molecular Microbiology, Dept Tecnologia Agroindustrial e Socioeconomia Rural, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Via Anhanguera, km 174, 13600-970 Araras, São Paulo State, Brazil
| | - Elizabete Aparecida Covre
- Laboratory of Agricultural and Molecular Microbiology, Dept Tecnologia Agroindustrial e Socioeconomia Rural, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Via Anhanguera, km 174, 13600-970 Araras, São Paulo State, Brazil
| |
Collapse
|
44
|
Chettri D, Verma AK, Verma AK. Innovations in CAZyme gene diversity and its modification for biorefinery applications. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 28:e00525. [PMID: 32963975 PMCID: PMC7490808 DOI: 10.1016/j.btre.2020.e00525] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/04/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
For sustainable growth, concept of biorefineries as recourse to the "fossil derived" energy source is important. Here, the Carbohydrate Active enZymes (CAZymes) play decisive role in generation of biofuels and related sugar-based products utilizing lignocellulose as a carbon source. Given their industrial significance, extensive studies on the evolution of CAZymes have been carried out. Various bacterial and fungal organisms have been scrutinized for the development of CAZymes, where advance techniques for strain enhancement such as CRISPR and analysis of specific expression systems have been deployed. Specific Omic-based techniques along with protein engineering have been adopted to unearth novel CAZymes and improve applicability of existing enzymes. In-Silico computational research and functional annotation of new CAZymes to synergy experiments are being carried out to devise cocktails of enzymes for use in biorefineries. Thus, with the establishment of these technologies, increased diversity of CAZymes with broad span of functions and applications is seen.
Collapse
|
45
|
Stoneman HR, Wrobel RL, Place M, Graham M, Krause DJ, De Chiara M, Liti G, Schacherer J, Landick R, Gasch AP, Sato TK, Hittinger CT. CRISpy-Pop: A Web Tool for Designing CRISPR/Cas9-Driven Genetic Modifications in Diverse Populations. G3 (BETHESDA, MD.) 2020; 10:4287-4294. [PMID: 32963084 PMCID: PMC7642938 DOI: 10.1534/g3.120.401498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/21/2020] [Indexed: 02/08/2023]
Abstract
CRISPR/Cas9 is a powerful tool for editing genomes, but design decisions are generally made with respect to a single reference genome. With population genomic data becoming available for an increasing number of model organisms, researchers are interested in manipulating multiple strains and lines. CRISpy-pop is a web application that generates and filters guide RNA sequences for CRISPR/Cas9 genome editing for diverse yeast and bacterial strains. The current implementation designs and predicts the activity of guide RNAs against more than 1000 Saccharomyces cerevisiae genomes, including 167 strains frequently used in bioenergy research. Zymomonas mobilis, an increasingly popular bacterial bioenergy research model, is also supported. CRISpy-pop is available as a web application (https://CRISpy-pop.glbrc.org/) with an intuitive graphical user interface. CRISpy-pop also cross-references the human genome to allow users to avoid the selection of guide RNAs with potential biosafety concerns. Additionally, CRISpy-pop predicts the strain coverage of each guide RNA within the supported strain sets, which aids in functional population genetic studies. Finally, we validate how CRISpy-pop can accurately predict the activity of guide RNAs across strains using population genomic data.
Collapse
Affiliation(s)
- Hayley R Stoneman
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, WI 53726
- Laboratory of Genetics, Center for Genomic Science Innovation, University of Wisconsin-Madison WI 53726
- Wisconsin Energy Institute, University of Wisconsin-Madison, WI 53726
- J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, WI 53726
| | - Russell L Wrobel
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, WI 53726
- Laboratory of Genetics, Center for Genomic Science Innovation, University of Wisconsin-Madison WI 53726
- Wisconsin Energy Institute, University of Wisconsin-Madison, WI 53726
- J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, WI 53726
| | - Michael Place
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, WI 53726
- Laboratory of Genetics, Center for Genomic Science Innovation, University of Wisconsin-Madison WI 53726
| | - Michael Graham
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, WI 53726
- Wisconsin Energy Institute, University of Wisconsin-Madison, WI 53726
| | - David J Krause
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, WI 53726
- Laboratory of Genetics, Center for Genomic Science Innovation, University of Wisconsin-Madison WI 53726
- Wisconsin Energy Institute, University of Wisconsin-Madison, WI 53726
- J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, WI 53726
| | | | - Gianni Liti
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
| | | | - Robert Landick
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, WI 53726
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706
- Department of Bacteriology, University of Wisconsin-Madison, WI 53706
| | - Audrey P Gasch
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, WI 53726
- Laboratory of Genetics, Center for Genomic Science Innovation, University of Wisconsin-Madison WI 53726
- J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, WI 53726
| | - Trey K Sato
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, WI 53726
- Wisconsin Energy Institute, University of Wisconsin-Madison, WI 53726
- J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, WI 53726
| | - Chris Todd Hittinger
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, WI 53726
- Laboratory of Genetics, Center for Genomic Science Innovation, University of Wisconsin-Madison WI 53726
- Wisconsin Energy Institute, University of Wisconsin-Madison, WI 53726
- J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, WI 53726
| |
Collapse
|
46
|
Holkenbrink C, Ding BJ, Wang HL, Dam MI, Petkevicius K, Kildegaard KR, Wenning L, Sinkwitz C, Lorántfy B, Koutsoumpeli E, França L, Pires M, Bernardi C, Urrutia W, Mafra-Neto A, Ferreira BS, Raptopoulos D, Konstantopoulou M, Löfstedt C, Borodina I. Production of moth sex pheromones for pest control by yeast fermentation. Metab Eng 2020; 62:312-321. [DOI: 10.1016/j.ymben.2020.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/25/2020] [Accepted: 10/06/2020] [Indexed: 12/23/2022]
|
47
|
Cámara E, Lenitz I, Nygård Y. A CRISPR activation and interference toolkit for industrial Saccharomyces cerevisiae strain KE6-12. Sci Rep 2020; 10:14605. [PMID: 32884066 PMCID: PMC7471924 DOI: 10.1038/s41598-020-71648-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/10/2020] [Indexed: 01/17/2023] Open
Abstract
Recent advances in CRISPR/Cas9 based genome editing have considerably advanced genetic engineering of industrial yeast strains. In this study, we report the construction and characterization of a toolkit for CRISPR activation and interference (CRISPRa/i) for a polyploid industrial yeast strain. In the CRISPRa/i plasmids that are available in high and low copy variants, dCas9 is expressed alone, or as a fusion with an activation or repression domain; VP64, VPR or Mxi1. The sgRNA is introduced to the CRISPRa/i plasmids from a double stranded oligonucleotide by in vivo homology-directed repair, allowing rapid transcriptional modulation of new target genes without cloning. The CRISPRa/i toolkit was characterized by alteration of expression of fluorescent protein-encoding genes under two different promoters allowing expression alterations up to ~ 2.5-fold. Furthermore, we demonstrated the usability of the CRISPRa/i toolkit by improving the tolerance towards wheat straw hydrolysate of our industrial production strain. We anticipate that our CRISPRa/i toolkit can be widely used to assess novel targets for strain improvement and thus accelerate the design-build-test cycle for developing various industrial production strains.
Collapse
Affiliation(s)
- Elena Cámara
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Ibai Lenitz
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Yvonne Nygård
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden.
| |
Collapse
|
48
|
CRISPR-Cas9 Genome Editing Tool for the Production of Industrial Biopharmaceuticals. Mol Biotechnol 2020; 62:401-411. [PMID: 32749657 DOI: 10.1007/s12033-020-00265-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2020] [Indexed: 10/23/2022]
Abstract
A broad range of cell lines with characteristic features are used as bio-factories to produce recombinant proteins for basic research and therapeutic purposes. Genetic engineering strategies have been used to manipulate the genome of mammalian cells, insects, and yeasts for heterologous expression. One reason is that the glycosylation pattern of the expression hosts differs somehow from mammalian cells, which may cause immunogenic reactions upon administration in humans. CRISPR-Cas9 is a simple, efficient, and versatile genome engineering tool that can be programmed to precisely make double-stranded breaks at the desired loci. Compared to the classical genome editing methods, a CRISPR-Cas9 system is an ideal tool, providing the opportunity to integrate or delete genes from the target organisms. Besides broadened applications, limited studies have used CRISPR-Cas9 for editing the endogenous pathways in expression systems for biopharmaceutical applications. In the present review, we discuss the use of CRISPR-Cas9 in expression systems to improve host cell lines, increase product yield, and humanize glycosylation pathways by targeting intrinsic genes.
Collapse
|
49
|
CRISPR-Cas9 system: A genome-editing tool with endless possibilities. J Biotechnol 2020; 319:36-53. [DOI: 10.1016/j.jbiotec.2020.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/30/2020] [Accepted: 05/14/2020] [Indexed: 12/27/2022]
|
50
|
Yang BX, Xie CY, Xia ZY, Wu YJ, Li B, Tang YQ. The effect of xylose reductase genes on xylitol production by industrial Saccharomyces cerevisiae in fermentation of glucose and xylose. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.05.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|