1
|
Fernández-Rojas B, López-Pérez A, Lagunez-Rivera L, Solano R, Bernal-Martínez AK, Majluf-Cruz A, Hernández-Juárez J. Antiplatelet, Anticoagulant, and Fibrinolytic Activity of Orchids: A Review. Molecules 2024; 29:5706. [PMID: 39683865 DOI: 10.3390/molecules29235706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Thrombosis is the occlusion of a blood vessel and is responsible for the highest number of deaths worldwide. Its treatment comprises the use of anticoagulants, antiplatelets, and thrombolytics. Although many antithrombotic drugs are currently available, none is completely effective and safe. Plants are a valuable source of compounds with antithrombotic properties. Some orchid species have been used in traditional medicine for their antithrombotic properties. This review informs about the contribution of orchids in this field and the studies that have validated their properties.
Collapse
Affiliation(s)
- Berenice Fernández-Rojas
- Laboratorio de Nutracéuticos y Productos Naturales, Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico
| | - Abimael López-Pérez
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Oaxaca, Instituto Politécnico Nacional, Oaxaca 71233, Mexico
| | - Luicita Lagunez-Rivera
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Oaxaca, Instituto Politécnico Nacional, Oaxaca 71233, Mexico
| | - Rodolfo Solano
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Oaxaca, Instituto Politécnico Nacional, Oaxaca 71233, Mexico
| | - Anel Karina Bernal-Martínez
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Oaxaca, Instituto Politécnico Nacional, Oaxaca 71233, Mexico
| | - Abraham Majluf-Cruz
- Unidad de Investigación Médica en Trombosis, Hemostasia y Aterogénesis, Hospital General Regional No. 1 Dr. Carlos Mac Gregor Sánchez Navarro, Instituto Mexicano del Seguro Social, Mexico City 031013, Mexico
| | - Jesús Hernández-Juárez
- CONAHCYT-Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Oaxaca, Instituto Politécnico Nacional, Santa Cruz Xoxocotlán 71233, Oaxaca, Mexico
| |
Collapse
|
2
|
Isingizwe ZR, Meelheim BA, Benbrook DM. Elevated Platelet Aggregation in Patients with Ovarian Cancer: More than Just Increased Platelet Count. Cancers (Basel) 2024; 16:3583. [PMID: 39518024 PMCID: PMC11545395 DOI: 10.3390/cancers16213583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Patients with ovarian cancer have high platelet counts, which correlate with disease burden, incidence, and lethality of blood clots (thrombosis). We hypothesized that elevated aggregation is associated with both increased platelet number and altered behavior of platelets in patients with ovarian cancer. Methods: Healthy controls and patients with suspected or diagnosed ovarian cancer were evaluated for complete blood counts. To evaluate the effects of platelet count versus platelet behavior, equal platelet-rich plasma (PRP) volumes versus equal platelet numbers were used in platelet aggregation assays. Arachidonic acid, adenosine diphosphate, and collagen platelet agonists were used to induce aggregation. Volunteers were grouped into healthy controls (23), benign/borderline cases (7), and cancer cases (25 ovarian, 1 colorectal, and 2 endometrial). Results: The rate and amount of platelet aggregation were higher in patients compared to healthy controls regardless of whether the same platelet number or PRP volume was used. Compared to healthy controls, patients with untreated ovarian cancer exhibited high levels of platelet activation markers, P-selectin (27.06 vs. 31.06 ng/mL, p = 0.03), and beta-thromboglobulin (3.073 vs. 4.091 µg/mL, p = 0.02) in their plasma. The significance of the elevation and its correlations with platelet number or PRP volume varied depending on the agonist. Platelet (305.88 vs. 134.12, p < 0.0001) and white blood cell (8.459 vs. 5.395, p < 0.01) counts (×109/L) were elevated pre-chemotherapy and decreased post-chemotherapy, respectively. Conclusions: Elevated platelet aggregation is caused by both altered platelet number and behavior in patients with ovarian cancer. These results support the study of antiplatelet agents for thrombosis prevention in these patients.
Collapse
Affiliation(s)
- Zitha Redempta Isingizwe
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA;
| | - Brooke A. Meelheim
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Doris Mangiaracina Benbrook
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA;
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| |
Collapse
|
3
|
Huang S, Chen J, Liu X, Xing C, Zhao L, Chan K, Lu G. Evaluation of the Pharmaceutical Activities of Chuanxiong, a Key Medicinal Material in Traditional Chinese Medicine. Pharmaceuticals (Basel) 2024; 17:1157. [PMID: 39338320 PMCID: PMC11434844 DOI: 10.3390/ph17091157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Szechwan lovage rhizome (SLR, the rhizome of Ligusticum chuanxiong Hort., Chuanxiong in Chinese transliteration) is one Chinese materia medica (CMM) commonly used to activate blood circulation and remove blood stasis. SLR is applicable to most blood stasis syndromes. It has significant clinical efficacy in relation to human diseases of the cardiocerebrovascular system, nervous system, respiratory system, digestive system, urinary system, etc. Apart from China, SLR is also used in Singapore, Malaysia, the European Union, and the United States of America. However, the current chemical markers in pharmacopeia or monography for the quality assessment of SLR are not well characterized or specifically characterized, nor do they fully reflect the medicinal efficacy of SLR, resulting in the quality of SLR not being effectively controlled. CMM can only have medicinal efficacy when they are applied in vivo to an organism. The intensity of their pharmaceutical activities can more directly represent the quality of CMM. Therefore, the chemical constituents and pharmacological actions of SLR are reviewed in this paper. In order to demonstrate the medicinal efficacy of SLR in promoting blood circulation and removing blood stasis, bioassay methods are put forward to evaluate the pharmaceutical activities of SLR to improve hemorheology, hemodynamics, and vascular microcirculation, as well as its anti-platelet aggregation and anticoagulation properties. Through comprehensive analyses of these pharmaceutical properties, the quality and therapeutic value of SLR are ascertained.
Collapse
Affiliation(s)
- Shiwei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (S.H.); (J.C.); (X.L.); (C.X.)
- Research Institute of Chinese Medicines as Drug & Food, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiamei Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (S.H.); (J.C.); (X.L.); (C.X.)
- Research Institute of Chinese Medicines as Drug & Food, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaohua Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (S.H.); (J.C.); (X.L.); (C.X.)
- Research Institute of Chinese Medicines as Drug & Food, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chunxin Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (S.H.); (J.C.); (X.L.); (C.X.)
- Research Institute of Chinese Medicines as Drug & Food, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lu Zhao
- Sichuan Institute for Drug Control (Sichuan Testing Center of Medical Devices), Chengdu 611731, China;
| | - Kelvin Chan
- Centre for Natural Products Discovery, School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
- NICM Health Research Institute, Western Sydney University, Sydney, NSW 1797, Australia
| | - Guanghua Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (S.H.); (J.C.); (X.L.); (C.X.)
- Research Institute of Chinese Medicines as Drug & Food, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
4
|
Harada K, Wenlong W, Shinozawa T. Physiological platelet aggregation assay to mitigate drug-induced thrombocytopenia using a microphysiological system. Sci Rep 2024; 14:14109. [PMID: 38898080 PMCID: PMC11187140 DOI: 10.1038/s41598-024-64063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Developing a reliable method to predict thrombocytopenia is imperative in drug discovery. Here, we establish an assay using a microphysiological system (MPS) to recapitulate the in-vivo mechanisms of platelet aggregation and adhesion. This assay highlights the role of shear stress on platelet aggregation and their interactions with vascular endothelial cells. Platelet aggregation induced by soluble collagen was detected under agitated, but not static, conditions using a plate shaker and gravity-driven flow using MPS. Notably, aggregates adhered on vascular endothelial cells under gravity-driven flow in the MPS, and this incident increased in a concentration-dependent manner. Upon comparing the soluble collagen-induced aggregation activity in platelet-rich plasma (PRP) and whole blood, remarkable platelet aggregate formation was observed at concentrations of 30 µg/mL and 3 µg/mL in PRP and whole blood, respectively. Moreover, ODN2395, an oligonucleotide, induced platelet aggregation and adhesion to vascular endothelial cells. SYK inhibition, which mediated thrombogenic activity via glycoprotein VI on platelets, ameliorated platelet aggregation in the system, demonstrating that the mechanism of platelet aggregation was induced by soluble collagen and oligonucleotide. Our evaluation system partially recapitulated the aggregation mechanisms in blood vessels and can contribute to the discovery of safe drugs to mitigate the risk of thrombocytopenia.
Collapse
Affiliation(s)
- Kosuke Harada
- Drug Safety Research and Evaluation, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Wang Wenlong
- Drug Safety Research and Evaluation, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Tadahiro Shinozawa
- Drug Safety Research and Evaluation, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan.
| |
Collapse
|
5
|
Yang M, Silverstein RL. Targeting Cysteine Oxidation in Thrombotic Disorders. Antioxidants (Basel) 2024; 13:83. [PMID: 38247507 PMCID: PMC10812781 DOI: 10.3390/antiox13010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Oxidative stress increases the risk for clinically significant thrombotic events, yet the mechanisms by which oxidants become prothrombotic are unclear. In this review, we provide an overview of cysteine reactivity and oxidation. We then highlight recent findings on cysteine oxidation events in oxidative stress-related thrombosis. Special emphasis is on the signaling pathway induced by a platelet membrane protein, CD36, in dyslipidemia, and by protein disulfide isomerase (PDI), a member of the thiol oxidoreductase family of proteins. Antioxidative and chemical biology approaches to target cysteine are discussed. Lastly, the knowledge gaps in the field are highlighted as they relate to understanding how oxidative cysteine modification might be targeted to limit thrombosis.
Collapse
Affiliation(s)
- Moua Yang
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS-924, Boston, MA 02115, USA
| | - Roy L. Silverstein
- Department of Medicine, Medical College of Wisconsin, Hub 8745, 8701 W Watertown Plank Rd., Milwaukee, WI 53226, USA
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| |
Collapse
|
6
|
Jaimes-Dueñez JE, Álvarez K, Eduardo-Echeverria L, Cáceres-Rivera DI, Rojas LZ, Gómez-Ochoa SA, Daniela-Muñoz L, Cantillo-Reines M, Tique-Oviedo M, Eresbey-Granada Y, Triana-Chávez Biol O. Assessment of Plasma Exovesicles and Prothrombotic Biomarkers Suggest Prethrombotic Conditions in Chagas Cardiomyopathy in Colombia. Clin Appl Thromb Hemost 2024; 30:10760296241295742. [PMID: 39491827 PMCID: PMC11536625 DOI: 10.1177/10760296241295742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024] Open
Abstract
Chagas cardiomyopathy (CCC) is associated with coagulation disorders that frequently culminate in thrombotic events, contributing to increased mortality rates in this clinical condition. Considering the demonstrated effect that extracellular vesicles (EVs) have on regulating inflammatory processes, coagulation, and angiogenesis, the present study aims to characterize plasma EVs and their relationship with coagulation disorders in patients with CCC. A total of 78 patients were assessed with 46.1% (36/78) representing the CCC group, 8.9% (7/78) with cardiomyopathy unrelated to Chagas disease (CM group), and 44.8% (35/78) comprising the control group, which included individuals without cardiomyopathy and negative for T. cruzi infection. Plasma EVs concentration (EVs/mL) for each individual was evaluated by flow cytometry, along with the proportion of EVs expressing PSGL-1 (PSGL-1+ EVs), Tissue Factor (TF + EVs), and CD41a (CD41a + EVs). The ability of EVs to induce platelet aggregation was evaluated by spectrophotometry. We also evaluated other prothrombotic biomarkers, including platelet count, activated partial thromboplastin time (PTT), prothrombin time (PT), and D-dimer levels. The results revealed elevated D-dimer levels in the CCC group, accompanied by a decrease in the count of EVs per mL of plasma and a significant increase in the proportion of PSGL-1+ EVs (P < .05) compared to the control group. Other parameters did not exhibit significant differences between groups. The elevated levels of PSGL-1+ EVs in the CCC group may be attributed to myocardial inflammatory processes, which, upon interaction with platelet-derived P-selectin, could promote thrombus formation, as indicated by the increased D-dimer levels in this group.
Collapse
Affiliation(s)
- Jeiczon Elim Jaimes-Dueñez
- Grupo de Investigación en Ciencias Animales - GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia (UCC), Bucaramanga, Colombia
| | - Karen Álvarez
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Facultad de Medicina, Universidad de Antioquia (UDEA), Medellín, Colombia
| | - Luis Eduardo-Echeverria
- Grupo de Investigación en Ciencias Cardiovasculares de la Fundación Cardiovascular de Colombia, Fundación Cardiovascular de Colombia (FCV), Floridablanca, Colombia
| | - Diana Isabel Cáceres-Rivera
- Grupo de Investigación para el Fortalecimiento de la Salud y el Bienestar GIFOSABI, Facultad de Enfermería, Universidad Cooperativa de Colombia (UCC), Bucaramanga, Colombia
| | - Lyda Z. Rojas
- Grupo de Investigación y Desarrollo de Conocimiento en Enfermería (GIDCEN), Fundación Cardiovascular de Colombia (FCV), Floridablanca, Colombia
| | - Sergio Alejandro Gómez-Ochoa
- Grupo de Investigación en Ciencias Cardiovasculares de la Fundación Cardiovascular de Colombia, Fundación Cardiovascular de Colombia (FCV), Floridablanca, Colombia
| | - Laura Daniela-Muñoz
- Grupo de Investigación en Ciencias Cardiovasculares de la Fundación Cardiovascular de Colombia, Fundación Cardiovascular de Colombia (FCV), Floridablanca, Colombia
| | - María Cantillo-Reines
- Grupo de Investigación en Ciencias Cardiovasculares de la Fundación Cardiovascular de Colombia, Fundación Cardiovascular de Colombia (FCV), Floridablanca, Colombia
| | - Marisol Tique-Oviedo
- Grupo de Investigación en Ciencias Animales - GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia (UCC), Bucaramanga, Colombia
| | - Yurany Eresbey-Granada
- Grupo de Biología y Control de Enfermedades Infecciosas - BCEI, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Antioquia (UDEA), Medellín, Colombia
| | - Omar Triana-Chávez Biol
- Grupo de Biología y Control de Enfermedades Infecciosas - BCEI, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Antioquia (UDEA), Medellín, Colombia
| |
Collapse
|
7
|
Uematsu T, Masuki H, Nakamura M, Kawabata H, Kitamura Y, Watanabe T, Watanabe T, Mochizuki T, Ushiki T, Kawase T. Metformin-suppressed platelet's function in vitro: Possible relation to delayed or failure of platelet-rich fibrin preparation. Toxicol In Vitro 2023; 93:105692. [PMID: 37673314 DOI: 10.1016/j.tiv.2023.105692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
Platelet-rich fibrin (PRF) is a popular autologous blood-derived biomaterial that is used in regenerative therapy. Owing to its simple preparation without additional factors, the PRF quality directly reflects the characteristics of individual blood samples. Antiplatelet or anticoagulant drugs can hamper the successful preparation of PRF. We recently observed similar phenomena in metformin-taking type-2 diabetics (T2DM). Thus, we hypothesized that metformin interferes with platelet function, thereby suppressing coagulation. For practical reasons, leukocyte- and platelet-rich plasma was prepared from healthy male donors (n = 9-15, age: 26-80 years) and treated with metformin (1-10 mM) for 24-72 h. Intrinsic and extrinsic coagulation activities were evaluated using prothrombin time (PT) and activated partial thromboplastin time (ATPP). Platelet adhesion and aggregation assays were performed using ADP stimulation. Among the parameters tested, APTT was the most sensitive and was significantly prolonged in the concentration range of 1-10 mM in a time- and concentration-dependent manner. Although obtained from healthy platelets and relatively higher concentrations of metformin, these findings suggest that metformin may induce further dysfunction of platelets to suppress intrinsic coagulation activity in T2DM patients, leading to failure of PRF preparation. This phenomenon may not have a severe impact on clinical diabetology or hematology. However, clinicians using PRF are recommended to be more sensitive to such information to avoid unexpected events in clinical settings.
Collapse
Affiliation(s)
| | - Hideo Masuki
- Tokyo Plastic Dental Society, Kita-Ku, Tokyo, Japan
| | | | | | | | | | | | - Tomoharu Mochizuki
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takashi Ushiki
- Division of Hematology and Oncology, Graduate School of Health Sciences, Niigata University, Niigata, Japan; Department of Transfusion Medicine, Cell Therapy and Regenerative Medicine, Niigata University Medical and Dental Hospital, Niigata, Japan; Department of Hematology, Endocrinology and Metabolism, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Tomoyuki Kawase
- Division of Oral Bioengineering, Institute of Medicine and Dentistry, Niigata University, Niigata, Japan.
| |
Collapse
|
8
|
Sun J, Dahiya N, Schmitt T, Stewart C, Anderson J, MacGregor S, Maclean M, Beger RD, Atreya CD. Metabolomics evaluation of the photochemical impact of violet-blue light (405 nm) on ex vivo platelet concentrates. Metabolomics 2023; 19:88. [PMID: 37855954 DOI: 10.1007/s11306-023-02050-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/08/2023] [Indexed: 10/20/2023]
Abstract
INTRODUCTION Microbicidal violet-blue light in the visible spectrum (405 nm) has been under evaluation for pathogen inactivation in ex vivo human plasma and platelets (PLTs) stored in plasma. Results to date have demonstrated that several blood-borne infectious disease-causing pathogens can be successfully reduced to significantly low levels in the light-treated plasma and PLTs. METHOD In order to evaluate whether the microbicidal 405 nm light is safe for the treatment of PLT concentrates for pathogen inactivation, LC/MS-based metabolomics analyses were performed to evaluate the overall impact of 405 nm violet-blue light treatment on ex vivo PLT concentrates suspended in plasma and on plasma itself, and to identify metabolome changes in intra-platelet and extra-cellular medium (i.e., plasma). RESULTS The metabolomics data identified that platelet activating factors (PAFs), agonists and prostaglandins, which can influence PLT basic functions such as integrity, activation, and aggregation potential were unaltered, suggesting that 405 nm light illumination is safe regarding PLT basic functions. Distinct increases in hydroxyl fatty acids and aldehydes, as well as decreases in antioxidant metabolites indicated that reactive oxygen species (ROS) were generated at high levels after only one hour of exposure to 405 nm light. Distinctly changed endogenous photosensitizer metabolites after 1 h of light exposure provided good evidence that 405 nm light was an effective microbicide acting through ROS mechanism and no external additive photosensitizers were required.
Collapse
Affiliation(s)
- Jinchun Sun
- Division of Systems Biology, National Center for Toxicological Research, United States Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA.
| | - Neetu Dahiya
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA
| | - Thomas Schmitt
- Division of Systems Biology, National Center for Toxicological Research, United States Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Caitlin Stewart
- The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - John Anderson
- The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Scott MacGregor
- The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Michelle Maclean
- The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | - Richard D Beger
- Division of Systems Biology, National Center for Toxicological Research, United States Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Chintamani D Atreya
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
9
|
Liu CH, Jheng PR, Rethi L, Godugu C, Lee CY, Chen YT, Nguyen HT, Chuang EY. P-Selectin mediates targeting of a self-assembling phototherapeutic nanovehicle enclosing dipyridamole for managing thromboses. J Nanobiotechnology 2023; 21:260. [PMID: 37553670 PMCID: PMC10408148 DOI: 10.1186/s12951-023-02018-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/23/2023] [Indexed: 08/10/2023] Open
Abstract
Thrombotic vascular disorders, specifically thromboembolisms, have a significant detrimental effect on public health. Despite the numerous thrombolytic and antithrombotic drugs available, their efficacy in penetrating thrombus formations is limited, and they carry a high risk of promoting bleeding. Consequently, the current medication dosage protocols are inadequate for preventing thrombus formation, and higher doses are necessary to achieve sufficient prevention. By integrating phototherapy with antithrombotic therapy, this study addresses difficulties related to thrombus-targeted drug delivery. We developed self-assembling nanoparticles (NPs) through the optimization of a co-assembly engineering process. These NPs, called DIP-FU-PPy NPs, consist of polypyrrole (PPy), dipyridamole (DIP), and P-selectin-targeted fucoidan (FU) and are designed to be delivered directly to thrombi. DIP-FU-PPy NPs are proposed to offer various potentials, encompassing drug-loading capability, targeted accumulation in thrombus sites, near-infrared (NIR) photothermal-enhanced thrombus management with therapeutic efficacy, and prevention of rethrombosis. As predicted, DIP-FU-PPy NPs prevented thrombus recurrence and emitted visible fluorescence signals during thrombus clot penetration with no adverse effects. Our co-delivery nano-platform is a simple and versatile solution for NIR-phototherapeutic multimodal thrombus control.
Collapse
Affiliation(s)
- Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 11031, Taiwan
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan
| | - Lekha Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chandraiah Godugu
- National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Hyderabad, India
| | - Ching Yi Lee
- Department of Neurosurgery, Chang Gung Memorial Hospital Linkou Main Branch and School of Medicine, College of Medicine, Chang Gung University, Taoyuan, 33305, Taiwan
| | - Yan-Ting Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh city, Ho Chi Minh City, 700000, Viet Nam
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan.
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, 11696, Taiwan.
- Precision Medicine and Translational Cancer Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan.
| |
Collapse
|
10
|
The Effect of Curcumin-Loaded Glucan Nanoparticles on Immune Cells: Size as a Critical Quality Attribute. Pharmaceutics 2023; 15:pharmaceutics15020623. [PMID: 36839945 PMCID: PMC9959491 DOI: 10.3390/pharmaceutics15020623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Curcumin is known for its multiple health benefits, largely due to its antioxidant and anti-inflammatory properties. It has been extensively studied as a therapeutic agent, however, it does not have good clinical efficacy due to its poor water solubility and bioavailability. Despite accepting the encapsulation of this compound in polymeric particles as one of the most promising strategies to increase its therapeutic value, these nanoparticles have fallen short of expectations due to a lack of assessment of their possible adverse effects on the immune system. Therefore, in this work, we report on a new method to encapsulate curcumin into glucan nanoparticles and their effects on cells of the immune system were evaluated. Two different-sized curcumin-loaded glucan NPs (GluCur 100 and GluCur 380) were produced, each with an encapsulation efficiency close to 100%, and were characterized regarding their size distribution, surface properties, and morphology. The results revealed the greatest hemolytic effect and cytotoxicity for the smallest particles (100 nm) tested in human PBMCs and RAW 264.7 cells. Although GluCur 380 NPs showed a weaker ROS production, they were able to inhibit the production of NO by macrophages. Furthermore, we found that the coagulation time was not affected by both sized-particles as well as platelet function. Additionally, both nanoparticles induced lymphocyte proliferation and TNF-α secretion by Mo-DCs. In conclusion, this report emphasizes the importance of the immunotoxicity assessment and how this is dependent on the intrinsic properties of nanomaterials, hopefully contributing to increasing the safety of nanomedicines.
Collapse
|
11
|
Ayyoub S, Orriols R, Oliver E, Ceide OT. Thrombosis Models: An Overview of Common In Vivo and In Vitro Models of Thrombosis. Int J Mol Sci 2023; 24:2569. [PMID: 36768891 PMCID: PMC9917341 DOI: 10.3390/ijms24032569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 02/03/2023] Open
Abstract
Occlusions in the blood vessels caused by blood clots, referred to as thrombosis, and the subsequent outcomes are leading causes of morbidity and mortality worldwide. In vitro and in vivo models of thrombosis have advanced our understanding of the complex pathways involved in its development and allowed the evaluation of different therapeutic approaches for its management. This review summarizes different commonly used approaches to induce thrombosis in vivo and in vitro, without detailing the protocols for each technique or the mechanism of thrombus development. For ease of flow, a schematic illustration of the models mentioned in the review is shown below. Considering the number of available approaches, we emphasize the importance of standardizing thrombosis models in research per study aim and application, as different pathophysiological mechanisms are involved in each model, and they exert varying responses to the same carried tests. For the time being, the selection of the appropriate model depends on several factors, including the available settings and research facilities, the aim of the research and its application, and the researchers' experience and ability to perform surgical interventions if needed.
Collapse
Affiliation(s)
- Sana Ayyoub
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain
| | - Ramon Orriols
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain
| | - Eduardo Oliver
- Centro de Investigaciones Biologicas Margarita Salas (CIB-CSIC), 28040 Madrid, Spain
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Olga Tura Ceide
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| |
Collapse
|
12
|
Fermentation Enhances the Anti-Inflammatory and Anti-Platelet Properties of Both Bovine Dairy and Plant-Derived Dairy Alternatives. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8070292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Within the present study, the effects of fermentation on the anti-inflammatory and anti-platelet properties of both homemade and commercially purchased bovine dairy and almond, coconut, and rice-based dairy alternatives were evaluated. The extracted total lipids (TL) from homemade and commercially purchased fermented and unfermented bovine, almond, coconut, and rice-based products were further separated into their neutral lipids (NL) and polar lipids (PL) fractions by counter current distribution. The TL, PL, and NL of each sample were assessed in human platelets against the inflammatory and thrombotic mediator, platelet-activating factor (PAF), and the well-established platelet agonist, adenosine 5′ diphosphate (ADP). In all samples, the PL fractions showed significantly stronger inhibitory effects against human platelet aggregation induced by PAF or ADP, in comparison to the TL and NL, with higher specificity against PAF. PL of all fermented products (bovine yogurt and fermented dairy alternatives from almond, rice, and coconut), exhibited the strongest anti-inflammatory and anti-platelet potency, in comparison to PL from their initial pasteurized materials (bovine milk and rice, almond, and coconut-based dairy alternative drinks). PL of the pasteurized rice-based drink and, especially PL from the novel homemade rice-based fermented product (HMFRD), showed the strongest anti-PAF and anti-ADP potency compared to all samples, with anti-PAF activity being most potent overall. The unfermented pasteurized coconut-based drink showed the lowest anti-inflammatory and anti-platelet potency, and the bovine and almond-based fermented products showed an intermediate effect. Further lipidomics with LC-MS analysis of all these PL fractions revealed that fermentation altered their fatty acid content in a way that decreased their degree of saturation and increased the content of unsaturated fatty acids, thus providing a rationale for the stronger anti-inflammatory and anti-platelet potency of the more unsaturated PL fractions of the fermented products. This study has shown that fermentation alters the fatty acid content and the bio-functionality of the PL bioactives in both fermented bovine dairy and plant-based dairy alternatives, and subsequently improved their anti-inflammatory and anti-platelet functional properties.
Collapse
|
13
|
Lordan R, Tsoupras A, Zabetakis I. Investigation of Platelet Aggregation in Atherosclerosis. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2419:333-347. [PMID: 35237975 DOI: 10.1007/978-1-0716-1924-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Platelet activation and aggregation is implicated in all stages of inflammation-related atherosclerosis from the initial steps of endothelial dysfunction and plaque formation, to plaque rupture and atherothrombotic events, such as acute coronary syndrome, myocardial infarction, and ischemic incidences. Platelet aggregometry assays are the mainstream for evaluating and monitoring platelet reactivity in such conditions and for the investigation of prophylactic and therapeutic approaches. The most established methodology is light transmittance aggregometry (LTA). Here we describe the appropriate preparation of platelet suspensions from human blood and the methodology of LTA-based assays that is used for basic and clinical research for monitoring and evaluating the activities of several thrombotic mediators, as well as determining the dose efficacy and safety of several pharmaceutical and nutraceutical compounds intended for therapeutic and prophylactic interventions for atherosclerosis.
Collapse
Affiliation(s)
- Ronan Lordan
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Alexandros Tsoupras
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
- Bernal Institute, University of Limerick, Limerick, Ireland
| | - Ioannis Zabetakis
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.
- Health Research Institute, University of Limerick, Limerick, Ireland.
| |
Collapse
|
14
|
Platelets in Fetal Growth Restriction: Role of Reactive Oxygen Species, Oxygen Metabolism, and Aggregation. Cells 2022; 11:cells11040724. [PMID: 35203373 PMCID: PMC8870240 DOI: 10.3390/cells11040724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/27/2022] Open
Abstract
Fetal growth restriction (FGR) is mainly caused by failure of the uteroplacental unit. The exact pathogenesis remains unclear. The cause is thought to be related to abnormal platelet activation, which may result in microthrombus formation in the small vessels of the placenta. Reactive oxygen species (ROS) may initiate the pathological process of platelet activation. This study aimed to evaluate selected platelet parameters in pregnancy complicated by FGR and relate them to the severity of hemodynamic abnormalities. A total of 135 women (pregnant with FGR, with an uncomplicated pregnancy, and non-pregnant) were enrolled to study different platelet parameters: count (PLT), mean volume (MPV), ROS levels, intracellular oxygen level, oxygen consumption, and aggregation indices. No abnormalities in PLT and MPV were found in the FGR group, although it revealed increased ROS levels in platelets, lower platelet oxygen consumption, and intraplatelet deprivation. Aggregation parameters were similar as in uncomplicated pregnancy. No significant relationships were observed between hemodynamic abnormalities and the studied parameters. Platelets in pregnancies complicated by FGR may reveal an impaired oxidative metabolism, which may, in turn, lead to oxidative stress and, consequently, to an impaired platelet function. This study adds to the understanding of the role of platelets in the etiology of FGR.
Collapse
|
15
|
Tomatoes: An Extensive Review of the Associated Health Impacts of Tomatoes and Factors That Can Affect Their Cultivation. BIOLOGY 2022; 11:biology11020239. [PMID: 35205105 PMCID: PMC8869745 DOI: 10.3390/biology11020239] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary The research outlined in this review paper discusses potential health benefits associated with a diet enriched with tomatoes and tomato products. This includes details of previous studies investigating the anticancer properties of tomatoes, protection against cardiovascular and neurodegenerative diseases and diabetes, maintenance of a healthy gut microbiome, and improved skin health, fertility, immune response, and exercise recovery. The specific parts of a tomato fruit that contribute these health benefits are also outlined. The potential disadvantages to a tomato-rich diet are detailed, especially the consumption of supplements that contain compounds found in tomatoes, such as lycopene. This review also discusses how the cultivation of tomato plants can affect the nutritional value of the fruit harvested. Different environmental growing conditions such as light intensity, growing media, and temperature are explained in terms of the impact they have on the quality of fruit, its nutrient content, and hence the potential health benefits acquired from eating the fruit. Abstract This review outlines the health benefits associated with the regular consumption of tomatoes and tomato products. The first section provides a detailed account of the horticultural techniques that can impact the quality of the fruit and its nutritional properties, including water availability, light intensity, temperature, and growing media. The next section provides information on the components of tomato that are likely to contribute to its health effects. The review then details some of the health benefits associated with tomato consumption, including anticancer properties, cardiovascular and neurodegenerative diseases and skin health. This review also discusses the impact tomatoes can have on the gut microbiome and associated health benefits, including reducing the risk of inflammatory bowel diseases. Other health benefits of eating tomatoes are also discussed in relation to effects on diabetes, the immune response, exercise recovery, and fertility. Finally, this review also addresses the negative effects that can occur as a result of overconsumption of tomato products and lycopene supplements.
Collapse
|
16
|
Xu L, Qiu Y, Li Y, Wei Y, Wan Y, Deng W. Tissue dynamics of von Willebrand factor characterized by a novel fluorescent protein-von Willebrand factor chimera. J Thromb Haemost 2022; 20:208-221. [PMID: 34592034 DOI: 10.1111/jth.15542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Tissue dynamics of von Willebrand factor (VWF) that are vital to its biological function have not been fully characterized. OBJECTIVE To develop a new fluorescent protein--VWF chimera (FP-VWF) that has similar hematologic function to wild-type VWF and use it to monitor the tissue dynamics of VWF distribution. METHODS Genotyping, platelet counting, tail bleeding time assay, agarose gels, western blot, platelet aggregation, proteolytic analysis, and ELISA were applied in characterizing the function of FP-VWF; fluorescence spectrometer and confocal fluorescence microscope were used to monitor the plasma and tissue distribution of FP-VWF. RESULTS The transgenic mice that carry the FP-VWF retain hematologic activity of VWF with plasma levels of FP-VWF reduced by 50% and there are reduced high molecular weight FP-VWF multimers compared to the wild-type mice. The GPIb-binding and ADAMTS-13 (A Disintegrin and Metalloprotease with ThrombSpondin type 1 motif, member 13) proteolytic efficiency of FP-VWF are similar to wild-type VWF. The tissue distribution of FP-VWF was probed directly through its intrinsic fluorescence at normal or stimulated status, which indicated that the medicine-stimulated endogenous FP-VWF seems primarily released from the aorta and cleared in the spleen. Similar results were observed in non-fluorescent mice through a standard immunofluorescence approach. The fluorescence signals of FP-VWF were also similar to the standard dye-based approach in detecting the FeCl3 -induced blood clotting in vivo. CONCLUSIONS Together, these results suggest that this novel FP-VWF chimera is valuable in probing the tissue dynamics of VWF in quite a few biological and pharmaceutical applications.
Collapse
Affiliation(s)
- Linru Xu
- Cyrus Tang Medical Institute and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Yanyang Qiu
- Cyrus Tang Medical Institute and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Yanqing Li
- Cyrus Tang Medical Institute and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Yaxuan Wei
- Cyrus Tang Medical Institute and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Yan Wan
- Cyrus Tang Medical Institute and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Wei Deng
- Cyrus Tang Medical Institute and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| |
Collapse
|
17
|
Bau-Gaudreault L, Arndt T, Provencher A, Brayton CF. Research-Relevant Clinical Pathology Resources: Emphasis on Mice, Rats, Rabbits, Dogs, Minipigs, and Non-Human Primates. ILAR J 2021; 62:203-222. [PMID: 34877602 DOI: 10.1093/ilar/ilab028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 08/16/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022] Open
Abstract
Clinical pathology testing for investigative or biomedical research and for preclinical toxicity and safety assessment in laboratory animals is a distinct specialty requiring an understanding of species specific and other influential variables on results and interpretation. This review of clinical pathology principles and testing recommendations in laboratory animal species aims to provide a useful resource for researchers, veterinary specialists, toxicologists, and clinical or anatomic pathologists.
Collapse
Affiliation(s)
- Liza Bau-Gaudreault
- Clinical Laboratories, Charles River Laboratories - ULC, Senneville, Quebec, Canada
| | - Tara Arndt
- Labcorp Drug Development, Madison, Wisconsin, United States
| | - Anne Provencher
- Clinical Laboratories, Charles River Laboratories - ULC, Sherbrooke, Quebec, Canada
| | - Cory F Brayton
- Molecular and Comparative Pathobiology, John Hopkins University, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Anti-Platelet Properties of Apple Must/Skin Yeasts and of Their Fermented Apple Cider Products. BEVERAGES 2021. [DOI: 10.3390/beverages7030054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alcoholic beverages like apple cider are considered functional beverages with several health benefits, when consumed in moderation, which are mainly attributed to their microbiota and the plethora of their bioactive compounds. Among them, bio-functional polar lipids (PL) have recently been found in apple cider, which despite low quantities, have exhibited strong anti-inflammatory and anti-platelet properties, while fermentation seems to affect the functionality of apple cider’s PL bioactives. The aim of the present study was to elaborate yeast strains isolated from the complex mixtures of apple surface and must yeasts for evaluating their effects on the anti-platelet functional properties of PL bioactives from their final fermented apple cider products. First, bio-functional PL were extracted and separated from the biomass of the different isolated apple surface/must yeast strains, and were further assessed for their anti-platelet potency against human platelet aggregation induced by the potent inflammatory and thrombotic mediator platelet-activating factor (PAF), or by a classic platelet agonist like adenosine diphopshate (ADP). Novel functional apple ciders were then produced from the fermentation of apple juice by elaborating the most bioactive and resilient yeast strains isolated from the apple must with optimum fermentation properties. PL bioactives extracted from these novel apple cider products were also further assessed for their anti-platelet properties against both the PAF and ADP pathways of human platelet aggregation. These novel cider products were found to contain PL bioactives with lower IC50 values (~40 μg) and thus increased anti-platelet potency against platelet aggregation induced by PAF and ADP. GC-MS analysis of the PL bioactives extracted from these novel apple ciders showed that apple cider PL bioactives are rich in monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA), such as the omega-6 linoleic acid (LA) and the omega-3 alpha linolenic acid (ALA), with favorably lower levels for their omega-6/omega-3 PUFA ratio, which further support the observed strong anti-platelet properties putative anti-inflammatory potency for the apple cider PL bioactives. However, further studies are needed in order to elucidate and fully characterize the apple yeast strains that can be utilized for increasing the anti-inflammatory, anti-platelet and cardioprotective functional properties of their fermented apple cider products.
Collapse
|
19
|
Anti-Inflammatory and Anti-Platelet Properties of Lipid Bioactives from Apple Cider By-Products. Molecules 2021; 26:molecules26102869. [PMID: 34066136 PMCID: PMC8150973 DOI: 10.3390/molecules26102869] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
The valorization of food industry by-products as sources of bioactive compounds is at the forefront of research in functional foods and nutraceuticals. This study focuses on bioactives of apple cider by-products (ACBPs) with putative cardio-protective properties. Total lipids (TLs) were extracted from ACBPs of apple varieties that are low (ACBP1), medium (ACBP2), and high (ACBP3) in tannins and were further separated into polar lipids (PLs) and neutral lipids (NLs). The functionality of these lipid extracts and of their HPLC-derived lipid fractions/PL subclasses were assessed in vitro against human platelet aggregation induced by the thrombotic and inflammatory platelet agonists platelet-activating factor (PAF) and adenosine diphosphate (ADP). The fatty acid profile of PLs and their most bioactive lipid fractions were evaluated by GC–MS analysis. The PL extracts exhibited higher specificity against the PAF-induced platelet aggregation compared to their anti-ADP effects, while TL and NL showed lower bioactivities in all ACBPs. HPLC analysis unveiled that the most bioactive PL from all ACBPs were those in PL fraction 3 containing phosphatidylcholines (PCs). PLs from all ACBPs and their PC bioactives were rich in polyunsaturated fatty acids (PUFAs) and especially in the essential omega-6 (n-6) linoleic acid (LA) and omega-3 (n-3) alpha linolenic acid (ALA), with favorably low values of the n-6/n-3 PUFA ratio, thus providing a rationale for their higher anti-inflammatory bioactivities. Within this study, highly bioactive PL compounds with strong anti-inflammatory and anti-platelet properties were identified in ACBPs, which can be potentially utilized for producing cardio-protective functional foods and/or nutraceuticals.
Collapse
|
20
|
The Role of Anesthetic Selection in Perioperative Bleeding. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5510634. [PMID: 34036098 PMCID: PMC8123995 DOI: 10.1155/2021/5510634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/05/2021] [Indexed: 11/17/2022]
Abstract
Perioperative bleeding is one of the major comorbidities associated with surgery. While anesthesia is a critical component to perform surgery, a number of clinical studies supported the contribution of anesthetic drugs to perioperative bleeding. Here, we reviewed the literature on this topic including the underlying mechanism and discussed the future direction on coagulation research in anesthesia.
Collapse
|
21
|
Kalampalidis A, Peppas A, Schnakenburg G, Papakyriakou A, Tsoupras A, Zabetakis I, Philippopoulos AI. Antithrombotic and antiplatelet activity of an organometallic rhodium(I) complex incorporating a substituted thieno‐[2,3‐
d
]‐pyrimidine ligand: Synthesis, structural characterization, and molecular docking calculations. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Alexandros Kalampalidis
- Laboratory of Inorganic Chemistry, Department of Chemistry National and Kapodistrian University of Athens Athens Greece
| | - Anastasios Peppas
- Laboratory of Inorganic Chemistry, Department of Chemistry National and Kapodistrian University of Athens Athens Greece
| | - Gregor Schnakenburg
- Institut für Anorganische Chemie Rheinische Friedrich‐Wilhelms‐Universität Bonn Bonn Germany
| | - Athanasios Papakyriakou
- Institute of Biosciences & Applications National Centre for Scientific Research “Demokritos” Athens Greece
| | - Alexandros Tsoupras
- Department of Biological Sciences University of Limerick Limerick Ireland
- Health Research Institute University of Limerick Limerick Ireland
- Bernal Institute University of Limerick Limerick Ireland
| | - Ioannis Zabetakis
- Department of Biological Sciences University of Limerick Limerick Ireland
- Health Research Institute University of Limerick Limerick Ireland
| | - Athanassios I. Philippopoulos
- Laboratory of Inorganic Chemistry, Department of Chemistry National and Kapodistrian University of Athens Athens Greece
| |
Collapse
|
22
|
Beneficial Anti-Platelet and Anti-Inflammatory Properties of Irish Apple Juice and Cider Bioactives. Foods 2021; 10:foods10020412. [PMID: 33673327 PMCID: PMC7917828 DOI: 10.3390/foods10020412] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/20/2022] Open
Abstract
Several bioactives from fruit juices and beverages like phenolics, nucleotides and polar lipids (PL) have exhibited anti-platelet cardio-protective properties. However, apple juice and cider lipid bioactives have not been evaluated so far. The aim of this study was to investigate the anti-platelet and anti-inflammatory effects and structure activity relationships of Irish apple juice and Real Irish cider lipid bioactives against the platelet-activating factor (PAF)- and adenosine diphosphate (ADP)-related thrombotic and inflammatory manifestations in human platelets. Total Lipids (TL) were extracted from low, moderate and high in tannins apple juices and from their derived-through-fermentation cider products, as well as from commercial apple juice and cider. These were separated into neutral lipids (NL) and PL, while all lipid extracts were further assessed for their ability to inhibit aggregation of human platelets induced by PAF and ADP. In all cases, PL exhibited the strongest anti-platelet bioactivities and were further separated by high-performance liquid chromatography (HPLC) analysis into PL subclasses/fractions that were also assessed for their antiplatelet potency. The PL from low in tannins apple juice exhibited the strongest antiplatelet effects against PAF and ADP, while PL from its fermented cider product were less active. Moreover, the phosphatidylcholines (PC) in apple juices and the phosphatidylethanolamines (PE) in apple ciders were the most bioactive HPLC-derived PL subclasses against PAF-induced platelet aggregation. Structural elucidation of the fatty acid composition by gas chromatography mass spectra (GCMS) analysis showed that PL from all samples are rich in beneficial monounsaturated fatty acids (MUFA) and omega 3 (n-3) polyunsaturated fatty acids (PUFA), providing a possible explanation for their strong anti-platelet properties, while the favorable low levels of their omega-6/omega-3 (n-6/n-3) PUFA ratio, especially for the bioactive PC and PE subclasses, further support an anti-inflammatory cardio-protective potency for these apple products. In conclusion, Irish apple juice and Real Irish cider were found to possess bioactive PL compounds with strong antiplatelet and anti-inflammatory properties, while fermentation seems to be an important modulating factor on their lipid content, structures and bioactivities. However, further studies are needed to evaluate these effects.
Collapse
|
23
|
Bioactive Lipids of Marine Microalga Chlorococcum sp. SABC 012504 with Anti-Inflammatory and Anti-Thrombotic Activities. Mar Drugs 2021; 19:md19010028. [PMID: 33435162 PMCID: PMC7827044 DOI: 10.3390/md19010028] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
Microalgae are at the start of the food chain, and many are known producers of a significant amount of lipids with essential fatty acids. However, the bioactivity of microalgal lipids for anti-inflammatory and antithrombotic activities have rarely been investigated. Therefore, for a sustainable source of the above bioactive lipids, the present study was undertaken. The total lipids of microalga Chlorococcum sp., isolated from the Irish coast, were fractionated into neutral-, glyco-, and phospho-lipids, and were tested in vitro for their anti-inflammatory and antithrombotic activities. All tested lipid fractions showed strong anti-platelet-activating factor (PAF) and antithrombin activities in human platelets (half maximal inhibitory concentration (IC50) values ranging ~25–200 μg of lipid) with the highest activities in glyco- and phospho-lipid fractions. The structural analysis of the bioactive lipid fraction-2 revealed the presence of specific sulfoquinovosyl diacylglycerols (SQDG) bioactive molecules and the HexCer-t36:2 (t18:1/18:1 and 18:2/18:0) cerebrosides with a phytosphingosine (4-hydrosphinganine) base, while fraction-3 contained bioactive phosphatidylcholine (PC) and phosphatidylethanolamine (PE) molecules. These novel bioactive lipids of Chlorococcum sp. with putative health benefits may indicate that marine microalgae can be a sustainable alternative source for bioactive lipids production for food supplements and nutraceutical applications. However, further studies are required towards the commercial technology pathways development and biosafety analysis for the use of the microalga.
Collapse
|
24
|
Ameziani M, Chérifi F, Kiheli H, Saoud S, Hariti G, Kellou-Taîri S, Laraba-Djebari F. Isolation and Functional Identification of an Antiplatelet RGD-Containing Disintegrin from Cerastes cerastes Venom. Protein J 2020; 39:574-590. [PMID: 32960374 DOI: 10.1007/s10930-020-09915-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2020] [Indexed: 11/30/2022]
Abstract
The current report focuses on purification, structural and functional characterization of Cerastategrin from Cerastes cerastes venom, a novel basic disintegrin (pI 8.36) with 128 amino acid residues and a molecular weight of 13 835.25 Da measured by MALDI-MSMS. The 3D structure of Cerastategrin is organized as α-helix (13%), β-strand (15%) and disordered structure (30%) and presents homologies with several snake venom disintegrins. Structural modeling shows that Cerastategrin presents an RGD motif that connects specifically to integrin receptors. Cerastategrin exhibits the inhibition of ADP induced platelets with an IC50 of 0.88 µg/mL and shows in vivo long stable anticoagulation effect 24 h post-injection of increasing doses ranging from 0.2 to 1 mg/kg, therefore, Cerastategrin maintained irreversibly the blood incoagulable. Moreover, Cerastategrin decreases the amount of bounded αIIbβ3 and reduced significantly the quantity of externalized P-Selectin. Cerastategrin acts as a molecule targeting specifically the receptor αIIbβ3; therefore, it behaves as a potent platelet activation inhibitor. As a new peptide with promising pharmacological properties, Cerastategrin could have a potential therapeutical effect in the vascular pathologies and may be a new effective treatment approach.
Collapse
Affiliation(s)
- Meriem Ameziani
- USTHB, Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, BP 32 El-Alia, Bab Ezzouar, Algiers, Algeria
| | - Fatah Chérifi
- USTHB, Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, BP 32 El-Alia, Bab Ezzouar, Algiers, Algeria
| | - Hamida Kiheli
- USTHB, Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, BP 32 El-Alia, Bab Ezzouar, Algiers, Algeria
| | - Samah Saoud
- USTHB, Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, BP 32 El-Alia, Bab Ezzouar, Algiers, Algeria
| | - Ghania Hariti
- Faculty of Medicine, Blood Transfusion Center, Unverisity of Benyoucef Benkheda Algiers 1, CHU Bab El-Oued, Algiers, Algeria
| | - Safia Kellou-Taîri
- USTHB, Laboratory of Theoretical Physico-Chemistry and Computer Chemistry, Faculty of Chemistry, BP 32 El-Alia, Bab Ezzouar, Algiers, Algeria
| | - Fatima Laraba-Djebari
- USTHB, Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, BP 32 El-Alia, Bab Ezzouar, Algiers, Algeria.
| |
Collapse
|
25
|
Structural Elucidation of Irish Ale Bioactive Polar Lipids with Antithrombotic Properties. Biomolecules 2020; 10:biom10071075. [PMID: 32708453 PMCID: PMC7407377 DOI: 10.3390/biom10071075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022] Open
Abstract
The structures of bioactive polar lipids (PLs) of Irish ale with potent antithrombotic and cardioprotective properties were elucidated. Ale PL was fractionated by preparative thin layer chromatography (TLC) into subclasses, and their antithrombotic effect was assessed against human platelet aggregation induced by the pro-inflammatory mediator, platelet-activating factor (PAF). The fatty acid content and the overall structures of ale PL were elucidated by liquid chromatography mass spectrometry (LC-MS). Phosphatidylcholines (PC) and molecules of the sphingomyelin (SM) family exhibited the strongest anti-PAF effects, followed by phosphatidylethanolamines (PE). PC contained higher amounts of omega-3 polyunsaturated fatty acids (n-3 PUFA) and thus the lowest n-6/n-3 ratio. Bioactive diacyl and alkyl-acyl PC and PE molecules bearing n-3 PUFA at their sn-2 position, especially docosahexaenoic acid (DHA) and α-linolenic acid (ALA) but mostly oleic acid (OA), were identified in both PC and PE subclasses. Eicosapentaenoic acid (EPA) was present only in bioactive PC molecules and not in PE, explaining the lower anti-PAF effects of PE. Bioactive sphingolipid and glycolipid molecules with reported anti-inflammatory and anti-tumour properties, such as specific ceramides and glucosylcerebrosides with sphingosine, phytosphingosine and dihydrosphingosine bases but also specific monogalactodiglycerides and SM species bearing ALA at their sn-2 position, were identified in the SM subclass, providing a rational for its strong bioactivities against the PAF pathway. Further studies are required on the health benefits of bioactive PL from beer and brewery by-products.
Collapse
|
26
|
Yoghurt fermentation alters the composition and antiplatelet properties of milk polar lipids. Food Chem 2020; 332:127384. [PMID: 32615384 DOI: 10.1016/j.foodchem.2020.127384] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/12/2020] [Accepted: 06/17/2020] [Indexed: 12/15/2022]
Abstract
Dairy polar lipids (PL) seem to exhibit antiplatelet effects. However, it is not known what molecular species may be responsible. In this study, we confirmed using C30 reversed-phase (C30RP) ultra-high-performance liquid chromatography (UHPLC) coupled to high resolution accurate mass tandem mass spectrometry (HRAM-MS/MS) that fermentation of yoghurts from ovine milk using specific starter cultures altered the PL composition. These lipid alterations occurred concomitant with increased antithrombotic properties of the yoghurts PL fractions against platelet-activating factor (PAF) and thrombin-induced platelet aggregation. Specifically, elevation in phosphatidylethanolamine (PE), sphingomyelin (SM), phosphatidylcholine (PC) and their molecular species were observed following yoghurt fermentation. Furthermore, PC(18:0/18:1), PE(18:1/18:2), SM(d18:0/22:0) and several other molecular species were significantly inversely correlated with the inhibition of PAF and thrombin. These molecular species were abundant in the most bioactive yoghurts fermented by S. thermophilus and L. acidophilus, which suggest that fermentation by these microorganisms increases the antithrombotic properties of ovine milk PL.
Collapse
|
27
|
Colaço M, Marques AP, Jesus S, Duarte A, Borges O. Safe-by-Design of Glucan Nanoparticles: Size Matters When Assessing the Immunotoxicity. Chem Res Toxicol 2020; 33:915-932. [PMID: 32138518 DOI: 10.1021/acs.chemrestox.9b00467] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glucan (from Alcaligenes faecalis) is a polymer composed of β-1,3-linked glucose residues, and it has been addressed in different medical fields, namely in nanotechnology, as a vaccine or a drug delivery system. However, due to their small size, nanomaterials may present new risks and uncertainties. Thus, this work aims to describe the production of glucan nanoparticles (NPs) with two different sizes, and to evaluate the influence of the NPs size on immunotoxicity. Results showed that, immediately after production, glucan NPs presented average sizes of 129.7 ± 2.5 and 355.4 ± 41.0 nm. Glucan NPs of 130 nm presented greater ability to decrease human peripheral blood mononuclear cells and macrophage viability and to induce reactive oxygen species production than glucan NPs of 355 nm. Both NP sizes caused hemolysis and induced a higher metabolic activity in lymphocytes, although the concentration required to observe such effect was lower for the 130 nm glucan NPs. Regarding pro-inflammatory cytokines, only the larger glucan NPs (355 nm) were able to induce the secretion of IL-6 and TNF-α, probably due to their recognition by dectin-1. This higher immunomodulatory effect of the larger NPs was also observed in its ability to stimulate the production of nitric oxide (NO) and IL-1β. On the contrary, a small amount of Glu 130 NPs inhibited NO production. In conclusion, on the safe-by-design of glucan NPs, the size of the particles should be an important critical quality attribute to guarantee the safety and effectiveness of the nanomedicine.
Collapse
Affiliation(s)
- Mariana Colaço
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-548 Coimbra, Portugal.,Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana P Marques
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Sandra Jesus
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Alana Duarte
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-548 Coimbra, Portugal.,Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Olga Borges
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-548 Coimbra, Portugal.,Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
28
|
The Effects of Oxidation on the Antithrombotic Properties of Tea Lipids Against PAF, Thrombin, Collagen, and ADP. Foods 2020; 9:foods9040385. [PMID: 32224958 PMCID: PMC7230539 DOI: 10.3390/foods9040385] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/12/2020] [Accepted: 03/23/2020] [Indexed: 01/14/2023] Open
Abstract
Tea provides health benefits, while oxidation is part of tea processing. The effect of oxidation on the antithrombotic properties of tea lipid extracts was evaluated for the first time. Total lipids (TL) extracted from fresh tea leaves and commercial tea powder, before and after 30–60 min of oxidation, were further fractionated into neutral lipids (NL) and polar lipids (PL). The antithrombotic bioactivities of tea TL, PL, and NL were assessed in human platelets against the inflammatory mediator platelet-activating factor. PL were further assessed against thrombin, collagen, and adenosine diphosphate, while their fatty acid composition was evaluated by GC-MS. PL exhibited the strongest antithrombotic effects against all platelet agonists and were rich in omega-3 polyunsaturated (ω3 PUFA) and monounsaturated (MUFA) fatty acids. A decline was observed in the antithrombotic activities, against all platelet agonists tested, for PL after 60 min of oxidation, and on their MUFA content, while their overall ω3 PUFA content and ω6/ω3 ratio remained unaffected. A synergistic effect between tea phenolic compounds and PL protects them against oxidation, which seems to be the rational for retaining the antithrombotic biofunctionalities of PL at a considerable favorable cardioprotective level, even after 60 min of tea oxidation. More studies are required to elucidate the mechanisms of the favorable synergism in tea PL extracts.
Collapse
|
29
|
Lordan R, Walsh A, Crispie F, Finnegan L, Demuru M, Tsoupras A, Cotter PD, Zabetakis I. Caprine milk fermentation enhances the antithrombotic properties of cheese polar lipids. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
30
|
Ngo T, Kim K, Bian Y, An GJ, Bae ON, Lim KM, Chung JH. Cyclocurcumin from Curcuma longa selectively inhibits shear stress-induced platelet aggregation. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103462] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
31
|
Tsoupras A, O'Keeffe E, Lordan R, Redfern S, Zabetakis I. Bioprospecting for Antithrombotic Polar Lipids from Salmon, Herring, and Boarfish By-Products. Foods 2019; 8:foods8090416. [PMID: 31540159 PMCID: PMC6769463 DOI: 10.3390/foods8090416] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 12/19/2022] Open
Abstract
Marine polar lipids (PLs) have exhibited promising cardioprotection. In this study, marine by-products such as salmon heads (SHs), their brain, eyes and main optic nerves (SBEON), and head-remnants after SBEON removal (RemSH), as well as herring fillets (HFs), herring heads (HHs) and minced boarfish (MB), were evaluated as potential sustainable sources of such bioactive PLs. The antithrombotic bioactivities of PLs derived from these marine by-products were assessed for the first time in human platelets against platelet-activating factor (PAF), thrombin, collagen, and adenosine diphosphate (ADP), while their fatty acid composition was evaluated by gas chromatography–mass spectrometry (GC-MS). PLs from all marine by-products tested possess strong antithrombotic activities against aggregation of human platelets induced by all platelet agonists tested. RemSH, SBEON, HHs, HFs, and MB exhibited strong anti-PAF effects, similar to those previously reported for salmon fillets. PLs from MB had the strongest anti-collagen effects and PLs from SHs and SBEON were the most active against thrombin and ADP. PLs from HHs had similar antithrombotic effects with those from HFs in all agonists. RemSH was less active in all agonists, suggesting that SBEON is the main source of bioactive PLs in SHs. All PLs were rich in omega-3 polyunsaturated fatty acids (ω3PUFA), such as docosahexaenoic acid (DHA) and eicosapentaenoic (EPA) acid, with favourable low values of the ω6/ω3 ratio. Salmon, herring, and boarfish by-products are rich sources of bioactive marine PLs with potent antithrombotic and cardioprotective properties.
Collapse
Affiliation(s)
- Alexandros Tsoupras
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland.
| | - Eoin O'Keeffe
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland.
| | - Ronan Lordan
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland.
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland.
| | - Shane Redfern
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland.
| | - Ioannis Zabetakis
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland.
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland.
| |
Collapse
|
32
|
Total, Neutral, and Polar Lipids of Brewing Ingredients, By-Products and Beer: Evaluation of Antithrombotic Activities. Foods 2019; 8:foods8050171. [PMID: 31137500 PMCID: PMC6560433 DOI: 10.3390/foods8050171] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/14/2019] [Accepted: 05/19/2019] [Indexed: 12/25/2022] Open
Abstract
The in vitro antithrombotic properties of polar lipid constituents of malted grain (MG), pelleted hops (PH), brewer’s spent grain (BSG), spent hops (SH), wort, and bottled beer from the same production line were assessed in human platelets. The total lipids (TL) were extracted according to the Bligh and Dyer method and further separated into the total neutral lipids (TNL) and total polar lipids (TPL) extracts by counter-current distribution. The TL, TNL, and TPL extracts of all samples were assessed for their ability to inhibit platelet-activating factor (PAF) and thrombin-induced human platelet aggregation. The raw materials, by-products, wort, and beer lipid extracts all exhibited antithrombotic properties against PAF and thrombin. However, the beer TPL exhibited the lowest IC50 values against PAF-induced (7.8 ± 3.9 µg) and thrombin-induced (4.3 ± 3.0 µg) platelet aggregation indicating that these polar lipids were the most antithrombotic. The lipid extracts tended to be more bioactive against the thrombin pathway. The fatty acid content of all the TPL extracts were assessed using GC-MS. The fatty acid composition of the most bioactive TPL extracts, the wort and the beer, shared similar fatty acid profiles. Indeed, it was noted that fermentation seems to play a role in increasing the antithrombotic properties of polar lipids against PAF and thrombin by moderately altering the polar lipid fatty acid composition. Furthermore, the use of brewing by-products as a source of functional cardioprotective lipids warrants further investigation and valorisation.
Collapse
|
33
|
Lordan R, Walsh AM, Crispie F, Finnegan L, Cotter PD, Zabetakis I. The effect of ovine milk fermentation on the antithrombotic properties of polar lipids. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.01.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|