1
|
Hartmann FSF, Grégoire M, Renzi F, Delvigne F. Single cell technologies for monitoring protein secretion heterogeneity. Trends Biotechnol 2024; 42:1144-1160. [PMID: 38480024 DOI: 10.1016/j.tibtech.2024.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 09/07/2024]
Abstract
Cell-to-cell heterogeneity presents challenges across various fields, from biomedicine to bioproduction, where precise cellular responses are vital. While single cell technologies have significantly enhanced our understanding of population heterogeneity, the predominant focus has been on monitoring intracellular compounds. Recognizing the added complexity introduced by the secretion system, in this review, we first provide a systematic overview of the distinct steps necessary for driving protein secretion. We discuss the various sources of noise acting from the synthesized preprotein to the secretory protein released based on a Gram-positive cellular system as a model. We next explore the applicability of single cell technologies for monitoring protein secretion throughout these functional stages. We also emphasize the importance of applying these single cell technologies for monitoring protein secretion during bioproduction.
Collapse
Affiliation(s)
- Fabian Stefan Franz Hartmann
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Mélanie Grégoire
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium; Research Unit in Biology of Microorganisms (URBM), Biology Department, Narilis, University of Namur, Namur, Belgium
| | - Francesco Renzi
- Research Unit in Biology of Microorganisms (URBM), Biology Department, Narilis, University of Namur, Namur, Belgium
| | - Frank Delvigne
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.
| |
Collapse
|
2
|
Bramkamp M, Scheffers DJ. Bacterial membrane dynamics: Compartmentalization and repair. Mol Microbiol 2023; 120:490-501. [PMID: 37243899 DOI: 10.1111/mmi.15077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/29/2023]
Abstract
In every bacterial cell, the plasma membrane plays a key role in viability as it forms a selective barrier between the inside of the cell and its environment. This barrier function depends on the physical state of the lipid bilayer and the proteins embedded or associated with the bilayer. Over the past decade or so, it has become apparent that many membrane-organizing proteins and principles, which were described in eukaryote systems, are ubiquitous and play important roles in bacterial cells. In this minireview, we focus on the enigmatic roles of bacterial flotillins in membrane compartmentalization and bacterial dynamins and ESCRT-like systems in membrane repair and remodeling.
Collapse
Affiliation(s)
- Marc Bramkamp
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Dirk-Jan Scheffers
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
3
|
Fishov I, Namboodiri S. A nonstop thrill ride from genes to the assembly of the T3SS injectisome. Nat Commun 2023; 14:1973. [PMID: 37031218 PMCID: PMC10082841 DOI: 10.1038/s41467-023-37753-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/10/2023] Open
Affiliation(s)
- Itzhak Fishov
- Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel.
| | - Sharanya Namboodiri
- Department of Physics, Ben Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
4
|
Greening C, Lithgow T. Formation and function of bacterial organelles. Nat Rev Microbiol 2020; 18:677-689. [PMID: 32710089 DOI: 10.1038/s41579-020-0413-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2020] [Indexed: 01/28/2023]
Abstract
Advances in imaging technologies have revealed that many bacteria possess organelles with a proteomically defined lumen and a macromolecular boundary. Some are bound by a lipid bilayer (such as thylakoids, magnetosomes and anammoxosomes), whereas others are defined by a lipid monolayer (such as lipid bodies), a proteinaceous coat (such as carboxysomes) or have a phase-defined boundary (such as nucleolus-like compartments). These diverse organelles have various metabolic and physiological functions, facilitating adaptation to different environments and driving the evolution of cellular complexity. This Review highlights that, despite the diversity of reported organelles, some unifying concepts underlie their formation, structure and function. Bacteria have fundamental mechanisms of organelle formation, through which conserved processes can form distinct organelles in different species depending on the proteins recruited to the luminal space and the boundary of the organelle. These complex subcellular compartments provide evolutionary advantages as well as enabling metabolic specialization, biogeochemical processes and biotechnological advances. Growing evidence suggests that the presence of organelles is the rule, rather than the exception, in bacterial cells.
Collapse
Affiliation(s)
- Chris Greening
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia.
| | - Trevor Lithgow
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia.
| |
Collapse
|
5
|
Jamin N, Garrigos M, Jaxel C, Frelet-Barrand A, Orlowski S. Ectopic Neo-Formed Intracellular Membranes in Escherichia coli: A Response to Membrane Protein-Induced Stress Involving Membrane Curvature and Domains. Biomolecules 2018; 8:biom8030088. [PMID: 30181516 PMCID: PMC6163855 DOI: 10.3390/biom8030088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/31/2018] [Accepted: 08/31/2018] [Indexed: 11/16/2022] Open
Abstract
Bacterial cytoplasmic membrane stress induced by the overexpression of membrane proteins at high levels can lead to formation of ectopic intracellular membranes. In this review, we report the various observations of such membranes in Escherichia coli, compare their morphological and biochemical characterizations, and we analyze the underlying molecular processes leading to their formation. Actually, these membranes display either vesicular or tubular structures, are separated or connected to the cytoplasmic membrane, present mono- or polydispersed sizes and shapes, and possess ordered or disordered arrangements. Moreover, their composition differs from that of the cytoplasmic membrane, with high amounts of the overexpressed membrane protein and altered lipid-to-protein ratio and cardiolipin content. These data reveal the importance of membrane domains, based on local specific lipid⁻protein and protein⁻protein interactions, with both being crucial for local membrane curvature generation, and they highlight the strong influence of protein structure. Indeed, whether the cylindrically or spherically curvature-active proteins are actively curvogenic or passively curvophilic, the underlying molecular scenarios are different and can be correlated with the morphological features of the neo-formed internal membranes. Delineating these molecular mechanisms is highly desirable for a better understanding of protein⁻lipid interactions within membrane domains, and for optimization of high-level membrane protein production in E. coli.
Collapse
Affiliation(s)
- Nadège Jamin
- Institute for Integrative Biology of the Cell (I2BC), CEA/Institut des Sciences du Vivant Fréderic-Joliot/SB2SM, CNRS UMR 9198, Université Paris-Sud, Université Paris-Saclay, 91191 Gif sur Yvette CEDEX, France.
| | - Manuel Garrigos
- Institute for Integrative Biology of the Cell (I2BC), CEA/Institut des Sciences du Vivant Fréderic-Joliot/SB2SM, CNRS UMR 9198, Université Paris-Sud, Université Paris-Saclay, 91191 Gif sur Yvette CEDEX, France.
| | - Christine Jaxel
- Institute for Integrative Biology of the Cell (I2BC), CEA/Institut des Sciences du Vivant Fréderic-Joliot/SB2SM, CNRS UMR 9198, Université Paris-Sud, Université Paris-Saclay, 91191 Gif sur Yvette CEDEX, France.
| | - Annie Frelet-Barrand
- Institut FEMTO-ST, UMR CNRS 6174, Université Bourgogne Franche-Comté, 15B avenue des Montboucons, 25030 Besançon CEDEX, France.
| | - Stéphane Orlowski
- Institute for Integrative Biology of the Cell (I2BC), CEA/Institut des Sciences du Vivant Fréderic-Joliot/SB2SM, CNRS UMR 9198, Université Paris-Sud, Université Paris-Saclay, 91191 Gif sur Yvette CEDEX, France.
| |
Collapse
|
6
|
Romantsov T, Culham DE, Caplan T, Garner J, Hodges RS, Wood JM. ProP‐ProP and ProP‐phospholipid interactions determine the subcellular distribution of osmosensing transporter ProP inEscherichia coli. Mol Microbiol 2016; 103:469-482. [DOI: 10.1111/mmi.13569] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Tatyana Romantsov
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelph ON CanadaN1G2W1
| | - Doreen E. Culham
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelph ON CanadaN1G2W1
| | - Tavia Caplan
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelph ON CanadaN1G2W1
| | - Jennifer Garner
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelph ON CanadaN1G2W1
| | - Robert S. Hodges
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Denver, School of MedicineP.O. Box 6511, Mail Stop 8101Aurora CO80045, USA
| | - Janet M. Wood
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelph ON CanadaN1G2W1
| |
Collapse
|
7
|
Rashid R, Veleba M, Kline KA. Focal Targeting of the Bacterial Envelope by Antimicrobial Peptides. Front Cell Dev Biol 2016; 4:55. [PMID: 27376064 PMCID: PMC4894902 DOI: 10.3389/fcell.2016.00055] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/23/2016] [Indexed: 01/15/2023] Open
Abstract
Antimicrobial peptides (AMPs) are utilized by both eukaryotic and prokaryotic organisms. AMPs such as the human beta defensins, human neutrophil peptides, human cathelicidin, and many bacterial bacteriocins are cationic and capable of binding to anionic regions of the bacterial surface. Cationic AMPs (CAMPs) target anionic lipids [e.g., phosphatidylglycerol (PG) and cardiolipins (CL)] in the cell membrane and anionic components [e.g., lipopolysaccharide (LPS) and lipoteichoic acid (LTA)] of the cell envelope. Bacteria have evolved mechanisms to modify these same targets in order to resist CAMP killing, e.g., lysinylation of PG to yield cationic lysyl-PG and alanylation of LTA. Since CAMPs offer a promising therapeutic alternative to conventional antibiotics, which are becoming less effective due to rapidly emerging antibiotic resistance, there is a strong need to improve our understanding about the AMP mechanism of action. Recent literature suggests that AMPs often interact with the bacterial cell envelope at discrete foci. Here we review recent AMP literature, with an emphasis on focal interactions with bacteria, including (1) CAMP disruption mechanisms, (2) delocalization of membrane proteins and lipids by CAMPs, and (3) CAMP sensing systems and resistance mechanisms. We conclude with new approaches for studying the bacterial membrane, e.g., lipidomics, high resolution imaging, and non-detergent-based membrane domain extraction.
Collapse
Affiliation(s)
- Rafi Rashid
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University Singapore, Singapore
| | - Mark Veleba
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University Singapore, Singapore
| | - Kimberly A Kline
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University Singapore, Singapore
| |
Collapse
|
8
|
Sautrey G, El Khoury M, Dos Santos AG, Zimmermann L, Deleu M, Lins L, Décout JL, Mingeot-Leclercq MP. Negatively Charged Lipids as a Potential Target for New Amphiphilic Aminoglycoside Antibiotics: A BIOPHYSICAL STUDY. J Biol Chem 2016; 291:13864-74. [PMID: 27189936 DOI: 10.1074/jbc.m115.665364] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Indexed: 11/06/2022] Open
Abstract
Bacterial membranes are highly organized, containing specific microdomains that facilitate distinct protein and lipid assemblies. Evidence suggests that cardiolipin molecules segregate into such microdomains, probably conferring a negative curvature to the inner plasma membrane during membrane fission upon cell division. 3',6-Dinonyl neamine is an amphiphilic aminoglycoside derivative active against Pseudomonas aeruginosa, including strains resistant to colistin. The mechanisms involved at the molecular level were identified using lipid models (large unilamellar vesicles, giant unilamelllar vesicles, and lipid monolayers) that mimic the inner membrane of P. aeruginosa The study demonstrated the interaction of 3',6-dinonyl neamine with cardiolipin and phosphatidylglycerol, two negatively charged lipids from inner bacterial membranes. This interaction induced membrane permeabilization and depolarization. Lateral segregation of cardiolipin and membrane hemifusion would be critical for explaining the effects induced on lipid membranes by amphiphilic aminoglycoside antibiotics. The findings contribute to an improved understanding of how amphiphilic aminoglycoside antibiotics that bind to negatively charged lipids like cardiolipin could be promising antibacterial compounds.
Collapse
Affiliation(s)
- Guillaume Sautrey
- From the Université Catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, Avenue E. Mounier 73, UCL B1.73.05 Bruxelles, Belgium
| | - Micheline El Khoury
- From the Université Catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, Avenue E. Mounier 73, UCL B1.73.05 Bruxelles, Belgium
| | - Andreia Giro Dos Santos
- From the Université Catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, Avenue E. Mounier 73, UCL B1.73.05 Bruxelles, Belgium
| | - Louis Zimmermann
- the Département de Pharmacochimie Moléculaire, Université de Grenoble, Alpes/CNRS, UMR 5063, ICMG FR 2607, 470 Rue de la Chimie, BP 53, F-38041 Grenoble, France, and
| | - Magali Deleu
- the Laboratoire de Biophysique Moleculaire aux Interfaces, Université de Liège, Gembloux Agro-Bio Tech, Passage des Déportés, 2, B-5030 Gembloux, Belgium
| | - Laurence Lins
- the Laboratoire de Biophysique Moleculaire aux Interfaces, Université de Liège, Gembloux Agro-Bio Tech, Passage des Déportés, 2, B-5030 Gembloux, Belgium
| | - Jean-Luc Décout
- the Département de Pharmacochimie Moléculaire, Université de Grenoble, Alpes/CNRS, UMR 5063, ICMG FR 2607, 470 Rue de la Chimie, BP 53, F-38041 Grenoble, France, and
| | - Marie-Paule Mingeot-Leclercq
- From the Université Catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, Avenue E. Mounier 73, UCL B1.73.05 Bruxelles, Belgium,
| |
Collapse
|
9
|
Wessels HJCT, de Almeida NM, Kartal B, Keltjens JT. Bacterial Electron Transfer Chains Primed by Proteomics. Adv Microb Physiol 2016; 68:219-352. [PMID: 27134025 DOI: 10.1016/bs.ampbs.2016.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Electron transport phosphorylation is the central mechanism for most prokaryotic species to harvest energy released in the respiration of their substrates as ATP. Microorganisms have evolved incredible variations on this principle, most of these we perhaps do not know, considering that only a fraction of the microbial richness is known. Besides these variations, microbial species may show substantial versatility in using respiratory systems. In connection herewith, regulatory mechanisms control the expression of these respiratory enzyme systems and their assembly at the translational and posttranslational levels, to optimally accommodate changes in the supply of their energy substrates. Here, we present an overview of methods and techniques from the field of proteomics to explore bacterial electron transfer chains and their regulation at levels ranging from the whole organism down to the Ångstrom scales of protein structures. From the survey of the literature on this subject, it is concluded that proteomics, indeed, has substantially contributed to our comprehending of bacterial respiratory mechanisms, often in elegant combinations with genetic and biochemical approaches. However, we also note that advanced proteomics offers a wealth of opportunities, which have not been exploited at all, or at best underexploited in hypothesis-driving and hypothesis-driven research on bacterial bioenergetics. Examples obtained from the related area of mitochondrial oxidative phosphorylation research, where the application of advanced proteomics is more common, may illustrate these opportunities.
Collapse
Affiliation(s)
- H J C T Wessels
- Nijmegen Center for Mitochondrial Disorders, Radboud Proteomics Centre, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - N M de Almeida
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - B Kartal
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands; Laboratory of Microbiology, Ghent University, Ghent, Belgium
| | - J T Keltjens
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|
10
|
Kusaka J, Shuto S, Imai Y, Ishikawa K, Saito T, Natori K, Matsuoka S, Hara H, Matsumoto K. Septal localization by membrane targeting sequences and a conserved sequence essential for activity at the COOH-terminus of Bacillus subtilis cardiolipin synthase. Res Microbiol 2015; 167:202-14. [PMID: 26708983 DOI: 10.1016/j.resmic.2015.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 11/23/2015] [Accepted: 11/27/2015] [Indexed: 11/16/2022]
Abstract
The acidic phospholipid cardiolipin (CL) is localized on polar and septal membranes and plays an important physiological role in Bacillus subtilis cells. ClsA, the enzyme responsible for CL synthesis, is also localized on septal membranes. We found that GFP fusion proteins of the enzyme with NH2-terminal and internal deletions retained septal localization. However, derivatives with deletions starting from the COOH-terminus (Leu482) ceased to localize to the septum once the deletion passed the Ile residue at 448, indicating that the sequence responsible for septal localization is confined within a short distance from the COOH-terminus. Two sequences, Ile436-Leu450 and Leu466-Leu478, are predicted to individually form an amphipathic α-helix. This configuration is known as a membrane targeting sequence (MTS) and we therefore refer to them as MTS2 and MTS1, respectively. Either one has the ability to affect septal localization, and each of these sequences by itself localizes to the septum. Membrane association of the constructs of this enzyme containing the MTSs was verified by subcellular fractionation of the cells. CL synthesis, in contrast, was abolished after deleting just the last residue, Leu482, in the COOH-terminal four amino acid residue sequence, Ser-Pro-Ile-Leu, which is highly conserved among bacterial CL synthases.
Collapse
Affiliation(s)
- Jin Kusaka
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama 338-8570, Japan
| | - Satoshi Shuto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama 338-8570, Japan
| | - Yukiko Imai
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama 338-8570, Japan
| | - Kazuki Ishikawa
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama 338-8570, Japan
| | - Tomo Saito
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama 338-8570, Japan
| | - Kohei Natori
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama 338-8570, Japan
| | - Satoshi Matsuoka
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama 338-8570, Japan
| | - Hiroshi Hara
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama 338-8570, Japan
| | - Kouji Matsumoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama 338-8570, Japan.
| |
Collapse
|
11
|
Abstract
Prokaryotes, by definition, do not segregate their genetic material from the cytoplasm. Thus, there is no barrier preventing direct interactions between chromosomal DNA and the plasma membrane. The possibility of such interactions in bacteria was proposed long ago and supported by early electron microscopy and cell fractionation studies. However, the identification and characterization of chromosome-membrane interactions have been slow in coming. Recently, this subject has seen more progress, driven by advances in imaging techniques and in the exploration of diverse cellular processes. A number of loci have been identified in specific bacteria that depend on interactions with the membrane for their function. In addition, there is growing support for a general mechanism of DNA-membrane contacts based on transertion-concurrent transcription, translation, and insertion of membrane proteins. This review summarizes the history and recent results of chromosome-membrane associations and discusses the known and theorized consequences of these interactions in the bacterial cell.
Collapse
Affiliation(s)
- Manuela Roggiani
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | - Mark Goulian
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| |
Collapse
|
12
|
Matsumoto K, Hara H, Fishov I, Mileykovskaya E, Norris V. The membrane: transertion as an organizing principle in membrane heterogeneity. Front Microbiol 2015; 6:572. [PMID: 26124753 PMCID: PMC4464175 DOI: 10.3389/fmicb.2015.00572] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/25/2015] [Indexed: 01/05/2023] Open
Abstract
The bacterial membrane exhibits a significantly heterogeneous distribution of lipids and proteins. This heterogeneity results mainly from lipid-lipid, protein-protein, and lipid-protein associations which are orchestrated by the coupled transcription, translation and insertion of nascent proteins into and through membrane (transertion). Transertion is central not only to the individual assembly and disassembly of large physically linked groups of macromolecules (alias hyperstructures) but also to the interactions between these hyperstructures. We review here these interactions in the context of the processes in Bacillus subtilis and Escherichia coli of nutrient sensing, membrane synthesis, cytoskeletal dynamics, DNA replication, chromosome segregation, and cell division.
Collapse
Affiliation(s)
- Kouji Matsumoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, SaitamaJapan
| | - Hiroshi Hara
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, SaitamaJapan
| | - Itzhak Fishov
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-ShevaIsrael
| | - Eugenia Mileykovskaya
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at HoustonHouston, TX, USA
| | - Vic Norris
- Laboratory of Microbiology Signals and Microenvironment EA 4312, Department of Science, University of Rouen, Mont-Saint-AignanFrance
| |
Collapse
|
13
|
Luévano-Martínez LA, Forni MF, dos Santos VT, Souza-Pinto NC, Kowaltowski AJ. Cardiolipin is a key determinant for mtDNA stability and segregation during mitochondrial stress. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:587-98. [PMID: 25843549 DOI: 10.1016/j.bbabio.2015.03.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/16/2015] [Accepted: 03/29/2015] [Indexed: 01/05/2023]
Abstract
Mitochondria play a key role in adaptation during stressing situations. Cardiolipin, the main anionic phospholipid in mitochondrial membranes, is expected to be a determinant in this adaptive mechanism since it modulates the activity of most membrane proteins. Here, we used Saccharomyces cerevisiae subjected to conditions that affect mitochondrial metabolism as a model to determine the possible role of cardiolipin in stress adaptation. Interestingly, we found that thermal stress promotes a 30% increase in the cardiolipin content and modifies the physical state of mitochondrial membranes. These changes have effects on mtDNA stability, adapting cells to thermal stress. Conversely, this effect is cardiolipin-dependent since a cardiolipin synthase-null mutant strain is unable to adapt to thermal stress as observed by a 60% increase of cells lacking mtDNA (ρ0). Interestingly, we found that the loss of cardiolipin specifically affects the segregation of mtDNA to daughter cells, leading to a respiratory deficient phenotype after replication. We also provide evidence that mtDNA physically interacts with cardiolipin both in S. cerevisiae and in mammalian mitochondria. Overall, our results demonstrate that the mitochondrial lipid cardiolipin is a key determinant in the maintenance of mtDNA stability and segregation.
Collapse
Affiliation(s)
- Luis Alberto Luévano-Martínez
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Cidade Universitária, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil.
| | - Maria Fernanda Forni
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Cidade Universitária, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Valquiria Tiago dos Santos
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Cidade Universitária, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Nadja C Souza-Pinto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Cidade Universitária, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Cidade Universitária, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
14
|
Norris V, Reusch RN, Igarashi K, Root-Bernstein R. Molecular complementarity between simple, universal molecules and ions limited phenotype space in the precursors of cells. Biol Direct 2014; 10:28. [PMID: 25470982 PMCID: PMC4264330 DOI: 10.1186/s13062-014-0028-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 11/24/2014] [Indexed: 01/29/2023] Open
Abstract
Background Fundamental problems faced by the protocells and their modern descendants include how to go from one phenotypic state to another; escape from a basin of attraction in the space of phenotypes; reconcile conflicting growth and survival strategies (and thereby live on ‘the scales of equilibria’); and create a coherent, reproducible phenotype from a multitude of constituents. Presentation of the hypothesis The solutions to these problems are likely to be found with the organic and inorganic molecules and inorganic ions that constituted protocells, which we term SUMIs for Simple Universal Molecules and Ions. These SUMIs probably included polyphosphate (PolyP) as a source of energy and of phosphate; poly-(R)-3-hydroxybutyrate (PHB) as a source of carbon and as a transporter in association with PolyP; polyamines as a source of nitrogen; lipids as precursors of membranes; as well as peptides, nucleic acids, and calcium. Here, we explore the hypothesis that the direct interactions between PHB, PolyP, polyamines and lipids – modulated by calcium – played a central role in solving the fundamental problems faced by early and modern cells. Testing the hypothesis We review evidence that SUMIs (1) were abundant and available to protocells; (2) are widespread in modern cells; (3) interact with one another and other cellular constituents to create structures with new functions surprisingly similar to those of proteins and RNA; (4) are essential to creating coherent phenotypes in modern bacteria. SUMIs are therefore natural candidates for reducing the immensity of phenotype space and making the transition from a “primordial soup” to living cells. Implications of the hypothesis We discuss the relevance of the SUMIs and their interactions to the ideas of molecular complementarity, composomes (molecular aggregates with hereditary properties based on molecular complementarity), and a prebiotic ecology of co-evolving populations of composomes. In particular, we propose that SUMIs might limit the initial phenotype space of composomes in a coherent way. As examples, we propose that acidocalcisomes arose from interactions and self-selection among SUMIs and that the phosphorylation of proteins in modern cells had its origin in the covalent modification of proteins by PHB. Reviewers This article was reviewed by Doron Lancet and Kepa Ruiz-Mirazo.
Collapse
|
15
|
Chai Q, Singh B, Peisker K, Metzendorf N, Ge X, Dasgupta S, Sanyal S. Organization of ribosomes and nucleoids in Escherichia coli cells during growth and in quiescence. J Biol Chem 2014; 289:11342-11352. [PMID: 24599955 DOI: 10.1074/jbc.m114.557348] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have examined the distribution of ribosomes and nucleoids in live Escherichia coli cells under conditions of growth, division, and in quiescence. In exponentially growing cells translating ribosomes are interspersed among and around the nucleoid lobes, appearing as alternative bands under a fluorescence microscope. In contrast, inactive ribosomes either in stationary phase or after treatment with translation inhibitors such as chloramphenicol, tetracycline, and streptomycin gather predominantly at the cell poles and boundaries with concomitant compaction of the nucleoid. However, under all conditions, spatial segregation of the ribosomes and the nucleoids is well maintained. In dividing cells, ribosomes accumulate on both sides of the FtsZ ring at the mid cell. However, the distribution of the ribosomes among the new daughter cells is often unequal. Both the shape of the nucleoid and the pattern of ribosome distribution are also modified when the cells are exposed to rifampicin (transcription inhibitor), nalidixic acid (gyrase inhibitor), or A22 (MreB-cytoskeleton disruptor). Thus we conclude that the intracellular organization of the ribosomes and the nucleoids in bacteria are dynamic and critically dependent on cellular growth processes (replication, transcription, and translation) as well as on the integrity of the MreB cytoskeleton.
Collapse
Affiliation(s)
- Qian Chai
- Department of Cell and Molecular Biology, Uppsala University, Box-596, BMC, 75124, Uppsala, Sweden
| | - Bhupender Singh
- Department of Cell and Molecular Biology, Uppsala University, Box-596, BMC, 75124, Uppsala, Sweden
| | - Kristin Peisker
- Department of Cell and Molecular Biology, Uppsala University, Box-596, BMC, 75124, Uppsala, Sweden
| | - Nicole Metzendorf
- Department of Cell and Molecular Biology, Uppsala University, Box-596, BMC, 75124, Uppsala, Sweden
| | - Xueliang Ge
- Department of Cell and Molecular Biology, Uppsala University, Box-596, BMC, 75124, Uppsala, Sweden
| | - Santanu Dasgupta
- Department of Cell and Molecular Biology, Uppsala University, Box-596, BMC, 75124, Uppsala, Sweden
| | - Suparna Sanyal
- Department of Cell and Molecular Biology, Uppsala University, Box-596, BMC, 75124, Uppsala, Sweden.
| |
Collapse
|
16
|
Kannaiah S, Amster-Choder O. Protein targeting via mRNA in bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:1457-65. [PMID: 24263243 DOI: 10.1016/j.bbamcr.2013.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 11/09/2013] [Accepted: 11/11/2013] [Indexed: 01/10/2023]
Abstract
Proteins of all living organisms must reach their subcellular destination to sustain the cell structure and function. The proteins are transported to one of the cellular compartments, inserted into the membrane, or secreted across the membrane to the extracellular milieu. Cells have developed various mechanisms to transport proteins across membranes, among them localized translation. Evidence for targeting of Messenger RNA for the sake of translation of their respective protein products at specific subcellular sites in many eukaryotic model organisms have been accumulating in recent years. Cis-acting RNA localizing elements, termed RNA zip-codes, which are embedded within the mRNA sequence, are recognized by RNA-binding proteins, which in turn interact with motor proteins, thus coordinating the intracellular transport of the mRNA transcripts. Despite the rareness of conventional organelles, first and foremost a nucleus, pieces of evidence for mRNA localization to specific subcellular domains, where their protein products function, have also been obtained for prokaryotes. Although the underlying mechanisms for transcript localization in bacteria are yet to be unraveled, it is now obvious that intracellular localization of mRNA is a common mechanism to spatially localize proteins in both eukaryotes and prokaryotes. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Shanmugapriya Kannaiah
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University - Faculty of Medicine, P.O.Box 12272, Jerusalem 91120, Israel
| | - Orna Amster-Choder
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University - Faculty of Medicine, P.O.Box 12272, Jerusalem 91120, Israel.
| |
Collapse
|
17
|
Duneau JP, Sturgis JN. Lateral organization of biological membranes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2013; 42:843-50. [DOI: 10.1007/s00249-013-0933-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/13/2013] [Accepted: 09/26/2013] [Indexed: 11/24/2022]
|
18
|
Norris V, Nana GG, Audinot JN. New approaches to the problem of generating coherent, reproducible phenotypes. Theory Biosci 2013; 133:47-61. [PMID: 23794321 DOI: 10.1007/s12064-013-0185-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 06/03/2013] [Indexed: 12/01/2022]
Abstract
Fundamental, unresolved questions in biology include how a bacterium generates coherent phenotypes, how a population of bacteria generates a coherent set of such phenotypes, how the cell cycle is regulated and how life arose. To try to help answer these questions, we have developed the concepts of hyperstructures, competitive coherence and life on the scales of equilibria. Hyperstructures are large assemblies of macromolecules that perform functions. Competitive coherence describes the way in which organisations such as cells select a subset of their constituents to be active in determining their behaviour; this selection results from a competition between a process that is responsible for a historical coherence and another process responsible for coherence with the current environment. Life on the scales of equilibria describes how bacteria depend on the cell cycle to negotiate phenotype space and, in particular, to satisfy the conflicting constraints of having to grow in favourable conditions so as to reproduce yet not grow in hostile conditions so as to survive. Both competitive coherence and life on the scales deal with the problem of reconciling conflicting constraints. Here, we bring together these concepts in the common framework of hyperstructures and make predictions that may be tested using a learning program, Coco, and secondary ion mass spectrometry.
Collapse
Affiliation(s)
- Vic Norris
- Theoretical Biology Unit, University of Rouen, 76821, Mont Saint Aignan, France,
| | | | | |
Collapse
|
19
|
Bach JN, Bramkamp M. Flotillins functionally organize the bacterial membrane. Mol Microbiol 2013; 88:1205-17. [PMID: 23651456 DOI: 10.1111/mmi.12252] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2013] [Indexed: 01/24/2023]
Abstract
Proteins and lipids are heterogeneously distributed in biological membranes. The correct function of membrane proteins depends on spatiotemporal organization into defined membrane areas, called lipid domains or rafts. Lipid microdomains are therefore thought to assist compartmentalization of membranes. However, how lipid and protein assemblies are organized and whether proteins are actively involved in these processes remains poorly understood. We now have identified flotillins to be responsible for lateral segregation of defined membrane domains in the model organism Bacillus subtilis. We show that flotillins form large, dynamic assemblies that are able to influence membrane fluidity and prevent condensation of Laurdan stained membrane regions. Absence of flotillins in vivo leads to coalescence of distinct domains of high membrane order and, hence, loss of flotillins in the bacterial plasma-membrane reduces membrane heterogeneity. We show that flotillins interact with various proteins involved in protein secretion, cell wall metabolism, transport and membrane-related signalling processes. Importantly, maintenance of membrane heterogeneity is critical for vital cellular processes such as protein secretion.
Collapse
Affiliation(s)
- Juri Niño Bach
- Department of Biology I, Ludwig-Maximilians-University, Munich, Großhaderner Str. 2-4, 82152, Planegg-Martinsried, Germany
| | | |
Collapse
|
20
|
Norris V, Merieau A. Plasmids as scribbling pads for operon formation and propagation. Res Microbiol 2013; 164:779-87. [PMID: 23587635 DOI: 10.1016/j.resmic.2013.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 04/01/2013] [Indexed: 12/31/2022]
Abstract
Many bacterial genes are in operons and the process whereby operons are formed is therefore fundamental. To help elucidate this process, we propose in the Scribbling Pad hypothesis that bacteria have been constantly using plasmids for genetic experimentation and, in particular, for the construction of operons. This hypothesis simultaneously solves the problems of the creation of operons and the way operons are propagated. We cite results in the literature to support the hypothesis and make experimental predictions to test it.
Collapse
Affiliation(s)
- Vic Norris
- Theoretical Biology Unit, Department of Biology, University of Rouen, 76821 Mont Saint Aignan cedex, France.
| | | |
Collapse
|
21
|
Norris V, Amar P. Chromosome Replication in Escherichia coli: Life on the Scales. Life (Basel) 2012; 2:286-312. [PMID: 25371267 PMCID: PMC4187155 DOI: 10.3390/life2040286] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 10/01/2012] [Accepted: 10/15/2012] [Indexed: 12/22/2022] Open
Abstract
At all levels of Life, systems evolve on the 'scales of equilibria'. At the level of bacteria, the individual cell must favor one of two opposing strategies and either take risks to grow or avoid risks to survive. It has been proposed in the Dualism hypothesis that the growth and survival strategies depend on non-equilibrium and equilibrium hyperstructures, respectively. It has been further proposed that the cell cycle itself is the way cells manage to balance the ratios of these types of hyperstructure so as to achieve the compromise solution of living on the two scales. Here, we attempt to re-interpret a major event, the initiation of chromosome replication in Escherichia coli, in the light of scales of equilibria. This entails thinking in terms of hyperstructures as responsible for intensity sensing and quantity sensing and how this sensing might help explain the role of the DnaA protein in initiation of replication. We outline experiments and an automaton approach to the cell cycle that should test and refine the scales concept.
Collapse
Affiliation(s)
- Vic Norris
- Theoretical Biology Unit, EA 3829, Department of Biology, University of Rouen, 76821, Mont Saint Aignan, France.
| | - Patrick Amar
- Laboratoire de Recherche en Informatique, Université Paris-Sud, and INRIA Saclay - Ile de France, AMIB Project, Orsay, France.
| |
Collapse
|