1
|
Chaudhary S, Ali Z, Mahfouz M. Molecular farming for sustainable production of clinical-grade antimicrobial peptides. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2282-2300. [PMID: 38685599 PMCID: PMC11258990 DOI: 10.1111/pbi.14344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 05/02/2024]
Abstract
Antimicrobial peptides (AMPs) are emerging as next-generation therapeutics due to their broad-spectrum activity against drug-resistant bacterial strains and their ability to eradicate biofilms, modulate immune responses, exert anti-inflammatory effects and improve disease management. They are produced through solid-phase peptide synthesis or in bacterial or yeast cells. Molecular farming, i.e. the production of biologics in plants, offers a low-cost, non-toxic, scalable and simple alternative platform to produce AMPs at a sustainable cost. In this review, we discuss the advantages of molecular farming for producing clinical-grade AMPs, advances in expression and purification systems and the cost advantage for industrial-scale production. We further review how 'green' production is filling the sustainability gap, streamlining patent and regulatory approvals and enabling successful clinical translations that demonstrate the future potential of AMPs produced by molecular farming. Finally, we discuss the regulatory challenges that need to be addressed to fully realize the potential of molecular farming-based AMP production for therapeutics.
Collapse
Affiliation(s)
- Shahid Chaudhary
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences4700 King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Zahir Ali
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences4700 King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Magdy Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences4700 King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| |
Collapse
|
2
|
Bönisch E, Blagodatskaya E, Dirzo R, Ferlian O, Fichtner A, Huang Y, Leonard SJ, Maestre FT, von Oheimb G, Ray T, Eisenhauer N. Mycorrhizal type and tree diversity affect foliar elemental pools and stoichiometry. THE NEW PHYTOLOGIST 2024; 242:1614-1629. [PMID: 38594212 DOI: 10.1111/nph.19732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/14/2024] [Indexed: 04/11/2024]
Abstract
Species-specific differences in nutrient acquisition strategies allow for complementary use of resources among plants in mixtures, which may be further shaped by mycorrhizal associations. However, empirical evidence of this potential role of mycorrhizae is scarce, particularly for tree communities. We investigated the impact of tree species richness and mycorrhizal types, arbuscular mycorrhizal fungi (AM) and ectomycorrhizal fungi (EM), on above- and belowground carbon (C), nitrogen (N), and phosphorus (P) dynamics. Soil and soil microbial biomass elemental dynamics showed weak responses to tree species richness and none to mycorrhizal type. However, foliar elemental concentrations, stoichiometry, and pools were significantly affected by both treatments. Tree species richness increased foliar C and P pools but not N pools. Additive partitioning analyses showed that net biodiversity effects of foliar C, N, P pools in EM tree communities were driven by selection effects, but in mixtures of both mycorrhizal types by complementarity effects. Furthermore, increased tree species richness reduced soil nitrate availability, over 2 yr. Our results indicate that positive effects of tree diversity on aboveground nutrient storage are mediated by complementary mycorrhizal strategies and highlight the importance of using mixtures composed of tree species with different types of mycorrhizae to achieve more multifunctional afforestation.
Collapse
Affiliation(s)
- Elisabeth Bönisch
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, 04103, Leipzig, Germany
| | - Evgenia Blagodatskaya
- Soil Ecology Department, Helmholtz-Centre for Environmental Research (UFZ), Theodor-Lieser-Str. 11, 06120, Halle, Germany
| | - Rodolfo Dirzo
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
- Department of Earth Systems Science, Stanford University, Stanford, CA, 94305, USA
| | - Olga Ferlian
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, 04103, Leipzig, Germany
| | - Andreas Fichtner
- Institute of Ecology, Leuphana University of Lüneburg, Universitätsallee 1, 21335, Lüneburg, Germany
| | - Yuanyuan Huang
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, 04103, Leipzig, Germany
| | - Samuel J Leonard
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
- Department of Earth Systems Science, Stanford University, Stanford, CA, 94305, USA
| | - Fernando T Maestre
- Environmental Sciences and Engineering, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Goddert von Oheimb
- Institute of General Ecology and Environmental Protection, TU Dresden University of Technology, Pienner Straße 7, 01737, Tharandt, Germany
| | - Tama Ray
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
- Institute of General Ecology and Environmental Protection, TU Dresden University of Technology, Pienner Straße 7, 01737, Tharandt, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, 06108, Halle (Saale), Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, 04103, Leipzig, Germany
| |
Collapse
|
3
|
Shi B, Wang X, Yang S, Chen H, Zhao Y, Shen J, Xie M, Huang B. Changes and driving factors of microbial community composition and functional groups during the decomposition of Pinus massoniana deadwood. Ecol Evol 2024; 14:e11210. [PMID: 38571805 PMCID: PMC10985386 DOI: 10.1002/ece3.11210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024] Open
Abstract
Clarifying changes in the microbial community in deadwood at different stages of decomposition is crucial for comprehending the role of deadwood in the biogeochemical processes and the sustainability of forest development. However, there have been no reports on the dynamics of microbial community during the decomposition of Pinus massoniana. We used the "space-for-time" substitution to analyze the characteristics of microbial community changes and the key influencing factors in the P. massoniana deadwood during different decomposition stages by 16S and ITS rRNA gene sequencing. The results suggest that the microbial community structure of the early decomposition (decay class I) was significantly different from the other decay classes, while the diversity and richness of the microbial community were the highest in the late decomposition (decay class V). The Linear Discriminant Analysis Effect Size analysis revealed that most bacterial and fungal taxa were significantly enriched in decay classes I and V deadwood. During the initial stages of decomposition, the relative abundance of the bacterial functional group responsible for carbohydrate metabolism was greater than the later stages. As decomposition progressed, the relative abundance of saprophytic fungi gradually decreased, and there was a shift in the comparative abundance of mixed saprophytic-symbiotic fungi from low to high before eventually decreasing. Total organic carbon, total nitrogen, carbon-to-nitrogen ratio, total potassium, total phenol, condensed tannin, lignin, and cellulose were significantly correlated with microbial community structure, with the carbon-to-nitrogen ratio having the greatest effect. Our results indicate that the physicochemical properties of deadwood, microbial community structural composition and functional group changes were related to the decay class, among which the carbon-to-nitrogen ratio may be an important factor affecting the composition and diversity of microbial communities.
Collapse
Affiliation(s)
- Bingyang Shi
- Forestry CollegeGuizhou UniversityGuiyangGuizhouChina
| | - Xiurong Wang
- Forestry CollegeGuizhou UniversityGuiyangGuizhouChina
| | - Shuoyuan Yang
- Forestry CollegeGuizhou UniversityGuiyangGuizhouChina
| | - Hongmei Chen
- Forestry CollegeGuizhou UniversityGuiyangGuizhouChina
| | - Yang Zhao
- Forestry CollegeGuizhou UniversityGuiyangGuizhouChina
| | - Junjie Shen
- Forestry CollegeGuizhou UniversityGuiyangGuizhouChina
| | - Meixuan Xie
- Forestry CollegeGuizhou UniversityGuiyangGuizhouChina
| | - Bufang Huang
- Forestry CollegeGuizhou UniversityGuiyangGuizhouChina
| |
Collapse
|
4
|
Meng WJ, Li YL, Qu ZL, Zhang YM, Liu B, Liu K, Gao ZW, Dong LN, Sun H. Fungal community structure shifts in litter degradation along forest succession induced by pine wilt disease. Microbiol Res 2024; 280:127588. [PMID: 38163390 DOI: 10.1016/j.micres.2023.127588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/28/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
Fungi play a crucial role in decomposing litter and facilitating the energy flow between aboveground plants and underground soil in forest ecosystems. However, our understanding how the fungal community involved in litter decomposition responds during forest succession, particularly in disease-driven succession, is still limited. This study investigated the activity of degrading enzyme, fungal community, and predicted function in litter after one year of decomposition in different types of forests during a forest succession gradient from coniferous to deciduous forest, induced by pine wilt disease. The results showed that the weight loss of needles/leaves and twigs did not change along the succession process, but twigs degraded faster than needles/leaves in both pure pine forest and mixed forest. In pure pine forest, peak activities of enzymes involved in carbon degradation (β-cellobiosidase, β-glucosidase, β-D-glucuronidase, β-xylosidase), nitrogen degradation (N-acetyl-glucosamidase), and organic phosphorus degradation (phosphatase) were observed in needles, which subsequently declined. The fungal diversity and evenness (Shannon's diversity and Shannon's evenness) dropped in twig from coniferous forest to mixed forest during the succession. The dominant phyla in needle/leaf and twig litters were Ascomycota (46.9%) and Basidiomycota (38.9%), with Lambertella pruni and Chalara hughesii identified as the most abundant indicator species. Gymnopus and Desmazierella showed positively correlations with most measured enzyme activities. Functionally, saprotrophs constituted the main trophic mode (47.65%), followed by Pathotroph-Saprotroph-Symbiotroph (30.95%) and Saprotroph-Symbiotroph (10.57%). The fungal community and predicted functional structures in both litter types shifted among different forest types along the succession. These findings indicate that the fungal community in litter decomposition responds differently to disease-induced succession, leading to significant shifts in both the fungal community structure and function.
Collapse
Affiliation(s)
- Wen-Jing Meng
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yi-Lin Li
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Zhao-Lei Qu
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yue-Mei Zhang
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Bing Liu
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; Yangzhou Polytechnic College, Yangzhou 225009, China
| | - Kang Liu
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Zi-Wen Gao
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Li-Na Dong
- Department of landscape management, Zhongshan Cemetery Administration Bureau, Nanjing 210037, China
| | - Hui Sun
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki 00790, Finland.
| |
Collapse
|
5
|
Liang X, Wan D, Tan L, Liu H. Dynamic changes of endophytic bacteria in the bark and leaves of medicinal plant Eucommia ulmoides in different seasons. Microbiol Res 2024; 280:127567. [PMID: 38103467 DOI: 10.1016/j.micres.2023.127567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
The bark and leaves of the Eucommia ulmoides Oliv. (E. ulmoides) have good medicinal value. Studies show endophytes play important roles in host medicinal plant secondary metabolite synthesis, with season being a key influencing factor. Therefore, we used 16 S rRNA to detect endophytic bacteria (EB) in E. ulmoides bark and leaves collected in winter, spring, summer, and autumn, and analyzed the contents of major active components respectively. The results showed that the species diversity and richness of EB of the E. ulmoides bark were higher than those of leaves in all seasons except fall. Among them, the higher species diversity and richness were found in the E. ulmoides bark in winter and spring. EB community structure differed significantly between medicinal tissues and seasons. Concurrently, the bark and leaves of E. ulmoides showed abundant characteristic EB across seasons. For active components, geniposidic acid showed a significant positive correlation with EB diversity and richness, while the opposite was true for aucubin. Additionally, some dominant EB exhibited close correlations with the accumulation of active components. Delftia, enriched in autumn, correlated significantly positively with aucubin. Notably, the impact of the same EB genera on active components differed across medicinal tissues. For example, Sphingomonas, enriched in summer, correlated significantly positively with pinoresinol diglucoside (PDG) in the bark, but with aucubin in the leaves. In summary, EB of E. ulmoides was demonstrated high seasonal dynamics and tissue specificity, with seasonal characteristic EB like Delftia and Sphingomonas correlating with the accumulation of active components in medicinal tissues.
Collapse
Affiliation(s)
- Xuejuan Liang
- Institute of Innovative Traditional Chinese Medications, Hunan Academy of Chinese Medicine, Changsha 410013, China
| | - Dan Wan
- Institute of Innovative Traditional Chinese Medications, Hunan Academy of Chinese Medicine, Changsha 410013, China
| | - Lei Tan
- Cili Meteorological Bureau, Zhangjiajie 410013, China
| | - Hao Liu
- Institute of Traditional Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha 410013, China.
| |
Collapse
|
6
|
Solanki AC, Gurjar NS, Sharma S, Wang Z, Kumar A, Solanki MK, Kumar Divvela P, Yadav K, Kashyap BK. Decoding seasonal changes: soil parameters and microbial communities in tropical dry deciduous forests. Front Microbiol 2024; 15:1258934. [PMID: 38440136 PMCID: PMC10910104 DOI: 10.3389/fmicb.2024.1258934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/31/2024] [Indexed: 03/06/2024] Open
Abstract
In dry deciduous tropical forests, both seasons (winter and summer) offer habitats that are essential ecologically. How these seasonal changes affect soil properties and microbial communities is not yet fully understood. This study aimed to investigate the influence of seasonal fluctuations on soil characteristics and microbial populations. The soil moisture content dramatically increases in the summer. However, the soil pH only gradually shifts from acidic to slightly neutral. During the summer, electrical conductivity (EC) values range from 0.62 to 1.03 ds m-1, in contrast to their decline in the winter. The levels of soil macronutrients and micronutrients increase during the summer, as does the quantity of soil organic carbon (SOC). A two-way ANOVA analysis reveals limited impacts of seasonal fluctuations and specific geographic locations on the amounts of accessible nitrogen (N) and phosphorus (P). Moreover, dehydrogenase, nitrate reductase, and urease activities rise in the summer, while chitinase, protease, and acid phosphatase activities are more pronounced in the winter. The soil microbes were identified in both seasons through 16S rRNA and ITS (Internal Transcribed Spacer) gene sequencing. Results revealed Proteobacteria and Ascomycota as predominant bacterial and fungal phyla. However, Bacillus, Pseudomonas, and Burkholderia are dominant bacterial genera, and Aspergillus, Alternaria, and Trichoderma are dominant fungal genera in the forest soil samples. Dominant bacterial and fungal genera may play a role in essential ecosystem services such as soil health management and nutrient cycling. In both seasons, clear relationships exist between soil properties, including pH, moisture, iron (Fe), zinc (Zn), and microbial diversity. Enzymatic activities and microbial shift relate positively with soil parameters. This study highlights robust soil-microbial interactions that persist mainly in the top layers of tropical dry deciduous forests in the summer and winter seasons. It provides insights into the responses of soil-microbial communities to seasonal changes, advancing our understanding of ecosystem dynamics and biodiversity preservation.
Collapse
Affiliation(s)
| | - Narendra Singh Gurjar
- Department of Soil Science and Agriculture Chemistry, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior, Madhya Pradesh, India
| | - Satish Sharma
- Department of Plant Pathology, B. M. College of Agriculture, Khandwa, Madhya Pradesh, India
| | - Zhen Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin, China
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Manoj Kumar Solanki
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, Madhya Pradesh, India
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | | | - Kajal Yadav
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Brijendra Kumar Kashyap
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi, Uttar Pradesh, India
| |
Collapse
|
7
|
Chen L, Wei Y, Li C, Zhao Y, Wei Y, Xue Y, Feng Q. Afforestation changed the fungal functional community of paddy fields and dry farmlands differently. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166758. [PMID: 37673251 DOI: 10.1016/j.scitotenv.2023.166758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
Afforestation currently makes a great contribution to carbon uptake in terrestrial ecosystems, while dramatically affects soil ecosystem functions too. Little is known, however, about the changes in soil fungal functional groups and their interactions following afforestation. Here, based on high-throughput sequencing and FUNGuild annotation, we investigated the functional characteristics of soil fungi as well as environmental factors in a watershed where paddy field and dry farmland were changed to eucalyptus plantation. The results showed that afforestation on paddy field resulted in greater changes in diversity, community structure and taxon interactions of fungal functional groups than afforestation on dry farmland. The most complex and distinctive community structure was found in eucalyptus plantation, as well as the greatest taxon interactions, and the lowest alpha-diversity of functional guilds of symbiotrophic fungi because of the dominant ectomycorrhizal fungi. Paddy field exhibited the highest proportion of saprotrophic fungi, but the lowest taxonomic diversity of saprotrophic and pathotrophic fungi. The taxonomic diversity of undefined saprotrophic fungi shaped the differences in community structure and network complexity between eucalyptus plantation and cropland. Limited cooperation within dominant fungi was the main reason for the establishment of a loose co-occurrence network in paddy field. From croplands to artificial forests, reduced soil pH boosted the taxonomic diversity of fungal functional groups. All of these findings suggested that afforestation may lead to an increase in the taxonomic diversity of soil fungal functional groups, which would further intensify the taxon interactions.
Collapse
Affiliation(s)
- Lijuan Chen
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yuxi Wei
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changsheng Li
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Plant Protection and Quarantine Station of Gansu Province, Lanzhou 730020, China
| | - Yinjun Zhao
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, School of Geography and Planning, Nanning Normal University, Nanning 530001, China
| | - Yongping Wei
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane 4072, Australia
| | - Yuanyuan Xue
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Feng
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
8
|
Wang Y, Hao J, Guo T, Zhao L, Chai B, Jia T. Fungal community characteristics and driving factors in Bothriochloa ischaemum litter in a copper mining area. Fungal Biol 2023; 127:1426-1438. [PMID: 37993254 DOI: 10.1016/j.funbio.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/23/2023] [Accepted: 10/27/2023] [Indexed: 11/24/2023]
Abstract
Among influencing biotic and abiotic factors, microorganisms predominate litter decomposition, playing an important role in maintaining the ecosystem material cycle. Bothriochloa ischaemum was the dominant plant species in China's Eighteen River tailings dam, and it was selected as the research object. We explored the dynamic of fungal community characteristics in B. ischaemum litter during different decomposition stages and investigated relevant driving factors affecting associative dynamic changes. Results showed that Ascomycetes and Basidiomycetes were the dominant phyla during litter decomposition. At a class level, the relative abundance of Dothideomycetes gradually decreased as litter decomposition progressed while Sordariomycetes gradually increased, ultimately becoming the dominant class. The community structure of the fungal community was mainly affected by litter pH, total carbon (TC), and copper (Cu) content. The fungal community's network structure was the most complex compared to other decomposition stages after 200 days of litter decomposition. Additionally, the fungal community's modularity gradually increased, while the degree of functional differentiation also increased, strengthening fungal community stability during litter decomposition. This study clarifies fungal community structure during litter decomposition in this copper tailings area, and provides a scientific basis for further improving soil fertility and nutrient cycling in mining areas.
Collapse
Affiliation(s)
- Yu Wang
- Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan, 030006, China
| | - Jinjie Hao
- Shanxi Dibao Energy Co., LTD, Taiyuan, 030045, China
| | - Tingyan Guo
- Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan, 030006, China
| | - Lijuan Zhao
- Shanxi Provincial People's Hospital, Taiyuan, 030012, China
| | - Baofeng Chai
- Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan, 030006, China
| | - Tong Jia
- Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
9
|
Khokon AM, Janz D, Polle A. Ectomycorrhizal diversity, taxon-specific traits and root N uptake in temperate beech forests. THE NEW PHYTOLOGIST 2023. [PMID: 37229659 DOI: 10.1111/nph.18978] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/19/2023] [Indexed: 05/27/2023]
Abstract
Roots of forest trees are colonized by a diverse spectrum of ectomycorrhizal (EM) fungal species differing in their nitrogen (N) acquisition abilities. Here, we hypothesized that root N gain is the result of EM fungal diversity or related to taxon-specific traits for N uptake. To test our hypotheses, we traced 15 N enrichment in fine roots, coarse roots and taxon-specific ectomycorrhizas in temperate beech forests in two regions and three seasons, feeding 1 mM NH4 NO3 labelled with either 15 NH4 + or 15 NO3 - . We morphotyped > 45 000 vital root tips and identified 51 of 53 detected EM species by sequencing. EM root tips exhibited strong, fungal taxon-specific variation in 15 N enrichment with higher NH4 + than NO3 - enrichment. The translocation of N into the upper parts of the root system increased with increasing EM fungal diversity. Across the growth season, influential EM species predicting root N gain were not identified, probably due to high temporal dynamics of the species composition of EM assemblages. Our results support that root N acquisition is related to EM fungal community-level traits and highlight the importance of EM diversity for tree N nutrition.
Collapse
Affiliation(s)
- Anis Mahmud Khokon
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, 37077, Germany
- Functional Forest Ecology, Universität Hamburg, Barsbüttel, 22885, Germany
| | - Dennis Janz
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, 37077, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, 37077, Germany
| |
Collapse
|
10
|
Bosch J, Némethová E, Tláskal V, Brabcová V, Baldrian P. Bacterial, but not fungal, communities show spatial heterogeneity in European beech (Fagus sylvatica L.) deadwood. FEMS Microbiol Ecol 2023; 99:fiad023. [PMID: 36906283 PMCID: PMC10065134 DOI: 10.1093/femsec/fiad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/09/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023] Open
Abstract
Deadwood decomposition and other environmental processes mediated by microbial communities are generally studied with composite sampling strategies, where deadwood is collected from multiple locations in a large volume, that produce an average microbial community. In this study, we used amplicon sequencing to compare fungal and bacterial communities sampled with either traditional, composite samples, or small, 1 cm3 cylinders from a discrete location within decomposing European beech (Fagus sylvatica L.) tree trunks. We found that bacterial richness and evenness is lower in small samples when compared to composite samples. There was no significant difference in fungal alpha diversity between different sampling scales, suggesting that visually defined fungal domains are not restricted to a single species. Additionally, we found that composite sampling may obscure variation in community composition and this affects the understanding of microbial associations that are detected. For future experiments in environmental microbiology, we recommend that scale is explicitly considered as a factor and properly selected to correspond with the questions asked. Studies of microbial functions or associations may require samples to be collected at a finer scale than is currently practised.
Collapse
Affiliation(s)
- Jason Bosch
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czechia
| | - Ema Némethová
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czechia
| | - Vojtěch Tláskal
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czechia
| | - Vendula Brabcová
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czechia
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czechia
| |
Collapse
|
11
|
Yang T, Tedersoo L, Liu X, Gao G, Dong K, Adams JM, Chu H. Fungi stabilize multi-kingdom community in a high elevation timberline ecosystem. IMETA 2022; 1:e49. [PMID: 38867896 PMCID: PMC10989762 DOI: 10.1002/imt2.49] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/11/2022] [Accepted: 07/23/2022] [Indexed: 06/14/2024]
Abstract
Microbes dominate terrestrial ecosystems via their great species diversity and vital ecosystem functions, such as biogeochemical cycling and mycorrhizal symbiosis. Fungi and other organisms form diverse association networks. However, the roles of species belonging to different kingdoms in multi-kingdom community networks have remained largely elusive. In light of the integrative microbiome initiative, we inferred multiple-kingdom biotic associations from high elevation timberline soils using the SPIEC-EASI method. Biotic interactions among plants, nematodes, fungi, bacteria, and archaea were surveyed at the community and network levels. Compared to single-kingdom networks, multi-kingdom networks and their associations increased the within-kingdom and cross-kingdom edge numbers by 1012 and 10,772, respectively, as well as mean connectivity and negative edge proportion by 15.2 and 0.8%, respectively. Fungal involvement increased network stability (i.e., resistance to node loss) and connectivity, but reduced modularity, when compared with those in the single-kingdom networks of plants, nematodes, bacteria, and archaea. In the entire multi-kingdom network, fungal nodes were characterized by significantly higher degree and betweenness than bacteria. Fungi more often played the role of connector, linking different modules. Consistently, structural equation modeling and multiple regression on matrices corroborated the "bridge" role of fungi at the community level, linking plants and other soil biota. Overall, our findings suggest that fungi can stabilize the self-organization process of multi-kingdom networks. The findings facilitate the initiation and carrying out of multi-kingdom community studies in natural ecosystems to reveal the complex above- and belowground linkages.
Collapse
Affiliation(s)
- Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Leho Tedersoo
- Mycology and Microbiology CenterUniversity of TartuTartuEstonia
| | - Xu Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Gui‐Feng Gao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ke Dong
- Life Science MajorKyonggi UniversitySuwonSouth Korea
| | - Jonathan M. Adams
- School of Geographic and Oceanographic SciencesNanjing UniversityNanjingChina
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
12
|
Yuan C, Liang S, Wu X, Farooq TH, Liu T, Hu Y, Wang G, Wang J, Yan W. Land Use Changes Influence the Soil Enzymatic Activity and Nutrient Status in the Polluted Taojia River Basin in Sub-Tropical China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13999. [PMID: 36360877 PMCID: PMC9657305 DOI: 10.3390/ijerph192113999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Different land use practices may improve soil quality or lead to soil deterioration. Recently, environmental problems, such as heavy pollution and soil erosion, have led to serious land degradation in the Taojia River basin. In this study, we explored the soil fertility characteristics (mechanical composition; pH; soil organic matter (SOM); soil total nitrogen (TN); and the activity of four enzymes, i.e., urease, hydrogen peroxide, alkaline phosphatase, and sucrose enzymes) under different types of land use in the Taojia River basin. Soil samples were taken from 0-10 cm, 10-20 cm, and 20-40 cm depths from four different land use types that were widely used in the Taojia river basin, including cultivated land, vegetable fields, woodlands, and wastelands. The results showed that the soil enzyme activity and the constituents of the soil were closely related and significantly affected each other (p < 0.05). Woodland soil exhibited the highest content of SOM in all soil depths. Soil total nitrogen mainly depended on the accumulation of biomass and the decomposition intensity of organic matter, so the changes in TN followed the trends of the changes in SOM. Woodland soil showed an improved mechanical composition. We were also able to observe an increased clay content in woodland soil. Woodland soil also exhibited the reversal of soil desertification and an increase in nutrient/water retention capacity. Therefore, an increase in woodland areas would be an appropriate goal in terms of land use in order to improve the eco-environmental quality of the Taojia River basin.
Collapse
Affiliation(s)
- Chenglin Yuan
- National Engineering Laboratory for Applied Technology in Forestry and Ecology in South China, Central South University of Forestry and Technology, Changsha 410004, China
| | - Siqi Liang
- National Engineering Laboratory for Applied Technology in Forestry and Ecology in South China, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiaohong Wu
- National Engineering Laboratory for Applied Technology in Forestry and Ecology in South China, Central South University of Forestry and Technology, Changsha 410004, China
| | - Taimoor Hassan Farooq
- National Engineering Laboratory for Applied Technology in Forestry and Ecology in South China, Central South University of Forestry and Technology, Changsha 410004, China
- Bangor College China, a Joint School between Bangor University and Central South University of Forestry and Technology, Changsha 410004, China
| | - Tingting Liu
- National Engineering Laboratory for Applied Technology in Forestry and Ecology in South China, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yu Hu
- National Engineering Laboratory for Applied Technology in Forestry and Ecology in South China, Central South University of Forestry and Technology, Changsha 410004, China
| | - Guangjun Wang
- National Engineering Laboratory for Applied Technology in Forestry and Ecology in South China, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jun Wang
- National Engineering Laboratory for Applied Technology in Forestry and Ecology in South China, Central South University of Forestry and Technology, Changsha 410004, China
| | - Wende Yan
- National Engineering Laboratory for Applied Technology in Forestry and Ecology in South China, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
13
|
Geml J, Leal CM, Nagy R, Sulyok J. Abiotic environmental factors drive the diversity, compositional dynamics and habitat preference of ectomycorrhizal fungi in Pannonian forest types. Front Microbiol 2022; 13:1007935. [PMID: 36312934 PMCID: PMC9597314 DOI: 10.3389/fmicb.2022.1007935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/16/2022] [Indexed: 11/26/2022] Open
Abstract
Ectomycorrhizal (ECM) fungi are among the most diverse and dominant fungal groups in temperate forests and are crucial for ecosystem functioning of forests and their resilience toward disturbance. We carried out DNA metabarcoding of ECM fungi from soil samples taken at 62 sites in the Bükk Mountains in northern Hungary. The selected sampling sites represent the characteristic Pannonian forest types distributed along elevation (i.e., temperature), pH and slope aspect gradients. We compared richness and community composition of ECM fungi among forest types and explored relationships among environmental variables and ECM fungal alpha and beta diversity. The DNA sequence data generated in this study indicated strong correlations between fungal community composition and environmental variables, particularly with pH and soil moisture, with many ECM fungi showing preference for specific zonal, topographic or edaphic forest types. Several ECM fungal genera showed significant differences in richness among forest types and exhibited strong compositional differences mostly driven by differences in environmental factors. Despite the relatively high proportions of compositional variance explained by the tested environmental variables, a large proportion of the compositional variance remained unexplained, indicating that both niche (environmental filtering) and neutral (stochastic) processes shape ECM fungal community composition at landscape level. Our work provides unprecedented insights into the diversity, landscape-level distribution, and habitat preferences of ECM fungi in the Pannonian forests of Northern Hungary.
Collapse
Affiliation(s)
- József Geml
- ELKH-EKKE Lendület Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Eger, Hungary
- Research and Development Centre, Eszterházy Károly Catholic University, Eger, Hungary
- *Correspondence: József Geml,
| | - Carla Mota Leal
- ELKH-EKKE Lendület Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Eger, Hungary
| | - Richárd Nagy
- Research and Development Centre, Eszterházy Károly Catholic University, Eger, Hungary
| | - József Sulyok
- Biodiversity Protection Group, Bükk National Park Directorate, Eger, Hungary
| |
Collapse
|
14
|
Li J, Li S, Huang X, Tang R, Zhang R, Li C, Xu C, Su J. Plant diversity and soil properties regulate the microbial community of monsoon evergreen broad-leaved forest under different intensities of woodland use. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153565. [PMID: 35101489 DOI: 10.1016/j.scitotenv.2022.153565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
A key aspect of global forest management, woodland use intensity (WUI) greatly affects the composition and diversity of soil microbial communities, thereby affecting multiple ecosystem functions and services. However, the effects of WUI on soil microbial community composition and enzymatic activities remains unclear. The effects of anthropomorphic alterations to a natural monsoon evergreen broad-leaved forest in terms of the composition and diversity of soil fungal and bacterial communities, was investigated at a site in Yunnan Province, Southwest China. Soil microbial communities were assessed under four levels of disturbance with increasing levels of WUI: (i) none, undisturbed forest (control), (ii) light, naturally-regenerated Pinus kesiya Royle ex Gordon forest, (iii) intermediate, shrub and grassland communities formed through grazing, and (iv) severe, continuously managed coffee (Coffea arabica L.) plantations. With increasing WUI, the diversity of soil fungal and bacterial communities increased, while similarities in community composition decreased for fungi but increased for bacteria. Among fungal functional guilds, ectomycorrhizal fungi decreased significantly with increasing WUI, whereas saprotrophic fungi (undefined, wood, and soil saprotrophs) increased significantly. The species richness of woody plants remarkably affected fungal functional guilds. Ectomycorrhizal fungi interacted in a synergistic manner with the fungal network structure. Significantly affecting microorganismal network structure, WUI increases led to more homogeneous networks with less integration within modules within the microbial community. The WUI strongly altered hub identity and module composition in the microbial community. According to structural equation models, WUI had direct positive effects on soil fungal community composition via its effects on plant species richness. The diversity of bacterial and fungal communities and composition of bacterial communities were jointly regulated by the indirect effects of plant species richness and soil nutrients (including enzyme activity). Deterministic processes largely determined the composition of soil fungal and bacterial communities. This study highlights the importance of maintaining the diversity of soil fungal and bacterial communities despite changes in woodland use to sustain ecosystem functions. These results can be used to develop management practices in subtropical forests and help sustain plant and soil microbial diversity at levels sufficient to maintain long-term ecosystem function and services.
Collapse
Affiliation(s)
- Jing Li
- Institute of Highland Forest science, Chinese Academy of Forestry, Kunming 650224, China; Pu'er Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Kunming 650224, China; Nanjing Forestry University, Nanjing 210037, China
| | - Shuaifeng Li
- Institute of Highland Forest science, Chinese Academy of Forestry, Kunming 650224, China; Pu'er Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Kunming 650224, China
| | - Xiaobo Huang
- Institute of Highland Forest science, Chinese Academy of Forestry, Kunming 650224, China; Pu'er Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Kunming 650224, China
| | - Rong Tang
- Institute of Highland Forest science, Chinese Academy of Forestry, Kunming 650224, China; Pu'er Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Kunming 650224, China
| | - Rui Zhang
- Institute of Highland Forest science, Chinese Academy of Forestry, Kunming 650224, China; Pu'er Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Kunming 650224, China
| | - Cong Li
- Institute of Highland Forest science, Chinese Academy of Forestry, Kunming 650224, China; Pu'er Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Kunming 650224, China
| | - Chonghua Xu
- Taiyanghe Provincial Nature Reserve, Pu'er 66500, Yunnan, China
| | - Jianrong Su
- Institute of Highland Forest science, Chinese Academy of Forestry, Kunming 650224, China; Pu'er Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Kunming 650224, China.
| |
Collapse
|
15
|
Kwatcho Kengdo S, Peršoh D, Schindlbacher A, Heinzle J, Tian Y, Wanek W, Borken W. Long-term soil warming alters fine root dynamics and morphology, and their ectomycorrhizal fungal community in a temperate forest soil. GLOBAL CHANGE BIOLOGY 2022; 28:3441-3458. [PMID: 35253326 DOI: 10.1111/gcb.16155] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Climate warming is predicted to affect temperate forests severely, but the response of fine roots, key to plant nutrition, water uptake, soil carbon, and nutrient cycling is unclear. Understanding how fine roots will respond to increasing temperature is a prerequisite for predicting the functioning of forests in a warmer climate. We studied the response of fine roots and their ectomycorrhizal (EcM) fungal and root-associated bacterial communities to soil warming by 4°C in a mixed spruce-beech forest in the Austrian Limestone Alps after 8 and 14 years of soil warming, respectively. Fine root biomass (FRB) and fine root production were 17% and 128% higher in the warmed plots, respectively, after 14 years. The increase in FRB (13%) was not significant after 8 years of treatment, whereas specific root length, specific root area, and root tip density were significantly higher in warmed plots at both sampling occasions. Soil warming did not affect EcM exploration types and diversity, but changed their community composition, with an increase in the relative abundance of Cenoccocum at 0-10 cm soil depth, a drought-stress-tolerant genus, and an increase in short- and long-distance exploration types like Sebacina and Boletus at 10-20 cm soil depth. Warming increased the root-associated bacterial diversity but did not affect their community composition. Soil warming did not affect nutrient concentrations of fine roots, though we found indications of limited soil phosphorus (P) and potassium (K) availability. Our findings suggest that, in the studied ecosystem, global warming could persistently increase soil carbon inputs due to accelerated fine root growth and turnover, and could simultaneously alter fine root morphology and EcM fungal community composition toward improved nutrient foraging.
Collapse
Affiliation(s)
- Steve Kwatcho Kengdo
- Department of Soil Ecology, Bayreuth Center of Ecology and Environmental Research (BAYCEER), University of Bayreuth, Bayreuth, Germany
| | - Derek Peršoh
- Department of Geobotany, Ruhr-Universität Bochum, Bochum, Germany
| | - Andreas Schindlbacher
- Department of Forest Ecology and Soil, Federal Research and Training Centre for Forests, Natural Hazards and Landscape-BFW, Vienna, Austria
| | - Jakob Heinzle
- Department of Forest Ecology and Soil, Federal Research and Training Centre for Forests, Natural Hazards and Landscape-BFW, Vienna, Austria
| | - Ye Tian
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, Center of Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Wolfgang Wanek
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, Center of Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Werner Borken
- Department of Soil Ecology, Bayreuth Center of Ecology and Environmental Research (BAYCEER), University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
16
|
Stefanowicz AM, Kapusta P, Stanek M, Rola K, Zubek S. Herbaceous plant species support soil microbial performance in deciduous temperate forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151313. [PMID: 34756898 DOI: 10.1016/j.scitotenv.2021.151313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Although herbaceous plant layer may contribute significantly to plant diversity and nutrient turnover, its effects on the soil environment in forest ecosystems remain largely unexplored. In this study, we compared the effects of mono-dominant and multi-species assemblages of herb plants on soil physicochemical and microbial properties in two temperate deciduous (beech and riparian) forests. We hypothesized that the presence of herbaceous plants would increase microbial activity and biomass, and nutrient availability in soil when compared to bare soil. This increase would be the highest in multi-species assemblages as high plant diversity supports microbial performance and soil processes, and the expected patterns would be essentially similar in both forests. Allium ursinum L. and Dentaria enneaphyllos L. represented herb species forming mono-dominant patches in beech forest, while Aegopodium podagraria L. and Ficaria verna Huds. represented herb species forming mono-dominant patches in riparian forest. Our hypotheses were only partly supported by the data. We found that herb plant species affected soil microbial communities and processes, particularly in the riparian forest, but they generally did not influence soil physicochemical properties. In the beech forest, herbaceous plants increased saprotrophic fungi biomass, fungi/bacteria ratio, and arylsulfatase activity, with the highest values under D. enneaphyllos. In the riparian forest, a number of microbial parameters, namely bacteria, G+ bacteria, and saprotrophic fungi biomass, fungi/bacteria ratio, and soil respiration exhibited the lowest values in bare soil and the highest values in soil under A. podagraria. Contrary to expectations, soils under multi-species assemblages were characterized by intermediate values of microbial parameters. Concluding, herbaceous plant species largely supported soil microbial communities in deciduous temperate forests but did not affect soil chemical properties. The potential reasons for the positive influence of herb plants on soil microbes (litterfall, rhizodeposition) require further investigation.
Collapse
Affiliation(s)
- Anna M Stefanowicz
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland.
| | - Paweł Kapusta
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland.
| | - Małgorzata Stanek
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland.
| | - Kaja Rola
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387 Kraków, Poland.
| | - Szymon Zubek
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387 Kraków, Poland.
| |
Collapse
|
17
|
Huang C, Wu X, Liu X, Fang Y, Liu L, Wu C. Functional fungal communities dominate wood decomposition and are modified by wood traits in a subtropical forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151377. [PMID: 34740660 DOI: 10.1016/j.scitotenv.2021.151377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Wood decomposition is a fundamental process of the carbon cycle in forest ecosystems and differs under varying environmental conditions. However, it remains unclear whether exposure situation and litter removal affect wood decomposition, especially in subtropical forests. Therefore, we chose wood from four dominant species and carried out an experiment with treatments consisting of placing wood in ground contact with and without litter input and above ground exposure. The experiment was performed for 2.5 consecutive years in the subtropical forest of Southwest China to reveal the potential effects of microenvironmental changes due to above ground exposure and nutrient input changes due to litter removal. In this study, neither above ground exposure nor litter removal significantly changed the fungal communities, microbial respiration rates or decomposition rates of the wood, but significant differences among tree species were observed. The abundance of Ascomycota (70.2%) was higher than that of Basidiomycota (24.3%), and there was a significant negative relationship between their abundances, suggesting competition. Moreover, negative (Ascomycota) and positive (Basidiomycota) relationships with microbial respiration and explained 21.5 and 25.5% of the variation in microbial respiration, respectively. The wood density was directly controlled by the sugar, cellulose, and lignin contents and influenced the water content in the wood. The abundances of saprotrophic and pathotrophic fungi were significantly and directly regulated by the water content of the wood. The abundance of pathotrophic fungi was unaffected by wood traits, but these fungi may limit saprotrophic fungal colonization, thereby affecting microbial respiration and decomposition processes. We confirmed that the saprotrophic fungal abundance, rather than fungal diversity, determined wood microbial respiration. These results are of great significance for the comprehensive assessment of wood decomposition and the carbon cycle in subtropical forests, although long-term fungal community dynamics and decomposition rates under different conditions require further study.
Collapse
Affiliation(s)
- Changjiang Huang
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, 236037, China
| | - Xiaoqing Wu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, 236037, China.
| | - Xiaoyu Liu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, 236037, China
| | - Yuting Fang
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, 236037, China
| | - Lei Liu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, 236037, China
| | - Chuansheng Wu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, 236037, China.
| |
Collapse
|
18
|
Campbell TP, Ulrich DEM, Toyoda J, Thompson J, Munsky B, Albright MBN, Bailey VL, Tfaily MM, Dunbar J. Microbial Communities Influence Soil Dissolved Organic Carbon Concentration by Altering Metabolite Composition. Front Microbiol 2022; 12:799014. [PMID: 35126334 PMCID: PMC8811196 DOI: 10.3389/fmicb.2021.799014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/27/2021] [Indexed: 11/19/2022] Open
Abstract
Rapid microbial growth in the early phase of plant litter decomposition is viewed as an important component of soil organic matter (SOM) formation. However, the microbial taxa and chemical substrates that correlate with carbon storage are not well resolved. The complexity of microbial communities and diverse substrate chemistries that occur in natural soils make it difficult to identify links between community membership and decomposition processes in the soil environment. To identify potential relationships between microbes, soil organic matter, and their impact on carbon storage, we used sand microcosms to control for external environmental factors such as changes in temperature and moisture as well as the variability in available carbon that exist in soil cores. Using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) on microcosm samples from early phase litter decomposition, we found that protein- and tannin-like compounds exhibited the strongest correlation to dissolved organic carbon (DOC) concentration. Proteins correlated positively with DOC concentration, while tannins correlated negatively with DOC. Through random forest, neural network, and indicator species analyses, we identified 42 bacterial and 9 fungal taxa associated with DOC concentration. The majority of bacterial taxa (26 out of 42 taxa) belonged to the phylum Proteobacteria while all fungal taxa belonged to the phylum Ascomycota. Additionally, we identified significant connections between microorganisms and protein-like compounds and found that most taxa (12/14) correlated negatively with proteins indicating that microbial consumption of proteins is likely a significant driver of DOC concentration. This research links DOC concentration with microbial production and/or decomposition of specific metabolites to improve our understanding of microbial metabolism and carbon persistence.
Collapse
Affiliation(s)
- Tayte P. Campbell
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | | | - Jason Toyoda
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Jaron Thompson
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, United States
| | - Brian Munsky
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, United States
| | | | - Vanessa L. Bailey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Malak M. Tfaily
- Department of Environmental Science, The University of Arizona, Tucson, AZ, United States
| | - John Dunbar
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| |
Collapse
|
19
|
A Transcriptomic Atlas of the Ectomycorrhizal Fungus Laccaria bicolor. Microorganisms 2021; 9:microorganisms9122612. [PMID: 34946213 PMCID: PMC8708209 DOI: 10.3390/microorganisms9122612] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 02/05/2023] Open
Abstract
Trees are able to colonize, establish and survive in a wide range of soils through associations with ectomycorrhizal (EcM) fungi. Proper functioning of EcM fungi implies the differentiation of structures within the fungal colony. A symbiotic structure is dedicated to nutrient exchange and the extramatricular mycelium explores soil for nutrients. Eventually, basidiocarps develop to assure last stages of sexual reproduction. The aim of this study is to understand how an EcM fungus uses its gene set to support functional differentiation and development of specialized morphological structures. We examined the transcriptomes of Laccaria bicolor under a series of experimental setups, including the growth with Populus tremula x alba at different developmental stages, basidiocarps and free-living mycelium, under various conditions of N, P and C supply. In particular, N supply induced global transcriptional changes, whereas responses to P supply seemed to be independent from it. Symbiosis development with poplar is characterized by transcriptional waves. Basidiocarp development shares transcriptional signatures with other basidiomycetes. Overlaps in transcriptional responses of L. bicolor hyphae to a host plant and N/C supply next to co-regulation of genes in basidiocarps and mature mycorrhiza were detected. Few genes are induced in a single condition only, but functional and morphological differentiation rather involves fine tuning of larger gene sets. Overall, this transcriptomic atlas builds a reference to study the function and stability of EcM symbiosis in distinct conditions using L. bicolor as a model and indicates both similarities and differences with other ectomycorrhizal fungi, allowing researchers to distinguish conserved processes such as basidiocarp development from nutrient homeostasis.
Collapse
|
20
|
Jia T, Wang X, Guo T, Chai B. Litter Decomposition of Imperata cylindrica in a Copper Tailing Areas With Different Restoration History: Fungal Community Dynamics and Driving Factors. Front Microbiol 2021; 12:780015. [PMID: 34880848 PMCID: PMC8647173 DOI: 10.3389/fmicb.2021.780015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
Microorganisms drive litter decomposition while maintaining the chemical cycle of ecosystems. We used the dominant vegetation (Imperata cylindrica) in the mining area selected for this study for this experiment to explore fungal community characteristics, key fungal groups, and their associative driving factors during I. cylindrica litter decomposition. Maximum litter C/N values occurred 100days after the commencement of the decomposition experiment during all different recovery years in this copper tailings area. Heavy metals in litter [copper (Cu), zinc (Zn), plumbum (Pb), and cadmium (Cd)] accumulated gradually with decomposition. The dominant fungal phyla observed in the community were Ascomycota and Basidiomycota, while the classes Sordariomycetes and Eurotiomycetes significantly increased as litter decomposition progressed. Degrees of connectivity and interaction between fungal communities were highest during the early litter decomposition stage. Sordariomycetes, Dothideomycetes, and Leotiomycetes all played critical roles in maintaining fungal community relationships. The effect of physicochemical properties and enzyme activities in I. cylindrica litter was significant on the dominant fungi, while driving factors that affected fungal communities differed over different recovery stages. Total nitrogen (TN), heavy metals, pH, and enzyme activities in the little were significantly correlated with fungal community composition. Litter properties throughout the litter decomposition process mainly affected the dynamics of the fungal community structure. The main environmental factors that affected fungal community structure were copper content and pH. Dichotomopilus, Trichoderma, Knufia, Phialophora, Oxyporus, and Monocillium, which all played important roles in litter decomposition, positively correlated with heavy metals, sucrase, and catalase. Finally, results from this study will help us better clarify litter decomposition mechanisms in degraded ecosystems as well as provide a scientific basis for improving species cycling and nutrient transformation efficiency in mining ecosystems.
Collapse
Affiliation(s)
- Tong Jia
- Shanxi Laboratory for Yellow River, Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan, China
| | - Xuerong Wang
- Shanxi Laboratory for Yellow River, Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan, China
| | - Tingyan Guo
- Shanxi Laboratory for Yellow River, Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan, China
| | - Baofeng Chai
- Shanxi Laboratory for Yellow River, Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan, China
| |
Collapse
|
21
|
Khokon AM, Schneider D, Daniel R, Polle A. Soil Layers Matter: Vertical Stratification of Root-Associated Fungal Assemblages in Temperate Forests Reveals Differences in Habitat Colonization. Microorganisms 2021; 9:2131. [PMID: 34683452 PMCID: PMC8537680 DOI: 10.3390/microorganisms9102131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
Ectomycorrhizal and saprotrophic fungi play pivotal roles in ecosystem functioning. Here, we studied the vertical differentiation of root-associated fungi (RAF) in temperate forests. We analysed RAF assemblages in the organic and mineral soil from 150 experimental forest plots across three biogeographic regions spanning a distance of about 800 km. Saprotrophic RAF showed the highest richness in organic and symbiotrophic RAF in mineral soil. Symbiotrophic RAF exhibited higher relative abundances than saprotrophic fungi in both soil layers. Beta-diversity of RAF was mainly due to turnover between organic and mineral soil and showed regional differences for symbiotrophic and saprotrophic fungi. Regional differences were also found for different phylogenetic levels, i.e., fungal orders and indicator species in the organic and mineral soil, supporting that habitat conditions strongly influence differentiation of RAF assemblages. Important exceptions were fungal orders that occurred irrespective of the habitat conditions in distinct soil layers across the biogeographic gradient: Russulales and Cantharellales (ectomycorrhizal fungi) were enriched in RAF assemblages in mineral soil, whereas saprotrophic Polyporales and Sordariales and ectomycorrhizal Boletales were enriched in RAF assemblages in the organic layer. These results underpin a phylogenetic signature for niche partitioning at the rank of fungal orders and suggest that RAF assembly entails two strategies encompassing flexible and territorial habitat colonization by different fungal taxa.
Collapse
Affiliation(s)
- Anis Mahmud Khokon
- Department of Forest Botany and Tree Physiology, University of Göttingen, 37077 Göttingen, Germany;
| | - Dominik Schneider
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, 37077 Göttingen, Germany; (D.S.); (R.D.)
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, 37077 Göttingen, Germany; (D.S.); (R.D.)
| | - Andrea Polle
- Department of Forest Botany and Tree Physiology, University of Göttingen, 37077 Göttingen, Germany;
| |
Collapse
|
22
|
Martinović T, Odriozola I, Mašínová T, Doreen Bahnmann B, Kohout P, Sedlák P, Merunková K, Větrovský T, Tomšovský M, Ovaskainen O, Baldrian P. Temporal turnover of the soil microbiome composition is guild-specific. Ecol Lett 2021; 24:2726-2738. [PMID: 34595822 DOI: 10.1111/ele.13896] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/10/2021] [Indexed: 01/06/2023]
Abstract
Although spatial and temporal variation are both important components structuring microbial communities, the exact quantification of temporal turnover rates of fungi and bacteria has not been performed to date. In this study, we utilised repeated resampling of bacterial and fungal communities at specific locations across multiple years to describe their patterns and rates of temporal turnover. Our results show that microbial communities undergo temporal change at a rate of 0.010-0.025 per year (in units of Sorensen similarity), and the change in soil is slightly faster in fungi than in bacteria, with bacterial communities changing more rapidly in litter than soil. Importantly, temporal development differs across fungal guilds and bacterial phyla with different ecologies. While some microbial guilds show consistent responses across regional locations, others show site-specific development with weak general patterns. These results indicate that guild-level resolution is important for understanding microbial community assembly, dynamics and responses to environmental factors.
Collapse
Affiliation(s)
- Tijana Martinović
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská, Czech Republic
| | - Iñaki Odriozola
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská, Czech Republic
| | - Tereza Mašínová
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská, Czech Republic
| | - Barbara Doreen Bahnmann
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská, Czech Republic
| | - Petr Kohout
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská, Czech Republic.,Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Sedlák
- Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Kristina Merunková
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | - Tomáš Větrovský
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská, Czech Republic
| | - Michal Tomšovský
- Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Otso Ovaskainen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.,Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland.,Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská, Czech Republic
| |
Collapse
|
23
|
Lindström S, Timonen S, Sundström L. The bacterial and fungal community composition in time and space in the nest mounds of the ant Formica exsecta (Hymenoptera: Formicidae). Microbiologyopen 2021; 10:e1201. [PMID: 34459553 PMCID: PMC8289489 DOI: 10.1002/mbo3.1201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 11/09/2022] Open
Abstract
In a subarctic climate, the seasonal shifts in temperature, precipitation, and plant cover drive the temporal changes in the microbial communities in the topsoil, forcing soil microbes to adapt or decline. Many organisms, such as mound-building ants, survive the cold winter owing to the favorable microclimate in their nest mounds. We have previously shown that the microbial communities in the nest of the ant Formica exsecta are significantly different from those in the surrounding bulk soil. In the current study, we identified taxa, which were consistently present in the nests over a study period of three years. Some taxa were also significantly enriched in the nest samples compared with spatially corresponding reference soils. We show that the bacterial communities in ant nests are temporally stable across years, whereas the fungal communities show greater variation. It seems that the activities of the ants contribute to unique biochemical processes in the secluded nest environment, and create opportunities for symbiotic interactions between the ants and the microbes. Over time, the microbial communities may come to diverge, due to drift and selection, especially given the long lifespan (up to 30 years) of the ant colonies.
Collapse
Affiliation(s)
- Stafva Lindström
- Organismal and Evolutionary Biology Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Tvärminne Zoological StationHankoFinland
- Department of MicrobiologyUniversity of HelsinkiHelsinkiFinland
| | - Sari Timonen
- Department of MicrobiologyUniversity of HelsinkiHelsinkiFinland
| | - Liselotte Sundström
- Organismal and Evolutionary Biology Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Tvärminne Zoological StationHankoFinland
| |
Collapse
|
24
|
Lejal E, Chiquet J, Aubert J, Robin S, Estrada-Peña A, Rue O, Midoux C, Mariadassou M, Bailly X, Cougoul A, Gasqui P, Cosson JF, Chalvet-Monfray K, Vayssier-Taussat M, Pollet T. Temporal patterns in Ixodes ricinus microbial communities: an insight into tick-borne microbe interactions. MICROBIOME 2021; 9:153. [PMID: 34217365 PMCID: PMC8254910 DOI: 10.1186/s40168-021-01051-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/17/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Ticks transmit pathogens of medical and veterinary importance and are an increasing threat to human and animal health. Assessing disease risk and developing new control strategies requires identifying members of the tick-borne microbiota as well as their temporal dynamics and interactions. METHODS Using high-throughput sequencing, we studied the Ixodes ricinus microbiota and its temporal dynamics. 371 nymphs were monthly collected during three consecutive years in a peri-urban forest. After a Poisson lognormal model was adjusted to our data set, a principal component analysis, sparse network reconstruction, and differential analysis allowed us to assess seasonal and monthly variability of I. ricinus microbiota and interactions within this community. RESULTS Around 75% of the detected sequences belonged to five genera known to be maternally inherited bacteria in arthropods and to potentially circulate in ticks: Candidatus Midichloria, Rickettsia, Spiroplasma, Arsenophonus and Wolbachia. The structure of the I. ricinus microbiota varied over time with interannual recurrence and seemed to be mainly driven by OTUs commonly found in the environment. Total network analysis revealed a majority of positive partial correlations. We identified strong relationships between OTUs belonging to Wolbachia and Arsenophonus, evidence for the presence of the parasitoid wasp Ixodiphagus hookeri in ticks. Other associations were observed between the tick symbiont Candidatus Midichloria and pathogens belonging to Rickettsia. Finally, more specific network analyses were performed on TBP-infected samples and suggested that the presence of pathogens belonging to the genera Borrelia, Anaplasma and Rickettsia may disrupt microbial interactions in I. ricinus. CONCLUSIONS We identified the I. ricinus microbiota and documented marked shifts in tick microbiota dynamics over time. Statistically, we showed strong relationships between the presence of specific pathogens and the structure of the I. ricinus microbiota. We detected close links between some tick symbionts and the potential presence of either pathogenic Rickettsia or a parasitoid in ticks. These new findings pave the way for the development of new strategies for the control of ticks and tick-borne diseases. Video abstract.
Collapse
Affiliation(s)
- E Lejal
- UMR BIPAR, Animal Health Laboratory, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - J Chiquet
- Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA-Paris, 75005, Paris, France
| | - J Aubert
- Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA-Paris, 75005, Paris, France
| | - S Robin
- Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA-Paris, 75005, Paris, France
| | - A Estrada-Peña
- Faculty of Veterinary Medicine, University of Zaragoza, Zaragoza, Spain
| | - O Rue
- INRAE, MaIAGE, Université Paris-Saclay, Jouy-en-Josas, France
- INRAE, BioinfOmics, MIGALE Bioinformatics Facility, Université Paris-Saclay, Jouy-en-Josas, France
| | - C Midoux
- INRAE, MaIAGE, Université Paris-Saclay, Jouy-en-Josas, France
- INRAE, BioinfOmics, MIGALE Bioinformatics Facility, Université Paris-Saclay, Jouy-en-Josas, France
- INRAE, PROSE, Université Paris-Saclay, Antony, France
| | - M Mariadassou
- INRAE, MaIAGE, Université Paris-Saclay, Jouy-en-Josas, France
- INRAE, BioinfOmics, MIGALE Bioinformatics Facility, Université Paris-Saclay, Jouy-en-Josas, France
| | - X Bailly
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, 63122, Saint Genes Champanelle, France
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, 69280, Marcy l'Etoile, France
| | - A Cougoul
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, 63122, Saint Genes Champanelle, France
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, 69280, Marcy l'Etoile, France
| | - P Gasqui
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, 63122, Saint Genes Champanelle, France
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, 69280, Marcy l'Etoile, France
| | - J F Cosson
- UMR BIPAR, Animal Health Laboratory, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - K Chalvet-Monfray
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, 63122, Saint Genes Champanelle, France
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, 69280, Marcy l'Etoile, France
| | | | - T Pollet
- UMR ASTRE, CIRAD, INRAE, Campus de Baillarguet, Montpellier, France.
| |
Collapse
|
25
|
Successional Development of Fungal Communities Associated with Decomposing Deadwood in a Natural Mixed Temperate Forest. J Fungi (Basel) 2021; 7:jof7060412. [PMID: 34070657 PMCID: PMC8228407 DOI: 10.3390/jof7060412] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 12/29/2022] Open
Abstract
Deadwood represents an important carbon stock and contributes to climate change mitigation. Wood decomposition is mainly driven by fungal communities. Their composition is known to change during decomposition, but it is unclear how environmental factors such as wood chemistry affect these successional patterns through their effects on dominant fungal taxa. We analysed the deadwood of Fagus sylvatica and Abies alba across a deadwood succession series of >40 years in a natural fir-beech forest in the Czech Republic to describe the successional changes in fungal communities, fungal abundance and enzymatic activities and to link these changes to environmental variables. The fungal communities showed high levels of spatial variability and beta diversity. In young deadwood, fungal communities showed higher similarity among tree species, and fungi were generally less abundant, less diverse and less active than in older deadwood. pH and the carbon to nitrogen ratio (C/N) were the best predictors of the fungal community composition, and they affected the abundance of half of the dominant fungal taxa. The relative abundance of most of the dominant taxa tended to increase with increasing pH or C/N, possibly indicating that acidification and atmospheric N deposition may shift the community composition towards species that are currently less dominant.
Collapse
|
26
|
Štursová M, Kohout P, Human ZR, Baldrian P. Production of Fungal Mycelia in a Temperate Coniferous Forest Shows Distinct Seasonal Patterns. J Fungi (Basel) 2020; 6:E190. [PMID: 32993121 PMCID: PMC7712845 DOI: 10.3390/jof6040190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
In temperate forests, climate seasonality restricts the photosynthetic activity of primary producers to the warm season from spring to autumn, while the cold season with temperatures below the freezing point represents a period of strongly reduced plant activity. Although soil microorganisms are active all-year-round, their expressions show seasonal patterns. This is especially visible on the ectomycorrhizal fungi, the most abundant guild of fungi in coniferous forests. We quantified the production of fungal mycelia using ingrowth sandbags in the organic layer of soil in temperate coniferous forest and analysed the composition of fungal communities in four consecutive seasons. We show that fungal biomass production is as low as 0.029 µg g-1 of sand in December-March, while it reaches 0.122 µg g-1 in June-September. The majority of fungi show distinct patterns of seasonal mycelial production, with most ectomycorrhizal fungi colonising ingrowth bags in the spring or summer, while the autumn and winter colonisation was mostly due to moulds. Our results indicate that fungal taxa differ in their seasonal patterns of mycelial production. Although fungal biomass turnover appears all-year-round, its rates are much faster in the period of plant activity than in the cold season.
Collapse
Affiliation(s)
- Martina Štursová
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; (P.K.); (Z.R.H.)
| | | | | | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; (P.K.); (Z.R.H.)
| |
Collapse
|
27
|
Yang T, Tedersoo L, Lin X, Fitzpatrick MC, Jia Y, Liu X, Ni Y, Shi Y, Lu P, Zhu J, Chu H. Distinct fungal successional trajectories following wildfire between soil horizons in a cold-temperate forest. THE NEW PHYTOLOGIST 2020; 227:572-587. [PMID: 32155671 DOI: 10.1111/nph.16531] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Soil fungi represent a major component of below-ground biodiversity that determines the succession and recovery of forests after disturbance. However, their successional trajectories and driving mechanisms following wildfire remain unclear. We examined fungal biomass, richness, composition and enzymes across three soil horizons (Oe, A1 and A2) along a near-complete fire chronosequence (1, 2, 8, 14, 30, 49 and c. 260 yr) in cold-temperate forests of the Great Khingan Mountains, China. The importance of soil properties, spatial distance and tree composition were also tested. Ectomycorrhizal fungal richness and β-glucosidase activity were strongly reduced by burning and significantly increased with 'time since fire' in the Oe horizon but not in the mineral horizons. Time since fire and soil C : N ratio were the primary drivers of fungal composition in the Oe and A1/A2 horizons, respectively. Ectomycorrhizal fungal composition was remarkably sensitive to fire history in the Oe horizon, while saprotroph community was strongly affected by time since fire in the deeper soil horizon and this effect emerged 18 years after fire in the A2 horizon. Our study demonstrates pronounced horizon-dependent successional trajectories following wildfire and indicates interactive effects of time since fire, soil stoichiometry and spatial distance in the reassembly of below-ground fungal communities in a cold and fire-prone region.
Collapse
Affiliation(s)
- Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, China
| | - Leho Tedersoo
- Natural History Museum, University of Tartu, 14a Ravila, Tartu, 50411, Estonia
| | - Xingwu Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, China
| | - Matthew C Fitzpatrick
- Appalachian Laboratory, University of Maryland Centre for Environmental Science, Frostburg, MD, 21531, USA
| | - Yunsheng Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, China
| | - Xu Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, China
| | - Yingying Ni
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, China
| | - Yu Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, China
| | - Pengpeng Lu
- Microbiology Institute of Shaanxi, Shaanxi Academy of Sciences, Xiying Road 76, Xi'an, 710043, China
| | - Jianguo Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, China
| |
Collapse
|
28
|
Takashima M, Suh SO, Bai FY, Sugita T. Takashi Nakase's last tweet: what is the current direction of microbial taxonomy research? FEMS Yeast Res 2020; 19:5670643. [PMID: 31816016 DOI: 10.1093/femsyr/foz066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 12/07/2019] [Indexed: 12/14/2022] Open
Abstract
During the last few decades, type strains of most yeast species have been barcoded using the D1/D2 domain of their LSU rRNA gene and internal transcribed spacer (ITS) region. Species identification using DNA sequences regarding conspecificity in yeasts has also been studied. Most yeast species can be identified according to the sequence divergence of their ITS region or a combination of the D1/D2 and ITS regions. Studies that have examined intraspecific diversity have used multilocus sequence analyses, whereas the marker regions used in this analysis vary depending upon taxa. D1/D2 domain and ITS region sequences have been used as barcodes to develop primers suitable for the detection of the biological diversity of environmental DNA and the microbiome. Using these barcode sequences, it is possible to identify relative lineages and infer their gene products and function, and how they adapt to their environment. If barcode sequence was not variable enough to identify a described species, one could investigate the other biological traits of these yeasts, considering geological distance, environmental circumstances and isolation of reproduction. This article is dedicated to late Dr Takashi Nakase (1939-2018).
Collapse
Affiliation(s)
- Masako Takashima
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba 305-0074, Japan.,Department of Microbiology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Sung-Oui Suh
- Manufacturing Science and Technology, American Type Culture Collection (ATCC), 10801 University Blvd., Manassas, VA 20110, USA
| | - Feng-Yan Bai
- Institute of Microbiology, State Key Laboratory of Mycology, Chinese Academy of Sciences, Beijing 100101, China
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| |
Collapse
|
29
|
de Vries RP, Mäkelä MR. Genomic and Postgenomic Diversity of Fungal Plant Biomass Degradation Approaches. Trends Microbiol 2020; 28:487-499. [PMID: 32396827 DOI: 10.1016/j.tim.2020.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/15/2019] [Accepted: 01/16/2020] [Indexed: 10/25/2022]
Abstract
Plant biomass degradation by fungi is a widely studied and applied field of science, due to its relevance for the global carbon cycle and many biotechnological applications. Before the genome era, many of the in-depth studies focused on a relatively small number of species, whereas now, many species can be addressed in detail, revealing the large variety in the approach used by fungi to degrade plant biomass. This variation is found at many levels and includes genomic adaptation to the preferred biomass component, but also different approaches to degrade this component by diverse sets of activities encoded in the genome. Even larger differences have been observed using transcriptome and proteome studies, even between closely related species, suggesting a high level of adaptation in individual species. A better understanding of the drivers of this diversity could be highly valuable in developing more efficient biotechnology approaches for the enzymatic conversion of plant biomass.
Collapse
Affiliation(s)
- Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands.
| | - Miia R Mäkelä
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
30
|
Gray L, Kernaghan G. Fungal Succession During the Decomposition of Ectomycorrhizal Fine Roots. MICROBIAL ECOLOGY 2020; 79:271-284. [PMID: 31392355 DOI: 10.1007/s00248-019-01418-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Ectomycorrhizal (ECM) fine roots account for a substantial proportion of forest production and their decomposition releases large amounts of nutrients to the soil ecosystem. However, little is known about the fungi involved in ECM decomposition, including assemblages of fungal saprotrophs, endophytes, and the ECM fungi themselves. To follow fungal succession during the degradation of senescing fine roots, understory seedlings of Abies balsamea and Picea rubens at two sites in the Acadian forest of Nova Scotia were either severed at the root collar or left as controls. Root systems were collected sequentially over two growing seasons and assessed for fine root loss and ECM mantle integrity. ECM were identified by ITS-PCR and grouped into broad morphological categories. Fungal communities colonizing the senescing fine roots were also monitored by systematically constructing clone libraries over the course of the experiment. ECM with cottony, weakly pigmented mantles (e.g., Cortinarius) degraded within the first year. Those with cottony, but intensely pigmented mantles (Piloderma), and smooth mantles with weak pigmentation (Russulaceae) degraded more slowly. Smooth, melanized ECM (Cenococcum and Tomentella) generally maintained integrity over the course of the experiment. Rates of fine root loss and changes in ECM mantle integrity were positively correlated with soil temperature. ECM DNA was detected throughout the experiment, and was not replaced by that of saprotrophic species during the two seasons sampled. However, fungal root endophytes (e.g., Helotiaceae) initially increased in abundance and then decreased as mantles degraded, suggesting a possible role in ECM decomposition.
Collapse
Affiliation(s)
- Logan Gray
- Biology Department, Saint Mary's University, Halifax, NS, B3H 3C3, Canada
| | - Gavin Kernaghan
- Department of Biology, Mount Saint Vincent University, Halifax, NS, B3M 2J6, Canada.
| |
Collapse
|
31
|
Maillard F, Schilling J, Andrews E, Schreiner KM, Kennedy P. Functional convergence in the decomposition of fungal necromass in soil and wood. FEMS Microbiol Ecol 2019; 96:5685958. [DOI: 10.1093/femsec/fiz209] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/20/2019] [Indexed: 11/13/2022] Open
Abstract
ABSTRACT
Understanding the post-senescent fate of fungal mycelium is critical to accurately quantifying forest carbon and nutrient cycling, but how this organic matter source decomposes in wood remains poorly studied. In this study, we compared the decomposition of dead fungal biomass (a.k.a. necromass) of two species, Mortierella elongata and Meliniomyces bicolor, in paired wood and soil plots in a boreal forest in northern Minnesota, USA. Mass loss was quantified at four time points over an 8-week incubation and the richness and composition of the fungal communities colonizing fungal necromass were characterized using high-throughput sequencing. We found that the structure of fungal decomposer communities in wood and soil differed, but, in both habitats, there was relatively rapid decay (∼30% remaining after 56 days). Mass loss was significantly faster in soil and for high-quality (i.e. high nitrogen and low melanin) fungal necromass. In both habitats, there was a clear trajectory of early colonization by opportunistic fungal taxa followed by colonization of fungi with greater enzymatic capacities to degrade more recalcitrant compounds, including white-rot and ectomycorrhizal fungi. Collectively, our results indicate that patterns emerging regarding substrate quality effects on fungal necromass decomposition in soil and leaf litter can be largely extended to fungal necromass decomposition in wood.
Collapse
Affiliation(s)
- François Maillard
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN 55108, USA
| | - Jonathan Schilling
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN 55108, USA
| | - Erin Andrews
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN 55108, USA
| | - Kathryn M Schreiner
- Department of Chemistry and Biochemistry, University of Minnesota, Dulut 55812, MN 55108, USA
- Large Lakes Observatory, University of Minnesota, Dulut 55812, MN 55108, USA
| | - Peter Kennedy
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN 55108, USA
| |
Collapse
|
32
|
Impact of Land Use on Bacterial Diversity and Community Structure in Temperate Pine and Indigenous Forest Soils. DIVERSITY 2019. [DOI: 10.3390/d11110217] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Soil microbial communities are an important part of ecosystems that possess the capability to improve ecosystem services; however, several aspects of the ecology of forest soil bacterial communities are still unknown. Here, we investigated the impact of land-use change on soil bacterial communities and the soil characteristics. High-throughput sequencing was used to ascertain the bacterial diversity and canonical correspondence analysis was used to determine relationships between the bacterial communities and environmental variables. Our results show spatial heterogeneity in the distribution of the microbial communities and significant relationships between the microbes and soil characteristics (axis 1 of the canonical correspondence analysis (CCA) plot explained 64.55% of the total variance while axis 2 described 24.49%). Knowledge of this is essential as it has direct consequences for the functioning of the soil ecosystem.
Collapse
|
33
|
Dystric Cambisol properties at windthrow sites with secondary succession developed after 12 years under different conditions in Tatra National Park. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00275-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Wang K, Zhang Y, Tang Z, Shangguan Z, Chang F, Jia F, Chen Y, He X, Shi W, Deng L. Effects of grassland afforestation on structure and function of soil bacterial and fungal communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 676:396-406. [PMID: 31048170 DOI: 10.1016/j.scitotenv.2019.04.259] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/27/2019] [Accepted: 04/17/2019] [Indexed: 05/20/2023]
Abstract
Grassland afforestation strongly influences the structure and function of soil microorganisms. Yet the mechanisms of how afforestation could simultaneously alter both the soil fungal and bacterial communities and its implications for ecosystem management are poorly understood, especially in nitrogen-limited ecosystems. Using high-throughput sequencing of 16S rRNA and ITS rRNA genes, the present study investigated the changes in soil properties and soil microorganisms after afforestation of natural grasslands with Chinese pine (Pinus tabuliformis) on the Loess Plateau in China. Results showed that soil bacterial diversity had no significant differences among the grassland (GL), forest-grassland transition zone (TZ), and forestland (FL), while soil fungal diversity in the GL was significantly higher than that in the FL and TZ (P < 0.05). The proportion of shared OTUs in the soil bacterial community was higher than that in the soil fungal community among the three land use types. The dominant bacterial phylum shifted from Proteobacteria to Actinobacteria, while the dominant fungal phylum shifted from Ascomycota to Basidiomycota after the GL conversion to the FL. The functional groups of ECM fungi increased significantly while biotrophic fungi decreased significantly after grassland afforestation. Both the soil bacterial and fungal communities in the TZ showed great similarity with those in the FL. In addition, among all examined soil properties, soil nitrogen (N) showed a more significant effect on the soil microbial communities. The reduction of soil N after grassland afforestation resulted in both the structure and function changes in soil microbial communities. Our results demonstrated simultaneously differential changes in the composition and diversity of both soil bacterial and fungal communities after afforestation from grasslands to planted forests.
Collapse
Affiliation(s)
- Kaibo Wang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi 710075, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yongwang Zhang
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Zhuangsheng Tang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhouping Shangguan
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China
| | - Fan Chang
- Microbial Metabolism Research Center, Microbiology Institute of Shaanxi, Xi'an 710043, China
| | - Feng'an Jia
- Microbial Metabolism Research Center, Microbiology Institute of Shaanxi, Xi'an 710043, China
| | - Yiping Chen
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi 710075, China
| | - Xinhua He
- College of Natural Resources and Environment, Southwest University, Beibei, Chongqing 400715, China; School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Weiyu Shi
- Chongqing Engineering Research Center for Remote Sensing Big Data Application, School of Geographical Sciences, Southwest University, Chongqing 400715, China.
| | - Lei Deng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China.
| |
Collapse
|
35
|
Mäkinen M, Kuuskeri J, Laine P, Smolander OP, Kovalchuk A, Zeng Z, Asiegbu FO, Paulin L, Auvinen P, Lundell T. Genome description of Phlebia radiata 79 with comparative genomics analysis on lignocellulose decomposition machinery of phlebioid fungi. BMC Genomics 2019; 20:430. [PMID: 31138126 PMCID: PMC6540522 DOI: 10.1186/s12864-019-5817-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/21/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The white rot fungus Phlebia radiata, a type species of the genus Phlebia, is an efficient decomposer of plant cell wall polysaccharides, modifier of softwood and hardwood lignin, and is able to produce ethanol from various waste lignocellulose substrates. Thus, P. radiata is a promising organism for biotechnological applications aiming at sustainable utilization of plant biomass. Here we report the genome sequence of P. radiata isolate 79 originally isolated from decayed alder wood in South Finland. To better understand the evolution of wood decay mechanisms in this fungus and the Polyporales phlebioid clade, gene content and clustering of genes encoding specific carbohydrate-active enzymes (CAZymes) in seven closely related fungal species was investigated. In addition, other genes encoding proteins reflecting the fungal lifestyle including peptidases, transporters, small secreted proteins and genes involved in secondary metabolism were identified in the genome assembly of P. radiata. RESULTS The PACBio sequenced nuclear genome of P. radiata was assembled to 93 contigs with 72X sequencing coverage and annotated, revealing a dense genome of 40.4 Mbp with approximately 14 082 predicted protein-coding genes. According to functional annotation, the genome harbors 209 glycoside hydrolase, 27 carbohydrate esterase, 8 polysaccharide lyase, and over 70 auxiliary redox enzyme-encoding genes. Comparisons with the genomes of other phlebioid fungi revealed shared and specific properties among the species with seemingly similar saprobic wood-decay lifestyles. Clustering of especially GH10 and AA9 enzyme-encoding genes according to genomic localization was discovered to be conserved among the phlebioid species. In P. radiata genome, a rich repertoire of genes involved in the production of secondary metabolites was recognized. In addition, 49 genes encoding predicted ABC proteins were identified in P. radiata genome together with 336 genes encoding peptidases, and 430 genes encoding small secreted proteins. CONCLUSIONS The genome assembly of P. radiata contains wide array of carbohydrate polymer attacking CAZyme and oxidoreductase genes in a composition identifiable for phlebioid white rot lifestyle in wood decomposition, and may thus serve as reference for further studies. Comparative genomics also contributed to enlightening fungal decay mechanisms in conversion and cycling of recalcitrant organic carbon in the forest ecosystems.
Collapse
Affiliation(s)
- Mari Mäkinen
- Department of Microbiology, Faculty of Agriculture and Forestry, Viikki Campus, University of Helsinki, FI-00014, Helsinki, Finland.,Present address: VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | - Jaana Kuuskeri
- Department of Microbiology, Faculty of Agriculture and Forestry, Viikki Campus, University of Helsinki, FI-00014, Helsinki, Finland
| | - Pia Laine
- DNA Sequencing and Genomics Laboratory, Institute of Biotechnology, Viikki Campus, FI-00014, Helsinki, Finland
| | - Olli-Pekka Smolander
- DNA Sequencing and Genomics Laboratory, Institute of Biotechnology, Viikki Campus, FI-00014, Helsinki, Finland.,Present address: Department of Chemistry and Biotechnology, Division of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Andriy Kovalchuk
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Viikki Campus, FI-00014, Helsinki, Finland
| | - Zhen Zeng
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Viikki Campus, FI-00014, Helsinki, Finland
| | - Fred O Asiegbu
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Viikki Campus, FI-00014, Helsinki, Finland
| | - Lars Paulin
- DNA Sequencing and Genomics Laboratory, Institute of Biotechnology, Viikki Campus, FI-00014, Helsinki, Finland
| | - Petri Auvinen
- DNA Sequencing and Genomics Laboratory, Institute of Biotechnology, Viikki Campus, FI-00014, Helsinki, Finland
| | - Taina Lundell
- Department of Microbiology, Faculty of Agriculture and Forestry, Viikki Campus, University of Helsinki, FI-00014, Helsinki, Finland.
| |
Collapse
|
36
|
Chen L, Xiang W, Wu H, Ouyang S, Lei P, Hu Y, Ge T, Ye J, Kuzyakov Y. Contrasting patterns and drivers of soil fungal communities in subtropical deciduous and evergreen broadleaved forests. Appl Microbiol Biotechnol 2019; 103:5421-5433. [PMID: 31073876 DOI: 10.1007/s00253-019-09867-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 12/24/2022]
Abstract
Subtropical broadleaved forests play a crucial role in supporting terrestrial ecosystem functions, but little is known about their belowground soil fungal communities despite that they have central functions in C, N, and P cycles. This study investigated the structures and identified the drivers of soil fungal communities in subtropical deciduous and evergreen broadleaved forests, using high-throughput sequencing and FUNGuild for fungal identification and assignment to the trophic guild. Fungal richness was much higher in the deciduous than in the evergreen forest. Both forests were dominated by Ascomycota and Basidiomycota phyla, but saprophytic fungi were more abundant in the deciduous forest and ectomycorrhizal fungi predominated in the evergreen forest. Fungal communities had strong links to plant and soil properties. Specifically, plant diversity and litter biomass were the main aboveground drivers of fungal diversity and composition in the deciduous forest, while host effects were prominent in the evergreen forest. The belowground factors, i.e., soil pH, water content, and nutrients especially available P, were identified as the primary drivers of soil fungal communities in the broadleaved forests. Co-occurrence network analysis revealed assembly of fungal composition in broadleaved forest soils was non-random. The smaller modularity of the network in the deciduous forest reflects lower resistance to environment changes. Concluding, these results showed that plant community attributes, soil properties, and potential interactions among fungal functional guilds operate jointly on the divergence of soil fungal community assembly in the two broadleaved forest types.
Collapse
Affiliation(s)
- Liang Chen
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.,Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, Huaihua, 438107, Hunan, China
| | - Wenhua Xiang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China. .,Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, Huaihua, 438107, Hunan, China.
| | - Huili Wu
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.,Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, Huaihua, 438107, Hunan, China
| | - Shuai Ouyang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.,Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, Huaihua, 438107, Hunan, China
| | - Pifeng Lei
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.,Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, Huaihua, 438107, Hunan, China
| | - Yajun Hu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Tida Ge
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Jun Ye
- Australian Centre for Ecogenomics, The University of Queensland, QLD, St. Lucia, 4072, Australia
| | - Yakov Kuzyakov
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.,Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Goettingen, 37077, Göttingen, Germany.,Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino, 142290, Russia
| |
Collapse
|
37
|
Barbato D, Perini C, Mocali S, Bacaro G, Tordoni E, Maccherini S, Marchi M, Cantiani P, De Meo I, Bianchetto E, Landi S, Bruschini S, Bettini G, Gardin L, Salerni E. Teamwork makes the dream work: Disentangling cross-taxon congruence across soil biota in black pine plantations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:659-669. [PMID: 30529969 DOI: 10.1016/j.scitotenv.2018.11.320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
Soil plays a fundamental role in many ecological processes, throughout a complex network of above- and below-ground interactions. This has aroused increasing interest in the use of correlates for biodiversity assessment and has demonstrated their reliability with respect to proxies based on environmental data alone. Although co-variation of species richness and composition in forests has been discussed in the literature, only a few studies have explored these elements in forest plantations, which are generally thought to be poor in biodiversity, being aimed at timber production. Based on this premise our aims were 1) to test if cross-taxon congruence across different groups of organisms (bacteria, vascular plants, mushrooms, ectomycorrhizae, mycelium, carabids, microarthropods, nematodes) is consistent in artificial stands; 2) to evaluate the strength of relationships due to the existing environmental gradients as expressed by abiotic and biotic factors (soil, spatial-topographic, dendrometric variables). Correlations between groups were studied with Mantel and partial Mantel tests, while variance partition analysis was applied to assess the relative effect of environmental variables on the robustness of observed relationships. Significant cross-taxon congruence was observed across almost all taxonomic groups pairs. However, only bacteria/mycelium and mushrooms/mycelium correlations remained significant after removing the environmental effect, suggesting that a strong abiotic influence drives species composition. Considering variation partitioning, the results highlighted the importance of bacteria as a potential indicator: bacteria were the taxonomic group with the highest compositional variance explained by the predictors used; furthermore, they proved to be involved in the only cases where the variance attributed solely to the pure effect of biotic or abiotic predictors was significant. Remarkably, the co-dependent effect of all predictors always explained the highest portion of total variation in all dependent taxa, testifying the intricate and dynamic interplay of environmental factors and biotic interactions in explaining cross-taxon congruence in forest plantations.
Collapse
Affiliation(s)
- Debora Barbato
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| | - Claudia Perini
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| | - Stefano Mocali
- CREA - Research Centre for Agriculture and Environment, Via di Lanciola 12/A, 50125 Cascine del Riccio Firenze, Italy.
| | - Giovanni Bacaro
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy.
| | - Enrico Tordoni
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy.
| | - Simona Maccherini
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| | - Maurizio Marchi
- CREA - Research Centre for Forestry and Wood, Viale S. Margherita 80, 52100 Arezzo, Italy.
| | - Paolo Cantiani
- CREA - Research Centre for Forestry and Wood, Viale S. Margherita 80, 52100 Arezzo, Italy.
| | - Isabella De Meo
- CREA - Research Centre for Agriculture and Environment, Via di Lanciola 12/A, 50125 Cascine del Riccio Firenze, Italy.
| | - Elisa Bianchetto
- CREA - Research Centre for Agriculture and Environment, Via di Lanciola 12/A, 50125 Cascine del Riccio Firenze, Italy.
| | - Silvia Landi
- CREA - Research Centre for Plant Protection and Certification, Via di Lanciola 12/A, 50125 Cascine del Riccio Firenze, Italy.
| | - Silvia Bruschini
- Compagnia delle Foreste Srl, Via Pietro Aretino 8, 52100 Arezzo, Italy.
| | | | - Lorenzo Gardin
- SOILDATA Srl Suolo territorio ambiente, Via Guerrazzi 2R, 50132 Firenze, Italy.
| | - Elena Salerni
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| |
Collapse
|
38
|
Buyel JF. Plant Molecular Farming - Integration and Exploitation of Side Streams to Achieve Sustainable Biomanufacturing. FRONTIERS IN PLANT SCIENCE 2019; 9:1893. [PMID: 30713542 PMCID: PMC6345721 DOI: 10.3389/fpls.2018.01893] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/06/2018] [Indexed: 05/22/2023]
Abstract
Plants have unique advantages over other systems such as mammalian cells for the production of valuable small molecules and proteins. The benefits cited most often include safety due to the absence of replicating human pathogens, simplicity because sterility is not required during production, scalability due to the potential for open-field cultivation with transgenic plants, and the speed of transient expression potentially providing gram quantities of product in less than 4 weeks. Initially there were also significant drawbacks, such as the need to clarify feed streams with a high particle burden and the large quantities of host cell proteins, but efficient clarification is now readily achieved. Several additional advantages have also emerged reflecting the fact that plants are essentially biodegradable, single-use bioreactors. This article will focus on the exploitation of this concept for the production of biopharmaceutical proteins, thus improving overall process economics. Specifically, we will discuss the single-use properties of plants, the sustainability of the production platform, and the commercial potential of different biomass side streams. We find that incorporating these side streams through rational process integration has the potential to more than double the revenue that can currently be achieved using plant-based production systems.
Collapse
Affiliation(s)
- Johannes F. Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
39
|
Tanikawa T, Fujii S, Sun L, Hirano Y, Matsuda Y, Miyatani K, Doi R, Mizoguchi T, Maie N. Leachate from fine root litter is more acidic than leaf litter leachate: A 2.5-year laboratory incubation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:179-191. [PMID: 30021175 DOI: 10.1016/j.scitotenv.2018.07.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/22/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
Some tree species increase fine root production under soil acidification, thus changing the balance of litter input from leaves and roots. Litter leaches a significant amount of acidic materials during its decomposition, which might facilitate soil acidification. In this context, we focused on dissolved organic matter (DOM) as the major component of acidic materials. We hypothesized that both the quality and quantity of DOM, which control its function (i.e., proton supply), differ between leaf and root litter. To test this hypothesis, we conducted a 2.5-year laboratory incubation experiment using fresh fine roots and fresh green leaves as litter of two coniferous species (Cryptomeria japonica and Chamaecyparis obtusa) and investigated the leachate pH and DOM composition based on the optical properties. After the early stage of decomposition when flash leaching of DOM converged, the amount of dissolved organic carbon (DOC) leached from roots increased again and leachate pH declined. In contrast, DOC concentrations continued to decrease in leaf leachates during the incubation period, and the pH decrease was not as striking as that of root leachates. Optical properties (ultraviolet visible absorption and fluorescence) of DOM revealed that humic-like substances in DOM played a central role in the acidic pH of root leachates. The total amount of protons released from roots of C. japonica and C. obtusa is about 13 and 18 times higher, respectively, than that from leaves. These results imply that the increase of fine root biomass may induce a positive plant-soil feedback in acidic soils, affecting soil biogeochemical functions of terrestrial ecosystems.
Collapse
Affiliation(s)
- Toko Tanikawa
- Kansai Research Center, Forestry and Forest Products Research Institute, Nagai-kyutaro, Momoyama, Fushimi, Kyoto 612-0855, Japan.
| | - Saori Fujii
- Forestry and Forest Products Research Institute, Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| | - Lijuan Sun
- Division of Environmental Science and Technology, Kyoto University, Kyoto 606-8502, Japan
| | - Yasuhiro Hirano
- Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8601, Japan
| | - Yosuke Matsuda
- Graduate School of Bioresources, Mie University, Mie 514-8507, Japan
| | - Kouhei Miyatani
- Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8601, Japan
| | - Ryuusei Doi
- Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8601, Japan
| | - Takeo Mizoguchi
- Kansai Research Center, Forestry and Forest Products Research Institute, Nagai-kyutaro, Momoyama, Fushimi, Kyoto 612-0855, Japan
| | - Nagamitsu Maie
- School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| |
Collapse
|
40
|
Tláskal V, Zrustová P, Vrška T, Baldrian P. Bacteria associated with decomposing dead wood in a natural temperate forest. FEMS Microbiol Ecol 2018; 93:4604780. [PMID: 29126113 DOI: 10.1093/femsec/fix157] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/07/2017] [Indexed: 01/05/2023] Open
Abstract
Dead wood represents an important pool of organic matter in forests and is one of the sources of soil formation. It has been shown to harbour diverse communities of bacteria, but their roles in this habitat are still poorly understood. Here, we describe the bacterial communities in the dead wood of Abies alba, Picea abies and Fagus sylvatica in a temperate natural forest in Central Europe. An analysis of environmental factors showed that decomposing time along with pH and water content was the strongest drivers of community composition. Bacterial biomass positively correlated with N content and increased with decomposition along with the concurrent decrease in the fungal/bacterial biomass ratio. Rhizobiales and Acidobacteriales were abundant bacterial orders throughout the whole decay process, but many bacterial taxa were specific either for young (<15 years) or old dead wood. During early decomposition, bacterial genera able to fix N2 and to use simple C1 compounds (e.g. Yersinia and Methylomonas) were frequent, while wood in advanced decay was rich in taxa typical of forest soils (e.g. Bradyrhizobium and Rhodoplanes). Although the bacterial contribution to dead wood turnover remains unclear, the community composition appears to reflect the changing conditions of the substrate and suggests broad metabolic capacities of its members.
Collapse
Affiliation(s)
- Vojtech Tláskal
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídenská 1083, 14220 Praha 4, Czech Republic
| | - Petra Zrustová
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídenská 1083, 14220 Praha 4, Czech Republic
| | - Tomáš Vrška
- Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Lidická 25/27, Brno 60200, Czech Republic
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídenská 1083, 14220 Praha 4, Czech Republic
| |
Collapse
|
41
|
Drivers of microbial community structure in forest soils. Appl Microbiol Biotechnol 2018; 102:4331-4338. [DOI: 10.1007/s00253-018-8950-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 10/17/2022]
|
42
|
Humus Forms and Soil Microbiological Parameters in a Mountain Forest: Upscaling to the Slope Scale. SOIL SYSTEMS 2018. [DOI: 10.3390/soilsystems2010012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Liu S, Wang H, Deng Y, Tian P, Wang Q. Forest conversion induces seasonal variation in microbial β-diversity. Environ Microbiol 2018; 20:111-123. [DOI: 10.1111/1462-2920.14017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 01/10/2023]
Affiliation(s)
- Shengen Liu
- CAS Key Laboratory of Forest Ecology and Management; Institute of Applied Ecology, Huitong Experimental Station of Forest Ecology; Shenyang 110164 People's Republic of China
- University of Chinese Academy of Sciences; Beijing 100049 People's Republic of China
| | - Hang Wang
- National Plateau Wetlands Research Center; Southwest Forestry University; Kunming 650224 China
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Science; Chinese Academy of Sciences; Beijing 100085 China
| | - Peng Tian
- CAS Key Laboratory of Forest Ecology and Management; Institute of Applied Ecology, Huitong Experimental Station of Forest Ecology; Shenyang 110164 People's Republic of China
- University of Chinese Academy of Sciences; Beijing 100049 People's Republic of China
| | - Qingkui Wang
- CAS Key Laboratory of Forest Ecology and Management; Institute of Applied Ecology, Huitong Experimental Station of Forest Ecology; Shenyang 110164 People's Republic of China
| |
Collapse
|