1
|
Soni S, Gambhir L, Sharma G, Sharma A, Kapoor N. Unraveling the treasure trove of phytochemicals in mitigating the Salmonella enterica infection. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01192-x. [PMID: 39212846 DOI: 10.1007/s12223-024-01192-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Foodborne diseases triggered by various infectious micro-organisms are contributing significantly to the global disease burden as well as to increasing mortality rates. Salmonella enterica belongs to the most prevalent form of bacteria accountable for significant burden of foodborne illness across the globe. The conventional therapeutic approach to cater to Salmonella enterica-based infections relies on antibiotic therapy, but the rapid emergence of the antibiotic resistance strains of Salmonella sp. necessitates the development of alternative treatment and prevention strategies. In light of this growing concern, the scientific community is rigorously exploring novel phytochemicals harnessed from medicinally important plants as a promising approach to curb Salmonella enterica infections. A variety of phytochemicals belonging to alkaloids, phenols, flavonoid, and terpene classes are reported to exhibit their inhibitory activity against bacterial cell communication, membrane proteins, efflux pumps, and biofilm formation among drug resistant Salmonella strains. The present review article delves to discuss the emergence of antibiotic resistance among Salmonella enterica strains, various plant sources, identification of phytochemicals, and the current state of research on the use of phytochemicals as antimicrobial agents against Salmonella enterica, shedding light on the promising potential of phytochemicals in the fight against this pathogen.
Collapse
Affiliation(s)
- Saurabh Soni
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| | - Lokesh Gambhir
- School of Basic and Applied Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, 248001, India
| | - Gaurav Sharma
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| | - Asha Sharma
- Department of Zoology, Swargiya P. N. K. S. Govt. PG College, Dausa, 303303, India
| | - Neha Kapoor
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan, India.
| |
Collapse
|
2
|
Murányi G, Szabó M, Acsai K, Kiss J. Two birds with one stone: SGI1 can stabilize itself and expel the IncC helper by hijacking the plasmid parABS system. Nucleic Acids Res 2024; 52:2498-2518. [PMID: 38300764 PMCID: PMC10954446 DOI: 10.1093/nar/gkae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
The SGI1 family integrative mobilizable elements, which are efficient agents in distribution of multidrug resistance in Gammaproteobacteria, have a complex, parasitic relationship with their IncC conjugative helper plasmids. Besides exploiting the transfer apparatus, SGI1 also hijacks IncC plasmid control mechanisms to time its own excision, replication and expression of self-encoded T4SS components, which provides advantages for SGI1 over its helpers in conjugal transfer and stable maintenance. Furthermore, SGI1 destabilizes its helpers in an unknown, replication-dependent way when they are concomitantly present in the same host. Here we report how SGI1 exploits the helper plasmid partitioning system to displace the plasmid and simultaneously increase its own stability. We show that SGI1 carries two copies of sequences mimicking the parS sites of IncC plasmids. These parS-like elements bind the ParB protein encoded by the plasmid and increase SGI1 stability by utilizing the parABS system of the plasmid for its own partitioning, through which SGI1 also destabilizes the helper plasmid. Furthermore, SGI1 expresses a small protein, Sci, which significantly strengthens this plasmid-destabilizing effect, as well as SGI1 maintenance. The plasmid-induced replication of SGI1 results in an increased copy-number of parS-like sequences and Sci expression leading to strong incompatibility with the helper plasmid.
Collapse
Affiliation(s)
- Gábor Murányi
- Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, H2100 Hungary
| | - Mónika Szabó
- Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, H2100 Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Gödöllő, H2100 Hungary
| | - Károly Acsai
- Ceva Animal Health, Ceva-Phylaxia, Budapest, H1107 Hungary
| | - János Kiss
- Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, H2100 Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Gödöllő, H2100 Hungary
| |
Collapse
|
3
|
Petrin S, Orsini M, Massaro A, Olsen JE, Barco L, Losasso C. Phenotypic and genotypic antimicrobial resistance correlation and plasmid characterization in Salmonella spp. isolates from Italy reveal high heterogeneity among serovars. Front Public Health 2023; 11:1221351. [PMID: 37744490 PMCID: PMC10513437 DOI: 10.3389/fpubh.2023.1221351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction The spread of antimicrobial resistance among zoonotic pathogens such as Salmonella is a serious health threat, and mobile genetic elements (MGEs) carrying antimicrobial resistance genes favor this phenomenon. In this work, phenotypic antimicrobial resistance to commonly used antimicrobials was studied, and the antimicrobial resistance genes (ARGs) and plasmid replicons associated with the resistances were determined. Methods Eighty-eight Italian Salmonella enterica strains (n = 88), from human, animal and food sources, isolated between 2009 and 2019, were selected to represent serovars with different frequency of isolation in human cases of salmonellosis. The presence of plasmid replicons was also investigated. Results and discussion Resistances to sulphonamides (23.9%), ciprofloxacin (27.3%), ampicillin (29.5%), and tetracycline (32.9%) were the most found phenotypes. ARGs identified in the genomes correlated with the phenotypical results, with blaTEM-1B, sul1, sul2, tetA and tetB genes being frequently identified. Point mutations in gyrA and parC genes were also detected, in addition to many different aminoglycoside-modifying genes, which, however, did not cause phenotypic resistance to aminoglycosides. Many genomes presented plasmid replicons, however, only a limited number of ARGs were predicted to be located on the contigs carrying these replicons. As an expectation of this, multiple ARGs were identified on contigs with IncQ1 plasmid replicon in strains belonging to the monophasic variant of Salmonella Typhimurium. In general, high variability in ARGs and plasmid replicons content was observed among isolates, highlighting a high level of heterogeneity in Salmonella enterica. Irrespective of the serovar., many of the ARGs, especially those associated with critically and highly important antimicrobials for human medicine were located together with plasmid replicons, thus favoring their successful dissemination.
Collapse
Affiliation(s)
- Sara Petrin
- Microbial Ecology and Microrganisms Genomics Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, Legnaro, Italy
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Massimiliano Orsini
- Microbial Ecology and Microrganisms Genomics Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, Legnaro, Italy
| | - Andrea Massaro
- Applied Chemistry Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Vicenza, Italy
| | - John E. Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Lisa Barco
- OIE and National Reference Laboratory for Salmonellosis, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, Legnaro, Italy
| | - Carmen Losasso
- Microbial Ecology and Microrganisms Genomics Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, Legnaro, Italy
| |
Collapse
|
4
|
Vázquez X, García-Fierro R, Fernández J, Bances M, Herrero-Fresno A, Olsen JE, Rodicio R, Ladero V, García V, Rodicio MR. Incidence and Genomic Background of Antibiotic Resistance in Food-Borne and Clinical Isolates of Salmonella enterica Serovar Derby from Spain. Antibiotics (Basel) 2023; 12:1204. [PMID: 37508300 PMCID: PMC10376468 DOI: 10.3390/antibiotics12071204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Salmonella enterica serovar Derby (S. Derby) ranks fifth among nontyphoidal Salmonella serovars causing human infections in the European Union. S. Derby isolates (36) collected between 2006 and 2018 in a Spanish region (Asturias) from human clinical samples (20) as well as from pig carcasses, pork- or pork and beef-derived products, or wild boar (16) were phenotypically characterized with regard to resistance, and 22 (12 derived from humans and 10 from food-related samples) were also subjected to whole genome sequence analysis. The sequenced isolates belonged to ST40, a common S. Derby sequence type, and were positive for SPI-23, a Salmonella pathogenicity island involved in adherence and invasion of the porcine jejune enterocytes. Isolates were either susceptible (30.6%), or resistant to one or more of the 19 antibiotics tested for (69.4%). Resistances to tetracycline [tet(A), tet(B) and tet(C)], streptomycin (aadA2), sulfonamides (sul1), nalidixic acid [gyrA (Asp87 to Asn)] and ampicillin (blaTEM-1-like) were detected, with frequencies ranging from 8.3% to 66.7%, and were higher in clinical than in food-borne isolates. The fosA7.3 gene was present in all sequenced isolates. The most common phenotype was that conferred by the tet(A), aadA2 and sul1 genes, located within identical or closely related variants of Salmonella Genomic Island 1 (SGI1), where mercury resistance genes were also present. Diverse IncI1-I(α) plasmids belonging to distinct STs provided antibiotic [blaTEM-1, tet(A) and/or tet(B)] and heavy metal resistance genes (copper and silver), while small pSC101-like plasmids carried tet(C). Regardless of their location, most resistance genes were associated with genetic elements involved in DNA mobility, including a class one integron, multiple insertion sequences and several intact or truncated transposons. By phylogenetic analysis, the isolates were distributed into two distinct clades, both including food-borne and clinical isolates. One of these clades included all SGI1-like positive isolates, which were found in both kinds of samples throughout the entire period of study. Although the frequency of S. Derby in Asturias was very low (0.5% and 3.1% of the total clinical and food isolates of S. enterica recovered along the period of study), it still represents a burden to human health linked to transmission across the food chain. The information generated in the present study can support further epidemiological surveillance aimed to control this zoonotic pathogen.
Collapse
Affiliation(s)
- Xenia Vázquez
- Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo (UO), 33006 Oviedo, Spain
- Grupo de Microbiología Traslacional, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), 33300 Villaviciosa, Spain
| | - Raquel García-Fierro
- Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo (UO), 33006 Oviedo, Spain
| | - Javier Fernández
- Grupo de Microbiología Traslacional, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Servicio de Microbiología, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, 30627 Madrid, Spain
- Research & Innovation, Artificial Intelligence and Statistical Department, Pragmatech AI Solutions, 33001 Oviedo, Spain
| | - Margarita Bances
- Laboratorio de Salud Pública, Dirección General de Salud Pública, Consejería de Salud del Principado de Asturias, 33011 Oviedo, Spain
| | - Ana Herrero-Fresno
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - John E Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Rosaura Rodicio
- Grupo de Microbiología Traslacional, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo (UO), 33006 Oviedo, Spain
| | - Víctor Ladero
- Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), 33300 Villaviciosa, Spain
- Grupo de Microbiología Molecular, Instituto de Investigación Sanitaria del Principado de Asturias (IAPA), 33011 Oviedo, Spain
| | - Vanesa García
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - M Rosario Rodicio
- Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo (UO), 33006 Oviedo, Spain
- Grupo de Microbiología Traslacional, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
5
|
van Duijkeren E, Rantala M, Bouchard D, Busani L, Catry B, Kaspar H, Pomba C, Moreno MA, Nilsson O, Ružauskas M, Sanders P, Teale C, Wester AL, Ignate K, Jukes H, Kunsagi Z, Schwarz C. The use of aminopenicillins in animals within the EU, emergence of resistance in bacteria of animal and human origin and its possible impact on animal and human health. J Antimicrob Chemother 2023:7179861. [PMID: 37229552 DOI: 10.1093/jac/dkad157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
Aminopenicillins have been widely used for decades for the treatment of various infections in animals and humans in European countries. Following this extensive use, acquired resistance has emerged among human and animal pathogens and commensal bacteria. Aminopenicillins are important first-line treatment options in both humans and animals, but are also among limited therapies for infections with enterococci and Listeria spp. in humans in some settings. Therefore, there is a need to assess the impact of the use of these antimicrobials in animals on public and animal health. The most important mechanisms of resistance to aminopenicillins are the β-lactamase enzymes. Similar resistance genes have been detected in bacteria of human and animal origin, and molecular studies suggest that transmission of resistant bacteria or resistance genes occurs between animals and humans. Due to the complexity of epidemiology and the near ubiquity of many aminopenicillin resistance determinants, the direction of transfer is difficult to ascertain, except for major zoonotic pathogens. It is therefore challenging to estimate to what extent the use of aminopenicillins in animals could create negative health consequences to humans at the population level. Based on the extent of use of aminopenicillins in humans, it seems probable that the major resistance selection pressure in human pathogens in European countries is due to human consumption. It is evident that veterinary use of these antimicrobials increases the selection pressure towards resistance in animals and loss of efficacy will at minimum jeopardize animal health and welfare.
Collapse
Affiliation(s)
- Engeline van Duijkeren
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Utrecht, The Netherlands
| | - Merja Rantala
- Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Damien Bouchard
- French Agency for Food, Environmental, and Occupational Health and Safety, National Agency for Veterinary Medicinal Products, Fougères, France
| | - Luca Busani
- Instituto Superiore di Sanita, Center for Gender-Specific Medicine, Rome, Italy
| | - Boudewijn Catry
- Sciensano, Department of Epidemiology and Public Health, Brussels, Belgium
- Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Heike Kaspar
- Federal Office of Consumer Protection and Food Safety, Department Method Standardisation, Reference Laboratories, Resistance to Antibiotics, Berlin, Germany
| | - Constança Pomba
- Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Miguel A Moreno
- Faculty of Veterinary Medicine, Complutense University, Madrid, Spain
| | - Oskar Nilsson
- National Veterinary Institute, SVA, Department of Animal Health and Antimicrobial Strategies, Uppsala, Sweden
| | - Modestas Ružauskas
- Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Pascal Sanders
- French Agency for Food, Environmental, and Occupational Health and Safety, Strategy and Programme Department, Maisons-Alfort, France
| | | | | | | | - Helen Jukes
- European Medicines Agency, Amsterdam, The Netherlands
| | | | - Christine Schwarz
- Federal Office of Consumer Protection and Food Safety, Department Method Standardisation, Reference Laboratories, Resistance to Antibiotics, Berlin, Germany
- Federal Office of Consumer Protection and Food Safety, Veterinary Drugs, Berlin, Germany
| |
Collapse
|
6
|
Lu X, Lin H, Feng X, Long D, Yang G, Hsing IM. Electroactive Hydrolysis Probe-based Portable PCR Platform for Sequence-Specific Detection of NontyphoidalSalmonella Drug Resistance Gene. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Punchihewage-Don AJ, Hawkins J, Adnan AM, Hashem F, Parveen S. The outbreaks and prevalence of antimicrobial resistant Salmonella in poultry in the United States: An overview. Heliyon 2022; 8:e11571. [PMID: 36406693 PMCID: PMC9668525 DOI: 10.1016/j.heliyon.2022.e11571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/20/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
Salmonella is a Gram-negative, rod-shaped, facultative anaerobic, and non-spore-forming bacterium that belongs to the family of Enterobacteriaceae and is the causative agent for typhoid/paratyphoid fever and salmonellosis. Salmonella causes the highest amount of foodborne illness among bacteria at 15.5 cases per 100,000 and causes an estimated 410,000 antibiotic-resistant infections each year in the U.S. The use of antibiotics has been a staple in poultry production for the prevention of diseases and growth promotion for the last 70 years. Due to the over-and misusage of antibiotics, there has been an emerging public health crisis. Salmonella is developing resistance and may render antibiotics inoperative in a foodborne outbreak. Poultry, when not handled properly, is a major carrier and transmitter of Salmonella, causing human illness and fatality. This review summarizes the major Salmonella outbreaks over the past three decades, the prevalence of Antimicrobial Resistant (AMR) Salmonella related to poultry, and the control measures being implemented to reduce and prevent AMR Salmonella in poultry.
Collapse
Affiliation(s)
| | - Jabari Hawkins
- University of Maryland Eastern Shore, Princess Anne, MD, 21853, USA
| | - Adib M. Adnan
- University of Maryland Eastern Shore, Princess Anne, MD, 21853, USA
- University of Maryland, College Park, MD, 20742, USA
| | - Fawzy Hashem
- University of Maryland Eastern Shore, Princess Anne, MD, 21853, USA
| | - Salina Parveen
- University of Maryland Eastern Shore, Princess Anne, MD, 21853, USA
| |
Collapse
|
8
|
Ilgaz C, Kadiroglu P. Fourier transform‐infrared assessment of cholesterol effect on antibiotic resistance of
Salmonella Typhimurium. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.15416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ceren Ilgaz
- Food Engineering Department Adana Alparslan Türkeş Science and Technology University Adana Turkey
| | - Pınar Kadiroglu
- Food Engineering Department Adana Alparslan Türkeş Science and Technology University Adana Turkey
| |
Collapse
|
9
|
Samper-Cativiela C, Diéguez-Roda B, Trigo da Roza F, Ugarte-Ruiz M, Elnekave E, Lim S, Hernández M, Abad D, Collado S, Sáez JL, de Frutos C, Agüero M, Moreno MÁ, Escudero JA, Álvarez J. Genomic characterization of multidrug-resistant Salmonella serovar Kentucky ST198 isolated in poultry flocks in Spain (2011-2017). Microb Genom 2022; 8. [PMID: 35259085 PMCID: PMC9176280 DOI: 10.1099/mgen.0.000773] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Salmonella Kentucky is commonly found in poultry and rarely associated with human disease. However, a multidrug-resistant (MDR) S. Kentucky clone [sequence type (ST)198] has been increasingly reported globally in humans and animals. Our aim here was to assess if the recently reported increase of S. Kentucky in poultry in Spain was associated with the ST198 clone and to characterize this MDR clone and its distribution in Spain. Sixty-six isolates retrieved from turkey, laying hen and broiler in 2011–2017 were subjected to whole-genome sequencing to assess their sequence type, genetic relatedness, and presence of antimicrobial resistance genes (ARGs), plasmid replicons and virulence factors. Thirteen strains were further analysed using long-read sequencing technologies to characterize the genetic background associated with ARGs. All isolates belonged to the ST198 clone and were grouped in three clades associated with the presence of a specific point mutation in the gyrA gene, their geographical origin and isolation year. All strains carried between one and 16 ARGs whose presence correlated with the resistance phenotype to between two and eight antimicrobials. The ARGs were located in the Salmonella genomic island (SGI-1) and in some cases (blaSHV-12, catA1, cmlA1, dfrA and multiple aminoglycoside-resistance genes) in IncHI2/IncI1 plasmids, some of which were consistently detected in different years/farms in certain regions, suggesting they could persist over time. Our results indicate that the MDR S. Kentucky ST198 is present in all investigated poultry hosts in Spain, and that certain strains also carry additional plasmid-mediated ARGs, thus increasing its potential public health significance.
Collapse
Affiliation(s)
- Clara Samper-Cativiela
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain.,Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | | | - Filipa Trigo da Roza
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain.,Molecular Basis of Adaptation, Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, 28040 Madrid, Spain
| | - María Ugarte-Ruiz
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ehud Elnekave
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
| | - Seunghyun Lim
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55455, USA.,Bioinformatics and Computational Biology Program, University of Minnesota, Rochester, MN 55455, 55455 Minnesota, USA
| | - Marta Hernández
- Molecular Biology and Microbiology Laboratory, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Junta de Castilla y León, 47009 Valladolid, Spain
| | - David Abad
- Molecular Biology and Microbiology Laboratory, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Junta de Castilla y León, 47009 Valladolid, Spain
| | - Soledad Collado
- Subdirección General de Sanidad e Higiene Animal y Trazabilidad, Dirección General de la Producción Agraria, Ministerio de Agricultura, Pesca y Alimentación, 28010 Madrid, Spain
| | - José Luis Sáez
- Subdirección General de Sanidad e Higiene Animal y Trazabilidad, Dirección General de la Producción Agraria, Ministerio de Agricultura, Pesca y Alimentación, 28010 Madrid, Spain
| | - Cristina de Frutos
- Laboratorio Central de Veterinaria, Ministerio de Agricultura, Pesca y Alimentación, 28110 Madrid, Spain
| | - Montserrat Agüero
- Laboratorio Central de Veterinaria, Ministerio de Agricultura, Pesca y Alimentación, 28110 Madrid, Spain
| | - Miguel Ángel Moreno
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - José Antonio Escudero
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain.,Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain.,Molecular Basis of Adaptation, Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, 28040 Madrid, Spain
| | - Julio Álvarez
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain.,Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
10
|
Abrera GB, Sagum RS, Diano GT, Pares FO, Feliciano CP. Radiation sensitivity and inactivation of antibiotic-resistant Salmonella spp. in fresh chicken legs. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Namli S, Soyer Y. Investigation of class 1 integrons and virulence genes in the emergent Salmonella serovar Infantis in Turkey. Int Microbiol 2021; 25:259-265. [PMID: 34559352 DOI: 10.1007/s10123-021-00212-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 11/25/2022]
Abstract
The emerging situation of Salmonella enterica subsp. enterica serovar Infantis (S. Infantis) in Turkey was investigated in terms of virulence genes and mobile genetic elements such as Salmonella genomic island 1 (SGI1) and class 1 (C1) integron to see whether increased multidrug resistance (MDR) and ability to cause human cases is a consequence of their possession. Screening of SGI1 (and its variants) and C1 integrons was done with conventional PCR, while screening of gene cassettes and virulence genes was conducted with real-time PCR for 70 S. Infantis isolates from poultry products. SGI1 or its variants were not detected in any of the isolates. Sixty-eight of 70 isolates were detected to carry one C1 integron of size 1.0 kb. These integrons were detected to carry ant(3″)-Ia gene cassette explaining the streptomycin/spectinomycin resistance. Sequence analysis of gene cassettes belongs to four representing isolates which showed that, although their difference in isolation date and place, genetically, they are 99.9% similar. Virulence gene screening was introduced as genotypic virulence profiles. The most dominant profile for S. Infantis isolates, among twelve genes, was gatC-tcfA, which are known to be related to colonization at specific hosts. This study revealed the high percentage of C1 integron possession in S. Infantis isolates from poultry products in Turkey. It also showed the potential of S. Infantis strains to be resistant to more antimicrobial drugs. Moreover, a dominant profile of virulence genes that are uncommon for non-typhoidal Salmonella (NTS) serovars was detected, which might explain the enhanced growth at specified hosts.
Collapse
Affiliation(s)
- Sahin Namli
- Department of Food Engineering, Faculty of Engineering, Orta Dogu Teknik Üniversitesi, Ankara, 06800, Turkey
| | - Yesim Soyer
- Department of Food Engineering, Faculty of Engineering, Orta Dogu Teknik Üniversitesi, Ankara, 06800, Turkey.
| |
Collapse
|
12
|
Durand R, Deschênes F, Burrus V. Genomic islands targeting dusA in Vibrio species are distantly related to Salmonella Genomic Island 1 and mobilizable by IncC conjugative plasmids. PLoS Genet 2021; 17:e1009669. [PMID: 34415925 PMCID: PMC8409611 DOI: 10.1371/journal.pgen.1009669] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/01/2021] [Accepted: 08/09/2021] [Indexed: 11/18/2022] Open
Abstract
Salmonella Genomic Island 1 (SGI1) and its variants are significant contributors to the spread of antibiotic resistance among Gammaproteobacteria. All known SGI1 variants integrate at the 3’ end of trmE, a gene coding for a tRNA modification enzyme. SGI1 variants are mobilized specifically by conjugative plasmids of the incompatibility groups A and C (IncA and IncC). Using a comparative genomics approach based on genes conserved among members of the SGI1 group, we identified diverse integrative elements distantly related to SGI1 in several species of Vibrio, Aeromonas, Salmonella, Pokkaliibacter, and Escherichia. Unlike SGI1, these elements target two alternative chromosomal loci, the 5’ end of dusA and the 3’ end of yicC. Although they share many features with SGI1, they lack antibiotic resistance genes and carry alternative integration/excision modules. Functional characterization of IMEVchUSA3, a dusA-specific integrative element, revealed promoters that respond to AcaCD, the master activator of IncC plasmid transfer genes. Quantitative PCR and mating assays confirmed that IMEVchUSA3 excises from the chromosome and is mobilized by an IncC helper plasmid from Vibrio cholerae to Escherichia coli. IMEVchUSA3 encodes the AcaC homolog SgaC that associates with AcaD to form a hybrid activator complex AcaD/SgaC essential for its excision and mobilization. We identified the dusA-specific recombination directionality factor RdfN required for the integrase-mediated excision of dusA-specific elements from the chromosome. Like xis in SGI1, rdfN is under the control of an AcaCD-responsive promoter. Although the integration of IMEVchUSA3 disrupts dusA, it provides a new promoter sequence and restores the reading frame of dusA for proper expression of the tRNA-dihydrouridine synthase A. Phylogenetic analysis of the conserved proteins encoded by SGI1-like elements targeting dusA, yicC, and trmE gives a fresh perspective on the possible origin of SGI1 and its variants. We identified integrative elements distantly related to Salmonella Genomic Island 1 (SGI1), a key vector of antibiotic resistance genes in Gammaproteobacteria. SGI1 and its variants reside at the 3’ end of trmE, share a large, highly conserved core of genes, and carry a complex integron that confers multidrug resistance phenotypes to their hosts. Unlike members of the SGI1 group, these novel genomic islands target the 5’ end dusA or the 3’ end of yicC, lack multidrug resistance genes, and seem much more diverse. We showed here that, like SGI1, these elements are mobilized by conjugative plasmids of the IncC group. Based on comparative genomics and functional analyses, we propose a hypothetical model of the evolution of SGI1 and its siblings from the progenitor of IncA and IncC conjugative plasmids via an intermediate dusA-specific integrative element through gene losses and gain of alternative integration/excision modules.
Collapse
Affiliation(s)
- Romain Durand
- Département de biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Florence Deschênes
- Département de biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Vincent Burrus
- Département de biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
- * E-mail:
| |
Collapse
|
13
|
Hu Y, Nguyen SV, Wang W, Gan X, Dong Y, Liu C, Cui X, Xu J, Li F, Fanning S. Antimicrobial Resistance and Genomic Characterization of Two mcr-1-Harboring Foodborne Salmonella Isolates Recovered in China, 2016. Front Microbiol 2021; 12:636284. [PMID: 34211439 PMCID: PMC8239406 DOI: 10.3389/fmicb.2021.636284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/06/2021] [Indexed: 12/16/2022] Open
Abstract
The mcr-1 gene mediating mobile colistin resistance in Escherichia coli was first reported in China in 2016 followed by reports among different species worldwide, especially in E. coli and Klebsiella. However, data on its transmission in Salmonella are still lacking. This study analyzed the antimicrobial resistance (AMR) profiles and the mcr-1 gene presence in 755 foodborne Salmonella from 26 provinces of mainland, China in 2016. Genomic features of two mcr-1-carrying isolates, genome sequencing, serotypes and further resistance profiles were studied. Among the 755 Salmonella tested, 72.6% were found to be resistant to at least one antimicrobial agent and 10% were defined as multi-drug resistant (MDR). Salmonella Derby CFSA231 and Salmonella Typhimurium CFSA629 were mcr-1-harboring isolates. Both expressed an MDR phenotype and included a single circular chromosome and one plasmid. Among the 22 AMR genes identified in S. Derby CFSA231, only the mcr-1 gene was localized on the IncX4 type plasmid pCFSA231 while 20 chromosomal AMR genes, including four plasmid-mediated quinolone resistance (PMQR) genes, were mapped within a 64 kb Salmonella genomic island (SGI) like region. S. Typhimurium CFSA629 possessed 11 resistance genes including an mcr-1.19 variant and two ESBL genes. Two IS26-flanked composite-like transposons were identified. Additionally, 153 and 152 virulence factors were separately identified in these two isolates with secretion system and fimbrial adherence determinants as the dominant virulence classes. Our study extends our concern on mcr-1-carrying Salmonella in regards to antimicrobial resistance and virulence factors, and highlight the importance of surveillance to mitigate dissemination of mcr-encoding genes among foodborne Salmonella.
Collapse
Affiliation(s)
- Yujie Hu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China.,UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, University College Dublin, Dublin, Ireland
| | - Scott V Nguyen
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, University College Dublin, Dublin, Ireland.,Public Health Laboratory, District of Columbia Department of Forensic Sciences, Washington, DC, United States
| | - Wei Wang
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Xin Gan
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Yinping Dong
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China.,UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, University College Dublin, Dublin, Ireland
| | - Chang Liu
- Food Science and Engineering College, Beijing University of Agriculture, Beijing, China
| | - Xinnan Cui
- Food Science and Engineering College, Beijing University of Agriculture, Beijing, China.,China Center of Industrial Culture Collection, China National Research Institute of Food and Fermentation Industries, Beijing, China
| | - Jin Xu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Fengqin Li
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Séamus Fanning
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China.,UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, University College Dublin, Dublin, Ireland.,Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
14
|
Delgado-Suárez EJ, Palós-Guitérrez T, Ruíz-López FA, Hernández Pérez CF, Ballesteros-Nova NE, Soberanis-Ramos O, Méndez-Medina RD, Allard MW, Rubio-Lozano MS. Genomic surveillance of antimicrobial resistance shows cattle and poultry are a moderate source of multi-drug resistant non-typhoidal Salmonella in Mexico. PLoS One 2021; 16:e0243681. [PMID: 33951039 PMCID: PMC8099073 DOI: 10.1371/journal.pone.0243681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/15/2021] [Indexed: 12/22/2022] Open
Abstract
Multi-drug resistant (MDR) non-typhoidal Salmonella (NTS) is a public health concern globally. This study reports the phenotypic and genotypic antimicrobial resistance (AMR) profiles of NTS isolates from bovine lymph nodes (n = 48) and ground beef (n = 29). Furthermore, we compared genotypic AMR data of our isolates with those of publicly available NTS genomes from Mexico (n = 2400). The probability of finding MDR isolates was higher in ground beef than in lymph nodes:χ2 = 12.0, P = 0.0005. The most common resistant phenotypes involved tetracycline (40.3%), carbenicillin (26.0%), amoxicillin-clavulanic acid (20.8%), chloramphenicol (19.5%) and trimethoprim-sulfamethoxazole (16.9%), while more than 55% of the isolates showed decreased susceptibility to ciprofloxacin and 26% were MDR. Conversely, resistance to cephalosporins and carbapenems was infrequent (0-9%). MDR phenotypes were strongly associated with NTS serovar (χ2 = 24.5, P<0.0001), with Typhimurium accounting for 40% of MDR strains. Most of these (9/10), carried Salmonella genomic island 1, which harbors a class-1 integron with multiple AMR genes (aadA2, blaCARB-2, floR, sul1, tetG) that confer a penta-resistant phenotype. MDR phenotypes were also associated with mutations in the ramR gene (χ2 = 17.7, P<0.0001). Among public NTS isolates from Mexico, those from cattle and poultry had the highest proportion of MDR genotypes. Our results suggest that attaining significant improvements in AMR meat safety requires the identification and removal (or treatment) of product harboring MDR NTS, instead of screening for Salmonella spp. or for isolates showing resistance to individual antibiotics. In that sense, massive integration of whole genome sequencing (WGS) technologies in AMR surveillance provides the shortest path to accomplish these goals.
Collapse
Affiliation(s)
| | - Tania Palós-Guitérrez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | - Cindy Fabiola Hernández Pérez
- Centro Nacional de Referencia de Plaguicidas y Contaminantes, Dirección General de Inocuidad Agroalimentaria, Acuícola y Pesquera, Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria, Estado de México, México
| | | | - Orbelín Soberanis-Ramos
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Rubén Danilo Méndez-Medina
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Marc W. Allard
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U. S. Food and Drug Administration, College Park, Maryland, United States of America
| | - María Salud Rubio-Lozano
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
15
|
Class 1 integron-borne cassettes harboring blaCARB-2 gene in multidrug-resistant and virulent Salmonella Typhimurium ST19 strains recovered from clinical human stool samples, United States. PLoS One 2020; 15:e0240978. [PMID: 33125394 PMCID: PMC7598458 DOI: 10.1371/journal.pone.0240978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
International lineages, such as Salmonella Typhimurium sequence type (ST) 19, are most often associated with foodborne diseases and deaths in humans. In this study, we compared the whole-genome sequences of five S. Typhimurium strains belonging to ST19 recovered from clinical human stool samples in North Carolina, United States. Overall, S. Typhimurium strains displayed multidrug-resistant profile, being resistance to critically and highly important antimicrobials including ampicillin, ticarcillin/clavulanic acid, streptomycin and sulfisoxazole, chloramphenicol, tetracycline, respectively. Interestingly, all S. Typhimurium strains carried class 1 integron (intl1) and we were able to describe two genomic regions surrounding blaCARB-2 gene, size 4,062 bp and 4,422 bp for S. Typhimurium strains (HS5344, HS5437, and HS5478) and (HS5302 and HS5368), respectively. Genomic analysis for antimicrobial resistome confirmed the presence of clinically important genes, including blaCARB-2, aac(6’)-Iaa, aadA2b, sul1, tetG, floR, and biocide resistance genes (qacEΔ1). S. Typhimurium strains harbored IncFIB plasmid containing spvRABCD operon, as well as rck and pef virulence genes, which constitute an important apparatus for spreading the virulence plasmid. In addition, we identified several virulence genes, chromosomally located, while the phylogenetic analysis revealed clonal relatedness among these strains with S. enterica isolated from human and non-human sources obtained in European and Asian countries. Our results provide new insights into this unusual class 1 integron in virulent S. Typhimurium strains that harbors a pool of genes acting as potential hotspots for horizontal gene transfer providing readily adaptation to new surrounds, as well as being crucially required for virulence in vivo. Therefore, continuous genomic surveillance is an important tool for safeguarding human health.
Collapse
|
16
|
Vincent AT, Hosseini N, Charette SJ. The Aeromonas salmonicida plasmidome: a model of modular evolution and genetic diversity. Ann N Y Acad Sci 2020; 1488:16-32. [PMID: 33040386 DOI: 10.1111/nyas.14503] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/30/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022]
Abstract
High-throughput genomic sequencing has helped to reveal the plasmidome of Aeromonas salmonicida. This literature review provides an overview of A. salmonicida's rich plasmidome by presenting all the plasmids identified so far, addressing their biological importance and the functional links between them. The plasmids of A. salmonicida, especially those bearing antibiotic resistance genes, can provide clues about interactions of this species with other pathogens (animals and humans), as is the case for pRAS3-3432 and Chlamydia suis or pSN254b and Salmonella enterica. In addition to antibiotic resistance, plasmids play an important role in the virulence of A. salmonicida, particularly for the subspecies salmonicida and the plasmid pAsa5, which carries genes for the type-three secretion system, a virulence factor essential for the bacterium. The A. salmonicida plasmidome also has many cryptic plasmids with no known biological function, but which can be used for the acquisition of new genetic elements. Striking examples are pAsa7 and pAsaXII that provide, respectively, resistance to chloramphenicol and formaldehyde and are derivatives of cryptic pAsa2.
Collapse
Affiliation(s)
- Antony T Vincent
- Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, Quebec, Canada
| | - Nava Hosseini
- Institut de Biologie Intégrative et des Systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, Quebec, Canada.,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Quebec City, Quebec, Canada.,Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, Quebec, Canada
| | - Steve J Charette
- Institut de Biologie Intégrative et des Systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, Quebec, Canada.,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Quebec City, Quebec, Canada.,Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
17
|
Maguire F, Jia B, Gray KL, Lau WYV, Beiko RG, Brinkman FSL. Metagenome-assembled genome binning methods with short reads disproportionately fail for plasmids and genomic Islands. Microb Genom 2020; 6:mgen000436. [PMID: 33001022 PMCID: PMC7660262 DOI: 10.1099/mgen.0.000436] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
Metagenomic methods enable the simultaneous characterization of microbial communities without time-consuming and bias-inducing culturing. Metagenome-assembled genome (MAG) binning methods aim to reassemble individual genomes from this data. However, the recovery of mobile genetic elements (MGEs), such as plasmids and genomic islands (GIs), by binning has not been well characterized. Given the association of antimicrobial resistance (AMR) genes and virulence factor (VF) genes with MGEs, studying their transmission is a public-health priority. The variable copy number and sequence composition of MGEs makes them potentially problematic for MAG binning methods. To systematically investigate this issue, we simulated a low-complexity metagenome comprising 30 GI-rich and plasmid-containing bacterial genomes. MAGs were then recovered using 12 current prediction pipelines and evaluated. While 82-94 % of chromosomes could be correctly recovered and binned, only 38-44 % of GIs and 1-29 % of plasmid sequences were found. Strikingly, no plasmid-borne VF nor AMR genes were recovered, and only 0-45 % of AMR or VF genes within GIs. We conclude that short-read MAG approaches, without further optimization, are largely ineffective for the analysis of mobile genes, including those of public-health importance, such as AMR and VF genes. We propose that researchers should explore developing methods that optimize for this issue and consider also using unassembled short reads and/or long-read approaches to more fully characterize metagenomic data.
Collapse
Affiliation(s)
- Finlay Maguire
- Faculty of Computer Science, Dalhousie University, 6050 University Avenue, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Baofeng Jia
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Kristen L. Gray
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Wing Yin Venus Lau
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Robert G. Beiko
- Faculty of Computer Science, Dalhousie University, 6050 University Avenue, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Fiona S. L. Brinkman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
18
|
Nationwide surveillance on serotype distribution and antimicrobial resistance profiles of non-typhoidal Salmonella serovars isolated from food-producing animals in South Korea. Int J Food Microbiol 2020; 335:108893. [PMID: 33007603 DOI: 10.1016/j.ijfoodmicro.2020.108893] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 01/30/2023]
Abstract
Food-producing animals are considered a leading source of human Salmonella infections in Korea. However, there is a lack of comprehensive and up-to-date data regarding the diversity and resistance profiles of Salmonella serotypes in these animals. Therefore, this study aimed to determine the distribution and antimicrobial resistance profiles of Salmonella serotypes isolated from cattle, pigs, and chickens in Korea between 2010 and 2018. A total of 3018 Salmonella isolates were obtained from 16 laboratories/centers participating in the Korean Veterinary Antimicrobial Resistance Monitoring System. Salmonella serotypes were identified from the following isolates: 179 cattle (17 serotypes), 959 pig (45 serotypes), and 1880 chicken (64 serotypes). The most frequent serotypes in cattle (Typhimurium, Salmonella 4,[5],12:i:-, and Schwarzengrund), pigs (Typhimurium, Rissen, and S. 4,[5],12:i:-), and chickens (Enteritidis, Albany, Virchow, and Montevideo) accounted for more than 50% of the total serotypes in the respective animal species. To the best of our knowledge, Salmonella 4,[5],12:i:- has not been identified in cattle in Korea to date. More than 80% of the isolates demonstrated resistance to at least one antimicrobial agent. Multidrug-resistance was found in almost half of the serotypes; the highest proportion in cattle (59.2%), followed by pigs (53.4%), and chickens (45.7%). Significant proportions of the serotypes were resistant to ampicillin, streptomycin, and tetracycline. Ceftiofur and ciprofloxacin resistance rates were the highest in Salmonella isolated from chickens (17.1% and 4.1%, respectively) and cattle (10.1% and 3.9%, respectively) compared to that in pigs. Among the frequent serotypes, Albany demonstrated the highest resistance rate (>90%) to five different antimicrobials. Alarmingly, some Salmonella serotypes that are frequently associated with human infections demonstrated a trend of increasing resistance to critically important antibiotics, including 3rd generation cephalosporins and quinolones. Collectively, the presence of antibiotic-resistant Salmonella in food-producing animals poses a potential risk to public health.
Collapse
|
19
|
Wellawa DH, Allan B, White AP, Köster W. Iron-Uptake Systems of Chicken-Associated Salmonella Serovars and Their Role in Colonizing the Avian Host. Microorganisms 2020; 8:E1203. [PMID: 32784620 PMCID: PMC7465098 DOI: 10.3390/microorganisms8081203] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 01/09/2023] Open
Abstract
Iron is an essential micronutrient for most bacteria. Salmonella enterica strains, representing human and animal pathogens, have adopted several mechanisms to sequester iron from the environment depending on availability and source. Chickens act as a major reservoir for Salmonella enterica strains which can lead to outbreaks of human salmonellosis. In this review article we summarize the current understanding of the contribution of iron-uptake systems to the virulence of non-typhoidal S. enterica strains in colonizing chickens. We aim to address the gap in knowledge in this field, to help understand and define the interactions between S. enterica and these important hosts, in comparison to mammalian models.
Collapse
Affiliation(s)
- Dinesh H. Wellawa
- Vaccine & Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, SK S7N 5E3, Canada; (D.H.W.); (B.A.); (A.P.W.)
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Brenda Allan
- Vaccine & Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, SK S7N 5E3, Canada; (D.H.W.); (B.A.); (A.P.W.)
| | - Aaron P. White
- Vaccine & Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, SK S7N 5E3, Canada; (D.H.W.); (B.A.); (A.P.W.)
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Wolfgang Köster
- Vaccine & Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, SK S7N 5E3, Canada; (D.H.W.); (B.A.); (A.P.W.)
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
20
|
Huguet KT, Rivard N, Garneau D, Palanee J, Burrus V. Replication of the Salmonella Genomic Island 1 (SGI1) triggered by helper IncC conjugative plasmids promotes incompatibility and plasmid loss. PLoS Genet 2020; 16:e1008965. [PMID: 32760058 PMCID: PMC7433901 DOI: 10.1371/journal.pgen.1008965] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/18/2020] [Accepted: 06/30/2020] [Indexed: 12/27/2022] Open
Abstract
The mobilizable resistance island Salmonella genomic island 1 (SGI1) is specifically mobilized by IncA and IncC conjugative plasmids. SGI1, its variants and IncC plasmids propagate multidrug resistance in pathogenic enterobacteria such as Salmonella enterica serovars and Proteus mirabilis. SGI1 modifies and uses the conjugation apparatus encoded by the helper IncC plasmid, thus enhancing its own propagation. Remarkably, although SGI1 needs a coresident IncC plasmid to excise from the chromosome and transfer to a new host, these elements have been reported to be incompatible. Here, the stability of SGI1 and its helper IncC plasmid, each expressing a different fluorescent reporter protein, was monitored using fluorescence-activated cell sorting (FACS). Without selective pressure, 95% of the cells segregated into two subpopulations containing either SGI1 or the helper plasmid. Furthermore, FACS analysis revealed a high level of SGI1-specific fluorescence in IncC+ cells, suggesting that SGI1 undergoes active replication in the presence of the helper plasmid. SGI1 replication was confirmed by quantitative PCR assays, and extraction and restriction of its plasmid form. Deletion of genes involved in SGI1 excision from the chromosome allowed a stable coexistence of SGI1 with its helper plasmid without selective pressure. In addition, deletion of S003 (rep) or of a downstream putative iteron-based origin of replication, while allowing SGI1 excision, abolished its replication, alleviated the incompatibility with the helper plasmid and enabled its cotransfer to a new host. Like SGI1 excision functions, rep expression was found to be controlled by AcaCD, the master activator of IncC plasmid transfer. Transient SGI1 replication seems to be a key feature of the life cycle of this family of genomic islands. Sequence database analysis revealed that SGI1 variants encode either a replication initiator protein with a RepA_C domain, or an alternative replication protein with N-terminal replicase and primase C terminal 1 domains. The Salmonella genomic island 1 (SGI1) and its variants propagate multidrug resistance in several species of human and animal pathogens with the help of IncA and IncC conjugative plasmids that are absolutely required for SGI1 dissemination. These helper plasmids are known to trigger the excision of SGI1 from the chromosome. Here, we found that IncC plasmids also trigger the replication of the excised, circular form of SGI1 by enabling the expression of an SGI1-borne replication initiator gene. In return, high-copy replication of SGI1 interferes with the persistence of the IncC plasmid and prevents its cotransfer into a recipient cell, thereby allowing integration and stabilization of SGI1 into the chromosome of the new host. This finding is important to better understand the complex interactions between SGI1-like elements and their helper plasmids that lead to widespread and highly efficient propagation of multidrug resistance genes to a broad range of human and animal pathogens.
Collapse
Affiliation(s)
- Kévin T. Huguet
- Département de biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Nicolas Rivard
- Département de biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Daniel Garneau
- Département de biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jason Palanee
- Département de biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Vincent Burrus
- Département de biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
- * E-mail:
| |
Collapse
|
21
|
Nadi ZR, Salehi TZ, Tamai IA, Foroushani AR, Sillanpaa M, Dallal MMS. Evaluation of antibiotic resistance and prevalence of common Salmonella enterica serovars isolated from foodborne outbreaks. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104660] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Molecular Detection of Multidrug Resistant Salmonella Species Isolated from Broiler Farm in Bangladesh. Pathogens 2020; 9:pathogens9030201. [PMID: 32182918 PMCID: PMC7157442 DOI: 10.3390/pathogens9030201] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 01/06/2023] Open
Abstract
Multidrug resistant (MDR) Salmonella are a leading cause of foodborne diseases and serious human health concerns worldwide. In this study we detected MDR Salmonella in broiler chicken along with the resistance genes and class 1 integron gene intl1. A total of 100 samples were collected from broiler farms comprising 50 cloacal swabs, 35 litter and 15 feed samples. Overall prevalence of Salmonella was 35% with the highest detected in cloacal swabs. Among the Salmonella, 30 isolates were confirmed as S. enterica serovar Typhimurium using molecular methods of PCR. Disk diffusion susceptibility test revealed that all the Salmonella were classified as MDR with the highest resistance to tetracycline (97.14%), chloramphenicol (94.28%), ampicillin (82.85%) and streptomycin (77.14%). The most prevalent resistance genotypes were tetA (97.14%), floR (94.28%), blaTEM-1 (82.85%) and aadA1 (77.14%). In addition, among the MDR Salmonella, 20% were positive for class 1 integron gene (intl1). As far as we know, this is the first study describing the molecular basis of antibiotic resistance in MDR Salmonella from broiler farms in Bangladesh. In addition to tetA, floR, blaTEM-1, aadA1 and intl1 were also detected in the isolated MDR Salmonella. The detection of MDR Salmonella in broiler chicken carrying intl1 is of serious public health concern because of their zoonotic nature and possibilities to enter into the food chain.
Collapse
|
23
|
Two New SGI1-LK Variants Found in Proteus mirabilis and Evolution of the SGI1-HKL Group of Salmonella Genomic Islands. mSphere 2020; 5:5/2/e00875-19. [PMID: 32132162 PMCID: PMC7056807 DOI: 10.1128/msphere.00875-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Integrative mobilizable elements belonging to the SGI1-H, -K, and -L Salmonella genomic island 1 (SGI1) variant groups are distinguished by the presence of an alteration in the backbone (IS1359 replaces 2.8 kb of the backbone extending from within traN [S005] to within S009). Members of this SGI1-HKL group have been found in Salmonella enterica serovars and in Proteus mirabilis Two novel variants from this group, designated SGI1-LK1 and SGI1-LK2, were found in the draft genomes of antibiotic-resistant P. mirabilis isolates from two French hospitals. Both variants can be derived from SGI1-PmGUE, a configuration found previously in another P. mirabilis isolate from France. SGI1-LK1 could arise via an IS26-mediated inversion in the complex class 1 integron that duplicated the IS26 element and the target site in IS6100 SGI1-LK1 also has a larger 8.59-kb backbone deletion extending from traN to within S013 and removing traG and traH. However, SGI1-LK1 was mobilized by an IncC plasmid. SGI1-LK2 can be derived from a hypothetical progenitor, SGI1-LK0, that is related to SGI1-PmGUE but lacks the aphA1 gene and one copy of IS26. The integron of SGI1-LK2 could arise via deletion of DNA adjacent to an IS26 and a deletion occurring via homologous recombination between duplicated copies of part of the integron 3'-conserved segment. SGI1-K can also be derived from SGI1-LK0. This would involve an IS26-mediated deletion and an inversion via homologous recombination of a segment between inversely oriented IS26s. Similar events can explain the configuration of the integrons in other SGI1-LK variants.IMPORTANCE Members of the SGI1-HKL subgroup of SGI1-type integrative mobilizable elements have a characteristic alteration in their backbone. They are widely distributed among multiply antibiotic-resistant Salmonella enterica serovars and Proteus mirabilis isolates. The SGI1-K type, found in the globally disseminated multiply antibiotic-resistant Salmonella enterica serovar Kentucky clone ST198 (sequence type 198), and various configurations in the original SGI1-LK group, found in other multiresistant S. enterica serovars and Proteus mirabilis isolates, have complex and highly plastic resistance regions due to the presence of IS26 However, how these complex forms arose and the relationships between them had not been analyzed. Here, a hypothetical progenitor, SGI1-LK0, that can be formed from the simpler SGI1-H is proposed, and the pathways to the formation of new variants, SGI1-LK1 and SGI1-LK2, found in P. mirabilis and other reported configurations via homologous recombination and IS26-mediated events are proposed. This led to a better understanding of the evolution of the SGI1-HKL group.
Collapse
|
24
|
Multidrug resistance genes are associated with a 42-kb island TGI1 carrying a complex class 1 integron in Trueperella pyogenes. J Glob Antimicrob Resist 2019; 22:1-4. [PMID: 31857248 DOI: 10.1016/j.jgar.2019.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES This research was conducted to ascertain the context and location of the antibiotic resistance determinants in a multiple antibiotic-resistant Trueperella pyogenes isolate TP1. METHODS The genome was sequenced using PacBio RS II, and the filtered data were assembled using Canu. Sequences were annotated on the basis of those in GenBank, and the genomic island (GI) of the TP1 was predicted by IslandPath-DIMOB. RESULTS TP1 as a multiple antibiotic-resistant isolate was recovered at Jilin Province (China) in 2017 from a dairy cow with pneumonia. TP1 exhibited resistance to aminoglycosides (gentamicin and amikacin), macrolides (erythromycin), lincosamides (clindamycin), sulfonamides (sulfamonomethoxine), tetracyclines (tetracycline and doxycycline) and chloramphenicols (chloramphenicol and florfenicol). An antibiotic resistance gene clustered together with the aadB, aadA1, cmlA5 and cmlA6 resistance genes located on a 7-kilobase (kb) multidrug-resistant (MDR) region, constituting a complex class 1 integron. The MDR region was located at one end of a 42-kb GI, and IS6100Δ1 mediated a genetic rearrangement with the complex class 1 integron-like SGI1 and formed a composite transposon. Furthermore, the tetW gene was located outside the four GIs consistent with tetracycline and doxycycline resistance. The ermD gene positioned in the front end of the 42-kb GI played an important role in mediating acquired erythromycin and clindamycin resistance. CONCLUSIONS Multiple resistance genes are located in a complex class 1 integron within a 42-kb T. pyogenes genomic island (TGI1), leading to TP1 multiple drug resistance. In comparison with SG1 families, TGI1 possesses versatile gene distribution and specific gene context for it upstream and downstream, and it represents a new lineage of genomic resistance islands.
Collapse
|
25
|
Clonal Confinement of a Highly Mobile Resistance Element Driven by Combination Therapy in Rhodococcus equi. mBio 2019; 10:mBio.02260-19. [PMID: 31615959 PMCID: PMC6794481 DOI: 10.1128/mbio.02260-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
MDR clades arise upon acquisition of resistance traits, but the determinants of their clonal expansion remain largely undefined. Taking advantage of the unique features of Rhodococcus equi infection control in equine farms, involving the same dual antibiotic treatment since the 1980s (a macrolide and rifampin), this study sheds light into the determinants of multiresistance clonality and the importance of combination therapy in limiting the dissemination of mobile resistance elements. Clinically effective therapeutic alternatives against R. equi foal pneumonia are currently lacking, and the identified macrolide-rifampin MDR clone 2287 has serious implications. Still at early stages of evolution and local spread, R. equi 2287 may disseminate globally, posing a significant threat to the equine industry and, also, public health due to the risk of zoonotic transmission. The characterization of the 2287 clone and its resistance determinants will enable targeted surveillance and control interventions to tackle the emergence of MDR R. equi. Antibiotic use has been linked to changes in the population structure of human pathogens and the clonal expansion of multidrug-resistant (MDR) strains among healthcare- and community-acquired infections. Here we present a compelling example in a veterinary pathogen, Rhodococcus equi, the causative agent of a severe pulmonary infection affecting foals worldwide. We show that the erm(46) gene responsible for emerging macrolide resistance among equine R. equi isolates in the United States is part of a 6.9-kb transposable element, TnRErm46, actively mobilized by an IS481 family transposase. TnRErm46 is carried on an 87-kb conjugative plasmid, pRErm46, transferable between R. equi strains at frequencies up to 10−3. The erm(46) gene becomes stabilized in R. equi by pRErm46’s apparent fitness neutrality and wholesale TnRErm46 transposition onto the host genome. This includes the conjugally exchangeable pVAPA virulence plasmid, enabling the possibility of cotransfer of two essential traits for survival in macrolide-treated foals in a single mating event. Despite its high horizontal transfer potential, phylogenomic analyses show that erm(46) is paradoxically confined to a specific R. equi clone, 2287. R. equi 2287 also carries a unique rpoBS531F mutation conferring high-level resistance to rifampin, systematically administered together with macrolides against rhodococcal pneumonia on equine farms. Our data illustrate that under sustained combination therapy, several independent “founder” genetic events are concurrently required for resistance, limiting not only its emergence but also, crucially, horizontal spread, ultimately determining multiresistance clonality.
Collapse
|
26
|
Zhou K, Yu X, Zhou Y, Song J, Ji Y, Shen P, Rossen JWA, Xiao Y. Detection of an In104-like integron carrying a blaIMP-34 gene in Enterobacter cloacae isolates co-producing IMP-34 and VIM-1. J Antimicrob Chemother 2019; 74:2812-2814. [PMID: 31199433 DOI: 10.1093/jac/dkz240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Kai Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou, China.,Shenzhen Institute of Respiratory Diseases, the First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China.,Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China
| | - Xiao Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou, China
| | - Yanzi Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou, China
| | - Jingjie Song
- Shenzhen Institute of Respiratory Diseases, the First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Yang Ji
- Shenzhen Institute of Respiratory Diseases, the First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Ping Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou, China
| | - John W A Rossen
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Genomic Sequence Analysis of the Multidrug-Resistance Region of Avian Salmonella enterica serovar Indiana Strain MHYL. Microorganisms 2019; 7:microorganisms7080248. [PMID: 31404981 PMCID: PMC6723982 DOI: 10.3390/microorganisms7080248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 12/19/2022] Open
Abstract
A series of human and animal diseases that are caused by Salmonella infections pose a serious threat to human health and huge economic losses to the livestock industry. We found antibiotic resistance (AR) genes in the genome of 133 strains of S. Indiana from a poultry production site in Shandong Province, China. Salmonella enterica subsp. enterica serovar Indiana strain MHYL had multidrug-resistance (MDR) genes on its genome. Southern blot analysis was used to locate genes on the genomic DNA. High-throughput sequencing technology was used to determine the gene sequence of the MHYL genome. Areas containing MDR genes were mapped based on the results of gene annotation. The AR genes blaTEM, strA, tetA, and aac(6′)-Ib-cr were found on the MHYL genome. The resistance genes were located in two separate MDR regions, RR1 and RR2, containing type I integrons, and Tn7 transposons and multiple IS26 complex transposons with transposable functions. Portions of the MDR regions were determined to be highly homologous to the structure of plasmid pAKU_1 in S. enterica serovar Paratyphi A (accession number: AM412236), SGI11 in S. enterica serovar Typhimurium (accession number: KM023773), and plasmid pS414 in S. Indiana (accession No.: KC237285).
Collapse
|
28
|
Tassinari E, Duffy G, Bawn M, Burgess CM, McCabe EM, Lawlor PG, Gardiner G, Kingsley RA. Microevolution of antimicrobial resistance and biofilm formation of Salmonella Typhimurium during persistence on pig farms. Sci Rep 2019; 9:8832. [PMID: 31222015 PMCID: PMC6586642 DOI: 10.1038/s41598-019-45216-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/29/2019] [Indexed: 02/08/2023] Open
Abstract
Salmonella Typhimurium and its monophasic variant S. 4,[5],12:i:- are the dominant serotypes associated with pigs in many countries. We investigated their population structure on nine farms using whole genome sequencing, and their genotypic and phenotypic variation. The population structure revealed the presence of phylogenetically distinct clades consisting of closely related clones of S. Typhimurium or S. 4,[5],12:i:- on each pig farm, that persisted between production cycles. All the S. 4,[5],12:i:- strains carried the Salmonella genomic island-4 (SGI-4), which confers resistance to heavy metals, and half of the strains contained the mTmV prophage, harbouring the sopE virulence gene. Most clonal groups were highly drug resistant due to the presence of multiple antimicrobial resistance (AMR) genes, and two clades exhibited evidence of recent on-farm plasmid-mediated acquisition of additional AMR genes, including an IncHI2 plasmid. Biofilm formation was highly variable but had a strong phylogenetic signature. Strains capable of forming biofilm with the greatest biomass were from the S. 4,[5],12:i:- and S. Typhimurium DT104 clades, the two dominant pandemic clones found over the last 25 years. On-farm microevolution resulted in enhanced biofilm formation in subsequent production cycle.
Collapse
Affiliation(s)
- Eleonora Tassinari
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Teagasc, Food Research Centre, Ashtown, Dublin, 15, Ireland
| | - Geraldine Duffy
- Teagasc, Food Research Centre, Ashtown, Dublin, 15, Ireland.
| | - Matt Bawn
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
| | | | | | - Peadar G Lawlor
- Teagasc Pig Development Department, Animal & Grassland Research & Innovation Centre, Moorepark, Fermoy, Co., Cork, Ireland
| | - Gillian Gardiner
- Department of Science, Waterford Institute of Technology, Waterford, Ireland
| | - Robert A Kingsley
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
- University of East Anglia, Norwich, UK.
| |
Collapse
|
29
|
Wang X, Biswas S, Paudyal N, Pan H, Li X, Fang W, Yue M. Antibiotic Resistance in Salmonella Typhimurium Isolates Recovered From the Food Chain Through National Antimicrobial Resistance Monitoring System Between 1996 and 2016. Front Microbiol 2019; 10:985. [PMID: 31134024 PMCID: PMC6514237 DOI: 10.3389/fmicb.2019.00985] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/18/2019] [Indexed: 11/23/2022] Open
Abstract
Salmonella is a major foodborne pathogen which causes widespread contamination and infection worldwide. Salmonella Typhimurium is one of the leading serovars responsible for human and animal salmonellosis, globally. The increasing rate of antibiotic resistance in Salmonella Typhimurium poses a significant global concern, and an improved understanding of the distribution of antibiotic resistance patterns in Salmonella Typhimurium is essential for choosing the suitable antibiotic for the treatment of infections. To evaluate the roles of animal and human in antibiotic resistance dissemination, this study aims to categorize 11,447 S. Typhimurium strains obtained across the food-chain, including food animals, retail meats and humans for 21 years in the United States by analyzing minimum inhibitory concentrations (MICs) values for 27 antibiotics. Random Forest Algorithm and Hierarchical Clustering statistics were used to group the strains according to their minimum inhibitory concentration values. Classification and Regression Tree analysis was used to identify the best classifier for human- and animal-populations’ isolates. We found the persistent population or multi-drug resistant strains of S. Typhimurium across the four time periods (1996∼2000, 2001∼2005, 2006∼2010, 2011∼2016). Importantly, we also detected that there was more diversity in the MIC patterns among S. Typhimurium strains isolated between 2011 and 2016, which suggests significant emergence of diversified multi-drug resistant strains. The most frequently observed (43%) antibiotic resistance patterns found in S. Typhimurium were tetra-resistant pattern ASSuT (ampicillin, streptomycin, sulfonamides, and tetracycline) and the penta-resistant pattern ACSSuT (ampicillin, chloramphenicol, streptomycin, sulfonamides, and tetracycline). Animals (mainly swine and bovine) are the major source for these two frequently found antibiotic resistance patterns. The occurrence of antibiotic resistant strains from humans and chicken is alarming. Strains were mostly susceptible to fluoroquinolones. Together, this study helped in understanding the expansion of dynamics of antibiotic resistance of S. Typhimurium and recommended fluoroquinolones as a possible treatment options against S. Typhimurium infection.
Collapse
Affiliation(s)
- Xuchu Wang
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Silpak Biswas
- CATG Microbiology and Food Safety Laboratory, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Narayan Paudyal
- CATG Microbiology and Food Safety Laboratory, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hang Pan
- CATG Microbiology and Food Safety Laboratory, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoliang Li
- CATG Microbiology and Food Safety Laboratory, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Weihuan Fang
- CATG Microbiology and Food Safety Laboratory, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Min Yue
- CATG Microbiology and Food Safety Laboratory, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| |
Collapse
|
30
|
Distinct evolutionary origins of common multi-drug resistance phenotypes in Salmonella typhimurium DT104: a convergent process for adaptation under stress. Mol Genet Genomics 2019; 294:597-605. [PMID: 30710177 DOI: 10.1007/s00438-019-01531-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 01/11/2019] [Indexed: 10/27/2022]
Abstract
Antimicrobial resistance makes pathogenic bacteria hard to control, but little is known about the general processes of resistance gain or loss. Here, we compared distinct S. typhimurium DT104 strains resistant to zero, two, five, or more of the tested antimicrobials. We found that common resistance phenotypes could be encoded by distinct genes, on SGI-1 or plasmid. We also demonstrated close clonality among all the tested non-resistant and differently resistant DT104 strains, demonstrating dynamic acquisition or loss (by total deletion or gradual decaying of multi-drug resistance gene clusters) of the genetic traits. These findings reflect convergent processes to make the bacteria resistant to multiple antimicrobials by acquiring the needed traits from stochastically available origins. When the antimicrobial stress is absent, the resistance genes may be dropped off quickly, so the bacteria can save the cost for maintaining unneeded genes. Therefore, this work reiterates the importance of strictly controlled use of antimicrobials.
Collapse
|
31
|
Bie L, Fang M, Li Z, Wang M, Xu H. Identification and Characterization of New Resistance-Conferring SGI1s ( Salmonella Genomic Island 1) in Proteus mirabilis. Front Microbiol 2018; 9:3172. [PMID: 30619228 PMCID: PMC6305713 DOI: 10.3389/fmicb.2018.03172] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/07/2018] [Indexed: 12/23/2022] Open
Abstract
Salmonella genomic island 1 (SGI1) is a resistance-conferring chromosomal genomic island that contains an antibiotic resistance gene cluster. The international spread of SGI1-containing strains drew attention to the role of genomic islands in the dissemination of antibiotic resistance genes in Salmonella and other Gram-negative bacteria. In this study, five SGI1 variants conferring multidrug and heavy metal resistance were identified and characterized in Proteus mirabilis strains: SGI1-PmCAU, SGI1-PmABB, SGI1-PmJN16, SGI1-PmJN40, and SGI1-PmJN48. The genetic structures of SGI1-PmCAU and SGI1-PmABB were identical to previously reported SGI1s, while structural analysis showed that SGI1-PmJN16, SGI1-PmJN40, and SGI1-PmJN48 are new SGI1 variants. SGI1-PmJN16 is derived from SGI1-Z with the MDR region containing a new gene cassette array dfrA12-orfF-aadA2-qacEΔ1-sul1-chrA-orf1. SGI1-PmJN40 has an unprecedented structure that contains two right direct repeat sequences separated by a transcriptional regulator-rich DNA fragment, and is predicted to form two different extrachromosomal mobilizable DNA circles for dissemination. SGI1-PmJN48 lacks a common ORF S044, and its right junction region exhibits a unique genetic organization due to the reverse integration of a P. mirabilis chromosomal gene cluster and the insertion of part of a P. mirabilis plasmid, making it the largest known SGI1 to date (189.1 kb). Further mobility functional analysis suggested that these SGIs can be excised from the chromosome for transfer between bacteria, which promotes the horizontal transfer of antibiotic and heavy metal resistance genes. The identification and characterization of the new SGI1 variants in this work suggested the diversity of SGI1 structures and their significant roles in the evolution of bacteria.
Collapse
Affiliation(s)
- Luyao Bie
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Meng Fang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Zhiqiang Li
- Advanced Research Center for Optics, Shandong University, Qingdao, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Hai Xu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| |
Collapse
|
32
|
Branchu P, Bawn M, Kingsley RA. Genome Variation and Molecular Epidemiology of Salmonella enterica Serovar Typhimurium Pathovariants. Infect Immun 2018; 86:e00079-18. [PMID: 29784861 PMCID: PMC6056856 DOI: 10.1128/iai.00079-18] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Salmonella enterica serovar Typhimurium is one of approximately 2,500 distinct serovars of the genus Salmonella but is exceptional in its wide distribution in the environment, livestock, and wild animals. S Typhimurium causes a large proportion of nontyphoidal Salmonella (NTS) infections, accounting for a quarter of infections, second only to S. enterica serovar Enteritidis in incidence. S Typhimurium was once considered the archetypal broad-host-range Salmonella serovar due to its wide distribution in livestock and wild animals, and much of what we know of the interaction of Salmonella with the host comes from research using a small number of laboratory strains of the serovar (LT2, SL1344, and ATCC 14028). But it has become clear that these strains do not reflect the genotypic or phenotypic diversity of S Typhimurium. Here, we review the epidemiological record of S Typhimurium and studies of the host-pathogen interactions of diverse strains of S Typhimurium. We present the concept of distinct pathovariants of S Typhimurium that exhibit diversity of host range, distribution in the environment, pathogenicity, and risk to food safety. We review recent evidence from whole-genome sequencing that has revealed the extent of genomic diversity of S Typhimurium pathovariants, the genomic basis of differences in the level of risk to human and animal health, and the molecular epidemiology of prominent strains. An improved understanding of the impact of genome variation of bacterial pathogens on pathogen-host and pathogen-environment interactions has the potential to improve quantitative risk assessment and reveal how new pathogens evolve.
Collapse
Affiliation(s)
- Priscilla Branchu
- Quadram Institute Bioscience, Norwich Research Park, Colney, Norwich, United Kingdom
| | - Matt Bawn
- Quadram Institute Bioscience, Norwich Research Park, Colney, Norwich, United Kingdom
- Earlham Institute, Norwich Research Park, Colney, Norwich, United Kingdom
| | - Robert A Kingsley
- Quadram Institute Bioscience, Norwich Research Park, Colney, Norwich, United Kingdom
| |
Collapse
|
33
|
Ferri M, Ranucci E, Romagnoli P, Giaccone V. Antimicrobial resistance: A global emerging threat to public health systems. Crit Rev Food Sci Nutr 2018; 57:2857-2876. [PMID: 26464037 DOI: 10.1080/10408398.2015.1077192] [Citation(s) in RCA: 482] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Antimicrobial resistance (AMR) became in the last two decades a global threat to public health systems in the world. Since the antibiotic era, with the discovery of the first antibiotics that provided consistent health benefits to human medicine, the misuse and abuse of antimicrobials in veterinary and human medicine have accelerated the growing worldwide phenomenon of AMR. This article presents an extensive overview of the epidemiology of AMR, with a focus on the link between food producing-animals and humans and on the legal framework and policies currently implemented at the EU level and globally. The ways of responding to the AMR challenges foresee an array of measures that include: designing more effective preventive measures at farm level to reduce the use of antimicrobials; development of novel antimicrobials; strengthening of AMR surveillance system in animal and human populations; better knowledge of the ecology of resistant bacteria and resistant genes; increased awareness of stakeholders on the prudent use of antibiotics in animal productions and clinical arena; and the public health and environmental consequences of AMR. Based on the global nature of AMR and considering that bacterial resistance does not recognize barriers and can spread to people and the environment, the article ends with specific recommendations structured around a holistic approach and targeted to different stakeholders.
Collapse
Affiliation(s)
| | | | | | - Valerio Giaccone
- d Department of Animal Medicine , Veterinary School, Padua University , Padua , Italy
| |
Collapse
|
34
|
The Obscure World of Integrative and Mobilizable Elements, Highly Widespread Elements that Pirate Bacterial Conjugative Systems. Genes (Basel) 2017; 8:genes8110337. [PMID: 29165361 PMCID: PMC5704250 DOI: 10.3390/genes8110337] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/15/2017] [Accepted: 11/15/2017] [Indexed: 12/22/2022] Open
Abstract
Conjugation is a key mechanism of bacterial evolution that involves mobile genetic elements. Recent findings indicated that the main actors of conjugative transfer are not the well-known conjugative or mobilizable plasmids but are the integrated elements. This paper reviews current knowledge on “integrative and mobilizable elements” (IMEs) that have recently been shown to be highly diverse and highly widespread but are still rarely described. IMEs encode their own excision and integration and use the conjugation machinery of unrelated co-resident conjugative element for their own transfer. Recent studies revealed a much more complex and much more diverse lifecycle than initially thought. Besides their main transmission as integrated elements, IMEs probably use plasmid-like strategies to ensure their maintenance after excision. Their interaction with conjugative elements reveals not only harmless hitchhikers but also hunters that use conjugative elements as target for their integration or harmful parasites that subvert the conjugative apparatus of incoming elements to invade cells that harbor them. IMEs carry genes conferring various functions, such as resistance to antibiotics, that can enhance the fitness of their hosts and that contribute to their maintenance in bacterial populations. Taken as a whole, IMEs are probably major contributors to bacterial evolution.
Collapse
|
35
|
Arce C, Cahya-Mawarda P, Arroyo-Manzanares N, Garrido JJ, Arce L. CE method for analyzing Salmonella typhimurium in water samples. J Sep Sci 2017; 41:534-539. [PMID: 29087615 DOI: 10.1002/jssc.201700705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/19/2017] [Accepted: 10/22/2017] [Indexed: 01/10/2023]
Abstract
Salmonella typhimurium is commonly described as a food-borne pathogen. However, natural and drinking water are known to be important sources for the transmission of this pathogen in developing and developed countries. The standard method to determine Salmonella is laborious and many false positives are detected. To solve this, the present work was focused on the development of a capillary zone electrophoresis method coupled to ultraviolet detection for determination of Salmonella typhimurium in water (mineral and tap water). Separations were performed in less than 11 minutes using 4.5 mM Tris (hydroxymethyl)-aminomethane, 4.5 mM boric acid and 0.1 mM ethylene diamine tetraacetate (pH 8.4) with 0.1% v/v poly ethylene oxide as separation buffer. The precision of the method was evaluated in terms of repeatability obtaining a relative standard deviation of 10.5%. Using the proposed method Salmonella typhimurium could be separated from other bacteria that could be present in water such as Escherichia coli. Finally, the proposed methodology was applied to determine Salmonella typhimurium in tap and mineral water.
Collapse
Affiliation(s)
- Cristina Arce
- Department of Animal Production, University of Córdoba, Campus of Rabanales, Córdoba, Spain
| | - Panji Cahya-Mawarda
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Annex Building, Campus of Rabanales, Córdoba, Spain.,Research Unit for Clean Technology, Indonesian Institute of Sciences, Jalan Cisitu/Sangkuriang, Bandung, Indonesia
| | - Natalia Arroyo-Manzanares
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Annex Building, Campus of Rabanales, Córdoba, Spain
| | - Juan J Garrido
- Department of Genetic, University of Córdoba, Campus of Rabanales, Córdoba, Spain
| | - Lourdes Arce
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Annex Building, Campus of Rabanales, Córdoba, Spain
| |
Collapse
|
36
|
Romero JL, Grande Burgos MJ, Pérez-Pulido R, Gálvez A, Lucas R. Resistance to Antibiotics, Biocides, Preservatives and Metals in Bacteria Isolated from Seafoods: Co-Selection of Strains Resistant or Tolerant to Different Classes of Compounds. Front Microbiol 2017; 8:1650. [PMID: 28912764 PMCID: PMC5583239 DOI: 10.3389/fmicb.2017.01650] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 08/15/2017] [Indexed: 11/30/2022] Open
Abstract
Multi-drug resistant bacteria (particularly those producing extended-spectrum β-lactamases) have become a major health concern. The continued exposure to antibiotics, biocides, chemical preservatives, and metals in different settings such as the food chain or in the environment may result in development of multiple resistance or co-resistance. The aim of the present study was to determine multiple resistances (biocides, antibiotics, chemical preservatives, phenolic compounds, and metals) in bacterial isolates from seafoods. A 75.86% of the 87 isolates studied were resistant to at least one antibiotic or one biocide, and 6.90% were multiply resistant to at least three biocides and at least three antibiotics. Significant (P < 0.05) moderate or strong positive correlations were detected between tolerances to biocides, between antibiotics, and between antibiotics with biocides and other antimicrobials. A sub-set of 30 isolates selected according to antimicrobial resistance profile and food type were identified by 16S rDNA sequencing and tested for copper and zinc tolerance. Then, the genetic determinants for biocide and metal tolerance and antibiotic resistance were investigated. The selected isolates were identified as Pseudomonas (63.33%), Acinetobacter (13.33%), Aeromonas (13.33%), Shewanella, Proteus and Listeria (one isolate each). Antibiotic resistance determinants detected included sul1 (43.33% of tested isolates), sul2 (6.66%), blaTEM (16.66%), blaCTX-M (16.66%), blaPSE (10.00%), blaIMP (3.33%), blaNDM-1 (3.33%), floR (16.66%), aadA1 (20.0%), and aac(6')-Ib (16.66%). The only biocide resistance determinant detected among the selected isolates was qacEΔ1 (10.00%). A 23.30 of the selected isolates were able to grow on media containing 32 mM copper sulfate, and 46.60% on 8 mM zinc chloride. The metal resistance genes pcoA/copA, pcoR, and chrB were detected in 36.66, 6.66, and 13.33% of selected isolates, respectively. Twelve isolates tested positive for both metal and antibiotic resistance genes, including one isolate positive for the carbapenemase gene blaNDM-1 and for pcoA/copA. These results suggest that exposure to metals could co-select for antibiotic resistance and also highlight the potential of bacteria on seafoods to be involved in the transmission of antimicrobial resistance genes.
Collapse
Affiliation(s)
| | | | | | - Antonio Gálvez
- Microbiology Division, Department of Health Sciences, University of JaenJaen, Spain
| | | |
Collapse
|
37
|
Colavecchio A, Cadieux B, Lo A, Goodridge LD. Bacteriophages Contribute to the Spread of Antibiotic Resistance Genes among Foodborne Pathogens of the Enterobacteriaceae Family - A Review. Front Microbiol 2017; 8:1108. [PMID: 28676794 PMCID: PMC5476706 DOI: 10.3389/fmicb.2017.01108] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 05/31/2017] [Indexed: 01/21/2023] Open
Abstract
Foodborne illnesses continue to have an economic impact on global health care systems. There is a growing concern regarding the increasing frequency of antibiotic resistance in foodborne bacterial pathogens and how such resistance may affect treatment outcomes. In an effort to better understand how to reduce the spread of resistance, many research studies have been conducted regarding the methods by which antibiotic resistance genes are mobilized and spread between bacteria. Transduction by bacteriophages (phages) is one of many horizontal gene transfer mechanisms, and recent findings have shown phage-mediated transduction to be a significant contributor to dissemination of antibiotic resistance genes. Here, we review the viability of transduction as a contributing factor to the dissemination of antibiotic resistance genes in foodborne pathogens of the Enterobacteriaceae family, including non-typhoidal Salmonella and Shiga toxin-producing Escherichia coli, as well as environmental factors that increase transduction of antibiotic resistance genes.
Collapse
Affiliation(s)
- Anna Colavecchio
- Food Safety and Quality Program, Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-BellevueQC, Canada
| | - Brigitte Cadieux
- Food Safety and Quality Program, Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-BellevueQC, Canada
| | - Amanda Lo
- Food Safety and Quality Program, Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-BellevueQC, Canada
| | - Lawrence D Goodridge
- Food Safety and Quality Program, Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-BellevueQC, Canada
| |
Collapse
|
38
|
Multidrug Resistance Salmonella Genomic Island 1 in a Morganella morganii subsp. morganii Human Clinical Isolate from France. mSphere 2017; 2:mSphere00118-17. [PMID: 28435889 PMCID: PMC5397566 DOI: 10.1128/msphere.00118-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/01/2017] [Indexed: 01/19/2023] Open
Abstract
Since its initial identification in epidemic multidrug-resistant Salmonella enterica serovar Typhimurium DT104 strains, several SGI1 variants, SGI1 lineages, and SGI1-related elements (SGI2, PGI1, and AGI1) have been described in many bacterial genera (Salmonella, Proteus, Morganella, Vibrio, Shewanella, etc.). They constitute a family of multidrug resistance site-specific integrative elements acquired by horizontal gene transfer, SGI1 being the best-characterized element. The horizontal transfer of SGI1/PGI1 elements into other genera is of public health concern, notably with regard to the spread of critically important resistance genes such as ESBL and carbapenemase genes. The identification of SGI1 in Morganella morganii raises the issue of (i) the potential for SGI1 to emerge in other human pathogens and (ii) its bacterial host range. Further surveillance and research are needed to understand the epidemiology, the spread, and the importance of the members of this SGI1 family of integrative elements in contributing to antibiotic resistance development. Salmonella genomic island 1 (SGI1) is a multidrug resistance integrative mobilizable element that harbors a great diversity of antimicrobial resistance gene clusters described in numerous Salmonella enterica serovars and also in Proteus mirabilis. A serious threat to public health was revealed in the recent description in P. mirabilis of a SGI1-derivative multidrug resistance island named PGI1 (Proteus genomic island 1) carrying extended-spectrum-β-lactamase (ESBL) and metallo-β-lactamase resistance genes, blaVEB-6 and blaNDM-1, respectively. Here, we report the first description of Salmonella genomic island 1 (SGI1) in a multidrug-resistant clinical Morganella morganii subsp. morganii strain isolated from a patient in France in 2013. Complete-genome sequencing of the strain revealed SGI1 variant SGI1-L carrying resistance genes dfrA15, floR, tetA(G), blaPSE-1 (now referred to as blaCARB-2), and sul1, conferring resistance to trimethoprim, phenicols, tetracyclines, amoxicillin, and sulfonamides, respectively. The SGI1-L variant was integrated into the usual chromosome-specific integration site at the 3′ end of the trmE gene. Beyond Salmonella enterica and Proteus mirabilis, the SGI1 integrative mobilizable element may thus also disseminate its multidrug resistance phenotype in another genus belonging to the Proteae tribe of the family Enterobacteriaceae. IMPORTANCE Since its initial identification in epidemic multidrug-resistant Salmonella enterica serovar Typhimurium DT104 strains, several SGI1 variants, SGI1 lineages, and SGI1-related elements (SGI2, PGI1, and AGI1) have been described in many bacterial genera (Salmonella, Proteus, Morganella, Vibrio, Shewanella, etc.). They constitute a family of multidrug resistance site-specific integrative elements acquired by horizontal gene transfer, SGI1 being the best-characterized element. The horizontal transfer of SGI1/PGI1 elements into other genera is of public health concern, notably with regard to the spread of critically important resistance genes such as ESBL and carbapenemase genes. The identification of SGI1 in Morganella morganii raises the issue of (i) the potential for SGI1 to emerge in other human pathogens and (ii) its bacterial host range. Further surveillance and research are needed to understand the epidemiology, the spread, and the importance of the members of this SGI1 family of integrative elements in contributing to antibiotic resistance development.
Collapse
|
39
|
Carraro N, Rivard N, Burrus V, Ceccarelli D. Mobilizable genomic islands, different strategies for the dissemination of multidrug resistance and other adaptive traits. Mob Genet Elements 2017; 7:1-6. [PMID: 28439449 PMCID: PMC5397120 DOI: 10.1080/2159256x.2017.1304193] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 02/15/2017] [Accepted: 03/06/2017] [Indexed: 11/18/2022] Open
Abstract
Mobile genetic elements are near ubiquitous DNA segments that revealed a surprising variety of strategies for their propagation among prokaryotes and between eukaryotes. In bacteria, conjugative elements were shown to be key drivers of evolution and adaptation by efficiently disseminating genes involved in pathogenicity, symbiosis, metabolic pathways, and antibiotic resistance. Conjugative plasmids of the incompatibility groups A and C (A/C) are important vehicles for the dissemination of antibiotic resistance and the consequent global emergence and spread of multi-resistant pathogenic bacteria. Beyond their own mobility, A/C plasmids were also shown to drive the mobility of unrelated non-autonomous mobilizable genomic islands, which may also confer further advantageous traits. In this commentary, we summarize the current knowledge on different classes of A/C-dependent mobilizable genomic islands and we discuss other DNA hitchhikers and their implication in bacterial evolution. Furthermore, we glimpse at the complex genetic network linking autonomous and non-autonomous mobile genetic elements, and at the associated flow of genetic information between bacteria.
Collapse
Affiliation(s)
- Nicolas Carraro
- Laboratory of Bacterial Molecular Genetics, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Rivard
- Laboratory of Bacterial Molecular Genetics, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Vincent Burrus
- Laboratory of Bacterial Molecular Genetics, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Daniela Ceccarelli
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, the Netherlands
| |
Collapse
|
40
|
Salmonella genomic island 1 (SGI1) reshapes the mating apparatus of IncC conjugative plasmids to promote self-propagation. PLoS Genet 2017; 13:e1006705. [PMID: 28355215 PMCID: PMC5389848 DOI: 10.1371/journal.pgen.1006705] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 04/12/2017] [Accepted: 03/20/2017] [Indexed: 11/20/2022] Open
Abstract
IncC conjugative plasmids and Salmonella genomic island 1 (SGI1) and relatives are frequently associated with multidrug resistance of clinical isolates of pathogenic Enterobacteriaceae. SGI1 is specifically mobilized in trans by IncA and IncC plasmids (commonly referred to as A/C plasmids) following its excision from the chromosome, an event triggered by the transcriptional activator complex AcaCD encoded by these helper plasmids. Although SGI1 is not self-transmissible, it carries three genes, traNS, traHS and traGS, coding for distant homologs of the predicted mating pore subunits TraNC, TraHC and TraGC, respectively, encoded by A/C plasmids. Here we investigated the regulation of traNS and traHGS and the role of these three genes in the transmissibility of SGI1. Transcriptional fusion of the promoter sequences of traNS and traHGS to the reporter gene lacZ confirmed that expression of these genes is inducible by AcaCD. Mating experiments using combinations of deletion mutants of SGI1 and the helper IncC plasmid pVCR94 revealed complex interactions between these two mobile genetic elements. Whereas traNC and traHGC are essential for IncC plasmid transfer, SGI1 could rescue null mutants of each individual gene revealing that TraNS, TraHS and TraGS are functional proteins. Complementation assays of individual traC and traS mutants showed that not only do TraNS/HS/GS replace TraNC/HC/GC in the mating pore encoded by IncC plasmids but also that traGS and traHS are both required for SGI1 optimal transfer. In fact, remodeling of the IncC-encoded mating pore by SGI1 was found to be essential to enhance transfer rate of SGI1 over the helper plasmid. Furthermore, traGS was found to be crucial to allow DNA transfer between cells bearing IncC helper plasmids, thereby suggesting that by remodeling the mating pore SGI1 disables an IncC-encoded entry exclusion mechanism. Hence traS genes facilitate the invasion by SGI1 of cell populations bearing IncC plasmids. Acquisition and dissemination of multidrug resistance genes among Enterobacteriaceae is in part driven by IncA and IncC (A/C) conjugative plasmids and Salmonella genomic island 1 (SGI1). Although unrelated, SGI1 relies on the self-transmissible A/C plasmids to disseminate within bacterial populations. The mechanisms allowing SGI1 to hijack the mating apparatus synthesized by A/C plasmids have not been previously established. Here, we show that IncC plasmids trigger the expression of three SGI1-borne genes that code for functional mating pore subunits distantly related to those encoded by the IncC helper plasmids. Our results indicate that these subunits alter the mating pore encoded by IncC plasmids to ensure optimal transfer of SGI1 and promote SGI1 dissemination in cell populations harboring IncC plasmids. Apart from SGI1 and relatives, documented mobilizable genomic islands are not known to code for mating pore components, possibly because of redundancy with those encoded by helper conjugative elements. Instead they usually code for mobilization proteins such as a relaxase and auxiliary factors involved in DNA recognition, processing and docking to the mating pore encoded by their helper conjugative element. From an ecological and epidemiological perspective, the strategy used by SGI1 likely confers a strong competitive advantage to SGI1 over IncC plasmids in clinical settings and could account for the high prevalence of SGI1 and relatives in multidrug-resistant Salmonella enterica and Proteus mirabilis.
Collapse
|
41
|
Fernández Márquez ML, Burgos MJG, Pulido RP, Gálvez A, López RL. Biocide Tolerance and Antibiotic Resistance in Salmonella Isolates from Hen Eggshells. Foodborne Pathog Dis 2016; 14:89-95. [PMID: 27841937 DOI: 10.1089/fpd.2016.2182] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The aim of the present study was to determine biocide tolerance and antibiotic resistance in Salmonella isolates from hen eggshells. A total of 39 isolates from hen eggshells, identified as either Salmonella spp. or Salmonella enterica according to 16S rDNA sequencing, were selected for biocide tolerance. Isolates with minimum inhibitory concentrations (MICs) above the wild-type MICs were considered to be biocide tolerant: benzalkonium chloride (BC, 7.7%), cetrimide (CT, 7.7%), hexadecylpyridinium chloride (HDP, 10.3%), triclosan (TC, 17.9%), hexachlorophene (CF, 30.8%), and P3-oxonia (OX, 25.6%). The resulting 21 biocide-tolerant isolates were further characterized. Most isolates (95.2%) were resistant to ampicillin, but only 9.5% were resistant to cefotaxime as well as to ceftazidime. Resistance to chloramphenicol (61.9%), tetracycline (47.6%), streptomycin (19.0%), nalidixic acid (28.6%), ciprofloxacin (9.5%), netilmicin (14.3%), and trimethoprim-sulfamethoxazole (38.1%) was also detected. Considering only antibiotics, 66.7% of isolates were multiresistant; furthermore, 90.5% were multiresistant considering antibiotics and biocides combined. Efflux pump and biocide tolerance genetic determinants detected included acrB (95.2%), oqxA (14.3%), mdfA (9.5%), qacA/B (4.8%), and qacE (9.5%). Antibiotic resistance genes detected included blaTEM (14.3%), blaCTXM-2 (4.8%), blaPSE (4.8%), floR (19.05%), tet(A) (9.5%), tet(C) (4.8%), dfrA12 (0.05%), and dfrA15 (0.05%). Significant positive correlations were detected between phenotypic tolerance/resistance to biocides, biocides and antibiotics, and also between antibiotics, suggesting that a generalized use of biocides could co-select antibiotic resistance.
Collapse
Affiliation(s)
- Maria Luisa Fernández Márquez
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén , Jaén, Spain
| | - María José Grande Burgos
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén , Jaén, Spain
| | - Rubén Pérez Pulido
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén , Jaén, Spain
| | - Antonio Gálvez
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén , Jaén, Spain
| | - Rosario Lucas López
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén , Jaén, Spain
| |
Collapse
|
42
|
Trudel MV, Vincent AT, Attéré SA, Labbé M, Derome N, Culley AI, Charette SJ. Diversity of antibiotic-resistance genes in Canadian isolates of Aeromonas salmonicida subsp. salmonicida: dominance of pSN254b and discovery of pAsa8. Sci Rep 2016; 6:35617. [PMID: 27752114 PMCID: PMC5067588 DOI: 10.1038/srep35617] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/26/2016] [Indexed: 12/26/2022] Open
Abstract
The bacterium Aeromonas salmonicida subsp. salmonicida is a common pathogen in fish farms worldwide. Since the antibiotic resistance of this bacterial species is on the increase, it is important to have a broader view on this issue. In the present study, we tested the presence of known plasmids conferring multi-drug resistance as well as antibiotic resistance genes by a PCR approach in 100 Canadian A. salmonicida subsp. salmonicida isolates. Our study highlighted the dominance of the conjugative pSN254b plasmid, which confers multi-drug resistance. We also identified a new multi-drug plasmid named pAsa8, which has been characterized by a combination of sequencing technologies (Illumina and Oxford nanopore). This new plasmid harbors a complex class 1 integron similar to the one of the Salmonella genomic island 1 (SGI1) found in Salmonella enterica and Proteus mirabilis. Consequently, in addition to providing an update on the A. salmonicida subsp. salmonicida isolates that are resistant to antibiotics, our data suggest that this bacterium is potentially an important reservoir of drug resistance genes and should consequently be monitored more extensively. In addition, we describe a screening method that has the potential to become a diagnostic tool that is complementary to other methods currently in use.
Collapse
Affiliation(s)
- Mélanie V Trudel
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, G1V 0A6, Canada.,Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec City, QC, G1V 0A6, Canada.,Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Quebec City, QC, G1V 4G5, Canada
| | - Antony T Vincent
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, G1V 0A6, Canada.,Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec City, QC, G1V 0A6, Canada.,Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Quebec City, QC, G1V 4G5, Canada
| | - Sabrina A Attéré
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, G1V 0A6, Canada.,Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec City, QC, G1V 0A6, Canada.,Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Quebec City, QC, G1V 4G5, Canada
| | - Myriam Labbé
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, G1V 0A6, Canada.,Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec City, QC, G1V 0A6, Canada.,Groupe de Recherche en Écologie Buccale (GREB), Faculté de médecine dentaire, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Nicolas Derome
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, G1V 0A6, Canada.,Département de biologie, Faculté des sciences et de génie, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Alexander I Culley
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, G1V 0A6, Canada.,Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec City, QC, G1V 0A6, Canada.,Groupe de Recherche en Écologie Buccale (GREB), Faculté de médecine dentaire, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Steve J Charette
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, G1V 0A6, Canada.,Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec City, QC, G1V 0A6, Canada.,Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Quebec City, QC, G1V 4G5, Canada
| |
Collapse
|
43
|
Destabilization of IncA and IncC plasmids by SGI1 and SGI2 type Salmonella genomic islands. Plasmid 2016; 87-88:51-57. [DOI: 10.1016/j.plasmid.2016.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/06/2016] [Accepted: 09/06/2016] [Indexed: 11/24/2022]
|
44
|
A toxin antitoxin system promotes the maintenance of the IncA/C-mobilizable Salmonella Genomic Island 1. Sci Rep 2016; 6:32285. [PMID: 27576575 PMCID: PMC5006074 DOI: 10.1038/srep32285] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/05/2016] [Indexed: 01/09/2023] Open
Abstract
The multidrug resistance Salmonella Genomic Island 1 (SGI1) is an integrative mobilizable element identified in several enterobacterial pathogens. This chromosomal island requires a conjugative IncA/C plasmid to be excised as a circular extrachromosomal form and conjugally mobilized in trans. Preliminary observations suggest stable maintenance of SGI1 in the host chromosome but paradoxically also incompatibility between SGI1 and IncA/C plasmids. Here, using a Salmonella enterica serovar Agona clonal bacterial population as model, we demonstrate that a Toxin-Antitoxin (TA) system encoded by SGI1 plays a critical role in its stable host maintenance when an IncA/C plasmid is concomitantly present. This system, designated sgiAT for Salmonella genomic island 1 Antitoxin and Toxin respectively, thus seems to play a stabilizing role in a situation where SGI1 is susceptible to be lost through plasmid IncA/C-mediated excision. Moreover and for the first time, the incompatibility between SGI1 and IncA/C plasmids was experimentally confirmed.
Collapse
|
45
|
A Structure-Based Classification of Class A β-Lactamases, a Broadly Diverse Family of Enzymes. Clin Microbiol Rev 2016; 29:29-57. [PMID: 26511485 DOI: 10.1128/cmr.00019-15] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
For medical biologists, sequencing has become a commonplace technique to support diagnosis. Rapid changes in this field have led to the generation of large amounts of data, which are not always correctly listed in databases. This is particularly true for data concerning class A β-lactamases, a group of key antibiotic resistance enzymes produced by bacteria. Many genomes have been reported to contain putative β-lactamase genes, which can be compared with representative types. We analyzed several hundred amino acid sequences of class A β-lactamase enzymes for phylogenic relationships, the presence of specific residues, and cluster patterns. A clear distinction was first made between dd-peptidases and class A enzymes based on a small number of residues (S70, K73, P107, 130SDN132, G144, E166, 234K/R, 235T/S, and 236G [Ambler numbering]). Other residues clearly separated two main branches, which we named subclasses A1 and A2. Various clusters were identified on the major branch (subclass A1) on the basis of signature residues associated with catalytic properties (e.g., limited-spectrum β-lactamases, extended-spectrum β-lactamases, and carbapenemases). For subclass A2 enzymes (e.g., CfxA, CIA-1, CME-1, PER-1, and VEB-1), 43 conserved residues were characterized, and several significant insertions were detected. This diversity in the amino acid sequences of β-lactamases must be taken into account to ensure that new enzymes are accurately identified. However, with the exception of PER types, this diversity is poorly represented in existing X-ray crystallographic data.
Collapse
|
46
|
IncA/C Conjugative Plasmids Mobilize a New Family of Multidrug Resistance Islands in Clinical Vibrio cholerae Non-O1/Non-O139 Isolates from Haiti. mBio 2016; 7:mBio.00509-16. [PMID: 27435459 PMCID: PMC4958241 DOI: 10.1128/mbio.00509-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mobile genetic elements play a pivotal role in the adaptation of bacterial populations, allowing them to rapidly cope with hostile conditions, including the presence of antimicrobial compounds. IncA/C conjugative plasmids (ACPs) are efficient vehicles for dissemination of multidrug resistance genes in a broad range of pathogenic species of Enterobacteriaceae. ACPs have sporadically been reported in Vibrio cholerae, the infectious agent of the diarrheal disease cholera. The regulatory network that controls ACP mobility ultimately depends on the transcriptional activation of multiple ACP-borne operons by the master activator AcaCD. Beyond ACP conjugation, AcaCD has also recently been shown to activate the expression of genes located in the Salmonella genomic island 1 (SGI1). Here, we describe MGIVchHai6, a novel and unrelated mobilizable genomic island (MGI) integrated into the 3′ end of trmE in chromosome I of V. cholerae HC-36A1, a non-O1/non-O139 multidrug-resistant clinical isolate recovered from Haiti in 2010. MGIVchHai6 contains a mercury resistance transposon and an integron In104-like multidrug resistance element similar to the one of SGI1. We show that MGIVchHai6 excises from the chromosome in an AcaCD-dependent manner and is mobilized by ACPs. Acquisition of MGIVchHai6 confers resistance to β-lactams, sulfamethoxazole, tetracycline, chloramphenicol, trimethoprim, and streptomycin/spectinomycin. In silico analyses revealed that MGIVchHai6-like elements are carried by several environmental and clinical V. cholerae strains recovered from the Indian subcontinent, as well as from North and South America, including all non-O1/non-O139 clinical isolates from Haiti. Vibrio cholerae, the causative agent of cholera, remains a global public health threat. Seventh-pandemic V. cholerae acquired multidrug resistance genes primarily through circulation of SXT/R391 integrative and conjugative elements. IncA/C conjugative plasmids have sporadically been reported to mediate antimicrobial resistance in environmental and clinical V. cholerae isolates. Our results showed that while IncA/C plasmids are rare in V. cholerae populations, they play an important yet insidious role by specifically propagating a new family of genomic islands conferring resistance to multiple antibiotics. These results suggest that nonepidemic V. cholerae non-O1/non-O139 strains bearing these genomic islands constitute a reservoir of transmissible resistance genes that can be propagated by IncA/C plasmids to V. cholerae populations in epidemic geographical areas as well to pathogenic species of Enterobacteriaceae. We recommend future epidemiological surveys take into account the circulation of these genomic islands.
Collapse
|
47
|
Global Genomic Epidemiology of Salmonella enterica Serovar Typhimurium DT104. Appl Environ Microbiol 2016; 82:2516-26. [PMID: 26944846 PMCID: PMC4959494 DOI: 10.1128/aem.03821-15] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/09/2016] [Indexed: 11/20/2022] Open
Abstract
It has been 30 years since the initial emergence and subsequent rapid global spread of multidrug-resistant Salmonella enterica serovar Typhimurium DT104 (MDR DT104). Nonetheless, its origin and transmission route have never been revealed. We used whole-genome sequencing (WGS) and temporally structured sequence analysis within a Bayesian framework to reconstruct temporal and spatial phylogenetic trees and estimate the rates of mutation and divergence times of 315 S. Typhimurium DT104 isolates sampled from 1969 to 2012 from 21 countries on six continents. DT104 was estimated to have emerged initially as antimicrobial susceptible in ∼1948 (95% credible interval [CI], 1934 to 1962) and later became MDR DT104 in ∼1972 (95% CI, 1972 to 1988) through horizontal transfer of the 13-kb Salmonella genomic island 1 (SGI1) MDR region into susceptible strains already containing SGI1. This was followed by multiple transmission events, initially from central Europe and later between several European countries. An independent transmission to the United States and another to Japan occurred, and from there MDR DT104 was probably transmitted to Taiwan and Canada. An independent acquisition of resistance genes took place in Thailand in ∼1975 (95% CI, 1975 to 1990). In Denmark, WGS analysis provided evidence for transmission of the organism between herds of animals. Interestingly, the demographic history of Danish MDR DT104 provided evidence for the success of the program to eradicate Salmonella from pig herds in Denmark from 1996 to 2000. The results from this study refute several hypotheses on the evolution of DT104 and suggest that WGS may be useful in monitoring emerging clones and devising strategies for prevention of Salmonella infections.
Collapse
|
48
|
One Health and Food-Borne Disease: Salmonella Transmission between Humans, Animals, and Plants. Microbiol Spectr 2015; 2:OH-0020-2013. [PMID: 26082128 DOI: 10.1128/microbiolspec.oh-0020-2013] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
There are >2,600 recognized serovars of Salmonella enterica. Many of these Salmonella serovars have a broad host range and can infect a wide variety of animals, including mammals, birds, reptiles, amphibians, fish, and insects. In addition, Salmonella can grow in plants and can survive in protozoa, soil, and water. Hence, broad-host-range Salmonella can be transmitted via feces from wild animals, farm animals, and pets or by consumption of a wide variety of common foods: poultry, beef, pork, eggs, milk, fruit, vegetables, spices, and nuts. Broad-host-range Salmonella pathogens typically cause gastroenteritis in humans. Some Salmonella serovars have a more restricted host range that is associated with changes in the virulence plasmid pSV, accumulation of pseudogenes, and chromosome rearrangements. These changes in host-restricted Salmonella alter pathogen-host interactions such that host-restricted Salmonella organisms commonly cause systemic infections and are transmitted between host populations by asymptomatic carriers. The secondary consequences of efforts to eliminate host-restricted Salmonella serovars demonstrate that basic ecological principles govern the environmental niches occupied by these pathogens, making it impossible to thwart Salmonella infections without a clear understanding of the human, animal, and environmental reservoirs of these pathogens. Thus, transmission of S. enterica provides a compelling example of the One Health paradigm because reducing human infections will require the reduction of Salmonella in animals and limitation of transmission from the environment.
Collapse
|
49
|
Cheng CK, Cheung MK, Nong W, Law PTW, Qin J, Ling JML, Kam KM, Cheung WMW, Kwan HS. Next generation genome sequencing reveals phylogenetic clades with different level of virulence among Salmonella Typhimurium clinical human isolates in Hong Kong. BMC Genomics 2015; 16:688. [PMID: 26370680 PMCID: PMC4570558 DOI: 10.1186/s12864-015-1900-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 09/08/2015] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Salmonella Typhimurium is frequently isolated from foodborne infection cases in Hong Kong, but the lack of genome sequences has hindered in-depth epidemiological and phylogenetic studies. In this study, we sought to reconstruct the phylogenetic relationship and investigate the distribution and mutation patterns of virulence determinants among local S. Typhimurium clinical isolates using their genome sequences. RESULTS We obtained genome sequences of 20 S. Typhimurium clinical isolates from a local hospital cluster using a 454 GS FLX Titanium sequencing platform. Phylogenetic analysis was performed based on single nucleotide polymorphism positions of the core genome against the reference strain LT2. Antimicrobial susceptibility was determined using minimal inhibitory concentration for five antimicrobial agents and analyses of virulence determinants were performed through referencing to various databases. Through phylogenetic analysis, we revealed two distinct clades of S. Typhimurium isolates and three outliers in Hong Kong, which differ remarkably in antimicrobial susceptibility and presentation and mutations of virulence determinants. The local isolates were not closely related to many of the previously sequenced S. Typhimurium isolates, except LT2. As the isolates in the two clades spanned over 10 years of isolation, they probably represent endemic strains. The outliers are possibly introduced from outside of Hong Kong. The close relatedness of members in one of the clades to LT2 and the Japanese stool isolate T000240 suggests the potential reemergence of LT2 progeny in regions nearby. CONCLUSIONS Our study demonstrated the utility of next-generation sequencing coupled to traditional microbiological testing method in a retrospective epidemiological study involving multiple clinical isolates. The evolution of multidrug- and ciprofloxacin-resistant strains among the more virulent clade is also an increasing concern.
Collapse
Affiliation(s)
- Chi Keung Cheng
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Man Kit Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Wenyan Nong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Patrick Tik Wan Law
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Jing Qin
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Julia Mei-Lun Ling
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China.
| | - Kai Man Kam
- Centre for Health Protection, Department of Health, Hong Kong SAR, China. .,Current address: Stanley Ho Centre for Emerging Infectious Diseases, JC School of Public Health, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | | | - Hoi Shan Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
50
|
Poulin-Laprade D, Carraro N, Burrus V. The extended regulatory networks of SXT/R391 integrative and conjugative elements and IncA/C conjugative plasmids. Front Microbiol 2015; 6:837. [PMID: 26347724 PMCID: PMC4542580 DOI: 10.3389/fmicb.2015.00837] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/31/2015] [Indexed: 12/14/2022] Open
Abstract
Nowadays, healthcare systems are challenged by a major worldwide drug resistance crisis caused by the massive and rapid dissemination of antibiotic resistance genes and associated emergence of multidrug resistant pathogenic bacteria, in both clinical and environmental settings. Conjugation is the main driving force of gene transfer among microorganisms. This mechanism of horizontal gene transfer mediates the translocation of large DNA fragments between two bacterial cells in direct contact. Integrative and conjugative elements (ICEs) of the SXT/R391 family (SRIs) and IncA/C conjugative plasmids (ACPs) are responsible for the dissemination of a broad spectrum of antibiotic resistance genes among diverse species of Enterobacteriaceae and Vibrionaceae. The biology, diversity, prevalence and distribution of these two families of conjugative elements have been the subject of extensive studies for the past 15 years. Recently, the transcriptional regulators that govern their dissemination through the expression of ICE- or plasmid-encoded transfer genes have been described. Unrelated repressors control the activation of conjugation by preventing the expression of two related master activator complexes in both types of elements, i.e., SetCD in SXT/R391 ICEs and AcaCD in IncA/C plasmids. Finally, in addition to activating ICE- or plasmid-borne genes, these master activators have been shown to specifically activate phylogenetically unrelated mobilizable genomic islands (MGIs) that also disseminate antibiotic resistance genes and other adaptive traits among a plethora of pathogens such as Vibrio cholerae and Salmonella enterica.
Collapse
Affiliation(s)
- Dominic Poulin-Laprade
- Laboratory of Bacterial Molecular Genetics, Département de Biologie, Faculté des Sciences, Université de Sherbrooke , Sherbrooke, QC, Canada
| | - Nicolas Carraro
- Laboratory of Bacterial Molecular Genetics, Département de Biologie, Faculté des Sciences, Université de Sherbrooke , Sherbrooke, QC, Canada
| | - Vincent Burrus
- Laboratory of Bacterial Molecular Genetics, Département de Biologie, Faculté des Sciences, Université de Sherbrooke , Sherbrooke, QC, Canada
| |
Collapse
|